1 /* 2 * Functions related to io context handling 3 */ 4 #include <linux/kernel.h> 5 #include <linux/module.h> 6 #include <linux/init.h> 7 #include <linux/bio.h> 8 #include <linux/blkdev.h> 9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */ 10 #include <linux/slab.h> 11 12 #include "blk.h" 13 14 /* 15 * For io context allocations 16 */ 17 static struct kmem_cache *iocontext_cachep; 18 19 /** 20 * get_io_context - increment reference count to io_context 21 * @ioc: io_context to get 22 * 23 * Increment reference count to @ioc. 24 */ 25 void get_io_context(struct io_context *ioc) 26 { 27 BUG_ON(atomic_long_read(&ioc->refcount) <= 0); 28 atomic_long_inc(&ioc->refcount); 29 } 30 EXPORT_SYMBOL(get_io_context); 31 32 /* 33 * Releasing ioc may nest into another put_io_context() leading to nested 34 * fast path release. As the ioc's can't be the same, this is okay but 35 * makes lockdep whine. Keep track of nesting and use it as subclass. 36 */ 37 #ifdef CONFIG_LOCKDEP 38 #define ioc_release_depth(q) ((q) ? (q)->ioc_release_depth : 0) 39 #define ioc_release_depth_inc(q) (q)->ioc_release_depth++ 40 #define ioc_release_depth_dec(q) (q)->ioc_release_depth-- 41 #else 42 #define ioc_release_depth(q) 0 43 #define ioc_release_depth_inc(q) do { } while (0) 44 #define ioc_release_depth_dec(q) do { } while (0) 45 #endif 46 47 static void icq_free_icq_rcu(struct rcu_head *head) 48 { 49 struct io_cq *icq = container_of(head, struct io_cq, __rcu_head); 50 51 kmem_cache_free(icq->__rcu_icq_cache, icq); 52 } 53 54 /* 55 * Exit and free an icq. Called with both ioc and q locked. 56 */ 57 static void ioc_exit_icq(struct io_cq *icq) 58 { 59 struct io_context *ioc = icq->ioc; 60 struct request_queue *q = icq->q; 61 struct elevator_type *et = q->elevator->type; 62 63 lockdep_assert_held(&ioc->lock); 64 lockdep_assert_held(q->queue_lock); 65 66 radix_tree_delete(&ioc->icq_tree, icq->q->id); 67 hlist_del_init(&icq->ioc_node); 68 list_del_init(&icq->q_node); 69 70 /* 71 * Both setting lookup hint to and clearing it from @icq are done 72 * under queue_lock. If it's not pointing to @icq now, it never 73 * will. Hint assignment itself can race safely. 74 */ 75 if (rcu_dereference_raw(ioc->icq_hint) == icq) 76 rcu_assign_pointer(ioc->icq_hint, NULL); 77 78 if (et->ops.elevator_exit_icq_fn) { 79 ioc_release_depth_inc(q); 80 et->ops.elevator_exit_icq_fn(icq); 81 ioc_release_depth_dec(q); 82 } 83 84 /* 85 * @icq->q might have gone away by the time RCU callback runs 86 * making it impossible to determine icq_cache. Record it in @icq. 87 */ 88 icq->__rcu_icq_cache = et->icq_cache; 89 call_rcu(&icq->__rcu_head, icq_free_icq_rcu); 90 } 91 92 /* 93 * Slow path for ioc release in put_io_context(). Performs double-lock 94 * dancing to unlink all icq's and then frees ioc. 95 */ 96 static void ioc_release_fn(struct work_struct *work) 97 { 98 struct io_context *ioc = container_of(work, struct io_context, 99 release_work); 100 struct request_queue *last_q = NULL; 101 102 spin_lock_irq(&ioc->lock); 103 104 while (!hlist_empty(&ioc->icq_list)) { 105 struct io_cq *icq = hlist_entry(ioc->icq_list.first, 106 struct io_cq, ioc_node); 107 struct request_queue *this_q = icq->q; 108 109 if (this_q != last_q) { 110 /* 111 * Need to switch to @this_q. Once we release 112 * @ioc->lock, it can go away along with @cic. 113 * Hold on to it. 114 */ 115 __blk_get_queue(this_q); 116 117 /* 118 * blk_put_queue() might sleep thanks to kobject 119 * idiocy. Always release both locks, put and 120 * restart. 121 */ 122 if (last_q) { 123 spin_unlock(last_q->queue_lock); 124 spin_unlock_irq(&ioc->lock); 125 blk_put_queue(last_q); 126 } else { 127 spin_unlock_irq(&ioc->lock); 128 } 129 130 last_q = this_q; 131 spin_lock_irq(this_q->queue_lock); 132 spin_lock(&ioc->lock); 133 continue; 134 } 135 ioc_exit_icq(icq); 136 } 137 138 if (last_q) { 139 spin_unlock(last_q->queue_lock); 140 spin_unlock_irq(&ioc->lock); 141 blk_put_queue(last_q); 142 } else { 143 spin_unlock_irq(&ioc->lock); 144 } 145 146 kmem_cache_free(iocontext_cachep, ioc); 147 } 148 149 /** 150 * put_io_context - put a reference of io_context 151 * @ioc: io_context to put 152 * @locked_q: request_queue the caller is holding queue_lock of (hint) 153 * 154 * Decrement reference count of @ioc and release it if the count reaches 155 * zero. If the caller is holding queue_lock of a queue, it can indicate 156 * that with @locked_q. This is an optimization hint and the caller is 157 * allowed to pass in %NULL even when it's holding a queue_lock. 158 */ 159 void put_io_context(struct io_context *ioc, struct request_queue *locked_q) 160 { 161 struct request_queue *last_q = locked_q; 162 unsigned long flags; 163 164 if (ioc == NULL) 165 return; 166 167 BUG_ON(atomic_long_read(&ioc->refcount) <= 0); 168 if (locked_q) 169 lockdep_assert_held(locked_q->queue_lock); 170 171 if (!atomic_long_dec_and_test(&ioc->refcount)) 172 return; 173 174 /* 175 * Destroy @ioc. This is a bit messy because icq's are chained 176 * from both ioc and queue, and ioc->lock nests inside queue_lock. 177 * The inner ioc->lock should be held to walk our icq_list and then 178 * for each icq the outer matching queue_lock should be grabbed. 179 * ie. We need to do reverse-order double lock dancing. 180 * 181 * Another twist is that we are often called with one of the 182 * matching queue_locks held as indicated by @locked_q, which 183 * prevents performing double-lock dance for other queues. 184 * 185 * So, we do it in two stages. The fast path uses the queue_lock 186 * the caller is holding and, if other queues need to be accessed, 187 * uses trylock to avoid introducing locking dependency. This can 188 * handle most cases, especially if @ioc was performing IO on only 189 * single device. 190 * 191 * If trylock doesn't cut it, we defer to @ioc->release_work which 192 * can do all the double-locking dancing. 193 */ 194 spin_lock_irqsave_nested(&ioc->lock, flags, 195 ioc_release_depth(locked_q)); 196 197 while (!hlist_empty(&ioc->icq_list)) { 198 struct io_cq *icq = hlist_entry(ioc->icq_list.first, 199 struct io_cq, ioc_node); 200 struct request_queue *this_q = icq->q; 201 202 if (this_q != last_q) { 203 if (last_q && last_q != locked_q) 204 spin_unlock(last_q->queue_lock); 205 last_q = NULL; 206 207 if (!spin_trylock(this_q->queue_lock)) 208 break; 209 last_q = this_q; 210 continue; 211 } 212 ioc_exit_icq(icq); 213 } 214 215 if (last_q && last_q != locked_q) 216 spin_unlock(last_q->queue_lock); 217 218 spin_unlock_irqrestore(&ioc->lock, flags); 219 220 /* if no icq is left, we're done; otherwise, kick release_work */ 221 if (hlist_empty(&ioc->icq_list)) 222 kmem_cache_free(iocontext_cachep, ioc); 223 else 224 schedule_work(&ioc->release_work); 225 } 226 EXPORT_SYMBOL(put_io_context); 227 228 /* Called by the exiting task */ 229 void exit_io_context(struct task_struct *task) 230 { 231 struct io_context *ioc; 232 233 task_lock(task); 234 ioc = task->io_context; 235 task->io_context = NULL; 236 task_unlock(task); 237 238 atomic_dec(&ioc->nr_tasks); 239 put_io_context(ioc, NULL); 240 } 241 242 /** 243 * ioc_clear_queue - break any ioc association with the specified queue 244 * @q: request_queue being cleared 245 * 246 * Walk @q->icq_list and exit all io_cq's. Must be called with @q locked. 247 */ 248 void ioc_clear_queue(struct request_queue *q) 249 { 250 lockdep_assert_held(q->queue_lock); 251 252 while (!list_empty(&q->icq_list)) { 253 struct io_cq *icq = list_entry(q->icq_list.next, 254 struct io_cq, q_node); 255 struct io_context *ioc = icq->ioc; 256 257 spin_lock(&ioc->lock); 258 ioc_exit_icq(icq); 259 spin_unlock(&ioc->lock); 260 } 261 } 262 263 void create_io_context_slowpath(struct task_struct *task, gfp_t gfp_flags, 264 int node) 265 { 266 struct io_context *ioc; 267 268 ioc = kmem_cache_alloc_node(iocontext_cachep, gfp_flags | __GFP_ZERO, 269 node); 270 if (unlikely(!ioc)) 271 return; 272 273 /* initialize */ 274 atomic_long_set(&ioc->refcount, 1); 275 atomic_set(&ioc->nr_tasks, 1); 276 spin_lock_init(&ioc->lock); 277 INIT_RADIX_TREE(&ioc->icq_tree, GFP_ATOMIC | __GFP_HIGH); 278 INIT_HLIST_HEAD(&ioc->icq_list); 279 INIT_WORK(&ioc->release_work, ioc_release_fn); 280 281 /* 282 * Try to install. ioc shouldn't be installed if someone else 283 * already did or @task, which isn't %current, is exiting. Note 284 * that we need to allow ioc creation on exiting %current as exit 285 * path may issue IOs from e.g. exit_files(). The exit path is 286 * responsible for not issuing IO after exit_io_context(). 287 */ 288 task_lock(task); 289 if (!task->io_context && 290 (task == current || !(task->flags & PF_EXITING))) 291 task->io_context = ioc; 292 else 293 kmem_cache_free(iocontext_cachep, ioc); 294 task_unlock(task); 295 } 296 297 /** 298 * get_task_io_context - get io_context of a task 299 * @task: task of interest 300 * @gfp_flags: allocation flags, used if allocation is necessary 301 * @node: allocation node, used if allocation is necessary 302 * 303 * Return io_context of @task. If it doesn't exist, it is created with 304 * @gfp_flags and @node. The returned io_context has its reference count 305 * incremented. 306 * 307 * This function always goes through task_lock() and it's better to use 308 * %current->io_context + get_io_context() for %current. 309 */ 310 struct io_context *get_task_io_context(struct task_struct *task, 311 gfp_t gfp_flags, int node) 312 { 313 struct io_context *ioc; 314 315 might_sleep_if(gfp_flags & __GFP_WAIT); 316 317 do { 318 task_lock(task); 319 ioc = task->io_context; 320 if (likely(ioc)) { 321 get_io_context(ioc); 322 task_unlock(task); 323 return ioc; 324 } 325 task_unlock(task); 326 } while (create_io_context(task, gfp_flags, node)); 327 328 return NULL; 329 } 330 EXPORT_SYMBOL(get_task_io_context); 331 332 /** 333 * ioc_lookup_icq - lookup io_cq from ioc 334 * @ioc: the associated io_context 335 * @q: the associated request_queue 336 * 337 * Look up io_cq associated with @ioc - @q pair from @ioc. Must be called 338 * with @q->queue_lock held. 339 */ 340 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q) 341 { 342 struct io_cq *icq; 343 344 lockdep_assert_held(q->queue_lock); 345 346 /* 347 * icq's are indexed from @ioc using radix tree and hint pointer, 348 * both of which are protected with RCU. All removals are done 349 * holding both q and ioc locks, and we're holding q lock - if we 350 * find a icq which points to us, it's guaranteed to be valid. 351 */ 352 rcu_read_lock(); 353 icq = rcu_dereference(ioc->icq_hint); 354 if (icq && icq->q == q) 355 goto out; 356 357 icq = radix_tree_lookup(&ioc->icq_tree, q->id); 358 if (icq && icq->q == q) 359 rcu_assign_pointer(ioc->icq_hint, icq); /* allowed to race */ 360 else 361 icq = NULL; 362 out: 363 rcu_read_unlock(); 364 return icq; 365 } 366 EXPORT_SYMBOL(ioc_lookup_icq); 367 368 /** 369 * ioc_create_icq - create and link io_cq 370 * @q: request_queue of interest 371 * @gfp_mask: allocation mask 372 * 373 * Make sure io_cq linking %current->io_context and @q exists. If either 374 * io_context and/or icq don't exist, they will be created using @gfp_mask. 375 * 376 * The caller is responsible for ensuring @ioc won't go away and @q is 377 * alive and will stay alive until this function returns. 378 */ 379 struct io_cq *ioc_create_icq(struct request_queue *q, gfp_t gfp_mask) 380 { 381 struct elevator_type *et = q->elevator->type; 382 struct io_context *ioc; 383 struct io_cq *icq; 384 385 /* allocate stuff */ 386 ioc = create_io_context(current, gfp_mask, q->node); 387 if (!ioc) 388 return NULL; 389 390 icq = kmem_cache_alloc_node(et->icq_cache, gfp_mask | __GFP_ZERO, 391 q->node); 392 if (!icq) 393 return NULL; 394 395 if (radix_tree_preload(gfp_mask) < 0) { 396 kmem_cache_free(et->icq_cache, icq); 397 return NULL; 398 } 399 400 icq->ioc = ioc; 401 icq->q = q; 402 INIT_LIST_HEAD(&icq->q_node); 403 INIT_HLIST_NODE(&icq->ioc_node); 404 405 /* lock both q and ioc and try to link @icq */ 406 spin_lock_irq(q->queue_lock); 407 spin_lock(&ioc->lock); 408 409 if (likely(!radix_tree_insert(&ioc->icq_tree, q->id, icq))) { 410 hlist_add_head(&icq->ioc_node, &ioc->icq_list); 411 list_add(&icq->q_node, &q->icq_list); 412 if (et->ops.elevator_init_icq_fn) 413 et->ops.elevator_init_icq_fn(icq); 414 } else { 415 kmem_cache_free(et->icq_cache, icq); 416 icq = ioc_lookup_icq(ioc, q); 417 if (!icq) 418 printk(KERN_ERR "cfq: icq link failed!\n"); 419 } 420 421 spin_unlock(&ioc->lock); 422 spin_unlock_irq(q->queue_lock); 423 radix_tree_preload_end(); 424 return icq; 425 } 426 427 void ioc_set_changed(struct io_context *ioc, int which) 428 { 429 struct io_cq *icq; 430 struct hlist_node *n; 431 432 hlist_for_each_entry(icq, n, &ioc->icq_list, ioc_node) 433 set_bit(which, &icq->changed); 434 } 435 436 /** 437 * ioc_ioprio_changed - notify ioprio change 438 * @ioc: io_context of interest 439 * @ioprio: new ioprio 440 * 441 * @ioc's ioprio has changed to @ioprio. Set %ICQ_IOPRIO_CHANGED for all 442 * icq's. iosched is responsible for checking the bit and applying it on 443 * request issue path. 444 */ 445 void ioc_ioprio_changed(struct io_context *ioc, int ioprio) 446 { 447 unsigned long flags; 448 449 spin_lock_irqsave(&ioc->lock, flags); 450 ioc->ioprio = ioprio; 451 ioc_set_changed(ioc, ICQ_IOPRIO_CHANGED); 452 spin_unlock_irqrestore(&ioc->lock, flags); 453 } 454 455 /** 456 * ioc_cgroup_changed - notify cgroup change 457 * @ioc: io_context of interest 458 * 459 * @ioc's cgroup has changed. Set %ICQ_CGROUP_CHANGED for all icq's. 460 * iosched is responsible for checking the bit and applying it on request 461 * issue path. 462 */ 463 void ioc_cgroup_changed(struct io_context *ioc) 464 { 465 unsigned long flags; 466 467 spin_lock_irqsave(&ioc->lock, flags); 468 ioc_set_changed(ioc, ICQ_CGROUP_CHANGED); 469 spin_unlock_irqrestore(&ioc->lock, flags); 470 } 471 EXPORT_SYMBOL(ioc_cgroup_changed); 472 473 static int __init blk_ioc_init(void) 474 { 475 iocontext_cachep = kmem_cache_create("blkdev_ioc", 476 sizeof(struct io_context), 0, SLAB_PANIC, NULL); 477 return 0; 478 } 479 subsys_initcall(blk_ioc_init); 480