1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/part_stat.h> 72 73 #include "blk.h" 74 #include "blk-mq.h" 75 #include "blk-mq-sched.h" 76 77 /* PREFLUSH/FUA sequences */ 78 enum { 79 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 80 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 81 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 82 REQ_FSEQ_DONE = (1 << 3), 83 84 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 85 REQ_FSEQ_POSTFLUSH, 86 87 /* 88 * If flush has been pending longer than the following timeout, 89 * it's issued even if flush_data requests are still in flight. 90 */ 91 FLUSH_PENDING_TIMEOUT = 5 * HZ, 92 }; 93 94 static void blk_kick_flush(struct request_queue *q, 95 struct blk_flush_queue *fq, blk_opf_t flags); 96 97 static inline struct blk_flush_queue * 98 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) 99 { 100 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; 101 } 102 103 static unsigned int blk_flush_cur_seq(struct request *rq) 104 { 105 return 1 << ffz(rq->flush.seq); 106 } 107 108 static void blk_flush_restore_request(struct request *rq) 109 { 110 /* 111 * After flush data completion, @rq->bio is %NULL but we need to 112 * complete the bio again. @rq->biotail is guaranteed to equal the 113 * original @rq->bio. Restore it. 114 */ 115 rq->bio = rq->biotail; 116 if (rq->bio) 117 rq->__sector = rq->bio->bi_iter.bi_sector; 118 119 /* make @rq a normal request */ 120 rq->rq_flags &= ~RQF_FLUSH_SEQ; 121 rq->end_io = rq->flush.saved_end_io; 122 } 123 124 static void blk_account_io_flush(struct request *rq) 125 { 126 struct block_device *part = rq->q->disk->part0; 127 128 part_stat_lock(); 129 part_stat_inc(part, ios[STAT_FLUSH]); 130 part_stat_add(part, nsecs[STAT_FLUSH], 131 blk_time_get_ns() - rq->start_time_ns); 132 part_stat_unlock(); 133 } 134 135 /** 136 * blk_flush_complete_seq - complete flush sequence 137 * @rq: PREFLUSH/FUA request being sequenced 138 * @fq: flush queue 139 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 140 * @error: whether an error occurred 141 * 142 * @rq just completed @seq part of its flush sequence, record the 143 * completion and trigger the next step. 144 * 145 * CONTEXT: 146 * spin_lock_irq(fq->mq_flush_lock) 147 */ 148 static void blk_flush_complete_seq(struct request *rq, 149 struct blk_flush_queue *fq, 150 unsigned int seq, blk_status_t error) 151 { 152 struct request_queue *q = rq->q; 153 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 154 blk_opf_t cmd_flags; 155 156 BUG_ON(rq->flush.seq & seq); 157 rq->flush.seq |= seq; 158 cmd_flags = rq->cmd_flags; 159 160 if (likely(!error)) 161 seq = blk_flush_cur_seq(rq); 162 else 163 seq = REQ_FSEQ_DONE; 164 165 switch (seq) { 166 case REQ_FSEQ_PREFLUSH: 167 case REQ_FSEQ_POSTFLUSH: 168 /* queue for flush */ 169 if (list_empty(pending)) 170 fq->flush_pending_since = jiffies; 171 list_add_tail(&rq->queuelist, pending); 172 break; 173 174 case REQ_FSEQ_DATA: 175 fq->flush_data_in_flight++; 176 spin_lock(&q->requeue_lock); 177 list_move(&rq->queuelist, &q->requeue_list); 178 spin_unlock(&q->requeue_lock); 179 blk_mq_kick_requeue_list(q); 180 break; 181 182 case REQ_FSEQ_DONE: 183 /* 184 * @rq was previously adjusted by blk_insert_flush() for 185 * flush sequencing and may already have gone through the 186 * flush data request completion path. Restore @rq for 187 * normal completion and end it. 188 */ 189 list_del_init(&rq->queuelist); 190 blk_flush_restore_request(rq); 191 blk_mq_end_request(rq, error); 192 break; 193 194 default: 195 BUG(); 196 } 197 198 blk_kick_flush(q, fq, cmd_flags); 199 } 200 201 static enum rq_end_io_ret flush_end_io(struct request *flush_rq, 202 blk_status_t error) 203 { 204 struct request_queue *q = flush_rq->q; 205 struct list_head *running; 206 struct request *rq, *n; 207 unsigned long flags = 0; 208 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 209 210 /* release the tag's ownership to the req cloned from */ 211 spin_lock_irqsave(&fq->mq_flush_lock, flags); 212 213 if (!req_ref_put_and_test(flush_rq)) { 214 fq->rq_status = error; 215 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 216 return RQ_END_IO_NONE; 217 } 218 219 blk_account_io_flush(flush_rq); 220 /* 221 * Flush request has to be marked as IDLE when it is really ended 222 * because its .end_io() is called from timeout code path too for 223 * avoiding use-after-free. 224 */ 225 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE); 226 if (fq->rq_status != BLK_STS_OK) { 227 error = fq->rq_status; 228 fq->rq_status = BLK_STS_OK; 229 } 230 231 if (!q->elevator) { 232 flush_rq->tag = BLK_MQ_NO_TAG; 233 } else { 234 blk_mq_put_driver_tag(flush_rq); 235 flush_rq->internal_tag = BLK_MQ_NO_TAG; 236 } 237 238 running = &fq->flush_queue[fq->flush_running_idx]; 239 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 240 241 /* account completion of the flush request */ 242 fq->flush_running_idx ^= 1; 243 244 /* and push the waiting requests to the next stage */ 245 list_for_each_entry_safe(rq, n, running, queuelist) { 246 unsigned int seq = blk_flush_cur_seq(rq); 247 248 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 249 list_del_init(&rq->queuelist); 250 blk_flush_complete_seq(rq, fq, seq, error); 251 } 252 253 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 254 return RQ_END_IO_NONE; 255 } 256 257 bool is_flush_rq(struct request *rq) 258 { 259 return rq->end_io == flush_end_io; 260 } 261 262 /** 263 * blk_kick_flush - consider issuing flush request 264 * @q: request_queue being kicked 265 * @fq: flush queue 266 * @flags: cmd_flags of the original request 267 * 268 * Flush related states of @q have changed, consider issuing flush request. 269 * Please read the comment at the top of this file for more info. 270 * 271 * CONTEXT: 272 * spin_lock_irq(fq->mq_flush_lock) 273 * 274 */ 275 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 276 blk_opf_t flags) 277 { 278 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 279 struct request *first_rq = 280 list_first_entry(pending, struct request, queuelist); 281 struct request *flush_rq = fq->flush_rq; 282 283 /* C1 described at the top of this file */ 284 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 285 return; 286 287 /* C2 and C3 */ 288 if (fq->flush_data_in_flight && 289 time_before(jiffies, 290 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 291 return; 292 293 /* 294 * Issue flush and toggle pending_idx. This makes pending_idx 295 * different from running_idx, which means flush is in flight. 296 */ 297 fq->flush_pending_idx ^= 1; 298 299 blk_rq_init(q, flush_rq); 300 301 /* 302 * In case of none scheduler, borrow tag from the first request 303 * since they can't be in flight at the same time. And acquire 304 * the tag's ownership for flush req. 305 * 306 * In case of IO scheduler, flush rq need to borrow scheduler tag 307 * just for cheating put/get driver tag. 308 */ 309 flush_rq->mq_ctx = first_rq->mq_ctx; 310 flush_rq->mq_hctx = first_rq->mq_hctx; 311 312 if (!q->elevator) 313 flush_rq->tag = first_rq->tag; 314 else 315 flush_rq->internal_tag = first_rq->internal_tag; 316 317 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 318 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 319 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 320 flush_rq->end_io = flush_end_io; 321 /* 322 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one 323 * implied in refcount_inc_not_zero() called from 324 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref 325 * and READ flush_rq->end_io 326 */ 327 smp_wmb(); 328 req_ref_set(flush_rq, 1); 329 330 spin_lock(&q->requeue_lock); 331 list_add_tail(&flush_rq->queuelist, &q->flush_list); 332 spin_unlock(&q->requeue_lock); 333 334 blk_mq_kick_requeue_list(q); 335 } 336 337 static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq, 338 blk_status_t error) 339 { 340 struct request_queue *q = rq->q; 341 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 342 struct blk_mq_ctx *ctx = rq->mq_ctx; 343 unsigned long flags; 344 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 345 346 if (q->elevator) { 347 WARN_ON(rq->tag < 0); 348 blk_mq_put_driver_tag(rq); 349 } 350 351 /* 352 * After populating an empty queue, kick it to avoid stall. Read 353 * the comment in flush_end_io(). 354 */ 355 spin_lock_irqsave(&fq->mq_flush_lock, flags); 356 fq->flush_data_in_flight--; 357 /* 358 * May have been corrupted by rq->rq_next reuse, we need to 359 * re-initialize rq->queuelist before reusing it here. 360 */ 361 INIT_LIST_HEAD(&rq->queuelist); 362 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 363 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 364 365 blk_mq_sched_restart(hctx); 366 return RQ_END_IO_NONE; 367 } 368 369 static void blk_rq_init_flush(struct request *rq) 370 { 371 rq->flush.seq = 0; 372 rq->rq_flags |= RQF_FLUSH_SEQ; 373 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 374 rq->end_io = mq_flush_data_end_io; 375 } 376 377 /* 378 * Insert a PREFLUSH/FUA request into the flush state machine. 379 * Returns true if the request has been consumed by the flush state machine, 380 * or false if the caller should continue to process it. 381 */ 382 bool blk_insert_flush(struct request *rq) 383 { 384 struct request_queue *q = rq->q; 385 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 386 bool supports_fua = q->limits.features & BLK_FEAT_FUA; 387 unsigned int policy = 0; 388 389 /* FLUSH/FUA request must never be merged */ 390 WARN_ON_ONCE(rq->bio != rq->biotail); 391 392 if (blk_rq_sectors(rq)) 393 policy |= REQ_FSEQ_DATA; 394 395 /* 396 * Check which flushes we need to sequence for this operation. 397 */ 398 if (blk_queue_write_cache(q)) { 399 if (rq->cmd_flags & REQ_PREFLUSH) 400 policy |= REQ_FSEQ_PREFLUSH; 401 if ((rq->cmd_flags & REQ_FUA) && !supports_fua) 402 policy |= REQ_FSEQ_POSTFLUSH; 403 } 404 405 /* 406 * @policy now records what operations need to be done. Adjust 407 * REQ_PREFLUSH and FUA for the driver. 408 */ 409 rq->cmd_flags &= ~REQ_PREFLUSH; 410 if (!supports_fua) 411 rq->cmd_flags &= ~REQ_FUA; 412 413 /* 414 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 415 * of those flags, we have to set REQ_SYNC to avoid skewing 416 * the request accounting. 417 */ 418 rq->cmd_flags |= REQ_SYNC; 419 420 switch (policy) { 421 case 0: 422 /* 423 * An empty flush handed down from a stacking driver may 424 * translate into nothing if the underlying device does not 425 * advertise a write-back cache. In this case, simply 426 * complete the request. 427 */ 428 blk_mq_end_request(rq, 0); 429 return true; 430 case REQ_FSEQ_DATA: 431 /* 432 * If there's data, but no flush is necessary, the request can 433 * be processed directly without going through flush machinery. 434 * Queue for normal execution. 435 */ 436 return false; 437 case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH: 438 /* 439 * Initialize the flush fields and completion handler to trigger 440 * the post flush, and then just pass the command on. 441 */ 442 blk_rq_init_flush(rq); 443 rq->flush.seq |= REQ_FSEQ_PREFLUSH; 444 spin_lock_irq(&fq->mq_flush_lock); 445 fq->flush_data_in_flight++; 446 spin_unlock_irq(&fq->mq_flush_lock); 447 return false; 448 default: 449 /* 450 * Mark the request as part of a flush sequence and submit it 451 * for further processing to the flush state machine. 452 */ 453 blk_rq_init_flush(rq); 454 spin_lock_irq(&fq->mq_flush_lock); 455 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 456 spin_unlock_irq(&fq->mq_flush_lock); 457 return true; 458 } 459 } 460 461 /** 462 * blkdev_issue_flush - queue a flush 463 * @bdev: blockdev to issue flush for 464 * 465 * Description: 466 * Issue a flush for the block device in question. 467 */ 468 int blkdev_issue_flush(struct block_device *bdev) 469 { 470 struct bio bio; 471 472 bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH); 473 return submit_bio_wait(&bio); 474 } 475 EXPORT_SYMBOL(blkdev_issue_flush); 476 477 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 478 gfp_t flags) 479 { 480 struct blk_flush_queue *fq; 481 int rq_sz = sizeof(struct request); 482 483 fq = kzalloc_node(sizeof(*fq), flags, node); 484 if (!fq) 485 goto fail; 486 487 spin_lock_init(&fq->mq_flush_lock); 488 489 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 490 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 491 if (!fq->flush_rq) 492 goto fail_rq; 493 494 INIT_LIST_HEAD(&fq->flush_queue[0]); 495 INIT_LIST_HEAD(&fq->flush_queue[1]); 496 497 return fq; 498 499 fail_rq: 500 kfree(fq); 501 fail: 502 return NULL; 503 } 504 505 void blk_free_flush_queue(struct blk_flush_queue *fq) 506 { 507 /* bio based request queue hasn't flush queue */ 508 if (!fq) 509 return; 510 511 kfree(fq->flush_rq); 512 kfree(fq); 513 } 514 515 /* 516 * Allow driver to set its own lock class to fq->mq_flush_lock for 517 * avoiding lockdep complaint. 518 * 519 * flush_end_io() may be called recursively from some driver, such as 520 * nvme-loop, so lockdep may complain 'possible recursive locking' because 521 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class 522 * key. We need to assign different lock class for these driver's 523 * fq->mq_flush_lock for avoiding the lockdep warning. 524 * 525 * Use dynamically allocated lock class key for each 'blk_flush_queue' 526 * instance is over-kill, and more worse it introduces horrible boot delay 527 * issue because synchronize_rcu() is implied in lockdep_unregister_key which 528 * is called for each hctx release. SCSI probing may synchronously create and 529 * destroy lots of MQ request_queues for non-existent devices, and some robot 530 * test kernel always enable lockdep option. It is observed that more than half 531 * an hour is taken during SCSI MQ probe with per-fq lock class. 532 */ 533 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, 534 struct lock_class_key *key) 535 { 536 lockdep_set_class(&hctx->fq->mq_flush_lock, key); 537 } 538 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class); 539