1 /* 2 * Functions to sequence FLUSH and FUA writes. 3 * 4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 11 * properties and hardware capability. 12 * 13 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 14 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 15 * that the device cache should be flushed before the data is executed, and 16 * REQ_FUA means that the data must be on non-volatile media on request 17 * completion. 18 * 19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any 20 * difference. The requests are either completed immediately if there's no 21 * data or executed as normal requests otherwise. 22 * 23 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 25 * 26 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 27 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 28 * 29 * The actual execution of flush is double buffered. Whenever a request 30 * needs to execute PRE or POSTFLUSH, it queues at 31 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 32 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 33 * completes, all the requests which were pending are proceeded to the next 34 * step. This allows arbitrary merging of different types of FLUSH/FUA 35 * requests. 36 * 37 * Currently, the following conditions are used to determine when to issue 38 * flush. 39 * 40 * C1. At any given time, only one flush shall be in progress. This makes 41 * double buffering sufficient. 42 * 43 * C2. Flush is deferred if any request is executing DATA of its sequence. 44 * This avoids issuing separate POSTFLUSHes for requests which shared 45 * PREFLUSH. 46 * 47 * C3. The second condition is ignored if there is a request which has 48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 49 * starvation in the unlikely case where there are continuous stream of 50 * FUA (without FLUSH) requests. 51 * 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 53 * is beneficial. 54 * 55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice. 56 * Once while executing DATA and again after the whole sequence is 57 * complete. The first completion updates the contained bio but doesn't 58 * finish it so that the bio submitter is notified only after the whole 59 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 60 * req_bio_endio(). 61 * 62 * The above peculiarity requires that each FLUSH/FUA request has only one 63 * bio attached to it, which is guaranteed as they aren't allowed to be 64 * merged in the usual way. 65 */ 66 67 #include <linux/kernel.h> 68 #include <linux/module.h> 69 #include <linux/bio.h> 70 #include <linux/blkdev.h> 71 #include <linux/gfp.h> 72 #include <linux/blk-mq.h> 73 74 #include "blk.h" 75 #include "blk-mq.h" 76 #include "blk-mq-tag.h" 77 #include "blk-mq-sched.h" 78 79 /* FLUSH/FUA sequences */ 80 enum { 81 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 82 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 83 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 84 REQ_FSEQ_DONE = (1 << 3), 85 86 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 87 REQ_FSEQ_POSTFLUSH, 88 89 /* 90 * If flush has been pending longer than the following timeout, 91 * it's issued even if flush_data requests are still in flight. 92 */ 93 FLUSH_PENDING_TIMEOUT = 5 * HZ, 94 }; 95 96 static bool blk_kick_flush(struct request_queue *q, 97 struct blk_flush_queue *fq); 98 99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 100 { 101 unsigned int policy = 0; 102 103 if (blk_rq_sectors(rq)) 104 policy |= REQ_FSEQ_DATA; 105 106 if (fflags & (1UL << QUEUE_FLAG_WC)) { 107 if (rq->cmd_flags & REQ_PREFLUSH) 108 policy |= REQ_FSEQ_PREFLUSH; 109 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 110 (rq->cmd_flags & REQ_FUA)) 111 policy |= REQ_FSEQ_POSTFLUSH; 112 } 113 return policy; 114 } 115 116 static unsigned int blk_flush_cur_seq(struct request *rq) 117 { 118 return 1 << ffz(rq->flush.seq); 119 } 120 121 static void blk_flush_restore_request(struct request *rq) 122 { 123 /* 124 * After flush data completion, @rq->bio is %NULL but we need to 125 * complete the bio again. @rq->biotail is guaranteed to equal the 126 * original @rq->bio. Restore it. 127 */ 128 rq->bio = rq->biotail; 129 130 /* make @rq a normal request */ 131 rq->rq_flags &= ~RQF_FLUSH_SEQ; 132 rq->end_io = rq->flush.saved_end_io; 133 } 134 135 static bool blk_flush_queue_rq(struct request *rq, bool add_front) 136 { 137 if (rq->q->mq_ops) { 138 blk_mq_add_to_requeue_list(rq, add_front, true); 139 return false; 140 } else { 141 if (add_front) 142 list_add(&rq->queuelist, &rq->q->queue_head); 143 else 144 list_add_tail(&rq->queuelist, &rq->q->queue_head); 145 return true; 146 } 147 } 148 149 /** 150 * blk_flush_complete_seq - complete flush sequence 151 * @rq: FLUSH/FUA request being sequenced 152 * @fq: flush queue 153 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 154 * @error: whether an error occurred 155 * 156 * @rq just completed @seq part of its flush sequence, record the 157 * completion and trigger the next step. 158 * 159 * CONTEXT: 160 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock) 161 * 162 * RETURNS: 163 * %true if requests were added to the dispatch queue, %false otherwise. 164 */ 165 static bool blk_flush_complete_seq(struct request *rq, 166 struct blk_flush_queue *fq, 167 unsigned int seq, int error) 168 { 169 struct request_queue *q = rq->q; 170 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 171 bool queued = false, kicked; 172 173 BUG_ON(rq->flush.seq & seq); 174 rq->flush.seq |= seq; 175 176 if (likely(!error)) 177 seq = blk_flush_cur_seq(rq); 178 else 179 seq = REQ_FSEQ_DONE; 180 181 switch (seq) { 182 case REQ_FSEQ_PREFLUSH: 183 case REQ_FSEQ_POSTFLUSH: 184 /* queue for flush */ 185 if (list_empty(pending)) 186 fq->flush_pending_since = jiffies; 187 list_move_tail(&rq->flush.list, pending); 188 break; 189 190 case REQ_FSEQ_DATA: 191 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 192 queued = blk_flush_queue_rq(rq, true); 193 break; 194 195 case REQ_FSEQ_DONE: 196 /* 197 * @rq was previously adjusted by blk_flush_issue() for 198 * flush sequencing and may already have gone through the 199 * flush data request completion path. Restore @rq for 200 * normal completion and end it. 201 */ 202 BUG_ON(!list_empty(&rq->queuelist)); 203 list_del_init(&rq->flush.list); 204 blk_flush_restore_request(rq); 205 if (q->mq_ops) 206 blk_mq_end_request(rq, error); 207 else 208 __blk_end_request_all(rq, error); 209 break; 210 211 default: 212 BUG(); 213 } 214 215 kicked = blk_kick_flush(q, fq); 216 return kicked | queued; 217 } 218 219 static void flush_end_io(struct request *flush_rq, int error) 220 { 221 struct request_queue *q = flush_rq->q; 222 struct list_head *running; 223 bool queued = false; 224 struct request *rq, *n; 225 unsigned long flags = 0; 226 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 227 228 if (q->mq_ops) { 229 struct blk_mq_hw_ctx *hctx; 230 231 /* release the tag's ownership to the req cloned from */ 232 spin_lock_irqsave(&fq->mq_flush_lock, flags); 233 hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu); 234 blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq); 235 flush_rq->tag = -1; 236 } 237 238 running = &fq->flush_queue[fq->flush_running_idx]; 239 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 240 241 /* account completion of the flush request */ 242 fq->flush_running_idx ^= 1; 243 244 if (!q->mq_ops) 245 elv_completed_request(q, flush_rq); 246 247 /* and push the waiting requests to the next stage */ 248 list_for_each_entry_safe(rq, n, running, flush.list) { 249 unsigned int seq = blk_flush_cur_seq(rq); 250 251 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 252 queued |= blk_flush_complete_seq(rq, fq, seq, error); 253 } 254 255 /* 256 * Kick the queue to avoid stall for two cases: 257 * 1. Moving a request silently to empty queue_head may stall the 258 * queue. 259 * 2. When flush request is running in non-queueable queue, the 260 * queue is hold. Restart the queue after flush request is finished 261 * to avoid stall. 262 * This function is called from request completion path and calling 263 * directly into request_fn may confuse the driver. Always use 264 * kblockd. 265 */ 266 if (queued || fq->flush_queue_delayed) { 267 WARN_ON(q->mq_ops); 268 blk_run_queue_async(q); 269 } 270 fq->flush_queue_delayed = 0; 271 if (q->mq_ops) 272 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 273 } 274 275 /** 276 * blk_kick_flush - consider issuing flush request 277 * @q: request_queue being kicked 278 * @fq: flush queue 279 * 280 * Flush related states of @q have changed, consider issuing flush request. 281 * Please read the comment at the top of this file for more info. 282 * 283 * CONTEXT: 284 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock) 285 * 286 * RETURNS: 287 * %true if flush was issued, %false otherwise. 288 */ 289 static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq) 290 { 291 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 292 struct request *first_rq = 293 list_first_entry(pending, struct request, flush.list); 294 struct request *flush_rq = fq->flush_rq; 295 296 /* C1 described at the top of this file */ 297 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 298 return false; 299 300 /* C2 and C3 301 * 302 * For blk-mq + scheduling, we can risk having all driver tags 303 * assigned to empty flushes, and we deadlock if we are expecting 304 * other requests to make progress. Don't defer for that case. 305 */ 306 if (!list_empty(&fq->flush_data_in_flight) && 307 !(q->mq_ops && q->elevator) && 308 time_before(jiffies, 309 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 310 return false; 311 312 /* 313 * Issue flush and toggle pending_idx. This makes pending_idx 314 * different from running_idx, which means flush is in flight. 315 */ 316 fq->flush_pending_idx ^= 1; 317 318 blk_rq_init(q, flush_rq); 319 320 /* 321 * Borrow tag from the first request since they can't 322 * be in flight at the same time. And acquire the tag's 323 * ownership for flush req. 324 */ 325 if (q->mq_ops) { 326 struct blk_mq_hw_ctx *hctx; 327 328 flush_rq->mq_ctx = first_rq->mq_ctx; 329 flush_rq->tag = first_rq->tag; 330 fq->orig_rq = first_rq; 331 332 hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu); 333 blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq); 334 } 335 336 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 337 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 338 flush_rq->rq_disk = first_rq->rq_disk; 339 flush_rq->end_io = flush_end_io; 340 341 return blk_flush_queue_rq(flush_rq, false); 342 } 343 344 static void flush_data_end_io(struct request *rq, int error) 345 { 346 struct request_queue *q = rq->q; 347 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 348 349 /* 350 * Updating q->in_flight[] here for making this tag usable 351 * early. Because in blk_queue_start_tag(), 352 * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and 353 * reserve tags for sync I/O. 354 * 355 * More importantly this way can avoid the following I/O 356 * deadlock: 357 * 358 * - suppose there are 40 fua requests comming to flush queue 359 * and queue depth is 31 360 * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc 361 * tag for async I/O any more 362 * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT 363 * and flush_data_end_io() is called 364 * - the other rqs still can't go ahead if not updating 365 * q->in_flight[BLK_RW_ASYNC] here, meantime these rqs 366 * are held in flush data queue and make no progress of 367 * handling post flush rq 368 * - only after the post flush rq is handled, all these rqs 369 * can be completed 370 */ 371 372 elv_completed_request(q, rq); 373 374 /* for avoiding double accounting */ 375 rq->rq_flags &= ~RQF_STARTED; 376 377 /* 378 * After populating an empty queue, kick it to avoid stall. Read 379 * the comment in flush_end_io(). 380 */ 381 if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error)) 382 blk_run_queue_async(q); 383 } 384 385 static void mq_flush_data_end_io(struct request *rq, int error) 386 { 387 struct request_queue *q = rq->q; 388 struct blk_mq_hw_ctx *hctx; 389 struct blk_mq_ctx *ctx = rq->mq_ctx; 390 unsigned long flags; 391 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 392 393 hctx = blk_mq_map_queue(q, ctx->cpu); 394 395 /* 396 * After populating an empty queue, kick it to avoid stall. Read 397 * the comment in flush_end_io(). 398 */ 399 spin_lock_irqsave(&fq->mq_flush_lock, flags); 400 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 401 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 402 403 blk_mq_run_hw_queue(hctx, true); 404 } 405 406 /** 407 * blk_insert_flush - insert a new FLUSH/FUA request 408 * @rq: request to insert 409 * 410 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 411 * or __blk_mq_run_hw_queue() to dispatch request. 412 * @rq is being submitted. Analyze what needs to be done and put it on the 413 * right queue. 414 * 415 * CONTEXT: 416 * spin_lock_irq(q->queue_lock) in !mq case 417 */ 418 void blk_insert_flush(struct request *rq) 419 { 420 struct request_queue *q = rq->q; 421 unsigned long fflags = q->queue_flags; /* may change, cache */ 422 unsigned int policy = blk_flush_policy(fflags, rq); 423 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 424 425 /* 426 * @policy now records what operations need to be done. Adjust 427 * REQ_PREFLUSH and FUA for the driver. 428 */ 429 rq->cmd_flags &= ~REQ_PREFLUSH; 430 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 431 rq->cmd_flags &= ~REQ_FUA; 432 433 /* 434 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 435 * of those flags, we have to set REQ_SYNC to avoid skewing 436 * the request accounting. 437 */ 438 rq->cmd_flags |= REQ_SYNC; 439 440 /* 441 * An empty flush handed down from a stacking driver may 442 * translate into nothing if the underlying device does not 443 * advertise a write-back cache. In this case, simply 444 * complete the request. 445 */ 446 if (!policy) { 447 if (q->mq_ops) 448 blk_mq_end_request(rq, 0); 449 else 450 __blk_end_request(rq, 0, 0); 451 return; 452 } 453 454 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 455 456 /* 457 * If there's data but flush is not necessary, the request can be 458 * processed directly without going through flush machinery. Queue 459 * for normal execution. 460 */ 461 if ((policy & REQ_FSEQ_DATA) && 462 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 463 if (q->mq_ops) 464 blk_mq_sched_insert_request(rq, false, true, false, false); 465 else 466 list_add_tail(&rq->queuelist, &q->queue_head); 467 return; 468 } 469 470 /* 471 * @rq should go through flush machinery. Mark it part of flush 472 * sequence and submit for further processing. 473 */ 474 memset(&rq->flush, 0, sizeof(rq->flush)); 475 INIT_LIST_HEAD(&rq->flush.list); 476 rq->rq_flags |= RQF_FLUSH_SEQ; 477 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 478 if (q->mq_ops) { 479 rq->end_io = mq_flush_data_end_io; 480 481 spin_lock_irq(&fq->mq_flush_lock); 482 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 483 spin_unlock_irq(&fq->mq_flush_lock); 484 return; 485 } 486 rq->end_io = flush_data_end_io; 487 488 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 489 } 490 491 /** 492 * blkdev_issue_flush - queue a flush 493 * @bdev: blockdev to issue flush for 494 * @gfp_mask: memory allocation flags (for bio_alloc) 495 * @error_sector: error sector 496 * 497 * Description: 498 * Issue a flush for the block device in question. Caller can supply 499 * room for storing the error offset in case of a flush error, if they 500 * wish to. 501 */ 502 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 503 sector_t *error_sector) 504 { 505 struct request_queue *q; 506 struct bio *bio; 507 int ret = 0; 508 509 if (bdev->bd_disk == NULL) 510 return -ENXIO; 511 512 q = bdev_get_queue(bdev); 513 if (!q) 514 return -ENXIO; 515 516 /* 517 * some block devices may not have their queue correctly set up here 518 * (e.g. loop device without a backing file) and so issuing a flush 519 * here will panic. Ensure there is a request function before issuing 520 * the flush. 521 */ 522 if (!q->make_request_fn) 523 return -ENXIO; 524 525 bio = bio_alloc(gfp_mask, 0); 526 bio->bi_bdev = bdev; 527 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 528 529 ret = submit_bio_wait(bio); 530 531 /* 532 * The driver must store the error location in ->bi_sector, if 533 * it supports it. For non-stacked drivers, this should be 534 * copied from blk_rq_pos(rq). 535 */ 536 if (error_sector) 537 *error_sector = bio->bi_iter.bi_sector; 538 539 bio_put(bio); 540 return ret; 541 } 542 EXPORT_SYMBOL(blkdev_issue_flush); 543 544 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q, 545 int node, int cmd_size) 546 { 547 struct blk_flush_queue *fq; 548 int rq_sz = sizeof(struct request); 549 550 fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node); 551 if (!fq) 552 goto fail; 553 554 if (q->mq_ops) 555 spin_lock_init(&fq->mq_flush_lock); 556 557 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 558 fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node); 559 if (!fq->flush_rq) 560 goto fail_rq; 561 562 INIT_LIST_HEAD(&fq->flush_queue[0]); 563 INIT_LIST_HEAD(&fq->flush_queue[1]); 564 INIT_LIST_HEAD(&fq->flush_data_in_flight); 565 566 return fq; 567 568 fail_rq: 569 kfree(fq); 570 fail: 571 return NULL; 572 } 573 574 void blk_free_flush_queue(struct blk_flush_queue *fq) 575 { 576 /* bio based request queue hasn't flush queue */ 577 if (!fq) 578 return; 579 580 kfree(fq->flush_rq); 581 kfree(fq); 582 } 583