xref: /linux/block/blk-flush.c (revision c6df6213a95fa9674cc48d77042141942dd0809b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions to sequence PREFLUSH and FUA writes.
4  *
5  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
6  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
7  *
8  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10  * properties and hardware capability.
11  *
12  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
14  * that the device cache should be flushed before the data is executed, and
15  * REQ_FUA means that the data must be on non-volatile media on request
16  * completion.
17  *
18  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19  * difference.  The requests are either completed immediately if there's no data
20  * or executed as normal requests otherwise.
21  *
22  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24  *
25  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27  *
28  * The actual execution of flush is double buffered.  Whenever a request
29  * needs to execute PRE or POSTFLUSH, it queues at
30  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
31  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
32  * completes, all the requests which were pending are proceeded to the next
33  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
34  * requests.
35  *
36  * Currently, the following conditions are used to determine when to issue
37  * flush.
38  *
39  * C1. At any given time, only one flush shall be in progress.  This makes
40  *     double buffering sufficient.
41  *
42  * C2. Flush is deferred if any request is executing DATA of its sequence.
43  *     This avoids issuing separate POSTFLUSHes for requests which shared
44  *     PREFLUSH.
45  *
46  * C3. The second condition is ignored if there is a request which has
47  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
48  *     starvation in the unlikely case where there are continuous stream of
49  *     FUA (without PREFLUSH) requests.
50  *
51  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52  * is beneficial.
53  *
54  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55  * Once while executing DATA and again after the whole sequence is
56  * complete.  The first completion updates the contained bio but doesn't
57  * finish it so that the bio submitter is notified only after the whole
58  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
59  * req_bio_endio().
60  *
61  * The above peculiarity requires that each PREFLUSH/FUA request has only one
62  * bio attached to it, which is guaranteed as they aren't allowed to be
63  * merged in the usual way.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/module.h>
68 #include <linux/bio.h>
69 #include <linux/blkdev.h>
70 #include <linux/gfp.h>
71 #include <linux/part_stat.h>
72 
73 #include "blk.h"
74 #include "blk-mq.h"
75 #include "blk-mq-sched.h"
76 
77 /* PREFLUSH/FUA sequences */
78 enum {
79 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
80 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
81 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
82 	REQ_FSEQ_DONE		= (1 << 3),
83 
84 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85 				  REQ_FSEQ_POSTFLUSH,
86 
87 	/*
88 	 * If flush has been pending longer than the following timeout,
89 	 * it's issued even if flush_data requests are still in flight.
90 	 */
91 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
92 };
93 
94 static void blk_kick_flush(struct request_queue *q,
95 			   struct blk_flush_queue *fq, blk_opf_t flags);
96 
97 static inline struct blk_flush_queue *
98 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
99 {
100 	return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
101 }
102 
103 static unsigned int blk_flush_cur_seq(struct request *rq)
104 {
105 	return 1 << ffz(rq->flush.seq);
106 }
107 
108 static void blk_flush_restore_request(struct request *rq)
109 {
110 	/*
111 	 * After flush data completion, @rq->bio is %NULL but we need to
112 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
113 	 * original @rq->bio.  Restore it.
114 	 */
115 	rq->bio = rq->biotail;
116 	if (rq->bio)
117 		rq->__sector = rq->bio->bi_iter.bi_sector;
118 
119 	/* make @rq a normal request */
120 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
121 	rq->end_io = rq->flush.saved_end_io;
122 }
123 
124 static void blk_account_io_flush(struct request *rq)
125 {
126 	struct block_device *part = rq->q->disk->part0;
127 
128 	part_stat_lock();
129 	part_stat_inc(part, ios[STAT_FLUSH]);
130 	part_stat_add(part, nsecs[STAT_FLUSH],
131 		      blk_time_get_ns() - rq->start_time_ns);
132 	part_stat_unlock();
133 }
134 
135 /**
136  * blk_flush_complete_seq - complete flush sequence
137  * @rq: PREFLUSH/FUA request being sequenced
138  * @fq: flush queue
139  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
140  * @error: whether an error occurred
141  *
142  * @rq just completed @seq part of its flush sequence, record the
143  * completion and trigger the next step.
144  *
145  * CONTEXT:
146  * spin_lock_irq(fq->mq_flush_lock)
147  */
148 static void blk_flush_complete_seq(struct request *rq,
149 				   struct blk_flush_queue *fq,
150 				   unsigned int seq, blk_status_t error)
151 {
152 	struct request_queue *q = rq->q;
153 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
154 	blk_opf_t cmd_flags;
155 
156 	BUG_ON(rq->flush.seq & seq);
157 	rq->flush.seq |= seq;
158 	cmd_flags = rq->cmd_flags;
159 
160 	if (likely(!error))
161 		seq = blk_flush_cur_seq(rq);
162 	else
163 		seq = REQ_FSEQ_DONE;
164 
165 	switch (seq) {
166 	case REQ_FSEQ_PREFLUSH:
167 	case REQ_FSEQ_POSTFLUSH:
168 		/* queue for flush */
169 		if (list_empty(pending))
170 			fq->flush_pending_since = jiffies;
171 		list_add_tail(&rq->queuelist, pending);
172 		break;
173 
174 	case REQ_FSEQ_DATA:
175 		fq->flush_data_in_flight++;
176 		spin_lock(&q->requeue_lock);
177 		list_move(&rq->queuelist, &q->requeue_list);
178 		spin_unlock(&q->requeue_lock);
179 		blk_mq_kick_requeue_list(q);
180 		break;
181 
182 	case REQ_FSEQ_DONE:
183 		/*
184 		 * @rq was previously adjusted by blk_insert_flush() for
185 		 * flush sequencing and may already have gone through the
186 		 * flush data request completion path.  Restore @rq for
187 		 * normal completion and end it.
188 		 */
189 		list_del_init(&rq->queuelist);
190 		blk_flush_restore_request(rq);
191 		blk_mq_end_request(rq, error);
192 		break;
193 
194 	default:
195 		BUG();
196 	}
197 
198 	blk_kick_flush(q, fq, cmd_flags);
199 }
200 
201 static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
202 				       blk_status_t error)
203 {
204 	struct request_queue *q = flush_rq->q;
205 	struct list_head *running;
206 	struct request *rq, *n;
207 	unsigned long flags = 0;
208 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
209 
210 	/* release the tag's ownership to the req cloned from */
211 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
212 
213 	if (!req_ref_put_and_test(flush_rq)) {
214 		fq->rq_status = error;
215 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
216 		return RQ_END_IO_NONE;
217 	}
218 
219 	blk_account_io_flush(flush_rq);
220 	/*
221 	 * Flush request has to be marked as IDLE when it is really ended
222 	 * because its .end_io() is called from timeout code path too for
223 	 * avoiding use-after-free.
224 	 */
225 	WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
226 	if (fq->rq_status != BLK_STS_OK) {
227 		error = fq->rq_status;
228 		fq->rq_status = BLK_STS_OK;
229 	}
230 
231 	if (!q->elevator) {
232 		flush_rq->tag = BLK_MQ_NO_TAG;
233 	} else {
234 		blk_mq_put_driver_tag(flush_rq);
235 		flush_rq->internal_tag = BLK_MQ_NO_TAG;
236 	}
237 
238 	running = &fq->flush_queue[fq->flush_running_idx];
239 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
240 
241 	/* account completion of the flush request */
242 	fq->flush_running_idx ^= 1;
243 
244 	/* and push the waiting requests to the next stage */
245 	list_for_each_entry_safe(rq, n, running, queuelist) {
246 		unsigned int seq = blk_flush_cur_seq(rq);
247 
248 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
249 		list_del_init(&rq->queuelist);
250 		blk_flush_complete_seq(rq, fq, seq, error);
251 	}
252 
253 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
254 	return RQ_END_IO_NONE;
255 }
256 
257 bool is_flush_rq(struct request *rq)
258 {
259 	return rq->end_io == flush_end_io;
260 }
261 
262 /**
263  * blk_kick_flush - consider issuing flush request
264  * @q: request_queue being kicked
265  * @fq: flush queue
266  * @flags: cmd_flags of the original request
267  *
268  * Flush related states of @q have changed, consider issuing flush request.
269  * Please read the comment at the top of this file for more info.
270  *
271  * CONTEXT:
272  * spin_lock_irq(fq->mq_flush_lock)
273  *
274  */
275 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
276 			   blk_opf_t flags)
277 {
278 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
279 	struct request *first_rq =
280 		list_first_entry(pending, struct request, queuelist);
281 	struct request *flush_rq = fq->flush_rq;
282 
283 	/* C1 described at the top of this file */
284 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
285 		return;
286 
287 	/* C2 and C3 */
288 	if (fq->flush_data_in_flight &&
289 	    time_before(jiffies,
290 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
291 		return;
292 
293 	/*
294 	 * Issue flush and toggle pending_idx.  This makes pending_idx
295 	 * different from running_idx, which means flush is in flight.
296 	 */
297 	fq->flush_pending_idx ^= 1;
298 
299 	blk_rq_init(q, flush_rq);
300 
301 	/*
302 	 * In case of none scheduler, borrow tag from the first request
303 	 * since they can't be in flight at the same time. And acquire
304 	 * the tag's ownership for flush req.
305 	 *
306 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
307 	 * just for cheating put/get driver tag.
308 	 */
309 	flush_rq->mq_ctx = first_rq->mq_ctx;
310 	flush_rq->mq_hctx = first_rq->mq_hctx;
311 
312 	if (!q->elevator)
313 		flush_rq->tag = first_rq->tag;
314 	else
315 		flush_rq->internal_tag = first_rq->internal_tag;
316 
317 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
318 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
319 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
320 	flush_rq->end_io = flush_end_io;
321 	/*
322 	 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
323 	 * implied in refcount_inc_not_zero() called from
324 	 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
325 	 * and READ flush_rq->end_io
326 	 */
327 	smp_wmb();
328 	req_ref_set(flush_rq, 1);
329 
330 	spin_lock(&q->requeue_lock);
331 	list_add_tail(&flush_rq->queuelist, &q->flush_list);
332 	spin_unlock(&q->requeue_lock);
333 
334 	blk_mq_kick_requeue_list(q);
335 }
336 
337 static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
338 					       blk_status_t error)
339 {
340 	struct request_queue *q = rq->q;
341 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
342 	struct blk_mq_ctx *ctx = rq->mq_ctx;
343 	unsigned long flags;
344 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
345 
346 	if (q->elevator) {
347 		WARN_ON(rq->tag < 0);
348 		blk_mq_put_driver_tag(rq);
349 	}
350 
351 	/*
352 	 * After populating an empty queue, kick it to avoid stall.  Read
353 	 * the comment in flush_end_io().
354 	 */
355 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
356 	fq->flush_data_in_flight--;
357 	/*
358 	 * May have been corrupted by rq->rq_next reuse, we need to
359 	 * re-initialize rq->queuelist before reusing it here.
360 	 */
361 	INIT_LIST_HEAD(&rq->queuelist);
362 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
363 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
364 
365 	blk_mq_sched_restart(hctx);
366 	return RQ_END_IO_NONE;
367 }
368 
369 static void blk_rq_init_flush(struct request *rq)
370 {
371 	rq->flush.seq = 0;
372 	rq->rq_flags |= RQF_FLUSH_SEQ;
373 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
374 	rq->end_io = mq_flush_data_end_io;
375 }
376 
377 /*
378  * Insert a PREFLUSH/FUA request into the flush state machine.
379  * Returns true if the request has been consumed by the flush state machine,
380  * or false if the caller should continue to process it.
381  */
382 bool blk_insert_flush(struct request *rq)
383 {
384 	struct request_queue *q = rq->q;
385 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
386 	bool supports_fua = q->limits.features & BLK_FEAT_FUA;
387 	unsigned int policy = 0;
388 
389 	/* FLUSH/FUA request must never be merged */
390 	WARN_ON_ONCE(rq->bio != rq->biotail);
391 
392 	if (blk_rq_sectors(rq))
393 		policy |= REQ_FSEQ_DATA;
394 
395 	/*
396 	 * Check which flushes we need to sequence for this operation.
397 	 */
398 	if (blk_queue_write_cache(q)) {
399 		if (rq->cmd_flags & REQ_PREFLUSH)
400 			policy |= REQ_FSEQ_PREFLUSH;
401 		if ((rq->cmd_flags & REQ_FUA) && !supports_fua)
402 			policy |= REQ_FSEQ_POSTFLUSH;
403 	}
404 
405 	/*
406 	 * @policy now records what operations need to be done.  Adjust
407 	 * REQ_PREFLUSH and FUA for the driver.
408 	 */
409 	rq->cmd_flags &= ~REQ_PREFLUSH;
410 	if (!supports_fua)
411 		rq->cmd_flags &= ~REQ_FUA;
412 
413 	/*
414 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
415 	 * of those flags, we have to set REQ_SYNC to avoid skewing
416 	 * the request accounting.
417 	 */
418 	rq->cmd_flags |= REQ_SYNC;
419 
420 	switch (policy) {
421 	case 0:
422 		/*
423 		 * An empty flush handed down from a stacking driver may
424 		 * translate into nothing if the underlying device does not
425 		 * advertise a write-back cache.  In this case, simply
426 		 * complete the request.
427 		 */
428 		blk_mq_end_request(rq, 0);
429 		return true;
430 	case REQ_FSEQ_DATA:
431 		/*
432 		 * If there's data, but no flush is necessary, the request can
433 		 * be processed directly without going through flush machinery.
434 		 * Queue for normal execution.
435 		 */
436 		return false;
437 	case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH:
438 		/*
439 		 * Initialize the flush fields and completion handler to trigger
440 		 * the post flush, and then just pass the command on.
441 		 */
442 		blk_rq_init_flush(rq);
443 		rq->flush.seq |= REQ_FSEQ_PREFLUSH;
444 		spin_lock_irq(&fq->mq_flush_lock);
445 		fq->flush_data_in_flight++;
446 		spin_unlock_irq(&fq->mq_flush_lock);
447 		return false;
448 	default:
449 		/*
450 		 * Mark the request as part of a flush sequence and submit it
451 		 * for further processing to the flush state machine.
452 		 */
453 		blk_rq_init_flush(rq);
454 		spin_lock_irq(&fq->mq_flush_lock);
455 		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
456 		spin_unlock_irq(&fq->mq_flush_lock);
457 		return true;
458 	}
459 }
460 
461 /**
462  * blkdev_issue_flush - queue a flush
463  * @bdev:	blockdev to issue flush for
464  *
465  * Description:
466  *    Issue a flush for the block device in question.
467  */
468 int blkdev_issue_flush(struct block_device *bdev)
469 {
470 	struct bio bio;
471 
472 	bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
473 	return submit_bio_wait(&bio);
474 }
475 EXPORT_SYMBOL(blkdev_issue_flush);
476 
477 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
478 					      gfp_t flags)
479 {
480 	struct blk_flush_queue *fq;
481 	int rq_sz = sizeof(struct request);
482 
483 	fq = kzalloc_node(sizeof(*fq), flags, node);
484 	if (!fq)
485 		goto fail;
486 
487 	spin_lock_init(&fq->mq_flush_lock);
488 
489 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
490 	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
491 	if (!fq->flush_rq)
492 		goto fail_rq;
493 
494 	INIT_LIST_HEAD(&fq->flush_queue[0]);
495 	INIT_LIST_HEAD(&fq->flush_queue[1]);
496 
497 	return fq;
498 
499  fail_rq:
500 	kfree(fq);
501  fail:
502 	return NULL;
503 }
504 
505 void blk_free_flush_queue(struct blk_flush_queue *fq)
506 {
507 	/* bio based request queue hasn't flush queue */
508 	if (!fq)
509 		return;
510 
511 	kfree(fq->flush_rq);
512 	kfree(fq);
513 }
514 
515 /*
516  * Allow driver to set its own lock class to fq->mq_flush_lock for
517  * avoiding lockdep complaint.
518  *
519  * flush_end_io() may be called recursively from some driver, such as
520  * nvme-loop, so lockdep may complain 'possible recursive locking' because
521  * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
522  * key. We need to assign different lock class for these driver's
523  * fq->mq_flush_lock for avoiding the lockdep warning.
524  *
525  * Use dynamically allocated lock class key for each 'blk_flush_queue'
526  * instance is over-kill, and more worse it introduces horrible boot delay
527  * issue because synchronize_rcu() is implied in lockdep_unregister_key which
528  * is called for each hctx release. SCSI probing may synchronously create and
529  * destroy lots of MQ request_queues for non-existent devices, and some robot
530  * test kernel always enable lockdep option. It is observed that more than half
531  * an hour is taken during SCSI MQ probe with per-fq lock class.
532  */
533 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
534 		struct lock_class_key *key)
535 {
536 	lockdep_set_class(&hctx->fq->mq_flush_lock, key);
537 }
538 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);
539