xref: /linux/block/blk-flush.c (revision bf80eef2212a1e8451df13b52533f4bc31bb4f8e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions to sequence PREFLUSH and FUA writes.
4  *
5  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
6  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
7  *
8  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10  * properties and hardware capability.
11  *
12  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
14  * that the device cache should be flushed before the data is executed, and
15  * REQ_FUA means that the data must be on non-volatile media on request
16  * completion.
17  *
18  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19  * difference.  The requests are either completed immediately if there's no data
20  * or executed as normal requests otherwise.
21  *
22  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24  *
25  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27  *
28  * The actual execution of flush is double buffered.  Whenever a request
29  * needs to execute PRE or POSTFLUSH, it queues at
30  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
31  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
32  * completes, all the requests which were pending are proceeded to the next
33  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
34  * requests.
35  *
36  * Currently, the following conditions are used to determine when to issue
37  * flush.
38  *
39  * C1. At any given time, only one flush shall be in progress.  This makes
40  *     double buffering sufficient.
41  *
42  * C2. Flush is deferred if any request is executing DATA of its sequence.
43  *     This avoids issuing separate POSTFLUSHes for requests which shared
44  *     PREFLUSH.
45  *
46  * C3. The second condition is ignored if there is a request which has
47  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
48  *     starvation in the unlikely case where there are continuous stream of
49  *     FUA (without PREFLUSH) requests.
50  *
51  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52  * is beneficial.
53  *
54  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55  * Once while executing DATA and again after the whole sequence is
56  * complete.  The first completion updates the contained bio but doesn't
57  * finish it so that the bio submitter is notified only after the whole
58  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
59  * req_bio_endio().
60  *
61  * The above peculiarity requires that each PREFLUSH/FUA request has only one
62  * bio attached to it, which is guaranteed as they aren't allowed to be
63  * merged in the usual way.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/module.h>
68 #include <linux/bio.h>
69 #include <linux/blkdev.h>
70 #include <linux/gfp.h>
71 #include <linux/blk-mq.h>
72 #include <linux/part_stat.h>
73 
74 #include "blk.h"
75 #include "blk-mq.h"
76 #include "blk-mq-tag.h"
77 #include "blk-mq-sched.h"
78 
79 /* PREFLUSH/FUA sequences */
80 enum {
81 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
82 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
83 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
84 	REQ_FSEQ_DONE		= (1 << 3),
85 
86 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
87 				  REQ_FSEQ_POSTFLUSH,
88 
89 	/*
90 	 * If flush has been pending longer than the following timeout,
91 	 * it's issued even if flush_data requests are still in flight.
92 	 */
93 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
94 };
95 
96 static void blk_kick_flush(struct request_queue *q,
97 			   struct blk_flush_queue *fq, blk_opf_t flags);
98 
99 static inline struct blk_flush_queue *
100 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
101 {
102 	return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
103 }
104 
105 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
106 {
107 	unsigned int policy = 0;
108 
109 	if (blk_rq_sectors(rq))
110 		policy |= REQ_FSEQ_DATA;
111 
112 	if (fflags & (1UL << QUEUE_FLAG_WC)) {
113 		if (rq->cmd_flags & REQ_PREFLUSH)
114 			policy |= REQ_FSEQ_PREFLUSH;
115 		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
116 		    (rq->cmd_flags & REQ_FUA))
117 			policy |= REQ_FSEQ_POSTFLUSH;
118 	}
119 	return policy;
120 }
121 
122 static unsigned int blk_flush_cur_seq(struct request *rq)
123 {
124 	return 1 << ffz(rq->flush.seq);
125 }
126 
127 static void blk_flush_restore_request(struct request *rq)
128 {
129 	/*
130 	 * After flush data completion, @rq->bio is %NULL but we need to
131 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
132 	 * original @rq->bio.  Restore it.
133 	 */
134 	rq->bio = rq->biotail;
135 
136 	/* make @rq a normal request */
137 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
138 	rq->end_io = rq->flush.saved_end_io;
139 }
140 
141 static void blk_flush_queue_rq(struct request *rq, bool add_front)
142 {
143 	blk_mq_add_to_requeue_list(rq, add_front, true);
144 }
145 
146 static void blk_account_io_flush(struct request *rq)
147 {
148 	struct block_device *part = rq->q->disk->part0;
149 
150 	part_stat_lock();
151 	part_stat_inc(part, ios[STAT_FLUSH]);
152 	part_stat_add(part, nsecs[STAT_FLUSH],
153 		      ktime_get_ns() - rq->start_time_ns);
154 	part_stat_unlock();
155 }
156 
157 /**
158  * blk_flush_complete_seq - complete flush sequence
159  * @rq: PREFLUSH/FUA request being sequenced
160  * @fq: flush queue
161  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
162  * @error: whether an error occurred
163  *
164  * @rq just completed @seq part of its flush sequence, record the
165  * completion and trigger the next step.
166  *
167  * CONTEXT:
168  * spin_lock_irq(fq->mq_flush_lock)
169  */
170 static void blk_flush_complete_seq(struct request *rq,
171 				   struct blk_flush_queue *fq,
172 				   unsigned int seq, blk_status_t error)
173 {
174 	struct request_queue *q = rq->q;
175 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
176 	blk_opf_t cmd_flags;
177 
178 	BUG_ON(rq->flush.seq & seq);
179 	rq->flush.seq |= seq;
180 	cmd_flags = rq->cmd_flags;
181 
182 	if (likely(!error))
183 		seq = blk_flush_cur_seq(rq);
184 	else
185 		seq = REQ_FSEQ_DONE;
186 
187 	switch (seq) {
188 	case REQ_FSEQ_PREFLUSH:
189 	case REQ_FSEQ_POSTFLUSH:
190 		/* queue for flush */
191 		if (list_empty(pending))
192 			fq->flush_pending_since = jiffies;
193 		list_move_tail(&rq->flush.list, pending);
194 		break;
195 
196 	case REQ_FSEQ_DATA:
197 		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
198 		blk_flush_queue_rq(rq, true);
199 		break;
200 
201 	case REQ_FSEQ_DONE:
202 		/*
203 		 * @rq was previously adjusted by blk_insert_flush() for
204 		 * flush sequencing and may already have gone through the
205 		 * flush data request completion path.  Restore @rq for
206 		 * normal completion and end it.
207 		 */
208 		list_del_init(&rq->flush.list);
209 		blk_flush_restore_request(rq);
210 		blk_mq_end_request(rq, error);
211 		break;
212 
213 	default:
214 		BUG();
215 	}
216 
217 	blk_kick_flush(q, fq, cmd_flags);
218 }
219 
220 static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
221 				       blk_status_t error)
222 {
223 	struct request_queue *q = flush_rq->q;
224 	struct list_head *running;
225 	struct request *rq, *n;
226 	unsigned long flags = 0;
227 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
228 
229 	/* release the tag's ownership to the req cloned from */
230 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
231 
232 	if (!req_ref_put_and_test(flush_rq)) {
233 		fq->rq_status = error;
234 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
235 		return RQ_END_IO_NONE;
236 	}
237 
238 	blk_account_io_flush(flush_rq);
239 	/*
240 	 * Flush request has to be marked as IDLE when it is really ended
241 	 * because its .end_io() is called from timeout code path too for
242 	 * avoiding use-after-free.
243 	 */
244 	WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
245 	if (fq->rq_status != BLK_STS_OK) {
246 		error = fq->rq_status;
247 		fq->rq_status = BLK_STS_OK;
248 	}
249 
250 	if (!q->elevator) {
251 		flush_rq->tag = BLK_MQ_NO_TAG;
252 	} else {
253 		blk_mq_put_driver_tag(flush_rq);
254 		flush_rq->internal_tag = BLK_MQ_NO_TAG;
255 	}
256 
257 	running = &fq->flush_queue[fq->flush_running_idx];
258 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
259 
260 	/* account completion of the flush request */
261 	fq->flush_running_idx ^= 1;
262 
263 	/* and push the waiting requests to the next stage */
264 	list_for_each_entry_safe(rq, n, running, flush.list) {
265 		unsigned int seq = blk_flush_cur_seq(rq);
266 
267 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
268 		blk_flush_complete_seq(rq, fq, seq, error);
269 	}
270 
271 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
272 	return RQ_END_IO_NONE;
273 }
274 
275 bool is_flush_rq(struct request *rq)
276 {
277 	return rq->end_io == flush_end_io;
278 }
279 
280 /**
281  * blk_kick_flush - consider issuing flush request
282  * @q: request_queue being kicked
283  * @fq: flush queue
284  * @flags: cmd_flags of the original request
285  *
286  * Flush related states of @q have changed, consider issuing flush request.
287  * Please read the comment at the top of this file for more info.
288  *
289  * CONTEXT:
290  * spin_lock_irq(fq->mq_flush_lock)
291  *
292  */
293 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
294 			   blk_opf_t flags)
295 {
296 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
297 	struct request *first_rq =
298 		list_first_entry(pending, struct request, flush.list);
299 	struct request *flush_rq = fq->flush_rq;
300 
301 	/* C1 described at the top of this file */
302 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
303 		return;
304 
305 	/* C2 and C3 */
306 	if (!list_empty(&fq->flush_data_in_flight) &&
307 	    time_before(jiffies,
308 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
309 		return;
310 
311 	/*
312 	 * Issue flush and toggle pending_idx.  This makes pending_idx
313 	 * different from running_idx, which means flush is in flight.
314 	 */
315 	fq->flush_pending_idx ^= 1;
316 
317 	blk_rq_init(q, flush_rq);
318 
319 	/*
320 	 * In case of none scheduler, borrow tag from the first request
321 	 * since they can't be in flight at the same time. And acquire
322 	 * the tag's ownership for flush req.
323 	 *
324 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
325 	 * just for cheating put/get driver tag.
326 	 */
327 	flush_rq->mq_ctx = first_rq->mq_ctx;
328 	flush_rq->mq_hctx = first_rq->mq_hctx;
329 
330 	if (!q->elevator) {
331 		flush_rq->tag = first_rq->tag;
332 
333 		/*
334 		 * We borrow data request's driver tag, so have to mark
335 		 * this flush request as INFLIGHT for avoiding double
336 		 * account of this driver tag
337 		 */
338 		flush_rq->rq_flags |= RQF_MQ_INFLIGHT;
339 	} else
340 		flush_rq->internal_tag = first_rq->internal_tag;
341 
342 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
343 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
344 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
345 	flush_rq->end_io = flush_end_io;
346 	/*
347 	 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
348 	 * implied in refcount_inc_not_zero() called from
349 	 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
350 	 * and READ flush_rq->end_io
351 	 */
352 	smp_wmb();
353 	req_ref_set(flush_rq, 1);
354 
355 	blk_flush_queue_rq(flush_rq, false);
356 }
357 
358 static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
359 					       blk_status_t error)
360 {
361 	struct request_queue *q = rq->q;
362 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
363 	struct blk_mq_ctx *ctx = rq->mq_ctx;
364 	unsigned long flags;
365 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
366 
367 	if (q->elevator) {
368 		WARN_ON(rq->tag < 0);
369 		blk_mq_put_driver_tag(rq);
370 	}
371 
372 	/*
373 	 * After populating an empty queue, kick it to avoid stall.  Read
374 	 * the comment in flush_end_io().
375 	 */
376 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
377 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
378 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
379 
380 	blk_mq_sched_restart(hctx);
381 	return RQ_END_IO_NONE;
382 }
383 
384 /**
385  * blk_insert_flush - insert a new PREFLUSH/FUA request
386  * @rq: request to insert
387  *
388  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
389  * or __blk_mq_run_hw_queue() to dispatch request.
390  * @rq is being submitted.  Analyze what needs to be done and put it on the
391  * right queue.
392  */
393 void blk_insert_flush(struct request *rq)
394 {
395 	struct request_queue *q = rq->q;
396 	unsigned long fflags = q->queue_flags;	/* may change, cache */
397 	unsigned int policy = blk_flush_policy(fflags, rq);
398 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
399 
400 	/*
401 	 * @policy now records what operations need to be done.  Adjust
402 	 * REQ_PREFLUSH and FUA for the driver.
403 	 */
404 	rq->cmd_flags &= ~REQ_PREFLUSH;
405 	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
406 		rq->cmd_flags &= ~REQ_FUA;
407 
408 	/*
409 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
410 	 * of those flags, we have to set REQ_SYNC to avoid skewing
411 	 * the request accounting.
412 	 */
413 	rq->cmd_flags |= REQ_SYNC;
414 
415 	/*
416 	 * An empty flush handed down from a stacking driver may
417 	 * translate into nothing if the underlying device does not
418 	 * advertise a write-back cache.  In this case, simply
419 	 * complete the request.
420 	 */
421 	if (!policy) {
422 		blk_mq_end_request(rq, 0);
423 		return;
424 	}
425 
426 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
427 
428 	/*
429 	 * If there's data but flush is not necessary, the request can be
430 	 * processed directly without going through flush machinery.  Queue
431 	 * for normal execution.
432 	 */
433 	if ((policy & REQ_FSEQ_DATA) &&
434 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
435 		blk_mq_request_bypass_insert(rq, false, true);
436 		return;
437 	}
438 
439 	/*
440 	 * @rq should go through flush machinery.  Mark it part of flush
441 	 * sequence and submit for further processing.
442 	 */
443 	memset(&rq->flush, 0, sizeof(rq->flush));
444 	INIT_LIST_HEAD(&rq->flush.list);
445 	rq->rq_flags |= RQF_FLUSH_SEQ;
446 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
447 
448 	rq->end_io = mq_flush_data_end_io;
449 
450 	spin_lock_irq(&fq->mq_flush_lock);
451 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
452 	spin_unlock_irq(&fq->mq_flush_lock);
453 }
454 
455 /**
456  * blkdev_issue_flush - queue a flush
457  * @bdev:	blockdev to issue flush for
458  *
459  * Description:
460  *    Issue a flush for the block device in question.
461  */
462 int blkdev_issue_flush(struct block_device *bdev)
463 {
464 	struct bio bio;
465 
466 	bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
467 	return submit_bio_wait(&bio);
468 }
469 EXPORT_SYMBOL(blkdev_issue_flush);
470 
471 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
472 					      gfp_t flags)
473 {
474 	struct blk_flush_queue *fq;
475 	int rq_sz = sizeof(struct request);
476 
477 	fq = kzalloc_node(sizeof(*fq), flags, node);
478 	if (!fq)
479 		goto fail;
480 
481 	spin_lock_init(&fq->mq_flush_lock);
482 
483 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
484 	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
485 	if (!fq->flush_rq)
486 		goto fail_rq;
487 
488 	INIT_LIST_HEAD(&fq->flush_queue[0]);
489 	INIT_LIST_HEAD(&fq->flush_queue[1]);
490 	INIT_LIST_HEAD(&fq->flush_data_in_flight);
491 
492 	return fq;
493 
494  fail_rq:
495 	kfree(fq);
496  fail:
497 	return NULL;
498 }
499 
500 void blk_free_flush_queue(struct blk_flush_queue *fq)
501 {
502 	/* bio based request queue hasn't flush queue */
503 	if (!fq)
504 		return;
505 
506 	kfree(fq->flush_rq);
507 	kfree(fq);
508 }
509 
510 /*
511  * Allow driver to set its own lock class to fq->mq_flush_lock for
512  * avoiding lockdep complaint.
513  *
514  * flush_end_io() may be called recursively from some driver, such as
515  * nvme-loop, so lockdep may complain 'possible recursive locking' because
516  * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
517  * key. We need to assign different lock class for these driver's
518  * fq->mq_flush_lock for avoiding the lockdep warning.
519  *
520  * Use dynamically allocated lock class key for each 'blk_flush_queue'
521  * instance is over-kill, and more worse it introduces horrible boot delay
522  * issue because synchronize_rcu() is implied in lockdep_unregister_key which
523  * is called for each hctx release. SCSI probing may synchronously create and
524  * destroy lots of MQ request_queues for non-existent devices, and some robot
525  * test kernel always enable lockdep option. It is observed that more than half
526  * an hour is taken during SCSI MQ probe with per-fq lock class.
527  */
528 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
529 		struct lock_class_key *key)
530 {
531 	lockdep_set_class(&hctx->fq->mq_flush_lock, key);
532 }
533 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);
534