xref: /linux/block/blk-flush.c (revision b8e85e6f3a09fc56b0ff574887798962ef8a8f80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions to sequence PREFLUSH and FUA writes.
4  *
5  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
6  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
7  *
8  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10  * properties and hardware capability.
11  *
12  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
14  * that the device cache should be flushed before the data is executed, and
15  * REQ_FUA means that the data must be on non-volatile media on request
16  * completion.
17  *
18  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19  * difference.  The requests are either completed immediately if there's no data
20  * or executed as normal requests otherwise.
21  *
22  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24  *
25  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27  *
28  * The actual execution of flush is double buffered.  Whenever a request
29  * needs to execute PRE or POSTFLUSH, it queues at
30  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
31  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
32  * completes, all the requests which were pending are proceeded to the next
33  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
34  * requests.
35  *
36  * Currently, the following conditions are used to determine when to issue
37  * flush.
38  *
39  * C1. At any given time, only one flush shall be in progress.  This makes
40  *     double buffering sufficient.
41  *
42  * C2. Flush is deferred if any request is executing DATA of its sequence.
43  *     This avoids issuing separate POSTFLUSHes for requests which shared
44  *     PREFLUSH.
45  *
46  * C3. The second condition is ignored if there is a request which has
47  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
48  *     starvation in the unlikely case where there are continuous stream of
49  *     FUA (without PREFLUSH) requests.
50  *
51  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52  * is beneficial.
53  *
54  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55  * Once while executing DATA and again after the whole sequence is
56  * complete.  The first completion updates the contained bio but doesn't
57  * finish it so that the bio submitter is notified only after the whole
58  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
59  * req_bio_endio().
60  *
61  * The above peculiarity requires that each PREFLUSH/FUA request has only one
62  * bio attached to it, which is guaranteed as they aren't allowed to be
63  * merged in the usual way.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/module.h>
68 #include <linux/bio.h>
69 #include <linux/blkdev.h>
70 #include <linux/gfp.h>
71 #include <linux/part_stat.h>
72 
73 #include "blk.h"
74 #include "blk-mq.h"
75 #include "blk-mq-sched.h"
76 
77 /* PREFLUSH/FUA sequences */
78 enum {
79 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
80 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
81 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
82 	REQ_FSEQ_DONE		= (1 << 3),
83 
84 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85 				  REQ_FSEQ_POSTFLUSH,
86 
87 	/*
88 	 * If flush has been pending longer than the following timeout,
89 	 * it's issued even if flush_data requests are still in flight.
90 	 */
91 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
92 };
93 
94 static void blk_kick_flush(struct request_queue *q,
95 			   struct blk_flush_queue *fq, blk_opf_t flags);
96 
97 static inline struct blk_flush_queue *
98 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
99 {
100 	return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
101 }
102 
103 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
104 {
105 	unsigned int policy = 0;
106 
107 	if (blk_rq_sectors(rq))
108 		policy |= REQ_FSEQ_DATA;
109 
110 	if (fflags & (1UL << QUEUE_FLAG_WC)) {
111 		if (rq->cmd_flags & REQ_PREFLUSH)
112 			policy |= REQ_FSEQ_PREFLUSH;
113 		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
114 		    (rq->cmd_flags & REQ_FUA))
115 			policy |= REQ_FSEQ_POSTFLUSH;
116 	}
117 	return policy;
118 }
119 
120 static unsigned int blk_flush_cur_seq(struct request *rq)
121 {
122 	return 1 << ffz(rq->flush.seq);
123 }
124 
125 static void blk_flush_restore_request(struct request *rq)
126 {
127 	/*
128 	 * After flush data completion, @rq->bio is %NULL but we need to
129 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
130 	 * original @rq->bio.  Restore it.
131 	 */
132 	rq->bio = rq->biotail;
133 
134 	/* make @rq a normal request */
135 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
136 	rq->end_io = rq->flush.saved_end_io;
137 }
138 
139 static void blk_account_io_flush(struct request *rq)
140 {
141 	struct block_device *part = rq->q->disk->part0;
142 
143 	part_stat_lock();
144 	part_stat_inc(part, ios[STAT_FLUSH]);
145 	part_stat_add(part, nsecs[STAT_FLUSH],
146 		      ktime_get_ns() - rq->start_time_ns);
147 	part_stat_unlock();
148 }
149 
150 /**
151  * blk_flush_complete_seq - complete flush sequence
152  * @rq: PREFLUSH/FUA request being sequenced
153  * @fq: flush queue
154  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
155  * @error: whether an error occurred
156  *
157  * @rq just completed @seq part of its flush sequence, record the
158  * completion and trigger the next step.
159  *
160  * CONTEXT:
161  * spin_lock_irq(fq->mq_flush_lock)
162  */
163 static void blk_flush_complete_seq(struct request *rq,
164 				   struct blk_flush_queue *fq,
165 				   unsigned int seq, blk_status_t error)
166 {
167 	struct request_queue *q = rq->q;
168 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
169 	blk_opf_t cmd_flags;
170 
171 	BUG_ON(rq->flush.seq & seq);
172 	rq->flush.seq |= seq;
173 	cmd_flags = rq->cmd_flags;
174 
175 	if (likely(!error))
176 		seq = blk_flush_cur_seq(rq);
177 	else
178 		seq = REQ_FSEQ_DONE;
179 
180 	switch (seq) {
181 	case REQ_FSEQ_PREFLUSH:
182 	case REQ_FSEQ_POSTFLUSH:
183 		/* queue for flush */
184 		if (list_empty(pending))
185 			fq->flush_pending_since = jiffies;
186 		list_move_tail(&rq->queuelist, pending);
187 		break;
188 
189 	case REQ_FSEQ_DATA:
190 		fq->flush_data_in_flight++;
191 		spin_lock(&q->requeue_lock);
192 		list_move(&rq->queuelist, &q->requeue_list);
193 		spin_unlock(&q->requeue_lock);
194 		blk_mq_kick_requeue_list(q);
195 		break;
196 
197 	case REQ_FSEQ_DONE:
198 		/*
199 		 * @rq was previously adjusted by blk_insert_flush() for
200 		 * flush sequencing and may already have gone through the
201 		 * flush data request completion path.  Restore @rq for
202 		 * normal completion and end it.
203 		 */
204 		list_del_init(&rq->queuelist);
205 		blk_flush_restore_request(rq);
206 		blk_mq_end_request(rq, error);
207 		break;
208 
209 	default:
210 		BUG();
211 	}
212 
213 	blk_kick_flush(q, fq, cmd_flags);
214 }
215 
216 static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
217 				       blk_status_t error)
218 {
219 	struct request_queue *q = flush_rq->q;
220 	struct list_head *running;
221 	struct request *rq, *n;
222 	unsigned long flags = 0;
223 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
224 
225 	/* release the tag's ownership to the req cloned from */
226 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
227 
228 	if (!req_ref_put_and_test(flush_rq)) {
229 		fq->rq_status = error;
230 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
231 		return RQ_END_IO_NONE;
232 	}
233 
234 	blk_account_io_flush(flush_rq);
235 	/*
236 	 * Flush request has to be marked as IDLE when it is really ended
237 	 * because its .end_io() is called from timeout code path too for
238 	 * avoiding use-after-free.
239 	 */
240 	WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
241 	if (fq->rq_status != BLK_STS_OK) {
242 		error = fq->rq_status;
243 		fq->rq_status = BLK_STS_OK;
244 	}
245 
246 	if (!q->elevator) {
247 		flush_rq->tag = BLK_MQ_NO_TAG;
248 	} else {
249 		blk_mq_put_driver_tag(flush_rq);
250 		flush_rq->internal_tag = BLK_MQ_NO_TAG;
251 	}
252 
253 	running = &fq->flush_queue[fq->flush_running_idx];
254 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
255 
256 	/* account completion of the flush request */
257 	fq->flush_running_idx ^= 1;
258 
259 	/* and push the waiting requests to the next stage */
260 	list_for_each_entry_safe(rq, n, running, queuelist) {
261 		unsigned int seq = blk_flush_cur_seq(rq);
262 
263 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
264 		blk_flush_complete_seq(rq, fq, seq, error);
265 	}
266 
267 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
268 	return RQ_END_IO_NONE;
269 }
270 
271 bool is_flush_rq(struct request *rq)
272 {
273 	return rq->end_io == flush_end_io;
274 }
275 
276 /**
277  * blk_kick_flush - consider issuing flush request
278  * @q: request_queue being kicked
279  * @fq: flush queue
280  * @flags: cmd_flags of the original request
281  *
282  * Flush related states of @q have changed, consider issuing flush request.
283  * Please read the comment at the top of this file for more info.
284  *
285  * CONTEXT:
286  * spin_lock_irq(fq->mq_flush_lock)
287  *
288  */
289 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
290 			   blk_opf_t flags)
291 {
292 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
293 	struct request *first_rq =
294 		list_first_entry(pending, struct request, queuelist);
295 	struct request *flush_rq = fq->flush_rq;
296 
297 	/* C1 described at the top of this file */
298 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
299 		return;
300 
301 	/* C2 and C3 */
302 	if (fq->flush_data_in_flight &&
303 	    time_before(jiffies,
304 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
305 		return;
306 
307 	/*
308 	 * Issue flush and toggle pending_idx.  This makes pending_idx
309 	 * different from running_idx, which means flush is in flight.
310 	 */
311 	fq->flush_pending_idx ^= 1;
312 
313 	blk_rq_init(q, flush_rq);
314 
315 	/*
316 	 * In case of none scheduler, borrow tag from the first request
317 	 * since they can't be in flight at the same time. And acquire
318 	 * the tag's ownership for flush req.
319 	 *
320 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
321 	 * just for cheating put/get driver tag.
322 	 */
323 	flush_rq->mq_ctx = first_rq->mq_ctx;
324 	flush_rq->mq_hctx = first_rq->mq_hctx;
325 
326 	if (!q->elevator)
327 		flush_rq->tag = first_rq->tag;
328 	else
329 		flush_rq->internal_tag = first_rq->internal_tag;
330 
331 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
332 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
333 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
334 	flush_rq->end_io = flush_end_io;
335 	/*
336 	 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
337 	 * implied in refcount_inc_not_zero() called from
338 	 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
339 	 * and READ flush_rq->end_io
340 	 */
341 	smp_wmb();
342 	req_ref_set(flush_rq, 1);
343 
344 	spin_lock(&q->requeue_lock);
345 	list_add_tail(&flush_rq->queuelist, &q->flush_list);
346 	spin_unlock(&q->requeue_lock);
347 
348 	blk_mq_kick_requeue_list(q);
349 }
350 
351 static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
352 					       blk_status_t error)
353 {
354 	struct request_queue *q = rq->q;
355 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
356 	struct blk_mq_ctx *ctx = rq->mq_ctx;
357 	unsigned long flags;
358 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
359 
360 	if (q->elevator) {
361 		WARN_ON(rq->tag < 0);
362 		blk_mq_put_driver_tag(rq);
363 	}
364 
365 	/*
366 	 * After populating an empty queue, kick it to avoid stall.  Read
367 	 * the comment in flush_end_io().
368 	 */
369 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
370 	fq->flush_data_in_flight--;
371 	/*
372 	 * May have been corrupted by rq->rq_next reuse, we need to
373 	 * re-initialize rq->queuelist before reusing it here.
374 	 */
375 	INIT_LIST_HEAD(&rq->queuelist);
376 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
377 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
378 
379 	blk_mq_sched_restart(hctx);
380 	return RQ_END_IO_NONE;
381 }
382 
383 static void blk_rq_init_flush(struct request *rq)
384 {
385 	rq->flush.seq = 0;
386 	rq->rq_flags |= RQF_FLUSH_SEQ;
387 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
388 	rq->end_io = mq_flush_data_end_io;
389 }
390 
391 /*
392  * Insert a PREFLUSH/FUA request into the flush state machine.
393  * Returns true if the request has been consumed by the flush state machine,
394  * or false if the caller should continue to process it.
395  */
396 bool blk_insert_flush(struct request *rq)
397 {
398 	struct request_queue *q = rq->q;
399 	unsigned long fflags = q->queue_flags;	/* may change, cache */
400 	unsigned int policy = blk_flush_policy(fflags, rq);
401 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
402 
403 	/* FLUSH/FUA request must never be merged */
404 	WARN_ON_ONCE(rq->bio != rq->biotail);
405 
406 	/*
407 	 * @policy now records what operations need to be done.  Adjust
408 	 * REQ_PREFLUSH and FUA for the driver.
409 	 */
410 	rq->cmd_flags &= ~REQ_PREFLUSH;
411 	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
412 		rq->cmd_flags &= ~REQ_FUA;
413 
414 	/*
415 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
416 	 * of those flags, we have to set REQ_SYNC to avoid skewing
417 	 * the request accounting.
418 	 */
419 	rq->cmd_flags |= REQ_SYNC;
420 
421 	switch (policy) {
422 	case 0:
423 		/*
424 		 * An empty flush handed down from a stacking driver may
425 		 * translate into nothing if the underlying device does not
426 		 * advertise a write-back cache.  In this case, simply
427 		 * complete the request.
428 		 */
429 		blk_mq_end_request(rq, 0);
430 		return true;
431 	case REQ_FSEQ_DATA:
432 		/*
433 		 * If there's data, but no flush is necessary, the request can
434 		 * be processed directly without going through flush machinery.
435 		 * Queue for normal execution.
436 		 */
437 		return false;
438 	case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH:
439 		/*
440 		 * Initialize the flush fields and completion handler to trigger
441 		 * the post flush, and then just pass the command on.
442 		 */
443 		blk_rq_init_flush(rq);
444 		rq->flush.seq |= REQ_FSEQ_PREFLUSH;
445 		spin_lock_irq(&fq->mq_flush_lock);
446 		fq->flush_data_in_flight++;
447 		spin_unlock_irq(&fq->mq_flush_lock);
448 		return false;
449 	default:
450 		/*
451 		 * Mark the request as part of a flush sequence and submit it
452 		 * for further processing to the flush state machine.
453 		 */
454 		blk_rq_init_flush(rq);
455 		spin_lock_irq(&fq->mq_flush_lock);
456 		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
457 		spin_unlock_irq(&fq->mq_flush_lock);
458 		return true;
459 	}
460 }
461 
462 /**
463  * blkdev_issue_flush - queue a flush
464  * @bdev:	blockdev to issue flush for
465  *
466  * Description:
467  *    Issue a flush for the block device in question.
468  */
469 int blkdev_issue_flush(struct block_device *bdev)
470 {
471 	struct bio bio;
472 
473 	bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
474 	return submit_bio_wait(&bio);
475 }
476 EXPORT_SYMBOL(blkdev_issue_flush);
477 
478 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
479 					      gfp_t flags)
480 {
481 	struct blk_flush_queue *fq;
482 	int rq_sz = sizeof(struct request);
483 
484 	fq = kzalloc_node(sizeof(*fq), flags, node);
485 	if (!fq)
486 		goto fail;
487 
488 	spin_lock_init(&fq->mq_flush_lock);
489 
490 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
491 	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
492 	if (!fq->flush_rq)
493 		goto fail_rq;
494 
495 	INIT_LIST_HEAD(&fq->flush_queue[0]);
496 	INIT_LIST_HEAD(&fq->flush_queue[1]);
497 
498 	return fq;
499 
500  fail_rq:
501 	kfree(fq);
502  fail:
503 	return NULL;
504 }
505 
506 void blk_free_flush_queue(struct blk_flush_queue *fq)
507 {
508 	/* bio based request queue hasn't flush queue */
509 	if (!fq)
510 		return;
511 
512 	kfree(fq->flush_rq);
513 	kfree(fq);
514 }
515 
516 /*
517  * Allow driver to set its own lock class to fq->mq_flush_lock for
518  * avoiding lockdep complaint.
519  *
520  * flush_end_io() may be called recursively from some driver, such as
521  * nvme-loop, so lockdep may complain 'possible recursive locking' because
522  * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
523  * key. We need to assign different lock class for these driver's
524  * fq->mq_flush_lock for avoiding the lockdep warning.
525  *
526  * Use dynamically allocated lock class key for each 'blk_flush_queue'
527  * instance is over-kill, and more worse it introduces horrible boot delay
528  * issue because synchronize_rcu() is implied in lockdep_unregister_key which
529  * is called for each hctx release. SCSI probing may synchronously create and
530  * destroy lots of MQ request_queues for non-existent devices, and some robot
531  * test kernel always enable lockdep option. It is observed that more than half
532  * an hour is taken during SCSI MQ probe with per-fq lock class.
533  */
534 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
535 		struct lock_class_key *key)
536 {
537 	lockdep_set_class(&hctx->fq->mq_flush_lock, key);
538 }
539 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);
540