xref: /linux/block/blk-flush.c (revision 95444b9eeb8c5c0330563931d70c61ca3b101548)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions to sequence PREFLUSH and FUA writes.
4  *
5  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
6  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
7  *
8  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10  * properties and hardware capability.
11  *
12  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
14  * that the device cache should be flushed before the data is executed, and
15  * REQ_FUA means that the data must be on non-volatile media on request
16  * completion.
17  *
18  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19  * difference.  The requests are either completed immediately if there's no data
20  * or executed as normal requests otherwise.
21  *
22  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24  *
25  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27  *
28  * The actual execution of flush is double buffered.  Whenever a request
29  * needs to execute PRE or POSTFLUSH, it queues at
30  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
31  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
32  * completes, all the requests which were pending are proceeded to the next
33  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
34  * requests.
35  *
36  * Currently, the following conditions are used to determine when to issue
37  * flush.
38  *
39  * C1. At any given time, only one flush shall be in progress.  This makes
40  *     double buffering sufficient.
41  *
42  * C2. Flush is deferred if any request is executing DATA of its sequence.
43  *     This avoids issuing separate POSTFLUSHes for requests which shared
44  *     PREFLUSH.
45  *
46  * C3. The second condition is ignored if there is a request which has
47  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
48  *     starvation in the unlikely case where there are continuous stream of
49  *     FUA (without PREFLUSH) requests.
50  *
51  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52  * is beneficial.
53  *
54  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55  * Once while executing DATA and again after the whole sequence is
56  * complete.  The first completion updates the contained bio but doesn't
57  * finish it so that the bio submitter is notified only after the whole
58  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
59  * req_bio_endio().
60  *
61  * The above peculiarity requires that each PREFLUSH/FUA request has only one
62  * bio attached to it, which is guaranteed as they aren't allowed to be
63  * merged in the usual way.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/module.h>
68 #include <linux/bio.h>
69 #include <linux/blkdev.h>
70 #include <linux/gfp.h>
71 #include <linux/part_stat.h>
72 
73 #include "blk.h"
74 #include "blk-mq.h"
75 #include "blk-mq-sched.h"
76 
77 /* PREFLUSH/FUA sequences */
78 enum {
79 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
80 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
81 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
82 	REQ_FSEQ_DONE		= (1 << 3),
83 
84 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85 				  REQ_FSEQ_POSTFLUSH,
86 
87 	/*
88 	 * If flush has been pending longer than the following timeout,
89 	 * it's issued even if flush_data requests are still in flight.
90 	 */
91 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
92 };
93 
94 static void blk_kick_flush(struct request_queue *q,
95 			   struct blk_flush_queue *fq, blk_opf_t flags);
96 
97 static inline struct blk_flush_queue *
98 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
99 {
100 	return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
101 }
102 
103 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
104 {
105 	unsigned int policy = 0;
106 
107 	if (blk_rq_sectors(rq))
108 		policy |= REQ_FSEQ_DATA;
109 
110 	if (fflags & (1UL << QUEUE_FLAG_WC)) {
111 		if (rq->cmd_flags & REQ_PREFLUSH)
112 			policy |= REQ_FSEQ_PREFLUSH;
113 		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
114 		    (rq->cmd_flags & REQ_FUA))
115 			policy |= REQ_FSEQ_POSTFLUSH;
116 	}
117 	return policy;
118 }
119 
120 static unsigned int blk_flush_cur_seq(struct request *rq)
121 {
122 	return 1 << ffz(rq->flush.seq);
123 }
124 
125 static void blk_flush_restore_request(struct request *rq)
126 {
127 	/*
128 	 * After flush data completion, @rq->bio is %NULL but we need to
129 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
130 	 * original @rq->bio.  Restore it.
131 	 */
132 	rq->bio = rq->biotail;
133 	if (rq->bio)
134 		rq->__sector = rq->bio->bi_iter.bi_sector;
135 
136 	/* make @rq a normal request */
137 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
138 	rq->end_io = rq->flush.saved_end_io;
139 }
140 
141 static void blk_account_io_flush(struct request *rq)
142 {
143 	struct block_device *part = rq->q->disk->part0;
144 
145 	part_stat_lock();
146 	part_stat_inc(part, ios[STAT_FLUSH]);
147 	part_stat_add(part, nsecs[STAT_FLUSH],
148 		      blk_time_get_ns() - rq->start_time_ns);
149 	part_stat_unlock();
150 }
151 
152 /**
153  * blk_flush_complete_seq - complete flush sequence
154  * @rq: PREFLUSH/FUA request being sequenced
155  * @fq: flush queue
156  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
157  * @error: whether an error occurred
158  *
159  * @rq just completed @seq part of its flush sequence, record the
160  * completion and trigger the next step.
161  *
162  * CONTEXT:
163  * spin_lock_irq(fq->mq_flush_lock)
164  */
165 static void blk_flush_complete_seq(struct request *rq,
166 				   struct blk_flush_queue *fq,
167 				   unsigned int seq, blk_status_t error)
168 {
169 	struct request_queue *q = rq->q;
170 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
171 	blk_opf_t cmd_flags;
172 
173 	BUG_ON(rq->flush.seq & seq);
174 	rq->flush.seq |= seq;
175 	cmd_flags = rq->cmd_flags;
176 
177 	if (likely(!error))
178 		seq = blk_flush_cur_seq(rq);
179 	else
180 		seq = REQ_FSEQ_DONE;
181 
182 	switch (seq) {
183 	case REQ_FSEQ_PREFLUSH:
184 	case REQ_FSEQ_POSTFLUSH:
185 		/* queue for flush */
186 		if (list_empty(pending))
187 			fq->flush_pending_since = jiffies;
188 		list_move_tail(&rq->queuelist, pending);
189 		break;
190 
191 	case REQ_FSEQ_DATA:
192 		fq->flush_data_in_flight++;
193 		spin_lock(&q->requeue_lock);
194 		list_move(&rq->queuelist, &q->requeue_list);
195 		spin_unlock(&q->requeue_lock);
196 		blk_mq_kick_requeue_list(q);
197 		break;
198 
199 	case REQ_FSEQ_DONE:
200 		/*
201 		 * @rq was previously adjusted by blk_insert_flush() for
202 		 * flush sequencing and may already have gone through the
203 		 * flush data request completion path.  Restore @rq for
204 		 * normal completion and end it.
205 		 */
206 		list_del_init(&rq->queuelist);
207 		blk_flush_restore_request(rq);
208 		blk_mq_end_request(rq, error);
209 		break;
210 
211 	default:
212 		BUG();
213 	}
214 
215 	blk_kick_flush(q, fq, cmd_flags);
216 }
217 
218 static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
219 				       blk_status_t error)
220 {
221 	struct request_queue *q = flush_rq->q;
222 	struct list_head *running;
223 	struct request *rq, *n;
224 	unsigned long flags = 0;
225 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
226 
227 	/* release the tag's ownership to the req cloned from */
228 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
229 
230 	if (!req_ref_put_and_test(flush_rq)) {
231 		fq->rq_status = error;
232 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
233 		return RQ_END_IO_NONE;
234 	}
235 
236 	blk_account_io_flush(flush_rq);
237 	/*
238 	 * Flush request has to be marked as IDLE when it is really ended
239 	 * because its .end_io() is called from timeout code path too for
240 	 * avoiding use-after-free.
241 	 */
242 	WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
243 	if (fq->rq_status != BLK_STS_OK) {
244 		error = fq->rq_status;
245 		fq->rq_status = BLK_STS_OK;
246 	}
247 
248 	if (!q->elevator) {
249 		flush_rq->tag = BLK_MQ_NO_TAG;
250 	} else {
251 		blk_mq_put_driver_tag(flush_rq);
252 		flush_rq->internal_tag = BLK_MQ_NO_TAG;
253 	}
254 
255 	running = &fq->flush_queue[fq->flush_running_idx];
256 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
257 
258 	/* account completion of the flush request */
259 	fq->flush_running_idx ^= 1;
260 
261 	/* and push the waiting requests to the next stage */
262 	list_for_each_entry_safe(rq, n, running, queuelist) {
263 		unsigned int seq = blk_flush_cur_seq(rq);
264 
265 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
266 		blk_flush_complete_seq(rq, fq, seq, error);
267 	}
268 
269 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
270 	return RQ_END_IO_NONE;
271 }
272 
273 bool is_flush_rq(struct request *rq)
274 {
275 	return rq->end_io == flush_end_io;
276 }
277 
278 /**
279  * blk_kick_flush - consider issuing flush request
280  * @q: request_queue being kicked
281  * @fq: flush queue
282  * @flags: cmd_flags of the original request
283  *
284  * Flush related states of @q have changed, consider issuing flush request.
285  * Please read the comment at the top of this file for more info.
286  *
287  * CONTEXT:
288  * spin_lock_irq(fq->mq_flush_lock)
289  *
290  */
291 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
292 			   blk_opf_t flags)
293 {
294 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
295 	struct request *first_rq =
296 		list_first_entry(pending, struct request, queuelist);
297 	struct request *flush_rq = fq->flush_rq;
298 
299 	/* C1 described at the top of this file */
300 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
301 		return;
302 
303 	/* C2 and C3 */
304 	if (fq->flush_data_in_flight &&
305 	    time_before(jiffies,
306 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
307 		return;
308 
309 	/*
310 	 * Issue flush and toggle pending_idx.  This makes pending_idx
311 	 * different from running_idx, which means flush is in flight.
312 	 */
313 	fq->flush_pending_idx ^= 1;
314 
315 	blk_rq_init(q, flush_rq);
316 
317 	/*
318 	 * In case of none scheduler, borrow tag from the first request
319 	 * since they can't be in flight at the same time. And acquire
320 	 * the tag's ownership for flush req.
321 	 *
322 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
323 	 * just for cheating put/get driver tag.
324 	 */
325 	flush_rq->mq_ctx = first_rq->mq_ctx;
326 	flush_rq->mq_hctx = first_rq->mq_hctx;
327 
328 	if (!q->elevator)
329 		flush_rq->tag = first_rq->tag;
330 	else
331 		flush_rq->internal_tag = first_rq->internal_tag;
332 
333 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
334 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
335 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
336 	flush_rq->end_io = flush_end_io;
337 	/*
338 	 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
339 	 * implied in refcount_inc_not_zero() called from
340 	 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
341 	 * and READ flush_rq->end_io
342 	 */
343 	smp_wmb();
344 	req_ref_set(flush_rq, 1);
345 
346 	spin_lock(&q->requeue_lock);
347 	list_add_tail(&flush_rq->queuelist, &q->flush_list);
348 	spin_unlock(&q->requeue_lock);
349 
350 	blk_mq_kick_requeue_list(q);
351 }
352 
353 static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
354 					       blk_status_t error)
355 {
356 	struct request_queue *q = rq->q;
357 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
358 	struct blk_mq_ctx *ctx = rq->mq_ctx;
359 	unsigned long flags;
360 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
361 
362 	if (q->elevator) {
363 		WARN_ON(rq->tag < 0);
364 		blk_mq_put_driver_tag(rq);
365 	}
366 
367 	/*
368 	 * After populating an empty queue, kick it to avoid stall.  Read
369 	 * the comment in flush_end_io().
370 	 */
371 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
372 	fq->flush_data_in_flight--;
373 	/*
374 	 * May have been corrupted by rq->rq_next reuse, we need to
375 	 * re-initialize rq->queuelist before reusing it here.
376 	 */
377 	INIT_LIST_HEAD(&rq->queuelist);
378 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
379 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
380 
381 	blk_mq_sched_restart(hctx);
382 	return RQ_END_IO_NONE;
383 }
384 
385 static void blk_rq_init_flush(struct request *rq)
386 {
387 	rq->flush.seq = 0;
388 	rq->rq_flags |= RQF_FLUSH_SEQ;
389 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
390 	rq->end_io = mq_flush_data_end_io;
391 }
392 
393 /*
394  * Insert a PREFLUSH/FUA request into the flush state machine.
395  * Returns true if the request has been consumed by the flush state machine,
396  * or false if the caller should continue to process it.
397  */
398 bool blk_insert_flush(struct request *rq)
399 {
400 	struct request_queue *q = rq->q;
401 	unsigned long fflags = q->queue_flags;	/* may change, cache */
402 	unsigned int policy = blk_flush_policy(fflags, rq);
403 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
404 
405 	/* FLUSH/FUA request must never be merged */
406 	WARN_ON_ONCE(rq->bio != rq->biotail);
407 
408 	/*
409 	 * @policy now records what operations need to be done.  Adjust
410 	 * REQ_PREFLUSH and FUA for the driver.
411 	 */
412 	rq->cmd_flags &= ~REQ_PREFLUSH;
413 	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
414 		rq->cmd_flags &= ~REQ_FUA;
415 
416 	/*
417 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
418 	 * of those flags, we have to set REQ_SYNC to avoid skewing
419 	 * the request accounting.
420 	 */
421 	rq->cmd_flags |= REQ_SYNC;
422 
423 	switch (policy) {
424 	case 0:
425 		/*
426 		 * An empty flush handed down from a stacking driver may
427 		 * translate into nothing if the underlying device does not
428 		 * advertise a write-back cache.  In this case, simply
429 		 * complete the request.
430 		 */
431 		blk_mq_end_request(rq, 0);
432 		return true;
433 	case REQ_FSEQ_DATA:
434 		/*
435 		 * If there's data, but no flush is necessary, the request can
436 		 * be processed directly without going through flush machinery.
437 		 * Queue for normal execution.
438 		 */
439 		return false;
440 	case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH:
441 		/*
442 		 * Initialize the flush fields and completion handler to trigger
443 		 * the post flush, and then just pass the command on.
444 		 */
445 		blk_rq_init_flush(rq);
446 		rq->flush.seq |= REQ_FSEQ_PREFLUSH;
447 		spin_lock_irq(&fq->mq_flush_lock);
448 		fq->flush_data_in_flight++;
449 		spin_unlock_irq(&fq->mq_flush_lock);
450 		return false;
451 	default:
452 		/*
453 		 * Mark the request as part of a flush sequence and submit it
454 		 * for further processing to the flush state machine.
455 		 */
456 		blk_rq_init_flush(rq);
457 		spin_lock_irq(&fq->mq_flush_lock);
458 		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
459 		spin_unlock_irq(&fq->mq_flush_lock);
460 		return true;
461 	}
462 }
463 
464 /**
465  * blkdev_issue_flush - queue a flush
466  * @bdev:	blockdev to issue flush for
467  *
468  * Description:
469  *    Issue a flush for the block device in question.
470  */
471 int blkdev_issue_flush(struct block_device *bdev)
472 {
473 	struct bio bio;
474 
475 	bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
476 	return submit_bio_wait(&bio);
477 }
478 EXPORT_SYMBOL(blkdev_issue_flush);
479 
480 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
481 					      gfp_t flags)
482 {
483 	struct blk_flush_queue *fq;
484 	int rq_sz = sizeof(struct request);
485 
486 	fq = kzalloc_node(sizeof(*fq), flags, node);
487 	if (!fq)
488 		goto fail;
489 
490 	spin_lock_init(&fq->mq_flush_lock);
491 
492 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
493 	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
494 	if (!fq->flush_rq)
495 		goto fail_rq;
496 
497 	INIT_LIST_HEAD(&fq->flush_queue[0]);
498 	INIT_LIST_HEAD(&fq->flush_queue[1]);
499 
500 	return fq;
501 
502  fail_rq:
503 	kfree(fq);
504  fail:
505 	return NULL;
506 }
507 
508 void blk_free_flush_queue(struct blk_flush_queue *fq)
509 {
510 	/* bio based request queue hasn't flush queue */
511 	if (!fq)
512 		return;
513 
514 	kfree(fq->flush_rq);
515 	kfree(fq);
516 }
517 
518 /*
519  * Allow driver to set its own lock class to fq->mq_flush_lock for
520  * avoiding lockdep complaint.
521  *
522  * flush_end_io() may be called recursively from some driver, such as
523  * nvme-loop, so lockdep may complain 'possible recursive locking' because
524  * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
525  * key. We need to assign different lock class for these driver's
526  * fq->mq_flush_lock for avoiding the lockdep warning.
527  *
528  * Use dynamically allocated lock class key for each 'blk_flush_queue'
529  * instance is over-kill, and more worse it introduces horrible boot delay
530  * issue because synchronize_rcu() is implied in lockdep_unregister_key which
531  * is called for each hctx release. SCSI probing may synchronously create and
532  * destroy lots of MQ request_queues for non-existent devices, and some robot
533  * test kernel always enable lockdep option. It is observed that more than half
534  * an hour is taken during SCSI MQ probe with per-fq lock class.
535  */
536 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
537 		struct lock_class_key *key)
538 {
539 	lockdep_set_class(&hctx->fq->mq_flush_lock, key);
540 }
541 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);
542