1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/part_stat.h> 72 73 #include "blk.h" 74 #include "blk-mq.h" 75 #include "blk-mq-sched.h" 76 77 /* PREFLUSH/FUA sequences */ 78 enum { 79 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 80 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 81 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 82 REQ_FSEQ_DONE = (1 << 3), 83 84 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 85 REQ_FSEQ_POSTFLUSH, 86 87 /* 88 * If flush has been pending longer than the following timeout, 89 * it's issued even if flush_data requests are still in flight. 90 */ 91 FLUSH_PENDING_TIMEOUT = 5 * HZ, 92 }; 93 94 static void blk_kick_flush(struct request_queue *q, 95 struct blk_flush_queue *fq, blk_opf_t flags); 96 97 static inline struct blk_flush_queue * 98 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx) 99 { 100 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq; 101 } 102 103 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 104 { 105 unsigned int policy = 0; 106 107 if (blk_rq_sectors(rq)) 108 policy |= REQ_FSEQ_DATA; 109 110 if (fflags & (1UL << QUEUE_FLAG_WC)) { 111 if (rq->cmd_flags & REQ_PREFLUSH) 112 policy |= REQ_FSEQ_PREFLUSH; 113 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 114 (rq->cmd_flags & REQ_FUA)) 115 policy |= REQ_FSEQ_POSTFLUSH; 116 } 117 return policy; 118 } 119 120 static unsigned int blk_flush_cur_seq(struct request *rq) 121 { 122 return 1 << ffz(rq->flush.seq); 123 } 124 125 static void blk_flush_restore_request(struct request *rq) 126 { 127 /* 128 * After flush data completion, @rq->bio is %NULL but we need to 129 * complete the bio again. @rq->biotail is guaranteed to equal the 130 * original @rq->bio. Restore it. 131 */ 132 rq->bio = rq->biotail; 133 if (rq->bio) 134 rq->__sector = rq->bio->bi_iter.bi_sector; 135 136 /* make @rq a normal request */ 137 rq->rq_flags &= ~RQF_FLUSH_SEQ; 138 rq->end_io = rq->flush.saved_end_io; 139 } 140 141 static void blk_account_io_flush(struct request *rq) 142 { 143 struct block_device *part = rq->q->disk->part0; 144 145 part_stat_lock(); 146 part_stat_inc(part, ios[STAT_FLUSH]); 147 part_stat_add(part, nsecs[STAT_FLUSH], 148 blk_time_get_ns() - rq->start_time_ns); 149 part_stat_unlock(); 150 } 151 152 /** 153 * blk_flush_complete_seq - complete flush sequence 154 * @rq: PREFLUSH/FUA request being sequenced 155 * @fq: flush queue 156 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 157 * @error: whether an error occurred 158 * 159 * @rq just completed @seq part of its flush sequence, record the 160 * completion and trigger the next step. 161 * 162 * CONTEXT: 163 * spin_lock_irq(fq->mq_flush_lock) 164 */ 165 static void blk_flush_complete_seq(struct request *rq, 166 struct blk_flush_queue *fq, 167 unsigned int seq, blk_status_t error) 168 { 169 struct request_queue *q = rq->q; 170 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 171 blk_opf_t cmd_flags; 172 173 BUG_ON(rq->flush.seq & seq); 174 rq->flush.seq |= seq; 175 cmd_flags = rq->cmd_flags; 176 177 if (likely(!error)) 178 seq = blk_flush_cur_seq(rq); 179 else 180 seq = REQ_FSEQ_DONE; 181 182 switch (seq) { 183 case REQ_FSEQ_PREFLUSH: 184 case REQ_FSEQ_POSTFLUSH: 185 /* queue for flush */ 186 if (list_empty(pending)) 187 fq->flush_pending_since = jiffies; 188 list_move_tail(&rq->queuelist, pending); 189 break; 190 191 case REQ_FSEQ_DATA: 192 fq->flush_data_in_flight++; 193 spin_lock(&q->requeue_lock); 194 list_move(&rq->queuelist, &q->requeue_list); 195 spin_unlock(&q->requeue_lock); 196 blk_mq_kick_requeue_list(q); 197 break; 198 199 case REQ_FSEQ_DONE: 200 /* 201 * @rq was previously adjusted by blk_insert_flush() for 202 * flush sequencing and may already have gone through the 203 * flush data request completion path. Restore @rq for 204 * normal completion and end it. 205 */ 206 list_del_init(&rq->queuelist); 207 blk_flush_restore_request(rq); 208 blk_mq_end_request(rq, error); 209 break; 210 211 default: 212 BUG(); 213 } 214 215 blk_kick_flush(q, fq, cmd_flags); 216 } 217 218 static enum rq_end_io_ret flush_end_io(struct request *flush_rq, 219 blk_status_t error) 220 { 221 struct request_queue *q = flush_rq->q; 222 struct list_head *running; 223 struct request *rq, *n; 224 unsigned long flags = 0; 225 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 226 227 /* release the tag's ownership to the req cloned from */ 228 spin_lock_irqsave(&fq->mq_flush_lock, flags); 229 230 if (!req_ref_put_and_test(flush_rq)) { 231 fq->rq_status = error; 232 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 233 return RQ_END_IO_NONE; 234 } 235 236 blk_account_io_flush(flush_rq); 237 /* 238 * Flush request has to be marked as IDLE when it is really ended 239 * because its .end_io() is called from timeout code path too for 240 * avoiding use-after-free. 241 */ 242 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE); 243 if (fq->rq_status != BLK_STS_OK) { 244 error = fq->rq_status; 245 fq->rq_status = BLK_STS_OK; 246 } 247 248 if (!q->elevator) { 249 flush_rq->tag = BLK_MQ_NO_TAG; 250 } else { 251 blk_mq_put_driver_tag(flush_rq); 252 flush_rq->internal_tag = BLK_MQ_NO_TAG; 253 } 254 255 running = &fq->flush_queue[fq->flush_running_idx]; 256 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 257 258 /* account completion of the flush request */ 259 fq->flush_running_idx ^= 1; 260 261 /* and push the waiting requests to the next stage */ 262 list_for_each_entry_safe(rq, n, running, queuelist) { 263 unsigned int seq = blk_flush_cur_seq(rq); 264 265 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 266 blk_flush_complete_seq(rq, fq, seq, error); 267 } 268 269 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 270 return RQ_END_IO_NONE; 271 } 272 273 bool is_flush_rq(struct request *rq) 274 { 275 return rq->end_io == flush_end_io; 276 } 277 278 /** 279 * blk_kick_flush - consider issuing flush request 280 * @q: request_queue being kicked 281 * @fq: flush queue 282 * @flags: cmd_flags of the original request 283 * 284 * Flush related states of @q have changed, consider issuing flush request. 285 * Please read the comment at the top of this file for more info. 286 * 287 * CONTEXT: 288 * spin_lock_irq(fq->mq_flush_lock) 289 * 290 */ 291 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 292 blk_opf_t flags) 293 { 294 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 295 struct request *first_rq = 296 list_first_entry(pending, struct request, queuelist); 297 struct request *flush_rq = fq->flush_rq; 298 299 /* C1 described at the top of this file */ 300 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 301 return; 302 303 /* C2 and C3 */ 304 if (fq->flush_data_in_flight && 305 time_before(jiffies, 306 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 307 return; 308 309 /* 310 * Issue flush and toggle pending_idx. This makes pending_idx 311 * different from running_idx, which means flush is in flight. 312 */ 313 fq->flush_pending_idx ^= 1; 314 315 blk_rq_init(q, flush_rq); 316 317 /* 318 * In case of none scheduler, borrow tag from the first request 319 * since they can't be in flight at the same time. And acquire 320 * the tag's ownership for flush req. 321 * 322 * In case of IO scheduler, flush rq need to borrow scheduler tag 323 * just for cheating put/get driver tag. 324 */ 325 flush_rq->mq_ctx = first_rq->mq_ctx; 326 flush_rq->mq_hctx = first_rq->mq_hctx; 327 328 if (!q->elevator) 329 flush_rq->tag = first_rq->tag; 330 else 331 flush_rq->internal_tag = first_rq->internal_tag; 332 333 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 334 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 335 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 336 flush_rq->end_io = flush_end_io; 337 /* 338 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one 339 * implied in refcount_inc_not_zero() called from 340 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref 341 * and READ flush_rq->end_io 342 */ 343 smp_wmb(); 344 req_ref_set(flush_rq, 1); 345 346 spin_lock(&q->requeue_lock); 347 list_add_tail(&flush_rq->queuelist, &q->flush_list); 348 spin_unlock(&q->requeue_lock); 349 350 blk_mq_kick_requeue_list(q); 351 } 352 353 static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq, 354 blk_status_t error) 355 { 356 struct request_queue *q = rq->q; 357 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 358 struct blk_mq_ctx *ctx = rq->mq_ctx; 359 unsigned long flags; 360 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 361 362 if (q->elevator) { 363 WARN_ON(rq->tag < 0); 364 blk_mq_put_driver_tag(rq); 365 } 366 367 /* 368 * After populating an empty queue, kick it to avoid stall. Read 369 * the comment in flush_end_io(). 370 */ 371 spin_lock_irqsave(&fq->mq_flush_lock, flags); 372 fq->flush_data_in_flight--; 373 /* 374 * May have been corrupted by rq->rq_next reuse, we need to 375 * re-initialize rq->queuelist before reusing it here. 376 */ 377 INIT_LIST_HEAD(&rq->queuelist); 378 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 379 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 380 381 blk_mq_sched_restart(hctx); 382 return RQ_END_IO_NONE; 383 } 384 385 static void blk_rq_init_flush(struct request *rq) 386 { 387 rq->flush.seq = 0; 388 rq->rq_flags |= RQF_FLUSH_SEQ; 389 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 390 rq->end_io = mq_flush_data_end_io; 391 } 392 393 /* 394 * Insert a PREFLUSH/FUA request into the flush state machine. 395 * Returns true if the request has been consumed by the flush state machine, 396 * or false if the caller should continue to process it. 397 */ 398 bool blk_insert_flush(struct request *rq) 399 { 400 struct request_queue *q = rq->q; 401 unsigned long fflags = q->queue_flags; /* may change, cache */ 402 unsigned int policy = blk_flush_policy(fflags, rq); 403 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 404 405 /* FLUSH/FUA request must never be merged */ 406 WARN_ON_ONCE(rq->bio != rq->biotail); 407 408 /* 409 * @policy now records what operations need to be done. Adjust 410 * REQ_PREFLUSH and FUA for the driver. 411 */ 412 rq->cmd_flags &= ~REQ_PREFLUSH; 413 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 414 rq->cmd_flags &= ~REQ_FUA; 415 416 /* 417 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 418 * of those flags, we have to set REQ_SYNC to avoid skewing 419 * the request accounting. 420 */ 421 rq->cmd_flags |= REQ_SYNC; 422 423 switch (policy) { 424 case 0: 425 /* 426 * An empty flush handed down from a stacking driver may 427 * translate into nothing if the underlying device does not 428 * advertise a write-back cache. In this case, simply 429 * complete the request. 430 */ 431 blk_mq_end_request(rq, 0); 432 return true; 433 case REQ_FSEQ_DATA: 434 /* 435 * If there's data, but no flush is necessary, the request can 436 * be processed directly without going through flush machinery. 437 * Queue for normal execution. 438 */ 439 return false; 440 case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH: 441 /* 442 * Initialize the flush fields and completion handler to trigger 443 * the post flush, and then just pass the command on. 444 */ 445 blk_rq_init_flush(rq); 446 rq->flush.seq |= REQ_FSEQ_PREFLUSH; 447 spin_lock_irq(&fq->mq_flush_lock); 448 fq->flush_data_in_flight++; 449 spin_unlock_irq(&fq->mq_flush_lock); 450 return false; 451 default: 452 /* 453 * Mark the request as part of a flush sequence and submit it 454 * for further processing to the flush state machine. 455 */ 456 blk_rq_init_flush(rq); 457 spin_lock_irq(&fq->mq_flush_lock); 458 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 459 spin_unlock_irq(&fq->mq_flush_lock); 460 return true; 461 } 462 } 463 464 /** 465 * blkdev_issue_flush - queue a flush 466 * @bdev: blockdev to issue flush for 467 * 468 * Description: 469 * Issue a flush for the block device in question. 470 */ 471 int blkdev_issue_flush(struct block_device *bdev) 472 { 473 struct bio bio; 474 475 bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH); 476 return submit_bio_wait(&bio); 477 } 478 EXPORT_SYMBOL(blkdev_issue_flush); 479 480 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 481 gfp_t flags) 482 { 483 struct blk_flush_queue *fq; 484 int rq_sz = sizeof(struct request); 485 486 fq = kzalloc_node(sizeof(*fq), flags, node); 487 if (!fq) 488 goto fail; 489 490 spin_lock_init(&fq->mq_flush_lock); 491 492 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 493 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 494 if (!fq->flush_rq) 495 goto fail_rq; 496 497 INIT_LIST_HEAD(&fq->flush_queue[0]); 498 INIT_LIST_HEAD(&fq->flush_queue[1]); 499 500 return fq; 501 502 fail_rq: 503 kfree(fq); 504 fail: 505 return NULL; 506 } 507 508 void blk_free_flush_queue(struct blk_flush_queue *fq) 509 { 510 /* bio based request queue hasn't flush queue */ 511 if (!fq) 512 return; 513 514 kfree(fq->flush_rq); 515 kfree(fq); 516 } 517 518 /* 519 * Allow driver to set its own lock class to fq->mq_flush_lock for 520 * avoiding lockdep complaint. 521 * 522 * flush_end_io() may be called recursively from some driver, such as 523 * nvme-loop, so lockdep may complain 'possible recursive locking' because 524 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class 525 * key. We need to assign different lock class for these driver's 526 * fq->mq_flush_lock for avoiding the lockdep warning. 527 * 528 * Use dynamically allocated lock class key for each 'blk_flush_queue' 529 * instance is over-kill, and more worse it introduces horrible boot delay 530 * issue because synchronize_rcu() is implied in lockdep_unregister_key which 531 * is called for each hctx release. SCSI probing may synchronously create and 532 * destroy lots of MQ request_queues for non-existent devices, and some robot 533 * test kernel always enable lockdep option. It is observed that more than half 534 * an hour is taken during SCSI MQ probe with per-fq lock class. 535 */ 536 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, 537 struct lock_class_key *key) 538 { 539 lockdep_set_class(&hctx->fq->mq_flush_lock, key); 540 } 541 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class); 542