1 /* 2 * Functions to sequence FLUSH and FUA writes. 3 * 4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 11 * properties and hardware capability. 12 * 13 * If a request doesn't have data, only REQ_FLUSH makes sense, which 14 * indicates a simple flush request. If there is data, REQ_FLUSH indicates 15 * that the device cache should be flushed before the data is executed, and 16 * REQ_FUA means that the data must be on non-volatile media on request 17 * completion. 18 * 19 * If the device doesn't have writeback cache, FLUSH and FUA don't make any 20 * difference. The requests are either completed immediately if there's no 21 * data or executed as normal requests otherwise. 22 * 23 * If the device has writeback cache and supports FUA, REQ_FLUSH is 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 25 * 26 * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is 27 * translated to PREFLUSH and REQ_FUA to POSTFLUSH. 28 * 29 * The actual execution of flush is double buffered. Whenever a request 30 * needs to execute PRE or POSTFLUSH, it queues at 31 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 32 * flush is issued and the pending_idx is toggled. When the flush 33 * completes, all the requests which were pending are proceeded to the next 34 * step. This allows arbitrary merging of different types of FLUSH/FUA 35 * requests. 36 * 37 * Currently, the following conditions are used to determine when to issue 38 * flush. 39 * 40 * C1. At any given time, only one flush shall be in progress. This makes 41 * double buffering sufficient. 42 * 43 * C2. Flush is deferred if any request is executing DATA of its sequence. 44 * This avoids issuing separate POSTFLUSHes for requests which shared 45 * PREFLUSH. 46 * 47 * C3. The second condition is ignored if there is a request which has 48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 49 * starvation in the unlikely case where there are continuous stream of 50 * FUA (without FLUSH) requests. 51 * 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 53 * is beneficial. 54 * 55 * Note that a sequenced FLUSH/FUA request with DATA is completed twice. 56 * Once while executing DATA and again after the whole sequence is 57 * complete. The first completion updates the contained bio but doesn't 58 * finish it so that the bio submitter is notified only after the whole 59 * sequence is complete. This is implemented by testing REQ_FLUSH_SEQ in 60 * req_bio_endio(). 61 * 62 * The above peculiarity requires that each FLUSH/FUA request has only one 63 * bio attached to it, which is guaranteed as they aren't allowed to be 64 * merged in the usual way. 65 */ 66 67 #include <linux/kernel.h> 68 #include <linux/module.h> 69 #include <linux/bio.h> 70 #include <linux/blkdev.h> 71 #include <linux/gfp.h> 72 #include <linux/blk-mq.h> 73 74 #include "blk.h" 75 #include "blk-mq.h" 76 77 /* FLUSH/FUA sequences */ 78 enum { 79 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 80 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 81 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 82 REQ_FSEQ_DONE = (1 << 3), 83 84 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 85 REQ_FSEQ_POSTFLUSH, 86 87 /* 88 * If flush has been pending longer than the following timeout, 89 * it's issued even if flush_data requests are still in flight. 90 */ 91 FLUSH_PENDING_TIMEOUT = 5 * HZ, 92 }; 93 94 static bool blk_kick_flush(struct request_queue *q, 95 struct blk_flush_queue *fq); 96 97 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq) 98 { 99 unsigned int policy = 0; 100 101 if (blk_rq_sectors(rq)) 102 policy |= REQ_FSEQ_DATA; 103 104 if (fflags & REQ_FLUSH) { 105 if (rq->cmd_flags & REQ_FLUSH) 106 policy |= REQ_FSEQ_PREFLUSH; 107 if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA)) 108 policy |= REQ_FSEQ_POSTFLUSH; 109 } 110 return policy; 111 } 112 113 static unsigned int blk_flush_cur_seq(struct request *rq) 114 { 115 return 1 << ffz(rq->flush.seq); 116 } 117 118 static void blk_flush_restore_request(struct request *rq) 119 { 120 /* 121 * After flush data completion, @rq->bio is %NULL but we need to 122 * complete the bio again. @rq->biotail is guaranteed to equal the 123 * original @rq->bio. Restore it. 124 */ 125 rq->bio = rq->biotail; 126 127 /* make @rq a normal request */ 128 rq->cmd_flags &= ~REQ_FLUSH_SEQ; 129 rq->end_io = rq->flush.saved_end_io; 130 } 131 132 static bool blk_flush_queue_rq(struct request *rq, bool add_front) 133 { 134 if (rq->q->mq_ops) { 135 struct request_queue *q = rq->q; 136 137 blk_mq_add_to_requeue_list(rq, add_front); 138 blk_mq_kick_requeue_list(q); 139 return false; 140 } else { 141 if (add_front) 142 list_add(&rq->queuelist, &rq->q->queue_head); 143 else 144 list_add_tail(&rq->queuelist, &rq->q->queue_head); 145 return true; 146 } 147 } 148 149 /** 150 * blk_flush_complete_seq - complete flush sequence 151 * @rq: FLUSH/FUA request being sequenced 152 * @fq: flush queue 153 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 154 * @error: whether an error occurred 155 * 156 * @rq just completed @seq part of its flush sequence, record the 157 * completion and trigger the next step. 158 * 159 * CONTEXT: 160 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock) 161 * 162 * RETURNS: 163 * %true if requests were added to the dispatch queue, %false otherwise. 164 */ 165 static bool blk_flush_complete_seq(struct request *rq, 166 struct blk_flush_queue *fq, 167 unsigned int seq, int error) 168 { 169 struct request_queue *q = rq->q; 170 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 171 bool queued = false, kicked; 172 173 BUG_ON(rq->flush.seq & seq); 174 rq->flush.seq |= seq; 175 176 if (likely(!error)) 177 seq = blk_flush_cur_seq(rq); 178 else 179 seq = REQ_FSEQ_DONE; 180 181 switch (seq) { 182 case REQ_FSEQ_PREFLUSH: 183 case REQ_FSEQ_POSTFLUSH: 184 /* queue for flush */ 185 if (list_empty(pending)) 186 fq->flush_pending_since = jiffies; 187 list_move_tail(&rq->flush.list, pending); 188 break; 189 190 case REQ_FSEQ_DATA: 191 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 192 queued = blk_flush_queue_rq(rq, true); 193 break; 194 195 case REQ_FSEQ_DONE: 196 /* 197 * @rq was previously adjusted by blk_flush_issue() for 198 * flush sequencing and may already have gone through the 199 * flush data request completion path. Restore @rq for 200 * normal completion and end it. 201 */ 202 BUG_ON(!list_empty(&rq->queuelist)); 203 list_del_init(&rq->flush.list); 204 blk_flush_restore_request(rq); 205 if (q->mq_ops) 206 blk_mq_end_request(rq, error); 207 else 208 __blk_end_request_all(rq, error); 209 break; 210 211 default: 212 BUG(); 213 } 214 215 kicked = blk_kick_flush(q, fq); 216 return kicked | queued; 217 } 218 219 static void flush_end_io(struct request *flush_rq, int error) 220 { 221 struct request_queue *q = flush_rq->q; 222 struct list_head *running; 223 bool queued = false; 224 struct request *rq, *n; 225 unsigned long flags = 0; 226 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 227 228 if (q->mq_ops) { 229 spin_lock_irqsave(&fq->mq_flush_lock, flags); 230 flush_rq->tag = -1; 231 } 232 233 running = &fq->flush_queue[fq->flush_running_idx]; 234 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 235 236 /* account completion of the flush request */ 237 fq->flush_running_idx ^= 1; 238 239 if (!q->mq_ops) 240 elv_completed_request(q, flush_rq); 241 242 /* and push the waiting requests to the next stage */ 243 list_for_each_entry_safe(rq, n, running, flush.list) { 244 unsigned int seq = blk_flush_cur_seq(rq); 245 246 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 247 queued |= blk_flush_complete_seq(rq, fq, seq, error); 248 } 249 250 /* 251 * Kick the queue to avoid stall for two cases: 252 * 1. Moving a request silently to empty queue_head may stall the 253 * queue. 254 * 2. When flush request is running in non-queueable queue, the 255 * queue is hold. Restart the queue after flush request is finished 256 * to avoid stall. 257 * This function is called from request completion path and calling 258 * directly into request_fn may confuse the driver. Always use 259 * kblockd. 260 */ 261 if (queued || fq->flush_queue_delayed) { 262 WARN_ON(q->mq_ops); 263 blk_run_queue_async(q); 264 } 265 fq->flush_queue_delayed = 0; 266 if (q->mq_ops) 267 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 268 } 269 270 /** 271 * blk_kick_flush - consider issuing flush request 272 * @q: request_queue being kicked 273 * @fq: flush queue 274 * 275 * Flush related states of @q have changed, consider issuing flush request. 276 * Please read the comment at the top of this file for more info. 277 * 278 * CONTEXT: 279 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock) 280 * 281 * RETURNS: 282 * %true if flush was issued, %false otherwise. 283 */ 284 static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq) 285 { 286 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 287 struct request *first_rq = 288 list_first_entry(pending, struct request, flush.list); 289 struct request *flush_rq = fq->flush_rq; 290 291 /* C1 described at the top of this file */ 292 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 293 return false; 294 295 /* C2 and C3 */ 296 if (!list_empty(&fq->flush_data_in_flight) && 297 time_before(jiffies, 298 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 299 return false; 300 301 /* 302 * Issue flush and toggle pending_idx. This makes pending_idx 303 * different from running_idx, which means flush is in flight. 304 */ 305 fq->flush_pending_idx ^= 1; 306 307 blk_rq_init(q, flush_rq); 308 309 /* 310 * Borrow tag from the first request since they can't 311 * be in flight at the same time. 312 */ 313 if (q->mq_ops) { 314 flush_rq->mq_ctx = first_rq->mq_ctx; 315 flush_rq->tag = first_rq->tag; 316 } 317 318 flush_rq->cmd_type = REQ_TYPE_FS; 319 flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ; 320 flush_rq->rq_disk = first_rq->rq_disk; 321 flush_rq->end_io = flush_end_io; 322 323 return blk_flush_queue_rq(flush_rq, false); 324 } 325 326 static void flush_data_end_io(struct request *rq, int error) 327 { 328 struct request_queue *q = rq->q; 329 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 330 331 /* 332 * After populating an empty queue, kick it to avoid stall. Read 333 * the comment in flush_end_io(). 334 */ 335 if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error)) 336 blk_run_queue_async(q); 337 } 338 339 static void mq_flush_data_end_io(struct request *rq, int error) 340 { 341 struct request_queue *q = rq->q; 342 struct blk_mq_hw_ctx *hctx; 343 struct blk_mq_ctx *ctx = rq->mq_ctx; 344 unsigned long flags; 345 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 346 347 hctx = q->mq_ops->map_queue(q, ctx->cpu); 348 349 /* 350 * After populating an empty queue, kick it to avoid stall. Read 351 * the comment in flush_end_io(). 352 */ 353 spin_lock_irqsave(&fq->mq_flush_lock, flags); 354 if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error)) 355 blk_mq_run_hw_queue(hctx, true); 356 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 357 } 358 359 /** 360 * blk_insert_flush - insert a new FLUSH/FUA request 361 * @rq: request to insert 362 * 363 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 364 * or __blk_mq_run_hw_queue() to dispatch request. 365 * @rq is being submitted. Analyze what needs to be done and put it on the 366 * right queue. 367 * 368 * CONTEXT: 369 * spin_lock_irq(q->queue_lock) in !mq case 370 */ 371 void blk_insert_flush(struct request *rq) 372 { 373 struct request_queue *q = rq->q; 374 unsigned int fflags = q->flush_flags; /* may change, cache */ 375 unsigned int policy = blk_flush_policy(fflags, rq); 376 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 377 378 /* 379 * @policy now records what operations need to be done. Adjust 380 * REQ_FLUSH and FUA for the driver. 381 */ 382 rq->cmd_flags &= ~REQ_FLUSH; 383 if (!(fflags & REQ_FUA)) 384 rq->cmd_flags &= ~REQ_FUA; 385 386 /* 387 * An empty flush handed down from a stacking driver may 388 * translate into nothing if the underlying device does not 389 * advertise a write-back cache. In this case, simply 390 * complete the request. 391 */ 392 if (!policy) { 393 if (q->mq_ops) 394 blk_mq_end_request(rq, 0); 395 else 396 __blk_end_bidi_request(rq, 0, 0, 0); 397 return; 398 } 399 400 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 401 402 /* 403 * If there's data but flush is not necessary, the request can be 404 * processed directly without going through flush machinery. Queue 405 * for normal execution. 406 */ 407 if ((policy & REQ_FSEQ_DATA) && 408 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 409 if (q->mq_ops) { 410 blk_mq_insert_request(rq, false, false, true); 411 } else 412 list_add_tail(&rq->queuelist, &q->queue_head); 413 return; 414 } 415 416 /* 417 * @rq should go through flush machinery. Mark it part of flush 418 * sequence and submit for further processing. 419 */ 420 memset(&rq->flush, 0, sizeof(rq->flush)); 421 INIT_LIST_HEAD(&rq->flush.list); 422 rq->cmd_flags |= REQ_FLUSH_SEQ; 423 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 424 if (q->mq_ops) { 425 rq->end_io = mq_flush_data_end_io; 426 427 spin_lock_irq(&fq->mq_flush_lock); 428 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 429 spin_unlock_irq(&fq->mq_flush_lock); 430 return; 431 } 432 rq->end_io = flush_data_end_io; 433 434 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 435 } 436 437 /** 438 * blkdev_issue_flush - queue a flush 439 * @bdev: blockdev to issue flush for 440 * @gfp_mask: memory allocation flags (for bio_alloc) 441 * @error_sector: error sector 442 * 443 * Description: 444 * Issue a flush for the block device in question. Caller can supply 445 * room for storing the error offset in case of a flush error, if they 446 * wish to. If WAIT flag is not passed then caller may check only what 447 * request was pushed in some internal queue for later handling. 448 */ 449 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 450 sector_t *error_sector) 451 { 452 struct request_queue *q; 453 struct bio *bio; 454 int ret = 0; 455 456 if (bdev->bd_disk == NULL) 457 return -ENXIO; 458 459 q = bdev_get_queue(bdev); 460 if (!q) 461 return -ENXIO; 462 463 /* 464 * some block devices may not have their queue correctly set up here 465 * (e.g. loop device without a backing file) and so issuing a flush 466 * here will panic. Ensure there is a request function before issuing 467 * the flush. 468 */ 469 if (!q->make_request_fn) 470 return -ENXIO; 471 472 bio = bio_alloc(gfp_mask, 0); 473 bio->bi_bdev = bdev; 474 475 ret = submit_bio_wait(WRITE_FLUSH, bio); 476 477 /* 478 * The driver must store the error location in ->bi_sector, if 479 * it supports it. For non-stacked drivers, this should be 480 * copied from blk_rq_pos(rq). 481 */ 482 if (error_sector) 483 *error_sector = bio->bi_iter.bi_sector; 484 485 bio_put(bio); 486 return ret; 487 } 488 EXPORT_SYMBOL(blkdev_issue_flush); 489 490 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q, 491 int node, int cmd_size) 492 { 493 struct blk_flush_queue *fq; 494 int rq_sz = sizeof(struct request); 495 496 fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node); 497 if (!fq) 498 goto fail; 499 500 if (q->mq_ops) { 501 spin_lock_init(&fq->mq_flush_lock); 502 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 503 } 504 505 fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node); 506 if (!fq->flush_rq) 507 goto fail_rq; 508 509 INIT_LIST_HEAD(&fq->flush_queue[0]); 510 INIT_LIST_HEAD(&fq->flush_queue[1]); 511 INIT_LIST_HEAD(&fq->flush_data_in_flight); 512 513 return fq; 514 515 fail_rq: 516 kfree(fq); 517 fail: 518 return NULL; 519 } 520 521 void blk_free_flush_queue(struct blk_flush_queue *fq) 522 { 523 /* bio based request queue hasn't flush queue */ 524 if (!fq) 525 return; 526 527 kfree(fq->flush_rq); 528 kfree(fq); 529 } 530