1 /* 2 * Functions to sequence PREFLUSH and FUA writes. 3 * 4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 11 * properties and hardware capability. 12 * 13 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 14 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 15 * that the device cache should be flushed before the data is executed, and 16 * REQ_FUA means that the data must be on non-volatile media on request 17 * completion. 18 * 19 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 20 * difference. The requests are either completed immediately if there's no data 21 * or executed as normal requests otherwise. 22 * 23 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 25 * 26 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 27 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 28 * 29 * The actual execution of flush is double buffered. Whenever a request 30 * needs to execute PRE or POSTFLUSH, it queues at 31 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 32 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 33 * completes, all the requests which were pending are proceeded to the next 34 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 35 * requests. 36 * 37 * Currently, the following conditions are used to determine when to issue 38 * flush. 39 * 40 * C1. At any given time, only one flush shall be in progress. This makes 41 * double buffering sufficient. 42 * 43 * C2. Flush is deferred if any request is executing DATA of its sequence. 44 * This avoids issuing separate POSTFLUSHes for requests which shared 45 * PREFLUSH. 46 * 47 * C3. The second condition is ignored if there is a request which has 48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 49 * starvation in the unlikely case where there are continuous stream of 50 * FUA (without PREFLUSH) requests. 51 * 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 53 * is beneficial. 54 * 55 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 56 * Once while executing DATA and again after the whole sequence is 57 * complete. The first completion updates the contained bio but doesn't 58 * finish it so that the bio submitter is notified only after the whole 59 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 60 * req_bio_endio(). 61 * 62 * The above peculiarity requires that each PREFLUSH/FUA request has only one 63 * bio attached to it, which is guaranteed as they aren't allowed to be 64 * merged in the usual way. 65 */ 66 67 #include <linux/kernel.h> 68 #include <linux/module.h> 69 #include <linux/bio.h> 70 #include <linux/blkdev.h> 71 #include <linux/gfp.h> 72 #include <linux/blk-mq.h> 73 74 #include "blk.h" 75 #include "blk-mq.h" 76 #include "blk-mq-tag.h" 77 #include "blk-mq-sched.h" 78 79 /* PREFLUSH/FUA sequences */ 80 enum { 81 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 82 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 83 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 84 REQ_FSEQ_DONE = (1 << 3), 85 86 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 87 REQ_FSEQ_POSTFLUSH, 88 89 /* 90 * If flush has been pending longer than the following timeout, 91 * it's issued even if flush_data requests are still in flight. 92 */ 93 FLUSH_PENDING_TIMEOUT = 5 * HZ, 94 }; 95 96 static bool blk_kick_flush(struct request_queue *q, 97 struct blk_flush_queue *fq, unsigned int flags); 98 99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 100 { 101 unsigned int policy = 0; 102 103 if (blk_rq_sectors(rq)) 104 policy |= REQ_FSEQ_DATA; 105 106 if (fflags & (1UL << QUEUE_FLAG_WC)) { 107 if (rq->cmd_flags & REQ_PREFLUSH) 108 policy |= REQ_FSEQ_PREFLUSH; 109 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 110 (rq->cmd_flags & REQ_FUA)) 111 policy |= REQ_FSEQ_POSTFLUSH; 112 } 113 return policy; 114 } 115 116 static unsigned int blk_flush_cur_seq(struct request *rq) 117 { 118 return 1 << ffz(rq->flush.seq); 119 } 120 121 static void blk_flush_restore_request(struct request *rq) 122 { 123 /* 124 * After flush data completion, @rq->bio is %NULL but we need to 125 * complete the bio again. @rq->biotail is guaranteed to equal the 126 * original @rq->bio. Restore it. 127 */ 128 rq->bio = rq->biotail; 129 130 /* make @rq a normal request */ 131 rq->rq_flags &= ~RQF_FLUSH_SEQ; 132 rq->end_io = rq->flush.saved_end_io; 133 } 134 135 static bool blk_flush_queue_rq(struct request *rq, bool add_front) 136 { 137 if (rq->q->mq_ops) { 138 blk_mq_add_to_requeue_list(rq, add_front, true); 139 return false; 140 } else { 141 if (add_front) 142 list_add(&rq->queuelist, &rq->q->queue_head); 143 else 144 list_add_tail(&rq->queuelist, &rq->q->queue_head); 145 return true; 146 } 147 } 148 149 /** 150 * blk_flush_complete_seq - complete flush sequence 151 * @rq: PREFLUSH/FUA request being sequenced 152 * @fq: flush queue 153 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 154 * @error: whether an error occurred 155 * 156 * @rq just completed @seq part of its flush sequence, record the 157 * completion and trigger the next step. 158 * 159 * CONTEXT: 160 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock) 161 * 162 * RETURNS: 163 * %true if requests were added to the dispatch queue, %false otherwise. 164 */ 165 static bool blk_flush_complete_seq(struct request *rq, 166 struct blk_flush_queue *fq, 167 unsigned int seq, blk_status_t error) 168 { 169 struct request_queue *q = rq->q; 170 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 171 bool queued = false, kicked; 172 unsigned int cmd_flags; 173 174 BUG_ON(rq->flush.seq & seq); 175 rq->flush.seq |= seq; 176 cmd_flags = rq->cmd_flags; 177 178 if (likely(!error)) 179 seq = blk_flush_cur_seq(rq); 180 else 181 seq = REQ_FSEQ_DONE; 182 183 switch (seq) { 184 case REQ_FSEQ_PREFLUSH: 185 case REQ_FSEQ_POSTFLUSH: 186 /* queue for flush */ 187 if (list_empty(pending)) 188 fq->flush_pending_since = jiffies; 189 list_move_tail(&rq->flush.list, pending); 190 break; 191 192 case REQ_FSEQ_DATA: 193 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 194 queued = blk_flush_queue_rq(rq, true); 195 break; 196 197 case REQ_FSEQ_DONE: 198 /* 199 * @rq was previously adjusted by blk_flush_issue() for 200 * flush sequencing and may already have gone through the 201 * flush data request completion path. Restore @rq for 202 * normal completion and end it. 203 */ 204 BUG_ON(!list_empty(&rq->queuelist)); 205 list_del_init(&rq->flush.list); 206 blk_flush_restore_request(rq); 207 if (q->mq_ops) 208 blk_mq_end_request(rq, error); 209 else 210 __blk_end_request_all(rq, error); 211 break; 212 213 default: 214 BUG(); 215 } 216 217 kicked = blk_kick_flush(q, fq, cmd_flags); 218 return kicked | queued; 219 } 220 221 static void flush_end_io(struct request *flush_rq, blk_status_t error) 222 { 223 struct request_queue *q = flush_rq->q; 224 struct list_head *running; 225 bool queued = false; 226 struct request *rq, *n; 227 unsigned long flags = 0; 228 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 229 230 if (q->mq_ops) { 231 struct blk_mq_hw_ctx *hctx; 232 233 /* release the tag's ownership to the req cloned from */ 234 spin_lock_irqsave(&fq->mq_flush_lock, flags); 235 hctx = blk_mq_map_queue(q, flush_rq->mq_ctx->cpu); 236 if (!q->elevator) { 237 blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq); 238 flush_rq->tag = -1; 239 } else { 240 blk_mq_put_driver_tag_hctx(hctx, flush_rq); 241 flush_rq->internal_tag = -1; 242 } 243 } 244 245 running = &fq->flush_queue[fq->flush_running_idx]; 246 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 247 248 /* account completion of the flush request */ 249 fq->flush_running_idx ^= 1; 250 251 if (!q->mq_ops) 252 elv_completed_request(q, flush_rq); 253 254 /* and push the waiting requests to the next stage */ 255 list_for_each_entry_safe(rq, n, running, flush.list) { 256 unsigned int seq = blk_flush_cur_seq(rq); 257 258 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 259 queued |= blk_flush_complete_seq(rq, fq, seq, error); 260 } 261 262 /* 263 * Kick the queue to avoid stall for two cases: 264 * 1. Moving a request silently to empty queue_head may stall the 265 * queue. 266 * 2. When flush request is running in non-queueable queue, the 267 * queue is hold. Restart the queue after flush request is finished 268 * to avoid stall. 269 * This function is called from request completion path and calling 270 * directly into request_fn may confuse the driver. Always use 271 * kblockd. 272 */ 273 if (queued || fq->flush_queue_delayed) { 274 WARN_ON(q->mq_ops); 275 blk_run_queue_async(q); 276 } 277 fq->flush_queue_delayed = 0; 278 if (q->mq_ops) 279 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 280 } 281 282 /** 283 * blk_kick_flush - consider issuing flush request 284 * @q: request_queue being kicked 285 * @fq: flush queue 286 * @flags: cmd_flags of the original request 287 * 288 * Flush related states of @q have changed, consider issuing flush request. 289 * Please read the comment at the top of this file for more info. 290 * 291 * CONTEXT: 292 * spin_lock_irq(q->queue_lock or fq->mq_flush_lock) 293 * 294 * RETURNS: 295 * %true if flush was issued, %false otherwise. 296 */ 297 static bool blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 298 unsigned int flags) 299 { 300 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 301 struct request *first_rq = 302 list_first_entry(pending, struct request, flush.list); 303 struct request *flush_rq = fq->flush_rq; 304 305 /* C1 described at the top of this file */ 306 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 307 return false; 308 309 /* C2 and C3 310 * 311 * For blk-mq + scheduling, we can risk having all driver tags 312 * assigned to empty flushes, and we deadlock if we are expecting 313 * other requests to make progress. Don't defer for that case. 314 */ 315 if (!list_empty(&fq->flush_data_in_flight) && 316 !(q->mq_ops && q->elevator) && 317 time_before(jiffies, 318 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 319 return false; 320 321 /* 322 * Issue flush and toggle pending_idx. This makes pending_idx 323 * different from running_idx, which means flush is in flight. 324 */ 325 fq->flush_pending_idx ^= 1; 326 327 blk_rq_init(q, flush_rq); 328 329 /* 330 * In case of none scheduler, borrow tag from the first request 331 * since they can't be in flight at the same time. And acquire 332 * the tag's ownership for flush req. 333 * 334 * In case of IO scheduler, flush rq need to borrow scheduler tag 335 * just for cheating put/get driver tag. 336 */ 337 if (q->mq_ops) { 338 struct blk_mq_hw_ctx *hctx; 339 340 flush_rq->mq_ctx = first_rq->mq_ctx; 341 342 if (!q->elevator) { 343 fq->orig_rq = first_rq; 344 flush_rq->tag = first_rq->tag; 345 hctx = blk_mq_map_queue(q, first_rq->mq_ctx->cpu); 346 blk_mq_tag_set_rq(hctx, first_rq->tag, flush_rq); 347 } else { 348 flush_rq->internal_tag = first_rq->internal_tag; 349 } 350 } 351 352 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 353 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 354 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 355 flush_rq->rq_disk = first_rq->rq_disk; 356 flush_rq->end_io = flush_end_io; 357 358 return blk_flush_queue_rq(flush_rq, false); 359 } 360 361 static void flush_data_end_io(struct request *rq, blk_status_t error) 362 { 363 struct request_queue *q = rq->q; 364 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 365 366 lockdep_assert_held(q->queue_lock); 367 368 /* 369 * Updating q->in_flight[] here for making this tag usable 370 * early. Because in blk_queue_start_tag(), 371 * q->in_flight[BLK_RW_ASYNC] is used to limit async I/O and 372 * reserve tags for sync I/O. 373 * 374 * More importantly this way can avoid the following I/O 375 * deadlock: 376 * 377 * - suppose there are 40 fua requests comming to flush queue 378 * and queue depth is 31 379 * - 30 rqs are scheduled then blk_queue_start_tag() can't alloc 380 * tag for async I/O any more 381 * - all the 30 rqs are completed before FLUSH_PENDING_TIMEOUT 382 * and flush_data_end_io() is called 383 * - the other rqs still can't go ahead if not updating 384 * q->in_flight[BLK_RW_ASYNC] here, meantime these rqs 385 * are held in flush data queue and make no progress of 386 * handling post flush rq 387 * - only after the post flush rq is handled, all these rqs 388 * can be completed 389 */ 390 391 elv_completed_request(q, rq); 392 393 /* for avoiding double accounting */ 394 rq->rq_flags &= ~RQF_STARTED; 395 396 /* 397 * After populating an empty queue, kick it to avoid stall. Read 398 * the comment in flush_end_io(). 399 */ 400 if (blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error)) 401 blk_run_queue_async(q); 402 } 403 404 static void mq_flush_data_end_io(struct request *rq, blk_status_t error) 405 { 406 struct request_queue *q = rq->q; 407 struct blk_mq_hw_ctx *hctx; 408 struct blk_mq_ctx *ctx = rq->mq_ctx; 409 unsigned long flags; 410 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 411 412 hctx = blk_mq_map_queue(q, ctx->cpu); 413 414 if (q->elevator) { 415 WARN_ON(rq->tag < 0); 416 blk_mq_put_driver_tag_hctx(hctx, rq); 417 } 418 419 /* 420 * After populating an empty queue, kick it to avoid stall. Read 421 * the comment in flush_end_io(). 422 */ 423 spin_lock_irqsave(&fq->mq_flush_lock, flags); 424 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 425 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 426 427 blk_mq_run_hw_queue(hctx, true); 428 } 429 430 /** 431 * blk_insert_flush - insert a new PREFLUSH/FUA request 432 * @rq: request to insert 433 * 434 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 435 * or __blk_mq_run_hw_queue() to dispatch request. 436 * @rq is being submitted. Analyze what needs to be done and put it on the 437 * right queue. 438 */ 439 void blk_insert_flush(struct request *rq) 440 { 441 struct request_queue *q = rq->q; 442 unsigned long fflags = q->queue_flags; /* may change, cache */ 443 unsigned int policy = blk_flush_policy(fflags, rq); 444 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 445 446 if (!q->mq_ops) 447 lockdep_assert_held(q->queue_lock); 448 449 /* 450 * @policy now records what operations need to be done. Adjust 451 * REQ_PREFLUSH and FUA for the driver. 452 */ 453 rq->cmd_flags &= ~REQ_PREFLUSH; 454 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 455 rq->cmd_flags &= ~REQ_FUA; 456 457 /* 458 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 459 * of those flags, we have to set REQ_SYNC to avoid skewing 460 * the request accounting. 461 */ 462 rq->cmd_flags |= REQ_SYNC; 463 464 /* 465 * An empty flush handed down from a stacking driver may 466 * translate into nothing if the underlying device does not 467 * advertise a write-back cache. In this case, simply 468 * complete the request. 469 */ 470 if (!policy) { 471 if (q->mq_ops) 472 blk_mq_end_request(rq, 0); 473 else 474 __blk_end_request(rq, 0, 0); 475 return; 476 } 477 478 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 479 480 /* 481 * If there's data but flush is not necessary, the request can be 482 * processed directly without going through flush machinery. Queue 483 * for normal execution. 484 */ 485 if ((policy & REQ_FSEQ_DATA) && 486 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 487 if (q->mq_ops) 488 blk_mq_request_bypass_insert(rq, false); 489 else 490 list_add_tail(&rq->queuelist, &q->queue_head); 491 return; 492 } 493 494 /* 495 * @rq should go through flush machinery. Mark it part of flush 496 * sequence and submit for further processing. 497 */ 498 memset(&rq->flush, 0, sizeof(rq->flush)); 499 INIT_LIST_HEAD(&rq->flush.list); 500 rq->rq_flags |= RQF_FLUSH_SEQ; 501 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 502 if (q->mq_ops) { 503 rq->end_io = mq_flush_data_end_io; 504 505 spin_lock_irq(&fq->mq_flush_lock); 506 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 507 spin_unlock_irq(&fq->mq_flush_lock); 508 return; 509 } 510 rq->end_io = flush_data_end_io; 511 512 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 513 } 514 515 /** 516 * blkdev_issue_flush - queue a flush 517 * @bdev: blockdev to issue flush for 518 * @gfp_mask: memory allocation flags (for bio_alloc) 519 * @error_sector: error sector 520 * 521 * Description: 522 * Issue a flush for the block device in question. Caller can supply 523 * room for storing the error offset in case of a flush error, if they 524 * wish to. 525 */ 526 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 527 sector_t *error_sector) 528 { 529 struct request_queue *q; 530 struct bio *bio; 531 int ret = 0; 532 533 if (bdev->bd_disk == NULL) 534 return -ENXIO; 535 536 q = bdev_get_queue(bdev); 537 if (!q) 538 return -ENXIO; 539 540 /* 541 * some block devices may not have their queue correctly set up here 542 * (e.g. loop device without a backing file) and so issuing a flush 543 * here will panic. Ensure there is a request function before issuing 544 * the flush. 545 */ 546 if (!q->make_request_fn) 547 return -ENXIO; 548 549 bio = bio_alloc(gfp_mask, 0); 550 bio_set_dev(bio, bdev); 551 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 552 553 ret = submit_bio_wait(bio); 554 555 /* 556 * The driver must store the error location in ->bi_sector, if 557 * it supports it. For non-stacked drivers, this should be 558 * copied from blk_rq_pos(rq). 559 */ 560 if (error_sector) 561 *error_sector = bio->bi_iter.bi_sector; 562 563 bio_put(bio); 564 return ret; 565 } 566 EXPORT_SYMBOL(blkdev_issue_flush); 567 568 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q, 569 int node, int cmd_size) 570 { 571 struct blk_flush_queue *fq; 572 int rq_sz = sizeof(struct request); 573 574 fq = kzalloc_node(sizeof(*fq), GFP_KERNEL, node); 575 if (!fq) 576 goto fail; 577 578 if (q->mq_ops) 579 spin_lock_init(&fq->mq_flush_lock); 580 581 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 582 fq->flush_rq = kzalloc_node(rq_sz, GFP_KERNEL, node); 583 if (!fq->flush_rq) 584 goto fail_rq; 585 586 INIT_LIST_HEAD(&fq->flush_queue[0]); 587 INIT_LIST_HEAD(&fq->flush_queue[1]); 588 INIT_LIST_HEAD(&fq->flush_data_in_flight); 589 590 return fq; 591 592 fail_rq: 593 kfree(fq); 594 fail: 595 return NULL; 596 } 597 598 void blk_free_flush_queue(struct blk_flush_queue *fq) 599 { 600 /* bio based request queue hasn't flush queue */ 601 if (!fq) 602 return; 603 604 kfree(fq->flush_rq); 605 kfree(fq); 606 } 607