xref: /linux/block/blk-flush.c (revision 5ddb88f22eb97218d9295e69c39e0ff7cc64e09c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions to sequence PREFLUSH and FUA writes.
4  *
5  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
6  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
7  *
8  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10  * properties and hardware capability.
11  *
12  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
14  * that the device cache should be flushed before the data is executed, and
15  * REQ_FUA means that the data must be on non-volatile media on request
16  * completion.
17  *
18  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19  * difference.  The requests are either completed immediately if there's no data
20  * or executed as normal requests otherwise.
21  *
22  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24  *
25  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27  *
28  * The actual execution of flush is double buffered.  Whenever a request
29  * needs to execute PRE or POSTFLUSH, it queues at
30  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
31  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
32  * completes, all the requests which were pending are proceeded to the next
33  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
34  * requests.
35  *
36  * Currently, the following conditions are used to determine when to issue
37  * flush.
38  *
39  * C1. At any given time, only one flush shall be in progress.  This makes
40  *     double buffering sufficient.
41  *
42  * C2. Flush is deferred if any request is executing DATA of its sequence.
43  *     This avoids issuing separate POSTFLUSHes for requests which shared
44  *     PREFLUSH.
45  *
46  * C3. The second condition is ignored if there is a request which has
47  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
48  *     starvation in the unlikely case where there are continuous stream of
49  *     FUA (without PREFLUSH) requests.
50  *
51  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52  * is beneficial.
53  *
54  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55  * Once while executing DATA and again after the whole sequence is
56  * complete.  The first completion updates the contained bio but doesn't
57  * finish it so that the bio submitter is notified only after the whole
58  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
59  * req_bio_endio().
60  *
61  * The above peculiarity requires that each PREFLUSH/FUA request has only one
62  * bio attached to it, which is guaranteed as they aren't allowed to be
63  * merged in the usual way.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/module.h>
68 #include <linux/bio.h>
69 #include <linux/blkdev.h>
70 #include <linux/gfp.h>
71 #include <linux/part_stat.h>
72 
73 #include "blk.h"
74 #include "blk-mq.h"
75 #include "blk-mq-sched.h"
76 
77 /* PREFLUSH/FUA sequences */
78 enum {
79 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
80 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
81 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
82 	REQ_FSEQ_DONE		= (1 << 3),
83 
84 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85 				  REQ_FSEQ_POSTFLUSH,
86 
87 	/*
88 	 * If flush has been pending longer than the following timeout,
89 	 * it's issued even if flush_data requests are still in flight.
90 	 */
91 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
92 };
93 
94 static void blk_kick_flush(struct request_queue *q,
95 			   struct blk_flush_queue *fq, blk_opf_t flags);
96 
97 static inline struct blk_flush_queue *
98 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
99 {
100 	return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
101 }
102 
103 static unsigned int blk_flush_cur_seq(struct request *rq)
104 {
105 	return 1 << ffz(rq->flush.seq);
106 }
107 
108 static void blk_flush_restore_request(struct request *rq)
109 {
110 	/*
111 	 * After flush data completion, @rq->bio is %NULL but we need to
112 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
113 	 * original @rq->bio.  Restore it.
114 	 */
115 	rq->bio = rq->biotail;
116 	if (rq->bio)
117 		rq->__sector = rq->bio->bi_iter.bi_sector;
118 
119 	/* make @rq a normal request */
120 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
121 	rq->end_io = rq->flush.saved_end_io;
122 }
123 
124 static void blk_account_io_flush(struct request *rq)
125 {
126 	struct block_device *part = rq->q->disk->part0;
127 
128 	part_stat_lock();
129 	part_stat_inc(part, ios[STAT_FLUSH]);
130 	part_stat_add(part, nsecs[STAT_FLUSH],
131 		      blk_time_get_ns() - rq->start_time_ns);
132 	part_stat_unlock();
133 }
134 
135 /**
136  * blk_flush_complete_seq - complete flush sequence
137  * @rq: PREFLUSH/FUA request being sequenced
138  * @fq: flush queue
139  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
140  * @error: whether an error occurred
141  *
142  * @rq just completed @seq part of its flush sequence, record the
143  * completion and trigger the next step.
144  *
145  * CONTEXT:
146  * spin_lock_irq(fq->mq_flush_lock)
147  */
148 static void blk_flush_complete_seq(struct request *rq,
149 				   struct blk_flush_queue *fq,
150 				   unsigned int seq, blk_status_t error)
151 {
152 	struct request_queue *q = rq->q;
153 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
154 	blk_opf_t cmd_flags;
155 
156 	BUG_ON(rq->flush.seq & seq);
157 	rq->flush.seq |= seq;
158 	cmd_flags = rq->cmd_flags;
159 
160 	if (likely(!error))
161 		seq = blk_flush_cur_seq(rq);
162 	else
163 		seq = REQ_FSEQ_DONE;
164 
165 	switch (seq) {
166 	case REQ_FSEQ_PREFLUSH:
167 	case REQ_FSEQ_POSTFLUSH:
168 		/* queue for flush */
169 		if (list_empty(pending))
170 			fq->flush_pending_since = jiffies;
171 		list_move_tail(&rq->queuelist, pending);
172 		break;
173 
174 	case REQ_FSEQ_DATA:
175 		fq->flush_data_in_flight++;
176 		spin_lock(&q->requeue_lock);
177 		list_move(&rq->queuelist, &q->requeue_list);
178 		spin_unlock(&q->requeue_lock);
179 		blk_mq_kick_requeue_list(q);
180 		break;
181 
182 	case REQ_FSEQ_DONE:
183 		/*
184 		 * @rq was previously adjusted by blk_insert_flush() for
185 		 * flush sequencing and may already have gone through the
186 		 * flush data request completion path.  Restore @rq for
187 		 * normal completion and end it.
188 		 */
189 		list_del_init(&rq->queuelist);
190 		blk_flush_restore_request(rq);
191 		blk_mq_end_request(rq, error);
192 		break;
193 
194 	default:
195 		BUG();
196 	}
197 
198 	blk_kick_flush(q, fq, cmd_flags);
199 }
200 
201 static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
202 				       blk_status_t error)
203 {
204 	struct request_queue *q = flush_rq->q;
205 	struct list_head *running;
206 	struct request *rq, *n;
207 	unsigned long flags = 0;
208 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
209 
210 	/* release the tag's ownership to the req cloned from */
211 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
212 
213 	if (!req_ref_put_and_test(flush_rq)) {
214 		fq->rq_status = error;
215 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
216 		return RQ_END_IO_NONE;
217 	}
218 
219 	blk_account_io_flush(flush_rq);
220 	/*
221 	 * Flush request has to be marked as IDLE when it is really ended
222 	 * because its .end_io() is called from timeout code path too for
223 	 * avoiding use-after-free.
224 	 */
225 	WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
226 	if (fq->rq_status != BLK_STS_OK) {
227 		error = fq->rq_status;
228 		fq->rq_status = BLK_STS_OK;
229 	}
230 
231 	if (!q->elevator) {
232 		flush_rq->tag = BLK_MQ_NO_TAG;
233 	} else {
234 		blk_mq_put_driver_tag(flush_rq);
235 		flush_rq->internal_tag = BLK_MQ_NO_TAG;
236 	}
237 
238 	running = &fq->flush_queue[fq->flush_running_idx];
239 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
240 
241 	/* account completion of the flush request */
242 	fq->flush_running_idx ^= 1;
243 
244 	/* and push the waiting requests to the next stage */
245 	list_for_each_entry_safe(rq, n, running, queuelist) {
246 		unsigned int seq = blk_flush_cur_seq(rq);
247 
248 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
249 		blk_flush_complete_seq(rq, fq, seq, error);
250 	}
251 
252 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
253 	return RQ_END_IO_NONE;
254 }
255 
256 bool is_flush_rq(struct request *rq)
257 {
258 	return rq->end_io == flush_end_io;
259 }
260 
261 /**
262  * blk_kick_flush - consider issuing flush request
263  * @q: request_queue being kicked
264  * @fq: flush queue
265  * @flags: cmd_flags of the original request
266  *
267  * Flush related states of @q have changed, consider issuing flush request.
268  * Please read the comment at the top of this file for more info.
269  *
270  * CONTEXT:
271  * spin_lock_irq(fq->mq_flush_lock)
272  *
273  */
274 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
275 			   blk_opf_t flags)
276 {
277 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
278 	struct request *first_rq =
279 		list_first_entry(pending, struct request, queuelist);
280 	struct request *flush_rq = fq->flush_rq;
281 
282 	/* C1 described at the top of this file */
283 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
284 		return;
285 
286 	/* C2 and C3 */
287 	if (fq->flush_data_in_flight &&
288 	    time_before(jiffies,
289 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
290 		return;
291 
292 	/*
293 	 * Issue flush and toggle pending_idx.  This makes pending_idx
294 	 * different from running_idx, which means flush is in flight.
295 	 */
296 	fq->flush_pending_idx ^= 1;
297 
298 	blk_rq_init(q, flush_rq);
299 
300 	/*
301 	 * In case of none scheduler, borrow tag from the first request
302 	 * since they can't be in flight at the same time. And acquire
303 	 * the tag's ownership for flush req.
304 	 *
305 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
306 	 * just for cheating put/get driver tag.
307 	 */
308 	flush_rq->mq_ctx = first_rq->mq_ctx;
309 	flush_rq->mq_hctx = first_rq->mq_hctx;
310 
311 	if (!q->elevator)
312 		flush_rq->tag = first_rq->tag;
313 	else
314 		flush_rq->internal_tag = first_rq->internal_tag;
315 
316 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
317 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
318 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
319 	flush_rq->end_io = flush_end_io;
320 	/*
321 	 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
322 	 * implied in refcount_inc_not_zero() called from
323 	 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
324 	 * and READ flush_rq->end_io
325 	 */
326 	smp_wmb();
327 	req_ref_set(flush_rq, 1);
328 
329 	spin_lock(&q->requeue_lock);
330 	list_add_tail(&flush_rq->queuelist, &q->flush_list);
331 	spin_unlock(&q->requeue_lock);
332 
333 	blk_mq_kick_requeue_list(q);
334 }
335 
336 static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
337 					       blk_status_t error)
338 {
339 	struct request_queue *q = rq->q;
340 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
341 	struct blk_mq_ctx *ctx = rq->mq_ctx;
342 	unsigned long flags;
343 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
344 
345 	if (q->elevator) {
346 		WARN_ON(rq->tag < 0);
347 		blk_mq_put_driver_tag(rq);
348 	}
349 
350 	/*
351 	 * After populating an empty queue, kick it to avoid stall.  Read
352 	 * the comment in flush_end_io().
353 	 */
354 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
355 	fq->flush_data_in_flight--;
356 	/*
357 	 * May have been corrupted by rq->rq_next reuse, we need to
358 	 * re-initialize rq->queuelist before reusing it here.
359 	 */
360 	INIT_LIST_HEAD(&rq->queuelist);
361 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
362 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
363 
364 	blk_mq_sched_restart(hctx);
365 	return RQ_END_IO_NONE;
366 }
367 
368 static void blk_rq_init_flush(struct request *rq)
369 {
370 	rq->flush.seq = 0;
371 	rq->rq_flags |= RQF_FLUSH_SEQ;
372 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
373 	rq->end_io = mq_flush_data_end_io;
374 }
375 
376 /*
377  * Insert a PREFLUSH/FUA request into the flush state machine.
378  * Returns true if the request has been consumed by the flush state machine,
379  * or false if the caller should continue to process it.
380  */
381 bool blk_insert_flush(struct request *rq)
382 {
383 	struct request_queue *q = rq->q;
384 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
385 	bool supports_fua = q->limits.features & BLK_FEAT_FUA;
386 	unsigned int policy = 0;
387 
388 	/* FLUSH/FUA request must never be merged */
389 	WARN_ON_ONCE(rq->bio != rq->biotail);
390 
391 	if (blk_rq_sectors(rq))
392 		policy |= REQ_FSEQ_DATA;
393 
394 	/*
395 	 * Check which flushes we need to sequence for this operation.
396 	 */
397 	if (blk_queue_write_cache(q)) {
398 		if (rq->cmd_flags & REQ_PREFLUSH)
399 			policy |= REQ_FSEQ_PREFLUSH;
400 		if ((rq->cmd_flags & REQ_FUA) && !supports_fua)
401 			policy |= REQ_FSEQ_POSTFLUSH;
402 	}
403 
404 	/*
405 	 * @policy now records what operations need to be done.  Adjust
406 	 * REQ_PREFLUSH and FUA for the driver.
407 	 */
408 	rq->cmd_flags &= ~REQ_PREFLUSH;
409 	if (!supports_fua)
410 		rq->cmd_flags &= ~REQ_FUA;
411 
412 	/*
413 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
414 	 * of those flags, we have to set REQ_SYNC to avoid skewing
415 	 * the request accounting.
416 	 */
417 	rq->cmd_flags |= REQ_SYNC;
418 
419 	switch (policy) {
420 	case 0:
421 		/*
422 		 * An empty flush handed down from a stacking driver may
423 		 * translate into nothing if the underlying device does not
424 		 * advertise a write-back cache.  In this case, simply
425 		 * complete the request.
426 		 */
427 		blk_mq_end_request(rq, 0);
428 		return true;
429 	case REQ_FSEQ_DATA:
430 		/*
431 		 * If there's data, but no flush is necessary, the request can
432 		 * be processed directly without going through flush machinery.
433 		 * Queue for normal execution.
434 		 */
435 		return false;
436 	case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH:
437 		/*
438 		 * Initialize the flush fields and completion handler to trigger
439 		 * the post flush, and then just pass the command on.
440 		 */
441 		blk_rq_init_flush(rq);
442 		rq->flush.seq |= REQ_FSEQ_PREFLUSH;
443 		spin_lock_irq(&fq->mq_flush_lock);
444 		fq->flush_data_in_flight++;
445 		spin_unlock_irq(&fq->mq_flush_lock);
446 		return false;
447 	default:
448 		/*
449 		 * Mark the request as part of a flush sequence and submit it
450 		 * for further processing to the flush state machine.
451 		 */
452 		blk_rq_init_flush(rq);
453 		spin_lock_irq(&fq->mq_flush_lock);
454 		blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
455 		spin_unlock_irq(&fq->mq_flush_lock);
456 		return true;
457 	}
458 }
459 
460 /**
461  * blkdev_issue_flush - queue a flush
462  * @bdev:	blockdev to issue flush for
463  *
464  * Description:
465  *    Issue a flush for the block device in question.
466  */
467 int blkdev_issue_flush(struct block_device *bdev)
468 {
469 	struct bio bio;
470 
471 	bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
472 	return submit_bio_wait(&bio);
473 }
474 EXPORT_SYMBOL(blkdev_issue_flush);
475 
476 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
477 					      gfp_t flags)
478 {
479 	struct blk_flush_queue *fq;
480 	int rq_sz = sizeof(struct request);
481 
482 	fq = kzalloc_node(sizeof(*fq), flags, node);
483 	if (!fq)
484 		goto fail;
485 
486 	spin_lock_init(&fq->mq_flush_lock);
487 
488 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
489 	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
490 	if (!fq->flush_rq)
491 		goto fail_rq;
492 
493 	INIT_LIST_HEAD(&fq->flush_queue[0]);
494 	INIT_LIST_HEAD(&fq->flush_queue[1]);
495 
496 	return fq;
497 
498  fail_rq:
499 	kfree(fq);
500  fail:
501 	return NULL;
502 }
503 
504 void blk_free_flush_queue(struct blk_flush_queue *fq)
505 {
506 	/* bio based request queue hasn't flush queue */
507 	if (!fq)
508 		return;
509 
510 	kfree(fq->flush_rq);
511 	kfree(fq);
512 }
513 
514 /*
515  * Allow driver to set its own lock class to fq->mq_flush_lock for
516  * avoiding lockdep complaint.
517  *
518  * flush_end_io() may be called recursively from some driver, such as
519  * nvme-loop, so lockdep may complain 'possible recursive locking' because
520  * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
521  * key. We need to assign different lock class for these driver's
522  * fq->mq_flush_lock for avoiding the lockdep warning.
523  *
524  * Use dynamically allocated lock class key for each 'blk_flush_queue'
525  * instance is over-kill, and more worse it introduces horrible boot delay
526  * issue because synchronize_rcu() is implied in lockdep_unregister_key which
527  * is called for each hctx release. SCSI probing may synchronously create and
528  * destroy lots of MQ request_queues for non-existent devices, and some robot
529  * test kernel always enable lockdep option. It is observed that more than half
530  * an hour is taken during SCSI MQ probe with per-fq lock class.
531  */
532 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
533 		struct lock_class_key *key)
534 {
535 	lockdep_set_class(&hctx->fq->mq_flush_lock, key);
536 }
537 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);
538