1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/blk-mq.h> 72 73 #include "blk.h" 74 #include "blk-mq.h" 75 #include "blk-mq-tag.h" 76 #include "blk-mq-sched.h" 77 78 /* PREFLUSH/FUA sequences */ 79 enum { 80 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 81 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 82 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 83 REQ_FSEQ_DONE = (1 << 3), 84 85 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 86 REQ_FSEQ_POSTFLUSH, 87 88 /* 89 * If flush has been pending longer than the following timeout, 90 * it's issued even if flush_data requests are still in flight. 91 */ 92 FLUSH_PENDING_TIMEOUT = 5 * HZ, 93 }; 94 95 static void blk_kick_flush(struct request_queue *q, 96 struct blk_flush_queue *fq, unsigned int flags); 97 98 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 99 { 100 unsigned int policy = 0; 101 102 if (blk_rq_sectors(rq)) 103 policy |= REQ_FSEQ_DATA; 104 105 if (fflags & (1UL << QUEUE_FLAG_WC)) { 106 if (rq->cmd_flags & REQ_PREFLUSH) 107 policy |= REQ_FSEQ_PREFLUSH; 108 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 109 (rq->cmd_flags & REQ_FUA)) 110 policy |= REQ_FSEQ_POSTFLUSH; 111 } 112 return policy; 113 } 114 115 static unsigned int blk_flush_cur_seq(struct request *rq) 116 { 117 return 1 << ffz(rq->flush.seq); 118 } 119 120 static void blk_flush_restore_request(struct request *rq) 121 { 122 /* 123 * After flush data completion, @rq->bio is %NULL but we need to 124 * complete the bio again. @rq->biotail is guaranteed to equal the 125 * original @rq->bio. Restore it. 126 */ 127 rq->bio = rq->biotail; 128 129 /* make @rq a normal request */ 130 rq->rq_flags &= ~RQF_FLUSH_SEQ; 131 rq->end_io = rq->flush.saved_end_io; 132 } 133 134 static void blk_flush_queue_rq(struct request *rq, bool add_front) 135 { 136 blk_mq_add_to_requeue_list(rq, add_front, true); 137 } 138 139 static void blk_account_io_flush(struct request *rq) 140 { 141 struct hd_struct *part = &rq->rq_disk->part0; 142 143 part_stat_lock(); 144 part_stat_inc(part, ios[STAT_FLUSH]); 145 part_stat_add(part, nsecs[STAT_FLUSH], 146 ktime_get_ns() - rq->start_time_ns); 147 part_stat_unlock(); 148 } 149 150 /** 151 * blk_flush_complete_seq - complete flush sequence 152 * @rq: PREFLUSH/FUA request being sequenced 153 * @fq: flush queue 154 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 155 * @error: whether an error occurred 156 * 157 * @rq just completed @seq part of its flush sequence, record the 158 * completion and trigger the next step. 159 * 160 * CONTEXT: 161 * spin_lock_irq(fq->mq_flush_lock) 162 * 163 * RETURNS: 164 * %true if requests were added to the dispatch queue, %false otherwise. 165 */ 166 static void blk_flush_complete_seq(struct request *rq, 167 struct blk_flush_queue *fq, 168 unsigned int seq, blk_status_t error) 169 { 170 struct request_queue *q = rq->q; 171 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 172 unsigned int cmd_flags; 173 174 BUG_ON(rq->flush.seq & seq); 175 rq->flush.seq |= seq; 176 cmd_flags = rq->cmd_flags; 177 178 if (likely(!error)) 179 seq = blk_flush_cur_seq(rq); 180 else 181 seq = REQ_FSEQ_DONE; 182 183 switch (seq) { 184 case REQ_FSEQ_PREFLUSH: 185 case REQ_FSEQ_POSTFLUSH: 186 /* queue for flush */ 187 if (list_empty(pending)) 188 fq->flush_pending_since = jiffies; 189 list_move_tail(&rq->flush.list, pending); 190 break; 191 192 case REQ_FSEQ_DATA: 193 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 194 blk_flush_queue_rq(rq, true); 195 break; 196 197 case REQ_FSEQ_DONE: 198 /* 199 * @rq was previously adjusted by blk_insert_flush() for 200 * flush sequencing and may already have gone through the 201 * flush data request completion path. Restore @rq for 202 * normal completion and end it. 203 */ 204 BUG_ON(!list_empty(&rq->queuelist)); 205 list_del_init(&rq->flush.list); 206 blk_flush_restore_request(rq); 207 blk_mq_end_request(rq, error); 208 break; 209 210 default: 211 BUG(); 212 } 213 214 blk_kick_flush(q, fq, cmd_flags); 215 } 216 217 static void flush_end_io(struct request *flush_rq, blk_status_t error) 218 { 219 struct request_queue *q = flush_rq->q; 220 struct list_head *running; 221 struct request *rq, *n; 222 unsigned long flags = 0; 223 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 224 struct blk_mq_hw_ctx *hctx; 225 226 blk_account_io_flush(flush_rq); 227 228 /* release the tag's ownership to the req cloned from */ 229 spin_lock_irqsave(&fq->mq_flush_lock, flags); 230 231 if (!refcount_dec_and_test(&flush_rq->ref)) { 232 fq->rq_status = error; 233 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 234 return; 235 } 236 237 if (fq->rq_status != BLK_STS_OK) 238 error = fq->rq_status; 239 240 hctx = flush_rq->mq_hctx; 241 if (!q->elevator) { 242 blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq); 243 flush_rq->tag = -1; 244 } else { 245 blk_mq_put_driver_tag(flush_rq); 246 flush_rq->internal_tag = -1; 247 } 248 249 running = &fq->flush_queue[fq->flush_running_idx]; 250 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 251 252 /* account completion of the flush request */ 253 fq->flush_running_idx ^= 1; 254 255 /* and push the waiting requests to the next stage */ 256 list_for_each_entry_safe(rq, n, running, flush.list) { 257 unsigned int seq = blk_flush_cur_seq(rq); 258 259 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 260 blk_flush_complete_seq(rq, fq, seq, error); 261 } 262 263 fq->flush_queue_delayed = 0; 264 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 265 } 266 267 /** 268 * blk_kick_flush - consider issuing flush request 269 * @q: request_queue being kicked 270 * @fq: flush queue 271 * @flags: cmd_flags of the original request 272 * 273 * Flush related states of @q have changed, consider issuing flush request. 274 * Please read the comment at the top of this file for more info. 275 * 276 * CONTEXT: 277 * spin_lock_irq(fq->mq_flush_lock) 278 * 279 */ 280 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 281 unsigned int flags) 282 { 283 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 284 struct request *first_rq = 285 list_first_entry(pending, struct request, flush.list); 286 struct request *flush_rq = fq->flush_rq; 287 288 /* C1 described at the top of this file */ 289 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 290 return; 291 292 /* C2 and C3 293 * 294 * For blk-mq + scheduling, we can risk having all driver tags 295 * assigned to empty flushes, and we deadlock if we are expecting 296 * other requests to make progress. Don't defer for that case. 297 */ 298 if (!list_empty(&fq->flush_data_in_flight) && q->elevator && 299 time_before(jiffies, 300 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 301 return; 302 303 /* 304 * Issue flush and toggle pending_idx. This makes pending_idx 305 * different from running_idx, which means flush is in flight. 306 */ 307 fq->flush_pending_idx ^= 1; 308 309 blk_rq_init(q, flush_rq); 310 311 /* 312 * In case of none scheduler, borrow tag from the first request 313 * since they can't be in flight at the same time. And acquire 314 * the tag's ownership for flush req. 315 * 316 * In case of IO scheduler, flush rq need to borrow scheduler tag 317 * just for cheating put/get driver tag. 318 */ 319 flush_rq->mq_ctx = first_rq->mq_ctx; 320 flush_rq->mq_hctx = first_rq->mq_hctx; 321 322 if (!q->elevator) { 323 fq->orig_rq = first_rq; 324 flush_rq->tag = first_rq->tag; 325 blk_mq_tag_set_rq(flush_rq->mq_hctx, first_rq->tag, flush_rq); 326 } else { 327 flush_rq->internal_tag = first_rq->internal_tag; 328 } 329 330 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 331 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 332 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 333 flush_rq->rq_disk = first_rq->rq_disk; 334 flush_rq->end_io = flush_end_io; 335 336 blk_flush_queue_rq(flush_rq, false); 337 } 338 339 static void mq_flush_data_end_io(struct request *rq, blk_status_t error) 340 { 341 struct request_queue *q = rq->q; 342 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 343 struct blk_mq_ctx *ctx = rq->mq_ctx; 344 unsigned long flags; 345 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 346 347 if (q->elevator) { 348 WARN_ON(rq->tag < 0); 349 blk_mq_put_driver_tag(rq); 350 } 351 352 /* 353 * After populating an empty queue, kick it to avoid stall. Read 354 * the comment in flush_end_io(). 355 */ 356 spin_lock_irqsave(&fq->mq_flush_lock, flags); 357 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 358 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 359 360 blk_mq_sched_restart(hctx); 361 } 362 363 /** 364 * blk_insert_flush - insert a new PREFLUSH/FUA request 365 * @rq: request to insert 366 * 367 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 368 * or __blk_mq_run_hw_queue() to dispatch request. 369 * @rq is being submitted. Analyze what needs to be done and put it on the 370 * right queue. 371 */ 372 void blk_insert_flush(struct request *rq) 373 { 374 struct request_queue *q = rq->q; 375 unsigned long fflags = q->queue_flags; /* may change, cache */ 376 unsigned int policy = blk_flush_policy(fflags, rq); 377 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 378 379 /* 380 * @policy now records what operations need to be done. Adjust 381 * REQ_PREFLUSH and FUA for the driver. 382 */ 383 rq->cmd_flags &= ~REQ_PREFLUSH; 384 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 385 rq->cmd_flags &= ~REQ_FUA; 386 387 /* 388 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 389 * of those flags, we have to set REQ_SYNC to avoid skewing 390 * the request accounting. 391 */ 392 rq->cmd_flags |= REQ_SYNC; 393 394 /* 395 * An empty flush handed down from a stacking driver may 396 * translate into nothing if the underlying device does not 397 * advertise a write-back cache. In this case, simply 398 * complete the request. 399 */ 400 if (!policy) { 401 blk_mq_end_request(rq, 0); 402 return; 403 } 404 405 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 406 407 /* 408 * If there's data but flush is not necessary, the request can be 409 * processed directly without going through flush machinery. Queue 410 * for normal execution. 411 */ 412 if ((policy & REQ_FSEQ_DATA) && 413 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 414 blk_mq_request_bypass_insert(rq, false); 415 return; 416 } 417 418 /* 419 * @rq should go through flush machinery. Mark it part of flush 420 * sequence and submit for further processing. 421 */ 422 memset(&rq->flush, 0, sizeof(rq->flush)); 423 INIT_LIST_HEAD(&rq->flush.list); 424 rq->rq_flags |= RQF_FLUSH_SEQ; 425 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 426 427 rq->end_io = mq_flush_data_end_io; 428 429 spin_lock_irq(&fq->mq_flush_lock); 430 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 431 spin_unlock_irq(&fq->mq_flush_lock); 432 } 433 434 /** 435 * blkdev_issue_flush - queue a flush 436 * @bdev: blockdev to issue flush for 437 * @gfp_mask: memory allocation flags (for bio_alloc) 438 * @error_sector: error sector 439 * 440 * Description: 441 * Issue a flush for the block device in question. Caller can supply 442 * room for storing the error offset in case of a flush error, if they 443 * wish to. 444 */ 445 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 446 sector_t *error_sector) 447 { 448 struct request_queue *q; 449 struct bio *bio; 450 int ret = 0; 451 452 if (bdev->bd_disk == NULL) 453 return -ENXIO; 454 455 q = bdev_get_queue(bdev); 456 if (!q) 457 return -ENXIO; 458 459 /* 460 * some block devices may not have their queue correctly set up here 461 * (e.g. loop device without a backing file) and so issuing a flush 462 * here will panic. Ensure there is a request function before issuing 463 * the flush. 464 */ 465 if (!q->make_request_fn) 466 return -ENXIO; 467 468 bio = bio_alloc(gfp_mask, 0); 469 bio_set_dev(bio, bdev); 470 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 471 472 ret = submit_bio_wait(bio); 473 474 /* 475 * The driver must store the error location in ->bi_sector, if 476 * it supports it. For non-stacked drivers, this should be 477 * copied from blk_rq_pos(rq). 478 */ 479 if (error_sector) 480 *error_sector = bio->bi_iter.bi_sector; 481 482 bio_put(bio); 483 return ret; 484 } 485 EXPORT_SYMBOL(blkdev_issue_flush); 486 487 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q, 488 int node, int cmd_size, gfp_t flags) 489 { 490 struct blk_flush_queue *fq; 491 int rq_sz = sizeof(struct request); 492 493 fq = kzalloc_node(sizeof(*fq), flags, node); 494 if (!fq) 495 goto fail; 496 497 spin_lock_init(&fq->mq_flush_lock); 498 499 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 500 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 501 if (!fq->flush_rq) 502 goto fail_rq; 503 504 INIT_LIST_HEAD(&fq->flush_queue[0]); 505 INIT_LIST_HEAD(&fq->flush_queue[1]); 506 INIT_LIST_HEAD(&fq->flush_data_in_flight); 507 508 return fq; 509 510 fail_rq: 511 kfree(fq); 512 fail: 513 return NULL; 514 } 515 516 void blk_free_flush_queue(struct blk_flush_queue *fq) 517 { 518 /* bio based request queue hasn't flush queue */ 519 if (!fq) 520 return; 521 522 kfree(fq->flush_rq); 523 kfree(fq); 524 } 525