xref: /linux/block/blk-flush.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * Functions to sequence FLUSH and FUA writes.
3  *
4  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
5  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * REQ_{FLUSH|FUA} requests are decomposed to sequences consisted of three
10  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
11  * properties and hardware capability.
12  *
13  * If a request doesn't have data, only REQ_FLUSH makes sense, which
14  * indicates a simple flush request.  If there is data, REQ_FLUSH indicates
15  * that the device cache should be flushed before the data is executed, and
16  * REQ_FUA means that the data must be on non-volatile media on request
17  * completion.
18  *
19  * If the device doesn't have writeback cache, FLUSH and FUA don't make any
20  * difference.  The requests are either completed immediately if there's no
21  * data or executed as normal requests otherwise.
22  *
23  * If the device has writeback cache and supports FUA, REQ_FLUSH is
24  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
25  *
26  * If the device has writeback cache and doesn't support FUA, REQ_FLUSH is
27  * translated to PREFLUSH and REQ_FUA to POSTFLUSH.
28  *
29  * The actual execution of flush is double buffered.  Whenever a request
30  * needs to execute PRE or POSTFLUSH, it queues at
31  * q->flush_queue[q->flush_pending_idx].  Once certain criteria are met, a
32  * flush is issued and the pending_idx is toggled.  When the flush
33  * completes, all the requests which were pending are proceeded to the next
34  * step.  This allows arbitrary merging of different types of FLUSH/FUA
35  * requests.
36  *
37  * Currently, the following conditions are used to determine when to issue
38  * flush.
39  *
40  * C1. At any given time, only one flush shall be in progress.  This makes
41  *     double buffering sufficient.
42  *
43  * C2. Flush is deferred if any request is executing DATA of its sequence.
44  *     This avoids issuing separate POSTFLUSHes for requests which shared
45  *     PREFLUSH.
46  *
47  * C3. The second condition is ignored if there is a request which has
48  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
49  *     starvation in the unlikely case where there are continuous stream of
50  *     FUA (without FLUSH) requests.
51  *
52  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
53  * is beneficial.
54  *
55  * Note that a sequenced FLUSH/FUA request with DATA is completed twice.
56  * Once while executing DATA and again after the whole sequence is
57  * complete.  The first completion updates the contained bio but doesn't
58  * finish it so that the bio submitter is notified only after the whole
59  * sequence is complete.  This is implemented by testing REQ_FLUSH_SEQ in
60  * req_bio_endio().
61  *
62  * The above peculiarity requires that each FLUSH/FUA request has only one
63  * bio attached to it, which is guaranteed as they aren't allowed to be
64  * merged in the usual way.
65  */
66 
67 #include <linux/kernel.h>
68 #include <linux/module.h>
69 #include <linux/bio.h>
70 #include <linux/blkdev.h>
71 #include <linux/gfp.h>
72 #include <linux/blk-mq.h>
73 
74 #include "blk.h"
75 #include "blk-mq.h"
76 
77 /* FLUSH/FUA sequences */
78 enum {
79 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
80 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
81 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
82 	REQ_FSEQ_DONE		= (1 << 3),
83 
84 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85 				  REQ_FSEQ_POSTFLUSH,
86 
87 	/*
88 	 * If flush has been pending longer than the following timeout,
89 	 * it's issued even if flush_data requests are still in flight.
90 	 */
91 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
92 };
93 
94 static bool blk_kick_flush(struct request_queue *q);
95 
96 static unsigned int blk_flush_policy(unsigned int fflags, struct request *rq)
97 {
98 	unsigned int policy = 0;
99 
100 	if (blk_rq_sectors(rq))
101 		policy |= REQ_FSEQ_DATA;
102 
103 	if (fflags & REQ_FLUSH) {
104 		if (rq->cmd_flags & REQ_FLUSH)
105 			policy |= REQ_FSEQ_PREFLUSH;
106 		if (!(fflags & REQ_FUA) && (rq->cmd_flags & REQ_FUA))
107 			policy |= REQ_FSEQ_POSTFLUSH;
108 	}
109 	return policy;
110 }
111 
112 static unsigned int blk_flush_cur_seq(struct request *rq)
113 {
114 	return 1 << ffz(rq->flush.seq);
115 }
116 
117 static void blk_flush_restore_request(struct request *rq)
118 {
119 	/*
120 	 * After flush data completion, @rq->bio is %NULL but we need to
121 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
122 	 * original @rq->bio.  Restore it.
123 	 */
124 	rq->bio = rq->biotail;
125 
126 	/* make @rq a normal request */
127 	rq->cmd_flags &= ~REQ_FLUSH_SEQ;
128 	rq->end_io = rq->flush.saved_end_io;
129 
130 	blk_clear_rq_complete(rq);
131 }
132 
133 static bool blk_flush_queue_rq(struct request *rq, bool add_front)
134 {
135 	if (rq->q->mq_ops) {
136 		struct request_queue *q = rq->q;
137 
138 		blk_mq_add_to_requeue_list(rq, add_front);
139 		blk_mq_kick_requeue_list(q);
140 		return false;
141 	} else {
142 		if (add_front)
143 			list_add(&rq->queuelist, &rq->q->queue_head);
144 		else
145 			list_add_tail(&rq->queuelist, &rq->q->queue_head);
146 		return true;
147 	}
148 }
149 
150 /**
151  * blk_flush_complete_seq - complete flush sequence
152  * @rq: FLUSH/FUA request being sequenced
153  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
154  * @error: whether an error occurred
155  *
156  * @rq just completed @seq part of its flush sequence, record the
157  * completion and trigger the next step.
158  *
159  * CONTEXT:
160  * spin_lock_irq(q->queue_lock or q->mq_flush_lock)
161  *
162  * RETURNS:
163  * %true if requests were added to the dispatch queue, %false otherwise.
164  */
165 static bool blk_flush_complete_seq(struct request *rq, unsigned int seq,
166 				   int error)
167 {
168 	struct request_queue *q = rq->q;
169 	struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
170 	bool queued = false, kicked;
171 
172 	BUG_ON(rq->flush.seq & seq);
173 	rq->flush.seq |= seq;
174 
175 	if (likely(!error))
176 		seq = blk_flush_cur_seq(rq);
177 	else
178 		seq = REQ_FSEQ_DONE;
179 
180 	switch (seq) {
181 	case REQ_FSEQ_PREFLUSH:
182 	case REQ_FSEQ_POSTFLUSH:
183 		/* queue for flush */
184 		if (list_empty(pending))
185 			q->flush_pending_since = jiffies;
186 		list_move_tail(&rq->flush.list, pending);
187 		break;
188 
189 	case REQ_FSEQ_DATA:
190 		list_move_tail(&rq->flush.list, &q->flush_data_in_flight);
191 		queued = blk_flush_queue_rq(rq, true);
192 		break;
193 
194 	case REQ_FSEQ_DONE:
195 		/*
196 		 * @rq was previously adjusted by blk_flush_issue() for
197 		 * flush sequencing and may already have gone through the
198 		 * flush data request completion path.  Restore @rq for
199 		 * normal completion and end it.
200 		 */
201 		BUG_ON(!list_empty(&rq->queuelist));
202 		list_del_init(&rq->flush.list);
203 		blk_flush_restore_request(rq);
204 		if (q->mq_ops)
205 			blk_mq_end_io(rq, error);
206 		else
207 			__blk_end_request_all(rq, error);
208 		break;
209 
210 	default:
211 		BUG();
212 	}
213 
214 	kicked = blk_kick_flush(q);
215 	return kicked | queued;
216 }
217 
218 static void flush_end_io(struct request *flush_rq, int error)
219 {
220 	struct request_queue *q = flush_rq->q;
221 	struct list_head *running;
222 	bool queued = false;
223 	struct request *rq, *n;
224 	unsigned long flags = 0;
225 
226 	if (q->mq_ops) {
227 		spin_lock_irqsave(&q->mq_flush_lock, flags);
228 		q->flush_rq->tag = -1;
229 	}
230 
231 	running = &q->flush_queue[q->flush_running_idx];
232 	BUG_ON(q->flush_pending_idx == q->flush_running_idx);
233 
234 	/* account completion of the flush request */
235 	q->flush_running_idx ^= 1;
236 
237 	if (!q->mq_ops)
238 		elv_completed_request(q, flush_rq);
239 
240 	/* and push the waiting requests to the next stage */
241 	list_for_each_entry_safe(rq, n, running, flush.list) {
242 		unsigned int seq = blk_flush_cur_seq(rq);
243 
244 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
245 		queued |= blk_flush_complete_seq(rq, seq, error);
246 	}
247 
248 	/*
249 	 * Kick the queue to avoid stall for two cases:
250 	 * 1. Moving a request silently to empty queue_head may stall the
251 	 * queue.
252 	 * 2. When flush request is running in non-queueable queue, the
253 	 * queue is hold. Restart the queue after flush request is finished
254 	 * to avoid stall.
255 	 * This function is called from request completion path and calling
256 	 * directly into request_fn may confuse the driver.  Always use
257 	 * kblockd.
258 	 */
259 	if (queued || q->flush_queue_delayed) {
260 		WARN_ON(q->mq_ops);
261 		blk_run_queue_async(q);
262 	}
263 	q->flush_queue_delayed = 0;
264 	if (q->mq_ops)
265 		spin_unlock_irqrestore(&q->mq_flush_lock, flags);
266 }
267 
268 /**
269  * blk_kick_flush - consider issuing flush request
270  * @q: request_queue being kicked
271  *
272  * Flush related states of @q have changed, consider issuing flush request.
273  * Please read the comment at the top of this file for more info.
274  *
275  * CONTEXT:
276  * spin_lock_irq(q->queue_lock or q->mq_flush_lock)
277  *
278  * RETURNS:
279  * %true if flush was issued, %false otherwise.
280  */
281 static bool blk_kick_flush(struct request_queue *q)
282 {
283 	struct list_head *pending = &q->flush_queue[q->flush_pending_idx];
284 	struct request *first_rq =
285 		list_first_entry(pending, struct request, flush.list);
286 
287 	/* C1 described at the top of this file */
288 	if (q->flush_pending_idx != q->flush_running_idx || list_empty(pending))
289 		return false;
290 
291 	/* C2 and C3 */
292 	if (!list_empty(&q->flush_data_in_flight) &&
293 	    time_before(jiffies,
294 			q->flush_pending_since + FLUSH_PENDING_TIMEOUT))
295 		return false;
296 
297 	/*
298 	 * Issue flush and toggle pending_idx.  This makes pending_idx
299 	 * different from running_idx, which means flush is in flight.
300 	 */
301 	q->flush_pending_idx ^= 1;
302 
303 	blk_rq_init(q, q->flush_rq);
304 	if (q->mq_ops)
305 		blk_mq_clone_flush_request(q->flush_rq, first_rq);
306 
307 	q->flush_rq->cmd_type = REQ_TYPE_FS;
308 	q->flush_rq->cmd_flags = WRITE_FLUSH | REQ_FLUSH_SEQ;
309 	q->flush_rq->rq_disk = first_rq->rq_disk;
310 	q->flush_rq->end_io = flush_end_io;
311 
312 	return blk_flush_queue_rq(q->flush_rq, false);
313 }
314 
315 static void flush_data_end_io(struct request *rq, int error)
316 {
317 	struct request_queue *q = rq->q;
318 
319 	/*
320 	 * After populating an empty queue, kick it to avoid stall.  Read
321 	 * the comment in flush_end_io().
322 	 */
323 	if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
324 		blk_run_queue_async(q);
325 }
326 
327 static void mq_flush_data_end_io(struct request *rq, int error)
328 {
329 	struct request_queue *q = rq->q;
330 	struct blk_mq_hw_ctx *hctx;
331 	struct blk_mq_ctx *ctx;
332 	unsigned long flags;
333 
334 	ctx = rq->mq_ctx;
335 	hctx = q->mq_ops->map_queue(q, ctx->cpu);
336 
337 	/*
338 	 * After populating an empty queue, kick it to avoid stall.  Read
339 	 * the comment in flush_end_io().
340 	 */
341 	spin_lock_irqsave(&q->mq_flush_lock, flags);
342 	if (blk_flush_complete_seq(rq, REQ_FSEQ_DATA, error))
343 		blk_mq_run_hw_queue(hctx, true);
344 	spin_unlock_irqrestore(&q->mq_flush_lock, flags);
345 }
346 
347 /**
348  * blk_insert_flush - insert a new FLUSH/FUA request
349  * @rq: request to insert
350  *
351  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
352  * or __blk_mq_run_hw_queue() to dispatch request.
353  * @rq is being submitted.  Analyze what needs to be done and put it on the
354  * right queue.
355  *
356  * CONTEXT:
357  * spin_lock_irq(q->queue_lock) in !mq case
358  */
359 void blk_insert_flush(struct request *rq)
360 {
361 	struct request_queue *q = rq->q;
362 	unsigned int fflags = q->flush_flags;	/* may change, cache */
363 	unsigned int policy = blk_flush_policy(fflags, rq);
364 
365 	/*
366 	 * @policy now records what operations need to be done.  Adjust
367 	 * REQ_FLUSH and FUA for the driver.
368 	 */
369 	rq->cmd_flags &= ~REQ_FLUSH;
370 	if (!(fflags & REQ_FUA))
371 		rq->cmd_flags &= ~REQ_FUA;
372 
373 	/*
374 	 * An empty flush handed down from a stacking driver may
375 	 * translate into nothing if the underlying device does not
376 	 * advertise a write-back cache.  In this case, simply
377 	 * complete the request.
378 	 */
379 	if (!policy) {
380 		if (q->mq_ops)
381 			blk_mq_end_io(rq, 0);
382 		else
383 			__blk_end_bidi_request(rq, 0, 0, 0);
384 		return;
385 	}
386 
387 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
388 
389 	/*
390 	 * If there's data but flush is not necessary, the request can be
391 	 * processed directly without going through flush machinery.  Queue
392 	 * for normal execution.
393 	 */
394 	if ((policy & REQ_FSEQ_DATA) &&
395 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
396 		if (q->mq_ops) {
397 			blk_mq_insert_request(rq, false, false, true);
398 		} else
399 			list_add_tail(&rq->queuelist, &q->queue_head);
400 		return;
401 	}
402 
403 	/*
404 	 * @rq should go through flush machinery.  Mark it part of flush
405 	 * sequence and submit for further processing.
406 	 */
407 	memset(&rq->flush, 0, sizeof(rq->flush));
408 	INIT_LIST_HEAD(&rq->flush.list);
409 	rq->cmd_flags |= REQ_FLUSH_SEQ;
410 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
411 	if (q->mq_ops) {
412 		rq->end_io = mq_flush_data_end_io;
413 
414 		spin_lock_irq(&q->mq_flush_lock);
415 		blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
416 		spin_unlock_irq(&q->mq_flush_lock);
417 		return;
418 	}
419 	rq->end_io = flush_data_end_io;
420 
421 	blk_flush_complete_seq(rq, REQ_FSEQ_ACTIONS & ~policy, 0);
422 }
423 
424 /**
425  * blkdev_issue_flush - queue a flush
426  * @bdev:	blockdev to issue flush for
427  * @gfp_mask:	memory allocation flags (for bio_alloc)
428  * @error_sector:	error sector
429  *
430  * Description:
431  *    Issue a flush for the block device in question. Caller can supply
432  *    room for storing the error offset in case of a flush error, if they
433  *    wish to. If WAIT flag is not passed then caller may check only what
434  *    request was pushed in some internal queue for later handling.
435  */
436 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
437 		sector_t *error_sector)
438 {
439 	struct request_queue *q;
440 	struct bio *bio;
441 	int ret = 0;
442 
443 	if (bdev->bd_disk == NULL)
444 		return -ENXIO;
445 
446 	q = bdev_get_queue(bdev);
447 	if (!q)
448 		return -ENXIO;
449 
450 	/*
451 	 * some block devices may not have their queue correctly set up here
452 	 * (e.g. loop device without a backing file) and so issuing a flush
453 	 * here will panic. Ensure there is a request function before issuing
454 	 * the flush.
455 	 */
456 	if (!q->make_request_fn)
457 		return -ENXIO;
458 
459 	bio = bio_alloc(gfp_mask, 0);
460 	bio->bi_bdev = bdev;
461 
462 	ret = submit_bio_wait(WRITE_FLUSH, bio);
463 
464 	/*
465 	 * The driver must store the error location in ->bi_sector, if
466 	 * it supports it. For non-stacked drivers, this should be
467 	 * copied from blk_rq_pos(rq).
468 	 */
469 	if (error_sector)
470 		*error_sector = bio->bi_iter.bi_sector;
471 
472 	bio_put(bio);
473 	return ret;
474 }
475 EXPORT_SYMBOL(blkdev_issue_flush);
476 
477 void blk_mq_init_flush(struct request_queue *q)
478 {
479 	spin_lock_init(&q->mq_flush_lock);
480 }
481