1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Functions to sequence PREFLUSH and FUA writes. 4 * 5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 7 * 8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 10 * properties and hardware capability. 11 * 12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 14 * that the device cache should be flushed before the data is executed, and 15 * REQ_FUA means that the data must be on non-volatile media on request 16 * completion. 17 * 18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 19 * difference. The requests are either completed immediately if there's no data 20 * or executed as normal requests otherwise. 21 * 22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 24 * 25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 27 * 28 * The actual execution of flush is double buffered. Whenever a request 29 * needs to execute PRE or POSTFLUSH, it queues at 30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 32 * completes, all the requests which were pending are proceeded to the next 33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 34 * requests. 35 * 36 * Currently, the following conditions are used to determine when to issue 37 * flush. 38 * 39 * C1. At any given time, only one flush shall be in progress. This makes 40 * double buffering sufficient. 41 * 42 * C2. Flush is deferred if any request is executing DATA of its sequence. 43 * This avoids issuing separate POSTFLUSHes for requests which shared 44 * PREFLUSH. 45 * 46 * C3. The second condition is ignored if there is a request which has 47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 48 * starvation in the unlikely case where there are continuous stream of 49 * FUA (without PREFLUSH) requests. 50 * 51 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 52 * is beneficial. 53 * 54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 55 * Once while executing DATA and again after the whole sequence is 56 * complete. The first completion updates the contained bio but doesn't 57 * finish it so that the bio submitter is notified only after the whole 58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 59 * req_bio_endio(). 60 * 61 * The above peculiarity requires that each PREFLUSH/FUA request has only one 62 * bio attached to it, which is guaranteed as they aren't allowed to be 63 * merged in the usual way. 64 */ 65 66 #include <linux/kernel.h> 67 #include <linux/module.h> 68 #include <linux/bio.h> 69 #include <linux/blkdev.h> 70 #include <linux/gfp.h> 71 #include <linux/part_stat.h> 72 73 #include "blk.h" 74 #include "blk-mq.h" 75 #include "blk-mq-sched.h" 76 77 /* PREFLUSH/FUA sequences */ 78 enum { 79 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 80 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 81 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 82 REQ_FSEQ_DONE = (1 << 3), 83 84 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 85 REQ_FSEQ_POSTFLUSH, 86 87 /* 88 * If flush has been pending longer than the following timeout, 89 * it's issued even if flush_data requests are still in flight. 90 */ 91 FLUSH_PENDING_TIMEOUT = 5 * HZ, 92 }; 93 94 static void blk_kick_flush(struct request_queue *q, 95 struct blk_flush_queue *fq, blk_opf_t flags); 96 97 static inline struct blk_flush_queue * 98 blk_get_flush_queue(struct blk_mq_ctx *ctx) 99 { 100 return blk_mq_map_queue(REQ_OP_FLUSH, ctx)->fq; 101 } 102 103 static unsigned int blk_flush_cur_seq(struct request *rq) 104 { 105 return 1 << ffz(rq->flush.seq); 106 } 107 108 static void blk_flush_restore_request(struct request *rq) 109 { 110 /* 111 * After flush data completion, @rq->bio is %NULL but we need to 112 * complete the bio again. @rq->biotail is guaranteed to equal the 113 * original @rq->bio. Restore it. 114 */ 115 rq->bio = rq->biotail; 116 if (rq->bio) 117 rq->__sector = rq->bio->bi_iter.bi_sector; 118 119 /* make @rq a normal request */ 120 rq->rq_flags &= ~RQF_FLUSH_SEQ; 121 rq->end_io = rq->flush.saved_end_io; 122 } 123 124 static void blk_account_io_flush(struct request *rq) 125 { 126 struct block_device *part = rq->q->disk->part0; 127 128 part_stat_lock(); 129 part_stat_inc(part, ios[STAT_FLUSH]); 130 part_stat_add(part, nsecs[STAT_FLUSH], 131 blk_time_get_ns() - rq->start_time_ns); 132 part_stat_unlock(); 133 } 134 135 /** 136 * blk_flush_complete_seq - complete flush sequence 137 * @rq: PREFLUSH/FUA request being sequenced 138 * @fq: flush queue 139 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 140 * @error: whether an error occurred 141 * 142 * @rq just completed @seq part of its flush sequence, record the 143 * completion and trigger the next step. 144 * 145 * CONTEXT: 146 * spin_lock_irq(fq->mq_flush_lock) 147 */ 148 static void blk_flush_complete_seq(struct request *rq, 149 struct blk_flush_queue *fq, 150 unsigned int seq, blk_status_t error) 151 { 152 struct request_queue *q = rq->q; 153 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 154 blk_opf_t cmd_flags; 155 156 BUG_ON(rq->flush.seq & seq); 157 rq->flush.seq |= seq; 158 cmd_flags = rq->cmd_flags; 159 160 if (likely(!error)) 161 seq = blk_flush_cur_seq(rq); 162 else 163 seq = REQ_FSEQ_DONE; 164 165 switch (seq) { 166 case REQ_FSEQ_PREFLUSH: 167 case REQ_FSEQ_POSTFLUSH: 168 /* queue for flush */ 169 if (list_empty(pending)) 170 fq->flush_pending_since = jiffies; 171 list_add_tail(&rq->queuelist, pending); 172 break; 173 174 case REQ_FSEQ_DATA: 175 fq->flush_data_in_flight++; 176 spin_lock(&q->requeue_lock); 177 list_move(&rq->queuelist, &q->requeue_list); 178 spin_unlock(&q->requeue_lock); 179 blk_mq_kick_requeue_list(q); 180 break; 181 182 case REQ_FSEQ_DONE: 183 /* 184 * @rq was previously adjusted by blk_insert_flush() for 185 * flush sequencing and may already have gone through the 186 * flush data request completion path. Restore @rq for 187 * normal completion and end it. 188 */ 189 list_del_init(&rq->queuelist); 190 blk_flush_restore_request(rq); 191 blk_mq_end_request(rq, error); 192 break; 193 194 default: 195 BUG(); 196 } 197 198 blk_kick_flush(q, fq, cmd_flags); 199 } 200 201 static enum rq_end_io_ret flush_end_io(struct request *flush_rq, 202 blk_status_t error, 203 const struct io_comp_batch *iob) 204 { 205 struct request_queue *q = flush_rq->q; 206 struct list_head *running; 207 struct request *rq, *n; 208 unsigned long flags = 0; 209 struct blk_flush_queue *fq = blk_get_flush_queue(flush_rq->mq_ctx); 210 211 /* release the tag's ownership to the req cloned from */ 212 spin_lock_irqsave(&fq->mq_flush_lock, flags); 213 214 if (!req_ref_put_and_test(flush_rq)) { 215 fq->rq_status = error; 216 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 217 return RQ_END_IO_NONE; 218 } 219 220 blk_account_io_flush(flush_rq); 221 /* 222 * Flush request has to be marked as IDLE when it is really ended 223 * because its .end_io() is called from timeout code path too for 224 * avoiding use-after-free. 225 */ 226 WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE); 227 if (fq->rq_status != BLK_STS_OK) { 228 error = fq->rq_status; 229 fq->rq_status = BLK_STS_OK; 230 } 231 232 if (!q->elevator) { 233 flush_rq->tag = BLK_MQ_NO_TAG; 234 } else { 235 blk_mq_put_driver_tag(flush_rq); 236 flush_rq->internal_tag = BLK_MQ_NO_TAG; 237 } 238 239 running = &fq->flush_queue[fq->flush_running_idx]; 240 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 241 242 /* account completion of the flush request */ 243 fq->flush_running_idx ^= 1; 244 245 /* and push the waiting requests to the next stage */ 246 list_for_each_entry_safe(rq, n, running, queuelist) { 247 unsigned int seq = blk_flush_cur_seq(rq); 248 249 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 250 list_del_init(&rq->queuelist); 251 blk_flush_complete_seq(rq, fq, seq, error); 252 } 253 254 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 255 return RQ_END_IO_NONE; 256 } 257 258 bool is_flush_rq(struct request *rq) 259 { 260 return rq->end_io == flush_end_io; 261 } 262 263 /** 264 * blk_kick_flush - consider issuing flush request 265 * @q: request_queue being kicked 266 * @fq: flush queue 267 * @flags: cmd_flags of the original request 268 * 269 * Flush related states of @q have changed, consider issuing flush request. 270 * Please read the comment at the top of this file for more info. 271 * 272 * CONTEXT: 273 * spin_lock_irq(fq->mq_flush_lock) 274 * 275 */ 276 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 277 blk_opf_t flags) 278 { 279 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 280 struct request *first_rq = 281 list_first_entry(pending, struct request, queuelist); 282 struct request *flush_rq = fq->flush_rq; 283 284 /* C1 described at the top of this file */ 285 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 286 return; 287 288 /* C2 and C3 */ 289 if (fq->flush_data_in_flight && 290 time_before(jiffies, 291 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 292 return; 293 294 /* 295 * Issue flush and toggle pending_idx. This makes pending_idx 296 * different from running_idx, which means flush is in flight. 297 */ 298 fq->flush_pending_idx ^= 1; 299 300 blk_rq_init(q, flush_rq); 301 302 /* 303 * In case of none scheduler, borrow tag from the first request 304 * since they can't be in flight at the same time. And acquire 305 * the tag's ownership for flush req. 306 * 307 * In case of IO scheduler, flush rq need to borrow scheduler tag 308 * just for cheating put/get driver tag. 309 */ 310 flush_rq->mq_ctx = first_rq->mq_ctx; 311 flush_rq->mq_hctx = first_rq->mq_hctx; 312 313 if (!q->elevator) 314 flush_rq->tag = first_rq->tag; 315 else 316 flush_rq->internal_tag = first_rq->internal_tag; 317 318 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 319 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 320 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 321 flush_rq->end_io = flush_end_io; 322 /* 323 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one 324 * implied in refcount_inc_not_zero() called from 325 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref 326 * and READ flush_rq->end_io 327 */ 328 smp_wmb(); 329 req_ref_set(flush_rq, 1); 330 331 spin_lock(&q->requeue_lock); 332 list_add_tail(&flush_rq->queuelist, &q->flush_list); 333 spin_unlock(&q->requeue_lock); 334 335 blk_mq_kick_requeue_list(q); 336 } 337 338 static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq, 339 blk_status_t error, 340 const struct io_comp_batch *iob) 341 { 342 struct request_queue *q = rq->q; 343 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 344 struct blk_mq_ctx *ctx = rq->mq_ctx; 345 unsigned long flags; 346 struct blk_flush_queue *fq = blk_get_flush_queue(ctx); 347 348 if (q->elevator) { 349 WARN_ON(rq->tag < 0); 350 blk_mq_put_driver_tag(rq); 351 } 352 353 /* 354 * After populating an empty queue, kick it to avoid stall. Read 355 * the comment in flush_end_io(). 356 */ 357 spin_lock_irqsave(&fq->mq_flush_lock, flags); 358 fq->flush_data_in_flight--; 359 /* 360 * May have been corrupted by rq->rq_next reuse, we need to 361 * re-initialize rq->queuelist before reusing it here. 362 */ 363 INIT_LIST_HEAD(&rq->queuelist); 364 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 365 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 366 367 blk_mq_sched_restart(hctx); 368 return RQ_END_IO_NONE; 369 } 370 371 static void blk_rq_init_flush(struct request *rq) 372 { 373 rq->flush.seq = 0; 374 rq->rq_flags |= RQF_FLUSH_SEQ; 375 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 376 rq->end_io = mq_flush_data_end_io; 377 } 378 379 /* 380 * Insert a PREFLUSH/FUA request into the flush state machine. 381 * Returns true if the request has been consumed by the flush state machine, 382 * or false if the caller should continue to process it. 383 */ 384 bool blk_insert_flush(struct request *rq) 385 { 386 struct request_queue *q = rq->q; 387 struct blk_flush_queue *fq = blk_get_flush_queue(rq->mq_ctx); 388 bool supports_fua = q->limits.features & BLK_FEAT_FUA; 389 unsigned int policy = 0; 390 391 /* FLUSH/FUA request must never be merged */ 392 WARN_ON_ONCE(rq->bio != rq->biotail); 393 394 if (blk_rq_sectors(rq)) 395 policy |= REQ_FSEQ_DATA; 396 397 /* 398 * Check which flushes we need to sequence for this operation. 399 */ 400 if (blk_queue_write_cache(q)) { 401 if (rq->cmd_flags & REQ_PREFLUSH) 402 policy |= REQ_FSEQ_PREFLUSH; 403 if ((rq->cmd_flags & REQ_FUA) && !supports_fua) 404 policy |= REQ_FSEQ_POSTFLUSH; 405 } 406 407 /* 408 * @policy now records what operations need to be done. Adjust 409 * REQ_PREFLUSH and FUA for the driver. 410 */ 411 rq->cmd_flags &= ~REQ_PREFLUSH; 412 if (!supports_fua) 413 rq->cmd_flags &= ~REQ_FUA; 414 415 /* 416 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 417 * of those flags, we have to set REQ_SYNC to avoid skewing 418 * the request accounting. 419 */ 420 rq->cmd_flags |= REQ_SYNC; 421 422 switch (policy) { 423 case 0: 424 /* 425 * An empty flush handed down from a stacking driver may 426 * translate into nothing if the underlying device does not 427 * advertise a write-back cache. In this case, simply 428 * complete the request. 429 */ 430 blk_mq_end_request(rq, 0); 431 return true; 432 case REQ_FSEQ_DATA: 433 /* 434 * If there's data, but no flush is necessary, the request can 435 * be processed directly without going through flush machinery. 436 * Queue for normal execution. 437 */ 438 return false; 439 case REQ_FSEQ_DATA | REQ_FSEQ_POSTFLUSH: 440 /* 441 * Initialize the flush fields and completion handler to trigger 442 * the post flush, and then just pass the command on. 443 */ 444 blk_rq_init_flush(rq); 445 rq->flush.seq |= REQ_FSEQ_PREFLUSH; 446 spin_lock_irq(&fq->mq_flush_lock); 447 fq->flush_data_in_flight++; 448 spin_unlock_irq(&fq->mq_flush_lock); 449 return false; 450 default: 451 /* 452 * Mark the request as part of a flush sequence and submit it 453 * for further processing to the flush state machine. 454 */ 455 blk_rq_init_flush(rq); 456 spin_lock_irq(&fq->mq_flush_lock); 457 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 458 spin_unlock_irq(&fq->mq_flush_lock); 459 return true; 460 } 461 } 462 463 /** 464 * blkdev_issue_flush - queue a flush 465 * @bdev: blockdev to issue flush for 466 * 467 * Description: 468 * Issue a flush for the block device in question. 469 */ 470 int blkdev_issue_flush(struct block_device *bdev) 471 { 472 struct bio bio; 473 474 bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH); 475 return submit_bio_wait(&bio); 476 } 477 EXPORT_SYMBOL(blkdev_issue_flush); 478 479 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size, 480 gfp_t flags) 481 { 482 struct blk_flush_queue *fq; 483 int rq_sz = sizeof(struct request); 484 485 fq = kzalloc_node(sizeof(*fq), flags, node); 486 if (!fq) 487 goto fail; 488 489 spin_lock_init(&fq->mq_flush_lock); 490 491 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 492 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 493 if (!fq->flush_rq) 494 goto fail_rq; 495 496 INIT_LIST_HEAD(&fq->flush_queue[0]); 497 INIT_LIST_HEAD(&fq->flush_queue[1]); 498 499 return fq; 500 501 fail_rq: 502 kfree(fq); 503 fail: 504 return NULL; 505 } 506 507 void blk_free_flush_queue(struct blk_flush_queue *fq) 508 { 509 /* bio based request queue hasn't flush queue */ 510 if (!fq) 511 return; 512 513 kfree(fq->flush_rq); 514 kfree(fq); 515 } 516 517 /* 518 * Allow driver to set its own lock class to fq->mq_flush_lock for 519 * avoiding lockdep complaint. 520 * 521 * flush_end_io() may be called recursively from some driver, such as 522 * nvme-loop, so lockdep may complain 'possible recursive locking' because 523 * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class 524 * key. We need to assign different lock class for these driver's 525 * fq->mq_flush_lock for avoiding the lockdep warning. 526 * 527 * Use dynamically allocated lock class key for each 'blk_flush_queue' 528 * instance is over-kill, and more worse it introduces horrible boot delay 529 * issue because synchronize_rcu() is implied in lockdep_unregister_key which 530 * is called for each hctx release. SCSI probing may synchronously create and 531 * destroy lots of MQ request_queues for non-existent devices, and some robot 532 * test kernel always enable lockdep option. It is observed that more than half 533 * an hour is taken during SCSI MQ probe with per-fq lock class. 534 */ 535 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, 536 struct lock_class_key *key) 537 { 538 lockdep_set_class(&hctx->fq->mq_flush_lock, key); 539 } 540 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class); 541