1 /* 2 * Functions to sequence PREFLUSH and FUA writes. 3 * 4 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics 5 * Copyright (C) 2011 Tejun Heo <tj@kernel.org> 6 * 7 * This file is released under the GPLv2. 8 * 9 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three 10 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request 11 * properties and hardware capability. 12 * 13 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which 14 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates 15 * that the device cache should be flushed before the data is executed, and 16 * REQ_FUA means that the data must be on non-volatile media on request 17 * completion. 18 * 19 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any 20 * difference. The requests are either completed immediately if there's no data 21 * or executed as normal requests otherwise. 22 * 23 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is 24 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA. 25 * 26 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH 27 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH. 28 * 29 * The actual execution of flush is double buffered. Whenever a request 30 * needs to execute PRE or POSTFLUSH, it queues at 31 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a 32 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush 33 * completes, all the requests which were pending are proceeded to the next 34 * step. This allows arbitrary merging of different types of PREFLUSH/FUA 35 * requests. 36 * 37 * Currently, the following conditions are used to determine when to issue 38 * flush. 39 * 40 * C1. At any given time, only one flush shall be in progress. This makes 41 * double buffering sufficient. 42 * 43 * C2. Flush is deferred if any request is executing DATA of its sequence. 44 * This avoids issuing separate POSTFLUSHes for requests which shared 45 * PREFLUSH. 46 * 47 * C3. The second condition is ignored if there is a request which has 48 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid 49 * starvation in the unlikely case where there are continuous stream of 50 * FUA (without PREFLUSH) requests. 51 * 52 * For devices which support FUA, it isn't clear whether C2 (and thus C3) 53 * is beneficial. 54 * 55 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice. 56 * Once while executing DATA and again after the whole sequence is 57 * complete. The first completion updates the contained bio but doesn't 58 * finish it so that the bio submitter is notified only after the whole 59 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in 60 * req_bio_endio(). 61 * 62 * The above peculiarity requires that each PREFLUSH/FUA request has only one 63 * bio attached to it, which is guaranteed as they aren't allowed to be 64 * merged in the usual way. 65 */ 66 67 #include <linux/kernel.h> 68 #include <linux/module.h> 69 #include <linux/bio.h> 70 #include <linux/blkdev.h> 71 #include <linux/gfp.h> 72 #include <linux/blk-mq.h> 73 74 #include "blk.h" 75 #include "blk-mq.h" 76 #include "blk-mq-tag.h" 77 #include "blk-mq-sched.h" 78 79 /* PREFLUSH/FUA sequences */ 80 enum { 81 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */ 82 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */ 83 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */ 84 REQ_FSEQ_DONE = (1 << 3), 85 86 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA | 87 REQ_FSEQ_POSTFLUSH, 88 89 /* 90 * If flush has been pending longer than the following timeout, 91 * it's issued even if flush_data requests are still in flight. 92 */ 93 FLUSH_PENDING_TIMEOUT = 5 * HZ, 94 }; 95 96 static void blk_kick_flush(struct request_queue *q, 97 struct blk_flush_queue *fq, unsigned int flags); 98 99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq) 100 { 101 unsigned int policy = 0; 102 103 if (blk_rq_sectors(rq)) 104 policy |= REQ_FSEQ_DATA; 105 106 if (fflags & (1UL << QUEUE_FLAG_WC)) { 107 if (rq->cmd_flags & REQ_PREFLUSH) 108 policy |= REQ_FSEQ_PREFLUSH; 109 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) && 110 (rq->cmd_flags & REQ_FUA)) 111 policy |= REQ_FSEQ_POSTFLUSH; 112 } 113 return policy; 114 } 115 116 static unsigned int blk_flush_cur_seq(struct request *rq) 117 { 118 return 1 << ffz(rq->flush.seq); 119 } 120 121 static void blk_flush_restore_request(struct request *rq) 122 { 123 /* 124 * After flush data completion, @rq->bio is %NULL but we need to 125 * complete the bio again. @rq->biotail is guaranteed to equal the 126 * original @rq->bio. Restore it. 127 */ 128 rq->bio = rq->biotail; 129 130 /* make @rq a normal request */ 131 rq->rq_flags &= ~RQF_FLUSH_SEQ; 132 rq->end_io = rq->flush.saved_end_io; 133 } 134 135 static void blk_flush_queue_rq(struct request *rq, bool add_front) 136 { 137 blk_mq_add_to_requeue_list(rq, add_front, true); 138 } 139 140 /** 141 * blk_flush_complete_seq - complete flush sequence 142 * @rq: PREFLUSH/FUA request being sequenced 143 * @fq: flush queue 144 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero) 145 * @error: whether an error occurred 146 * 147 * @rq just completed @seq part of its flush sequence, record the 148 * completion and trigger the next step. 149 * 150 * CONTEXT: 151 * spin_lock_irq(fq->mq_flush_lock) 152 * 153 * RETURNS: 154 * %true if requests were added to the dispatch queue, %false otherwise. 155 */ 156 static void blk_flush_complete_seq(struct request *rq, 157 struct blk_flush_queue *fq, 158 unsigned int seq, blk_status_t error) 159 { 160 struct request_queue *q = rq->q; 161 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 162 unsigned int cmd_flags; 163 164 BUG_ON(rq->flush.seq & seq); 165 rq->flush.seq |= seq; 166 cmd_flags = rq->cmd_flags; 167 168 if (likely(!error)) 169 seq = blk_flush_cur_seq(rq); 170 else 171 seq = REQ_FSEQ_DONE; 172 173 switch (seq) { 174 case REQ_FSEQ_PREFLUSH: 175 case REQ_FSEQ_POSTFLUSH: 176 /* queue for flush */ 177 if (list_empty(pending)) 178 fq->flush_pending_since = jiffies; 179 list_move_tail(&rq->flush.list, pending); 180 break; 181 182 case REQ_FSEQ_DATA: 183 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight); 184 blk_flush_queue_rq(rq, true); 185 break; 186 187 case REQ_FSEQ_DONE: 188 /* 189 * @rq was previously adjusted by blk_flush_issue() for 190 * flush sequencing and may already have gone through the 191 * flush data request completion path. Restore @rq for 192 * normal completion and end it. 193 */ 194 BUG_ON(!list_empty(&rq->queuelist)); 195 list_del_init(&rq->flush.list); 196 blk_flush_restore_request(rq); 197 blk_mq_end_request(rq, error); 198 break; 199 200 default: 201 BUG(); 202 } 203 204 blk_kick_flush(q, fq, cmd_flags); 205 } 206 207 static void flush_end_io(struct request *flush_rq, blk_status_t error) 208 { 209 struct request_queue *q = flush_rq->q; 210 struct list_head *running; 211 struct request *rq, *n; 212 unsigned long flags = 0; 213 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx); 214 struct blk_mq_hw_ctx *hctx; 215 216 /* release the tag's ownership to the req cloned from */ 217 spin_lock_irqsave(&fq->mq_flush_lock, flags); 218 hctx = flush_rq->mq_hctx; 219 if (!q->elevator) { 220 blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq); 221 flush_rq->tag = -1; 222 } else { 223 blk_mq_put_driver_tag(flush_rq); 224 flush_rq->internal_tag = -1; 225 } 226 227 running = &fq->flush_queue[fq->flush_running_idx]; 228 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx); 229 230 /* account completion of the flush request */ 231 fq->flush_running_idx ^= 1; 232 233 /* and push the waiting requests to the next stage */ 234 list_for_each_entry_safe(rq, n, running, flush.list) { 235 unsigned int seq = blk_flush_cur_seq(rq); 236 237 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH); 238 blk_flush_complete_seq(rq, fq, seq, error); 239 } 240 241 fq->flush_queue_delayed = 0; 242 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 243 } 244 245 /** 246 * blk_kick_flush - consider issuing flush request 247 * @q: request_queue being kicked 248 * @fq: flush queue 249 * @flags: cmd_flags of the original request 250 * 251 * Flush related states of @q have changed, consider issuing flush request. 252 * Please read the comment at the top of this file for more info. 253 * 254 * CONTEXT: 255 * spin_lock_irq(fq->mq_flush_lock) 256 * 257 */ 258 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq, 259 unsigned int flags) 260 { 261 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx]; 262 struct request *first_rq = 263 list_first_entry(pending, struct request, flush.list); 264 struct request *flush_rq = fq->flush_rq; 265 266 /* C1 described at the top of this file */ 267 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending)) 268 return; 269 270 /* C2 and C3 271 * 272 * For blk-mq + scheduling, we can risk having all driver tags 273 * assigned to empty flushes, and we deadlock if we are expecting 274 * other requests to make progress. Don't defer for that case. 275 */ 276 if (!list_empty(&fq->flush_data_in_flight) && q->elevator && 277 time_before(jiffies, 278 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT)) 279 return; 280 281 /* 282 * Issue flush and toggle pending_idx. This makes pending_idx 283 * different from running_idx, which means flush is in flight. 284 */ 285 fq->flush_pending_idx ^= 1; 286 287 blk_rq_init(q, flush_rq); 288 289 /* 290 * In case of none scheduler, borrow tag from the first request 291 * since they can't be in flight at the same time. And acquire 292 * the tag's ownership for flush req. 293 * 294 * In case of IO scheduler, flush rq need to borrow scheduler tag 295 * just for cheating put/get driver tag. 296 */ 297 flush_rq->mq_ctx = first_rq->mq_ctx; 298 flush_rq->mq_hctx = first_rq->mq_hctx; 299 300 if (!q->elevator) { 301 fq->orig_rq = first_rq; 302 flush_rq->tag = first_rq->tag; 303 blk_mq_tag_set_rq(flush_rq->mq_hctx, first_rq->tag, flush_rq); 304 } else { 305 flush_rq->internal_tag = first_rq->internal_tag; 306 } 307 308 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH; 309 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK); 310 flush_rq->rq_flags |= RQF_FLUSH_SEQ; 311 flush_rq->rq_disk = first_rq->rq_disk; 312 flush_rq->end_io = flush_end_io; 313 314 blk_flush_queue_rq(flush_rq, false); 315 } 316 317 static void mq_flush_data_end_io(struct request *rq, blk_status_t error) 318 { 319 struct request_queue *q = rq->q; 320 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 321 struct blk_mq_ctx *ctx = rq->mq_ctx; 322 unsigned long flags; 323 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx); 324 325 if (q->elevator) { 326 WARN_ON(rq->tag < 0); 327 blk_mq_put_driver_tag(rq); 328 } 329 330 /* 331 * After populating an empty queue, kick it to avoid stall. Read 332 * the comment in flush_end_io(). 333 */ 334 spin_lock_irqsave(&fq->mq_flush_lock, flags); 335 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error); 336 spin_unlock_irqrestore(&fq->mq_flush_lock, flags); 337 338 blk_mq_sched_restart(hctx); 339 } 340 341 /** 342 * blk_insert_flush - insert a new PREFLUSH/FUA request 343 * @rq: request to insert 344 * 345 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions. 346 * or __blk_mq_run_hw_queue() to dispatch request. 347 * @rq is being submitted. Analyze what needs to be done and put it on the 348 * right queue. 349 */ 350 void blk_insert_flush(struct request *rq) 351 { 352 struct request_queue *q = rq->q; 353 unsigned long fflags = q->queue_flags; /* may change, cache */ 354 unsigned int policy = blk_flush_policy(fflags, rq); 355 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx); 356 357 /* 358 * @policy now records what operations need to be done. Adjust 359 * REQ_PREFLUSH and FUA for the driver. 360 */ 361 rq->cmd_flags &= ~REQ_PREFLUSH; 362 if (!(fflags & (1UL << QUEUE_FLAG_FUA))) 363 rq->cmd_flags &= ~REQ_FUA; 364 365 /* 366 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any 367 * of those flags, we have to set REQ_SYNC to avoid skewing 368 * the request accounting. 369 */ 370 rq->cmd_flags |= REQ_SYNC; 371 372 /* 373 * An empty flush handed down from a stacking driver may 374 * translate into nothing if the underlying device does not 375 * advertise a write-back cache. In this case, simply 376 * complete the request. 377 */ 378 if (!policy) { 379 blk_mq_end_request(rq, 0); 380 return; 381 } 382 383 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */ 384 385 /* 386 * If there's data but flush is not necessary, the request can be 387 * processed directly without going through flush machinery. Queue 388 * for normal execution. 389 */ 390 if ((policy & REQ_FSEQ_DATA) && 391 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) { 392 blk_mq_request_bypass_insert(rq, false); 393 return; 394 } 395 396 /* 397 * @rq should go through flush machinery. Mark it part of flush 398 * sequence and submit for further processing. 399 */ 400 memset(&rq->flush, 0, sizeof(rq->flush)); 401 INIT_LIST_HEAD(&rq->flush.list); 402 rq->rq_flags |= RQF_FLUSH_SEQ; 403 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */ 404 405 rq->end_io = mq_flush_data_end_io; 406 407 spin_lock_irq(&fq->mq_flush_lock); 408 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0); 409 spin_unlock_irq(&fq->mq_flush_lock); 410 } 411 412 /** 413 * blkdev_issue_flush - queue a flush 414 * @bdev: blockdev to issue flush for 415 * @gfp_mask: memory allocation flags (for bio_alloc) 416 * @error_sector: error sector 417 * 418 * Description: 419 * Issue a flush for the block device in question. Caller can supply 420 * room for storing the error offset in case of a flush error, if they 421 * wish to. 422 */ 423 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask, 424 sector_t *error_sector) 425 { 426 struct request_queue *q; 427 struct bio *bio; 428 int ret = 0; 429 430 if (bdev->bd_disk == NULL) 431 return -ENXIO; 432 433 q = bdev_get_queue(bdev); 434 if (!q) 435 return -ENXIO; 436 437 /* 438 * some block devices may not have their queue correctly set up here 439 * (e.g. loop device without a backing file) and so issuing a flush 440 * here will panic. Ensure there is a request function before issuing 441 * the flush. 442 */ 443 if (!q->make_request_fn) 444 return -ENXIO; 445 446 bio = bio_alloc(gfp_mask, 0); 447 bio_set_dev(bio, bdev); 448 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 449 450 ret = submit_bio_wait(bio); 451 452 /* 453 * The driver must store the error location in ->bi_sector, if 454 * it supports it. For non-stacked drivers, this should be 455 * copied from blk_rq_pos(rq). 456 */ 457 if (error_sector) 458 *error_sector = bio->bi_iter.bi_sector; 459 460 bio_put(bio); 461 return ret; 462 } 463 EXPORT_SYMBOL(blkdev_issue_flush); 464 465 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q, 466 int node, int cmd_size, gfp_t flags) 467 { 468 struct blk_flush_queue *fq; 469 int rq_sz = sizeof(struct request); 470 471 fq = kzalloc_node(sizeof(*fq), flags, node); 472 if (!fq) 473 goto fail; 474 475 spin_lock_init(&fq->mq_flush_lock); 476 477 rq_sz = round_up(rq_sz + cmd_size, cache_line_size()); 478 fq->flush_rq = kzalloc_node(rq_sz, flags, node); 479 if (!fq->flush_rq) 480 goto fail_rq; 481 482 INIT_LIST_HEAD(&fq->flush_queue[0]); 483 INIT_LIST_HEAD(&fq->flush_queue[1]); 484 INIT_LIST_HEAD(&fq->flush_data_in_flight); 485 486 return fq; 487 488 fail_rq: 489 kfree(fq); 490 fail: 491 return NULL; 492 } 493 494 void blk_free_flush_queue(struct blk_flush_queue *fq) 495 { 496 /* bio based request queue hasn't flush queue */ 497 if (!fq) 498 return; 499 500 kfree(fq->flush_rq); 501 kfree(fq); 502 } 503