xref: /linux/block/blk-flush.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions to sequence PREFLUSH and FUA writes.
4  *
5  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
6  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
7  *
8  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10  * properties and hardware capability.
11  *
12  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
14  * that the device cache should be flushed before the data is executed, and
15  * REQ_FUA means that the data must be on non-volatile media on request
16  * completion.
17  *
18  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19  * difference.  The requests are either completed immediately if there's no data
20  * or executed as normal requests otherwise.
21  *
22  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24  *
25  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27  *
28  * The actual execution of flush is double buffered.  Whenever a request
29  * needs to execute PRE or POSTFLUSH, it queues at
30  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
31  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
32  * completes, all the requests which were pending are proceeded to the next
33  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
34  * requests.
35  *
36  * Currently, the following conditions are used to determine when to issue
37  * flush.
38  *
39  * C1. At any given time, only one flush shall be in progress.  This makes
40  *     double buffering sufficient.
41  *
42  * C2. Flush is deferred if any request is executing DATA of its sequence.
43  *     This avoids issuing separate POSTFLUSHes for requests which shared
44  *     PREFLUSH.
45  *
46  * C3. The second condition is ignored if there is a request which has
47  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
48  *     starvation in the unlikely case where there are continuous stream of
49  *     FUA (without PREFLUSH) requests.
50  *
51  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52  * is beneficial.
53  *
54  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55  * Once while executing DATA and again after the whole sequence is
56  * complete.  The first completion updates the contained bio but doesn't
57  * finish it so that the bio submitter is notified only after the whole
58  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
59  * req_bio_endio().
60  *
61  * The above peculiarity requires that each PREFLUSH/FUA request has only one
62  * bio attached to it, which is guaranteed as they aren't allowed to be
63  * merged in the usual way.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/module.h>
68 #include <linux/bio.h>
69 #include <linux/blkdev.h>
70 #include <linux/gfp.h>
71 #include <linux/blk-mq.h>
72 #include <linux/lockdep.h>
73 
74 #include "blk.h"
75 #include "blk-mq.h"
76 #include "blk-mq-tag.h"
77 #include "blk-mq-sched.h"
78 
79 /* PREFLUSH/FUA sequences */
80 enum {
81 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
82 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
83 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
84 	REQ_FSEQ_DONE		= (1 << 3),
85 
86 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
87 				  REQ_FSEQ_POSTFLUSH,
88 
89 	/*
90 	 * If flush has been pending longer than the following timeout,
91 	 * it's issued even if flush_data requests are still in flight.
92 	 */
93 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
94 };
95 
96 static void blk_kick_flush(struct request_queue *q,
97 			   struct blk_flush_queue *fq, unsigned int flags);
98 
99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
100 {
101 	unsigned int policy = 0;
102 
103 	if (blk_rq_sectors(rq))
104 		policy |= REQ_FSEQ_DATA;
105 
106 	if (fflags & (1UL << QUEUE_FLAG_WC)) {
107 		if (rq->cmd_flags & REQ_PREFLUSH)
108 			policy |= REQ_FSEQ_PREFLUSH;
109 		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
110 		    (rq->cmd_flags & REQ_FUA))
111 			policy |= REQ_FSEQ_POSTFLUSH;
112 	}
113 	return policy;
114 }
115 
116 static unsigned int blk_flush_cur_seq(struct request *rq)
117 {
118 	return 1 << ffz(rq->flush.seq);
119 }
120 
121 static void blk_flush_restore_request(struct request *rq)
122 {
123 	/*
124 	 * After flush data completion, @rq->bio is %NULL but we need to
125 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
126 	 * original @rq->bio.  Restore it.
127 	 */
128 	rq->bio = rq->biotail;
129 
130 	/* make @rq a normal request */
131 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
132 	rq->end_io = rq->flush.saved_end_io;
133 }
134 
135 static void blk_flush_queue_rq(struct request *rq, bool add_front)
136 {
137 	blk_mq_add_to_requeue_list(rq, add_front, true);
138 }
139 
140 static void blk_account_io_flush(struct request *rq)
141 {
142 	struct hd_struct *part = &rq->rq_disk->part0;
143 
144 	part_stat_lock();
145 	part_stat_inc(part, ios[STAT_FLUSH]);
146 	part_stat_add(part, nsecs[STAT_FLUSH],
147 		      ktime_get_ns() - rq->start_time_ns);
148 	part_stat_unlock();
149 }
150 
151 /**
152  * blk_flush_complete_seq - complete flush sequence
153  * @rq: PREFLUSH/FUA request being sequenced
154  * @fq: flush queue
155  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
156  * @error: whether an error occurred
157  *
158  * @rq just completed @seq part of its flush sequence, record the
159  * completion and trigger the next step.
160  *
161  * CONTEXT:
162  * spin_lock_irq(fq->mq_flush_lock)
163  *
164  * RETURNS:
165  * %true if requests were added to the dispatch queue, %false otherwise.
166  */
167 static void blk_flush_complete_seq(struct request *rq,
168 				   struct blk_flush_queue *fq,
169 				   unsigned int seq, blk_status_t error)
170 {
171 	struct request_queue *q = rq->q;
172 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
173 	unsigned int cmd_flags;
174 
175 	BUG_ON(rq->flush.seq & seq);
176 	rq->flush.seq |= seq;
177 	cmd_flags = rq->cmd_flags;
178 
179 	if (likely(!error))
180 		seq = blk_flush_cur_seq(rq);
181 	else
182 		seq = REQ_FSEQ_DONE;
183 
184 	switch (seq) {
185 	case REQ_FSEQ_PREFLUSH:
186 	case REQ_FSEQ_POSTFLUSH:
187 		/* queue for flush */
188 		if (list_empty(pending))
189 			fq->flush_pending_since = jiffies;
190 		list_move_tail(&rq->flush.list, pending);
191 		break;
192 
193 	case REQ_FSEQ_DATA:
194 		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
195 		blk_flush_queue_rq(rq, true);
196 		break;
197 
198 	case REQ_FSEQ_DONE:
199 		/*
200 		 * @rq was previously adjusted by blk_insert_flush() for
201 		 * flush sequencing and may already have gone through the
202 		 * flush data request completion path.  Restore @rq for
203 		 * normal completion and end it.
204 		 */
205 		BUG_ON(!list_empty(&rq->queuelist));
206 		list_del_init(&rq->flush.list);
207 		blk_flush_restore_request(rq);
208 		blk_mq_end_request(rq, error);
209 		break;
210 
211 	default:
212 		BUG();
213 	}
214 
215 	blk_kick_flush(q, fq, cmd_flags);
216 }
217 
218 static void flush_end_io(struct request *flush_rq, blk_status_t error)
219 {
220 	struct request_queue *q = flush_rq->q;
221 	struct list_head *running;
222 	struct request *rq, *n;
223 	unsigned long flags = 0;
224 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
225 	struct blk_mq_hw_ctx *hctx;
226 
227 	blk_account_io_flush(flush_rq);
228 
229 	/* release the tag's ownership to the req cloned from */
230 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
231 
232 	if (!refcount_dec_and_test(&flush_rq->ref)) {
233 		fq->rq_status = error;
234 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
235 		return;
236 	}
237 
238 	if (fq->rq_status != BLK_STS_OK)
239 		error = fq->rq_status;
240 
241 	hctx = flush_rq->mq_hctx;
242 	if (!q->elevator) {
243 		blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
244 		flush_rq->tag = -1;
245 	} else {
246 		blk_mq_put_driver_tag(flush_rq);
247 		flush_rq->internal_tag = -1;
248 	}
249 
250 	running = &fq->flush_queue[fq->flush_running_idx];
251 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
252 
253 	/* account completion of the flush request */
254 	fq->flush_running_idx ^= 1;
255 
256 	/* and push the waiting requests to the next stage */
257 	list_for_each_entry_safe(rq, n, running, flush.list) {
258 		unsigned int seq = blk_flush_cur_seq(rq);
259 
260 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
261 		blk_flush_complete_seq(rq, fq, seq, error);
262 	}
263 
264 	fq->flush_queue_delayed = 0;
265 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
266 }
267 
268 /**
269  * blk_kick_flush - consider issuing flush request
270  * @q: request_queue being kicked
271  * @fq: flush queue
272  * @flags: cmd_flags of the original request
273  *
274  * Flush related states of @q have changed, consider issuing flush request.
275  * Please read the comment at the top of this file for more info.
276  *
277  * CONTEXT:
278  * spin_lock_irq(fq->mq_flush_lock)
279  *
280  */
281 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
282 			   unsigned int flags)
283 {
284 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
285 	struct request *first_rq =
286 		list_first_entry(pending, struct request, flush.list);
287 	struct request *flush_rq = fq->flush_rq;
288 
289 	/* C1 described at the top of this file */
290 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
291 		return;
292 
293 	/* C2 and C3
294 	 *
295 	 * For blk-mq + scheduling, we can risk having all driver tags
296 	 * assigned to empty flushes, and we deadlock if we are expecting
297 	 * other requests to make progress. Don't defer for that case.
298 	 */
299 	if (!list_empty(&fq->flush_data_in_flight) && q->elevator &&
300 	    time_before(jiffies,
301 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
302 		return;
303 
304 	/*
305 	 * Issue flush and toggle pending_idx.  This makes pending_idx
306 	 * different from running_idx, which means flush is in flight.
307 	 */
308 	fq->flush_pending_idx ^= 1;
309 
310 	blk_rq_init(q, flush_rq);
311 
312 	/*
313 	 * In case of none scheduler, borrow tag from the first request
314 	 * since they can't be in flight at the same time. And acquire
315 	 * the tag's ownership for flush req.
316 	 *
317 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
318 	 * just for cheating put/get driver tag.
319 	 */
320 	flush_rq->mq_ctx = first_rq->mq_ctx;
321 	flush_rq->mq_hctx = first_rq->mq_hctx;
322 
323 	if (!q->elevator) {
324 		fq->orig_rq = first_rq;
325 		flush_rq->tag = first_rq->tag;
326 		blk_mq_tag_set_rq(flush_rq->mq_hctx, first_rq->tag, flush_rq);
327 	} else {
328 		flush_rq->internal_tag = first_rq->internal_tag;
329 	}
330 
331 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
332 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
333 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
334 	flush_rq->rq_disk = first_rq->rq_disk;
335 	flush_rq->end_io = flush_end_io;
336 
337 	blk_flush_queue_rq(flush_rq, false);
338 }
339 
340 static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
341 {
342 	struct request_queue *q = rq->q;
343 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
344 	struct blk_mq_ctx *ctx = rq->mq_ctx;
345 	unsigned long flags;
346 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
347 
348 	if (q->elevator) {
349 		WARN_ON(rq->tag < 0);
350 		blk_mq_put_driver_tag(rq);
351 	}
352 
353 	/*
354 	 * After populating an empty queue, kick it to avoid stall.  Read
355 	 * the comment in flush_end_io().
356 	 */
357 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
358 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
359 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
360 
361 	blk_mq_sched_restart(hctx);
362 }
363 
364 /**
365  * blk_insert_flush - insert a new PREFLUSH/FUA request
366  * @rq: request to insert
367  *
368  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
369  * or __blk_mq_run_hw_queue() to dispatch request.
370  * @rq is being submitted.  Analyze what needs to be done and put it on the
371  * right queue.
372  */
373 void blk_insert_flush(struct request *rq)
374 {
375 	struct request_queue *q = rq->q;
376 	unsigned long fflags = q->queue_flags;	/* may change, cache */
377 	unsigned int policy = blk_flush_policy(fflags, rq);
378 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
379 
380 	/*
381 	 * @policy now records what operations need to be done.  Adjust
382 	 * REQ_PREFLUSH and FUA for the driver.
383 	 */
384 	rq->cmd_flags &= ~REQ_PREFLUSH;
385 	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
386 		rq->cmd_flags &= ~REQ_FUA;
387 
388 	/*
389 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
390 	 * of those flags, we have to set REQ_SYNC to avoid skewing
391 	 * the request accounting.
392 	 */
393 	rq->cmd_flags |= REQ_SYNC;
394 
395 	/*
396 	 * An empty flush handed down from a stacking driver may
397 	 * translate into nothing if the underlying device does not
398 	 * advertise a write-back cache.  In this case, simply
399 	 * complete the request.
400 	 */
401 	if (!policy) {
402 		blk_mq_end_request(rq, 0);
403 		return;
404 	}
405 
406 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
407 
408 	/*
409 	 * If there's data but flush is not necessary, the request can be
410 	 * processed directly without going through flush machinery.  Queue
411 	 * for normal execution.
412 	 */
413 	if ((policy & REQ_FSEQ_DATA) &&
414 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
415 		blk_mq_request_bypass_insert(rq, false);
416 		return;
417 	}
418 
419 	/*
420 	 * @rq should go through flush machinery.  Mark it part of flush
421 	 * sequence and submit for further processing.
422 	 */
423 	memset(&rq->flush, 0, sizeof(rq->flush));
424 	INIT_LIST_HEAD(&rq->flush.list);
425 	rq->rq_flags |= RQF_FLUSH_SEQ;
426 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
427 
428 	rq->end_io = mq_flush_data_end_io;
429 
430 	spin_lock_irq(&fq->mq_flush_lock);
431 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
432 	spin_unlock_irq(&fq->mq_flush_lock);
433 }
434 
435 /**
436  * blkdev_issue_flush - queue a flush
437  * @bdev:	blockdev to issue flush for
438  * @gfp_mask:	memory allocation flags (for bio_alloc)
439  * @error_sector:	error sector
440  *
441  * Description:
442  *    Issue a flush for the block device in question. Caller can supply
443  *    room for storing the error offset in case of a flush error, if they
444  *    wish to.
445  */
446 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
447 		sector_t *error_sector)
448 {
449 	struct request_queue *q;
450 	struct bio *bio;
451 	int ret = 0;
452 
453 	if (bdev->bd_disk == NULL)
454 		return -ENXIO;
455 
456 	q = bdev_get_queue(bdev);
457 	if (!q)
458 		return -ENXIO;
459 
460 	/*
461 	 * some block devices may not have their queue correctly set up here
462 	 * (e.g. loop device without a backing file) and so issuing a flush
463 	 * here will panic. Ensure there is a request function before issuing
464 	 * the flush.
465 	 */
466 	if (!q->make_request_fn)
467 		return -ENXIO;
468 
469 	bio = bio_alloc(gfp_mask, 0);
470 	bio_set_dev(bio, bdev);
471 	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
472 
473 	ret = submit_bio_wait(bio);
474 
475 	/*
476 	 * The driver must store the error location in ->bi_sector, if
477 	 * it supports it. For non-stacked drivers, this should be
478 	 * copied from blk_rq_pos(rq).
479 	 */
480 	if (error_sector)
481 		*error_sector = bio->bi_iter.bi_sector;
482 
483 	bio_put(bio);
484 	return ret;
485 }
486 EXPORT_SYMBOL(blkdev_issue_flush);
487 
488 struct blk_flush_queue *blk_alloc_flush_queue(struct request_queue *q,
489 		int node, int cmd_size, gfp_t flags)
490 {
491 	struct blk_flush_queue *fq;
492 	int rq_sz = sizeof(struct request);
493 
494 	fq = kzalloc_node(sizeof(*fq), flags, node);
495 	if (!fq)
496 		goto fail;
497 
498 	spin_lock_init(&fq->mq_flush_lock);
499 
500 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
501 	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
502 	if (!fq->flush_rq)
503 		goto fail_rq;
504 
505 	INIT_LIST_HEAD(&fq->flush_queue[0]);
506 	INIT_LIST_HEAD(&fq->flush_queue[1]);
507 	INIT_LIST_HEAD(&fq->flush_data_in_flight);
508 
509 	lockdep_register_key(&fq->key);
510 	lockdep_set_class(&fq->mq_flush_lock, &fq->key);
511 
512 	return fq;
513 
514  fail_rq:
515 	kfree(fq);
516  fail:
517 	return NULL;
518 }
519 
520 void blk_free_flush_queue(struct blk_flush_queue *fq)
521 {
522 	/* bio based request queue hasn't flush queue */
523 	if (!fq)
524 		return;
525 
526 	lockdep_unregister_key(&fq->key);
527 	kfree(fq->flush_rq);
528 	kfree(fq);
529 }
530