xref: /linux/block/blk-flush.c (revision 0526b56cbc3c489642bd6a5fe4b718dea7ef0ee8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions to sequence PREFLUSH and FUA writes.
4  *
5  * Copyright (C) 2011		Max Planck Institute for Gravitational Physics
6  * Copyright (C) 2011		Tejun Heo <tj@kernel.org>
7  *
8  * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9  * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10  * properties and hardware capability.
11  *
12  * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13  * indicates a simple flush request.  If there is data, REQ_PREFLUSH indicates
14  * that the device cache should be flushed before the data is executed, and
15  * REQ_FUA means that the data must be on non-volatile media on request
16  * completion.
17  *
18  * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19  * difference.  The requests are either completed immediately if there's no data
20  * or executed as normal requests otherwise.
21  *
22  * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23  * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24  *
25  * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26  * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27  *
28  * The actual execution of flush is double buffered.  Whenever a request
29  * needs to execute PRE or POSTFLUSH, it queues at
30  * fq->flush_queue[fq->flush_pending_idx].  Once certain criteria are met, a
31  * REQ_OP_FLUSH is issued and the pending_idx is toggled.  When the flush
32  * completes, all the requests which were pending are proceeded to the next
33  * step.  This allows arbitrary merging of different types of PREFLUSH/FUA
34  * requests.
35  *
36  * Currently, the following conditions are used to determine when to issue
37  * flush.
38  *
39  * C1. At any given time, only one flush shall be in progress.  This makes
40  *     double buffering sufficient.
41  *
42  * C2. Flush is deferred if any request is executing DATA of its sequence.
43  *     This avoids issuing separate POSTFLUSHes for requests which shared
44  *     PREFLUSH.
45  *
46  * C3. The second condition is ignored if there is a request which has
47  *     waited longer than FLUSH_PENDING_TIMEOUT.  This is to avoid
48  *     starvation in the unlikely case where there are continuous stream of
49  *     FUA (without PREFLUSH) requests.
50  *
51  * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52  * is beneficial.
53  *
54  * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55  * Once while executing DATA and again after the whole sequence is
56  * complete.  The first completion updates the contained bio but doesn't
57  * finish it so that the bio submitter is notified only after the whole
58  * sequence is complete.  This is implemented by testing RQF_FLUSH_SEQ in
59  * req_bio_endio().
60  *
61  * The above peculiarity requires that each PREFLUSH/FUA request has only one
62  * bio attached to it, which is guaranteed as they aren't allowed to be
63  * merged in the usual way.
64  */
65 
66 #include <linux/kernel.h>
67 #include <linux/module.h>
68 #include <linux/bio.h>
69 #include <linux/blkdev.h>
70 #include <linux/gfp.h>
71 #include <linux/part_stat.h>
72 
73 #include "blk.h"
74 #include "blk-mq.h"
75 #include "blk-mq-sched.h"
76 
77 /* PREFLUSH/FUA sequences */
78 enum {
79 	REQ_FSEQ_PREFLUSH	= (1 << 0), /* pre-flushing in progress */
80 	REQ_FSEQ_DATA		= (1 << 1), /* data write in progress */
81 	REQ_FSEQ_POSTFLUSH	= (1 << 2), /* post-flushing in progress */
82 	REQ_FSEQ_DONE		= (1 << 3),
83 
84 	REQ_FSEQ_ACTIONS	= REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
85 				  REQ_FSEQ_POSTFLUSH,
86 
87 	/*
88 	 * If flush has been pending longer than the following timeout,
89 	 * it's issued even if flush_data requests are still in flight.
90 	 */
91 	FLUSH_PENDING_TIMEOUT	= 5 * HZ,
92 };
93 
94 static void blk_kick_flush(struct request_queue *q,
95 			   struct blk_flush_queue *fq, blk_opf_t flags);
96 
97 static inline struct blk_flush_queue *
98 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
99 {
100 	return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
101 }
102 
103 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
104 {
105 	unsigned int policy = 0;
106 
107 	if (blk_rq_sectors(rq))
108 		policy |= REQ_FSEQ_DATA;
109 
110 	if (fflags & (1UL << QUEUE_FLAG_WC)) {
111 		if (rq->cmd_flags & REQ_PREFLUSH)
112 			policy |= REQ_FSEQ_PREFLUSH;
113 		if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
114 		    (rq->cmd_flags & REQ_FUA))
115 			policy |= REQ_FSEQ_POSTFLUSH;
116 	}
117 	return policy;
118 }
119 
120 static unsigned int blk_flush_cur_seq(struct request *rq)
121 {
122 	return 1 << ffz(rq->flush.seq);
123 }
124 
125 static void blk_flush_restore_request(struct request *rq)
126 {
127 	/*
128 	 * After flush data completion, @rq->bio is %NULL but we need to
129 	 * complete the bio again.  @rq->biotail is guaranteed to equal the
130 	 * original @rq->bio.  Restore it.
131 	 */
132 	rq->bio = rq->biotail;
133 
134 	/* make @rq a normal request */
135 	rq->rq_flags &= ~RQF_FLUSH_SEQ;
136 	rq->end_io = rq->flush.saved_end_io;
137 }
138 
139 static void blk_account_io_flush(struct request *rq)
140 {
141 	struct block_device *part = rq->q->disk->part0;
142 
143 	part_stat_lock();
144 	part_stat_inc(part, ios[STAT_FLUSH]);
145 	part_stat_add(part, nsecs[STAT_FLUSH],
146 		      ktime_get_ns() - rq->start_time_ns);
147 	part_stat_unlock();
148 }
149 
150 /**
151  * blk_flush_complete_seq - complete flush sequence
152  * @rq: PREFLUSH/FUA request being sequenced
153  * @fq: flush queue
154  * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
155  * @error: whether an error occurred
156  *
157  * @rq just completed @seq part of its flush sequence, record the
158  * completion and trigger the next step.
159  *
160  * CONTEXT:
161  * spin_lock_irq(fq->mq_flush_lock)
162  */
163 static void blk_flush_complete_seq(struct request *rq,
164 				   struct blk_flush_queue *fq,
165 				   unsigned int seq, blk_status_t error)
166 {
167 	struct request_queue *q = rq->q;
168 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
169 	blk_opf_t cmd_flags;
170 
171 	BUG_ON(rq->flush.seq & seq);
172 	rq->flush.seq |= seq;
173 	cmd_flags = rq->cmd_flags;
174 
175 	if (likely(!error))
176 		seq = blk_flush_cur_seq(rq);
177 	else
178 		seq = REQ_FSEQ_DONE;
179 
180 	switch (seq) {
181 	case REQ_FSEQ_PREFLUSH:
182 	case REQ_FSEQ_POSTFLUSH:
183 		/* queue for flush */
184 		if (list_empty(pending))
185 			fq->flush_pending_since = jiffies;
186 		list_move_tail(&rq->flush.list, pending);
187 		break;
188 
189 	case REQ_FSEQ_DATA:
190 		list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
191 		blk_mq_add_to_requeue_list(rq, BLK_MQ_INSERT_AT_HEAD);
192 		blk_mq_kick_requeue_list(q);
193 		break;
194 
195 	case REQ_FSEQ_DONE:
196 		/*
197 		 * @rq was previously adjusted by blk_insert_flush() for
198 		 * flush sequencing and may already have gone through the
199 		 * flush data request completion path.  Restore @rq for
200 		 * normal completion and end it.
201 		 */
202 		list_del_init(&rq->flush.list);
203 		blk_flush_restore_request(rq);
204 		blk_mq_end_request(rq, error);
205 		break;
206 
207 	default:
208 		BUG();
209 	}
210 
211 	blk_kick_flush(q, fq, cmd_flags);
212 }
213 
214 static enum rq_end_io_ret flush_end_io(struct request *flush_rq,
215 				       blk_status_t error)
216 {
217 	struct request_queue *q = flush_rq->q;
218 	struct list_head *running;
219 	struct request *rq, *n;
220 	unsigned long flags = 0;
221 	struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
222 
223 	/* release the tag's ownership to the req cloned from */
224 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
225 
226 	if (!req_ref_put_and_test(flush_rq)) {
227 		fq->rq_status = error;
228 		spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
229 		return RQ_END_IO_NONE;
230 	}
231 
232 	blk_account_io_flush(flush_rq);
233 	/*
234 	 * Flush request has to be marked as IDLE when it is really ended
235 	 * because its .end_io() is called from timeout code path too for
236 	 * avoiding use-after-free.
237 	 */
238 	WRITE_ONCE(flush_rq->state, MQ_RQ_IDLE);
239 	if (fq->rq_status != BLK_STS_OK) {
240 		error = fq->rq_status;
241 		fq->rq_status = BLK_STS_OK;
242 	}
243 
244 	if (!q->elevator) {
245 		flush_rq->tag = BLK_MQ_NO_TAG;
246 	} else {
247 		blk_mq_put_driver_tag(flush_rq);
248 		flush_rq->internal_tag = BLK_MQ_NO_TAG;
249 	}
250 
251 	running = &fq->flush_queue[fq->flush_running_idx];
252 	BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
253 
254 	/* account completion of the flush request */
255 	fq->flush_running_idx ^= 1;
256 
257 	/* and push the waiting requests to the next stage */
258 	list_for_each_entry_safe(rq, n, running, flush.list) {
259 		unsigned int seq = blk_flush_cur_seq(rq);
260 
261 		BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
262 		blk_flush_complete_seq(rq, fq, seq, error);
263 	}
264 
265 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
266 	return RQ_END_IO_NONE;
267 }
268 
269 bool is_flush_rq(struct request *rq)
270 {
271 	return rq->end_io == flush_end_io;
272 }
273 
274 /**
275  * blk_kick_flush - consider issuing flush request
276  * @q: request_queue being kicked
277  * @fq: flush queue
278  * @flags: cmd_flags of the original request
279  *
280  * Flush related states of @q have changed, consider issuing flush request.
281  * Please read the comment at the top of this file for more info.
282  *
283  * CONTEXT:
284  * spin_lock_irq(fq->mq_flush_lock)
285  *
286  */
287 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
288 			   blk_opf_t flags)
289 {
290 	struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
291 	struct request *first_rq =
292 		list_first_entry(pending, struct request, flush.list);
293 	struct request *flush_rq = fq->flush_rq;
294 
295 	/* C1 described at the top of this file */
296 	if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
297 		return;
298 
299 	/* C2 and C3 */
300 	if (!list_empty(&fq->flush_data_in_flight) &&
301 	    time_before(jiffies,
302 			fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
303 		return;
304 
305 	/*
306 	 * Issue flush and toggle pending_idx.  This makes pending_idx
307 	 * different from running_idx, which means flush is in flight.
308 	 */
309 	fq->flush_pending_idx ^= 1;
310 
311 	blk_rq_init(q, flush_rq);
312 
313 	/*
314 	 * In case of none scheduler, borrow tag from the first request
315 	 * since they can't be in flight at the same time. And acquire
316 	 * the tag's ownership for flush req.
317 	 *
318 	 * In case of IO scheduler, flush rq need to borrow scheduler tag
319 	 * just for cheating put/get driver tag.
320 	 */
321 	flush_rq->mq_ctx = first_rq->mq_ctx;
322 	flush_rq->mq_hctx = first_rq->mq_hctx;
323 
324 	if (!q->elevator) {
325 		flush_rq->tag = first_rq->tag;
326 
327 		/*
328 		 * We borrow data request's driver tag, so have to mark
329 		 * this flush request as INFLIGHT for avoiding double
330 		 * account of this driver tag
331 		 */
332 		flush_rq->rq_flags |= RQF_MQ_INFLIGHT;
333 	} else
334 		flush_rq->internal_tag = first_rq->internal_tag;
335 
336 	flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
337 	flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
338 	flush_rq->rq_flags |= RQF_FLUSH_SEQ;
339 	flush_rq->end_io = flush_end_io;
340 	/*
341 	 * Order WRITE ->end_io and WRITE rq->ref, and its pair is the one
342 	 * implied in refcount_inc_not_zero() called from
343 	 * blk_mq_find_and_get_req(), which orders WRITE/READ flush_rq->ref
344 	 * and READ flush_rq->end_io
345 	 */
346 	smp_wmb();
347 	req_ref_set(flush_rq, 1);
348 
349 	blk_mq_add_to_requeue_list(flush_rq, 0);
350 	blk_mq_kick_requeue_list(q);
351 }
352 
353 static enum rq_end_io_ret mq_flush_data_end_io(struct request *rq,
354 					       blk_status_t error)
355 {
356 	struct request_queue *q = rq->q;
357 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
358 	struct blk_mq_ctx *ctx = rq->mq_ctx;
359 	unsigned long flags;
360 	struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
361 
362 	if (q->elevator) {
363 		WARN_ON(rq->tag < 0);
364 		blk_mq_put_driver_tag(rq);
365 	}
366 
367 	/*
368 	 * After populating an empty queue, kick it to avoid stall.  Read
369 	 * the comment in flush_end_io().
370 	 */
371 	spin_lock_irqsave(&fq->mq_flush_lock, flags);
372 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
373 	spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
374 
375 	blk_mq_sched_restart(hctx);
376 	return RQ_END_IO_NONE;
377 }
378 
379 /**
380  * blk_insert_flush - insert a new PREFLUSH/FUA request
381  * @rq: request to insert
382  *
383  * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
384  * or __blk_mq_run_hw_queue() to dispatch request.
385  * @rq is being submitted.  Analyze what needs to be done and put it on the
386  * right queue.
387  */
388 void blk_insert_flush(struct request *rq)
389 {
390 	struct request_queue *q = rq->q;
391 	unsigned long fflags = q->queue_flags;	/* may change, cache */
392 	unsigned int policy = blk_flush_policy(fflags, rq);
393 	struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
394 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
395 
396 	/*
397 	 * @policy now records what operations need to be done.  Adjust
398 	 * REQ_PREFLUSH and FUA for the driver.
399 	 */
400 	rq->cmd_flags &= ~REQ_PREFLUSH;
401 	if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
402 		rq->cmd_flags &= ~REQ_FUA;
403 
404 	/*
405 	 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
406 	 * of those flags, we have to set REQ_SYNC to avoid skewing
407 	 * the request accounting.
408 	 */
409 	rq->cmd_flags |= REQ_SYNC;
410 
411 	/*
412 	 * An empty flush handed down from a stacking driver may
413 	 * translate into nothing if the underlying device does not
414 	 * advertise a write-back cache.  In this case, simply
415 	 * complete the request.
416 	 */
417 	if (!policy) {
418 		blk_mq_end_request(rq, 0);
419 		return;
420 	}
421 
422 	BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
423 
424 	/*
425 	 * If there's data but flush is not necessary, the request can be
426 	 * processed directly without going through flush machinery.  Queue
427 	 * for normal execution.
428 	 */
429 	if ((policy & REQ_FSEQ_DATA) &&
430 	    !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
431 		blk_mq_request_bypass_insert(rq, 0);
432 		blk_mq_run_hw_queue(hctx, false);
433 		return;
434 	}
435 
436 	/*
437 	 * @rq should go through flush machinery.  Mark it part of flush
438 	 * sequence and submit for further processing.
439 	 */
440 	memset(&rq->flush, 0, sizeof(rq->flush));
441 	INIT_LIST_HEAD(&rq->flush.list);
442 	rq->rq_flags |= RQF_FLUSH_SEQ;
443 	rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
444 
445 	rq->end_io = mq_flush_data_end_io;
446 
447 	spin_lock_irq(&fq->mq_flush_lock);
448 	blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
449 	spin_unlock_irq(&fq->mq_flush_lock);
450 }
451 
452 /**
453  * blkdev_issue_flush - queue a flush
454  * @bdev:	blockdev to issue flush for
455  *
456  * Description:
457  *    Issue a flush for the block device in question.
458  */
459 int blkdev_issue_flush(struct block_device *bdev)
460 {
461 	struct bio bio;
462 
463 	bio_init(&bio, bdev, NULL, 0, REQ_OP_WRITE | REQ_PREFLUSH);
464 	return submit_bio_wait(&bio);
465 }
466 EXPORT_SYMBOL(blkdev_issue_flush);
467 
468 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
469 					      gfp_t flags)
470 {
471 	struct blk_flush_queue *fq;
472 	int rq_sz = sizeof(struct request);
473 
474 	fq = kzalloc_node(sizeof(*fq), flags, node);
475 	if (!fq)
476 		goto fail;
477 
478 	spin_lock_init(&fq->mq_flush_lock);
479 
480 	rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
481 	fq->flush_rq = kzalloc_node(rq_sz, flags, node);
482 	if (!fq->flush_rq)
483 		goto fail_rq;
484 
485 	INIT_LIST_HEAD(&fq->flush_queue[0]);
486 	INIT_LIST_HEAD(&fq->flush_queue[1]);
487 	INIT_LIST_HEAD(&fq->flush_data_in_flight);
488 
489 	return fq;
490 
491  fail_rq:
492 	kfree(fq);
493  fail:
494 	return NULL;
495 }
496 
497 void blk_free_flush_queue(struct blk_flush_queue *fq)
498 {
499 	/* bio based request queue hasn't flush queue */
500 	if (!fq)
501 		return;
502 
503 	kfree(fq->flush_rq);
504 	kfree(fq);
505 }
506 
507 /*
508  * Allow driver to set its own lock class to fq->mq_flush_lock for
509  * avoiding lockdep complaint.
510  *
511  * flush_end_io() may be called recursively from some driver, such as
512  * nvme-loop, so lockdep may complain 'possible recursive locking' because
513  * all 'struct blk_flush_queue' instance share same mq_flush_lock lock class
514  * key. We need to assign different lock class for these driver's
515  * fq->mq_flush_lock for avoiding the lockdep warning.
516  *
517  * Use dynamically allocated lock class key for each 'blk_flush_queue'
518  * instance is over-kill, and more worse it introduces horrible boot delay
519  * issue because synchronize_rcu() is implied in lockdep_unregister_key which
520  * is called for each hctx release. SCSI probing may synchronously create and
521  * destroy lots of MQ request_queues for non-existent devices, and some robot
522  * test kernel always enable lockdep option. It is observed that more than half
523  * an hour is taken during SCSI MQ probe with per-fq lock class.
524  */
525 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
526 		struct lock_class_key *key)
527 {
528 	lockdep_set_class(&hctx->fq->mq_flush_lock, key);
529 }
530 EXPORT_SYMBOL_GPL(blk_mq_hctx_set_fq_lock_class);
531