1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright 2019 Google LLC 4 */ 5 6 /* 7 * Refer to Documentation/block/inline-encryption.rst for detailed explanation. 8 */ 9 10 #define pr_fmt(fmt) "blk-crypto-fallback: " fmt 11 12 #include <crypto/skcipher.h> 13 #include <linux/blk-cgroup.h> 14 #include <linux/blk-crypto.h> 15 #include <linux/blkdev.h> 16 #include <linux/crypto.h> 17 #include <linux/keyslot-manager.h> 18 #include <linux/mempool.h> 19 #include <linux/module.h> 20 #include <linux/random.h> 21 22 #include "blk-crypto-internal.h" 23 24 static unsigned int num_prealloc_bounce_pg = 32; 25 module_param(num_prealloc_bounce_pg, uint, 0); 26 MODULE_PARM_DESC(num_prealloc_bounce_pg, 27 "Number of preallocated bounce pages for the blk-crypto crypto API fallback"); 28 29 static unsigned int blk_crypto_num_keyslots = 100; 30 module_param_named(num_keyslots, blk_crypto_num_keyslots, uint, 0); 31 MODULE_PARM_DESC(num_keyslots, 32 "Number of keyslots for the blk-crypto crypto API fallback"); 33 34 static unsigned int num_prealloc_fallback_crypt_ctxs = 128; 35 module_param(num_prealloc_fallback_crypt_ctxs, uint, 0); 36 MODULE_PARM_DESC(num_prealloc_crypt_fallback_ctxs, 37 "Number of preallocated bio fallback crypto contexts for blk-crypto to use during crypto API fallback"); 38 39 struct bio_fallback_crypt_ctx { 40 struct bio_crypt_ctx crypt_ctx; 41 /* 42 * Copy of the bvec_iter when this bio was submitted. 43 * We only want to en/decrypt the part of the bio as described by the 44 * bvec_iter upon submission because bio might be split before being 45 * resubmitted 46 */ 47 struct bvec_iter crypt_iter; 48 union { 49 struct { 50 struct work_struct work; 51 struct bio *bio; 52 }; 53 struct { 54 void *bi_private_orig; 55 bio_end_io_t *bi_end_io_orig; 56 }; 57 }; 58 }; 59 60 static struct kmem_cache *bio_fallback_crypt_ctx_cache; 61 static mempool_t *bio_fallback_crypt_ctx_pool; 62 63 /* 64 * Allocating a crypto tfm during I/O can deadlock, so we have to preallocate 65 * all of a mode's tfms when that mode starts being used. Since each mode may 66 * need all the keyslots at some point, each mode needs its own tfm for each 67 * keyslot; thus, a keyslot may contain tfms for multiple modes. However, to 68 * match the behavior of real inline encryption hardware (which only supports a 69 * single encryption context per keyslot), we only allow one tfm per keyslot to 70 * be used at a time - the rest of the unused tfms have their keys cleared. 71 */ 72 static DEFINE_MUTEX(tfms_init_lock); 73 static bool tfms_inited[BLK_ENCRYPTION_MODE_MAX]; 74 75 static struct blk_crypto_keyslot { 76 enum blk_crypto_mode_num crypto_mode; 77 struct crypto_skcipher *tfms[BLK_ENCRYPTION_MODE_MAX]; 78 } *blk_crypto_keyslots; 79 80 static struct blk_keyslot_manager blk_crypto_ksm; 81 static struct workqueue_struct *blk_crypto_wq; 82 static mempool_t *blk_crypto_bounce_page_pool; 83 static struct bio_set crypto_bio_split; 84 85 /* 86 * This is the key we set when evicting a keyslot. This *should* be the all 0's 87 * key, but AES-XTS rejects that key, so we use some random bytes instead. 88 */ 89 static u8 blank_key[BLK_CRYPTO_MAX_KEY_SIZE]; 90 91 static void blk_crypto_evict_keyslot(unsigned int slot) 92 { 93 struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot]; 94 enum blk_crypto_mode_num crypto_mode = slotp->crypto_mode; 95 int err; 96 97 WARN_ON(slotp->crypto_mode == BLK_ENCRYPTION_MODE_INVALID); 98 99 /* Clear the key in the skcipher */ 100 err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], blank_key, 101 blk_crypto_modes[crypto_mode].keysize); 102 WARN_ON(err); 103 slotp->crypto_mode = BLK_ENCRYPTION_MODE_INVALID; 104 } 105 106 static int blk_crypto_keyslot_program(struct blk_keyslot_manager *ksm, 107 const struct blk_crypto_key *key, 108 unsigned int slot) 109 { 110 struct blk_crypto_keyslot *slotp = &blk_crypto_keyslots[slot]; 111 const enum blk_crypto_mode_num crypto_mode = 112 key->crypto_cfg.crypto_mode; 113 int err; 114 115 if (crypto_mode != slotp->crypto_mode && 116 slotp->crypto_mode != BLK_ENCRYPTION_MODE_INVALID) 117 blk_crypto_evict_keyslot(slot); 118 119 slotp->crypto_mode = crypto_mode; 120 err = crypto_skcipher_setkey(slotp->tfms[crypto_mode], key->raw, 121 key->size); 122 if (err) { 123 blk_crypto_evict_keyslot(slot); 124 return err; 125 } 126 return 0; 127 } 128 129 static int blk_crypto_keyslot_evict(struct blk_keyslot_manager *ksm, 130 const struct blk_crypto_key *key, 131 unsigned int slot) 132 { 133 blk_crypto_evict_keyslot(slot); 134 return 0; 135 } 136 137 /* 138 * The crypto API fallback KSM ops - only used for a bio when it specifies a 139 * blk_crypto_key that was not supported by the device's inline encryption 140 * hardware. 141 */ 142 static const struct blk_ksm_ll_ops blk_crypto_ksm_ll_ops = { 143 .keyslot_program = blk_crypto_keyslot_program, 144 .keyslot_evict = blk_crypto_keyslot_evict, 145 }; 146 147 static void blk_crypto_fallback_encrypt_endio(struct bio *enc_bio) 148 { 149 struct bio *src_bio = enc_bio->bi_private; 150 int i; 151 152 for (i = 0; i < enc_bio->bi_vcnt; i++) 153 mempool_free(enc_bio->bi_io_vec[i].bv_page, 154 blk_crypto_bounce_page_pool); 155 156 src_bio->bi_status = enc_bio->bi_status; 157 158 bio_put(enc_bio); 159 bio_endio(src_bio); 160 } 161 162 static struct bio *blk_crypto_clone_bio(struct bio *bio_src) 163 { 164 struct bvec_iter iter; 165 struct bio_vec bv; 166 struct bio *bio; 167 168 bio = bio_kmalloc(GFP_NOIO, bio_segments(bio_src)); 169 if (!bio) 170 return NULL; 171 bio->bi_bdev = bio_src->bi_bdev; 172 if (bio_flagged(bio_src, BIO_REMAPPED)) 173 bio_set_flag(bio, BIO_REMAPPED); 174 bio->bi_opf = bio_src->bi_opf; 175 bio->bi_ioprio = bio_src->bi_ioprio; 176 bio->bi_write_hint = bio_src->bi_write_hint; 177 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector; 178 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size; 179 180 bio_for_each_segment(bv, bio_src, iter) 181 bio->bi_io_vec[bio->bi_vcnt++] = bv; 182 183 bio_clone_blkg_association(bio, bio_src); 184 blkcg_bio_issue_init(bio); 185 186 return bio; 187 } 188 189 static bool blk_crypto_alloc_cipher_req(struct blk_ksm_keyslot *slot, 190 struct skcipher_request **ciph_req_ret, 191 struct crypto_wait *wait) 192 { 193 struct skcipher_request *ciph_req; 194 const struct blk_crypto_keyslot *slotp; 195 int keyslot_idx = blk_ksm_get_slot_idx(slot); 196 197 slotp = &blk_crypto_keyslots[keyslot_idx]; 198 ciph_req = skcipher_request_alloc(slotp->tfms[slotp->crypto_mode], 199 GFP_NOIO); 200 if (!ciph_req) 201 return false; 202 203 skcipher_request_set_callback(ciph_req, 204 CRYPTO_TFM_REQ_MAY_BACKLOG | 205 CRYPTO_TFM_REQ_MAY_SLEEP, 206 crypto_req_done, wait); 207 *ciph_req_ret = ciph_req; 208 209 return true; 210 } 211 212 static bool blk_crypto_split_bio_if_needed(struct bio **bio_ptr) 213 { 214 struct bio *bio = *bio_ptr; 215 unsigned int i = 0; 216 unsigned int num_sectors = 0; 217 struct bio_vec bv; 218 struct bvec_iter iter; 219 220 bio_for_each_segment(bv, bio, iter) { 221 num_sectors += bv.bv_len >> SECTOR_SHIFT; 222 if (++i == BIO_MAX_VECS) 223 break; 224 } 225 if (num_sectors < bio_sectors(bio)) { 226 struct bio *split_bio; 227 228 split_bio = bio_split(bio, num_sectors, GFP_NOIO, 229 &crypto_bio_split); 230 if (!split_bio) { 231 bio->bi_status = BLK_STS_RESOURCE; 232 return false; 233 } 234 bio_chain(split_bio, bio); 235 submit_bio_noacct(bio); 236 *bio_ptr = split_bio; 237 } 238 239 return true; 240 } 241 242 union blk_crypto_iv { 243 __le64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; 244 u8 bytes[BLK_CRYPTO_MAX_IV_SIZE]; 245 }; 246 247 static void blk_crypto_dun_to_iv(const u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE], 248 union blk_crypto_iv *iv) 249 { 250 int i; 251 252 for (i = 0; i < BLK_CRYPTO_DUN_ARRAY_SIZE; i++) 253 iv->dun[i] = cpu_to_le64(dun[i]); 254 } 255 256 /* 257 * The crypto API fallback's encryption routine. 258 * Allocate a bounce bio for encryption, encrypt the input bio using crypto API, 259 * and replace *bio_ptr with the bounce bio. May split input bio if it's too 260 * large. Returns true on success. Returns false and sets bio->bi_status on 261 * error. 262 */ 263 static bool blk_crypto_fallback_encrypt_bio(struct bio **bio_ptr) 264 { 265 struct bio *src_bio, *enc_bio; 266 struct bio_crypt_ctx *bc; 267 struct blk_ksm_keyslot *slot; 268 int data_unit_size; 269 struct skcipher_request *ciph_req = NULL; 270 DECLARE_CRYPTO_WAIT(wait); 271 u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; 272 struct scatterlist src, dst; 273 union blk_crypto_iv iv; 274 unsigned int i, j; 275 bool ret = false; 276 blk_status_t blk_st; 277 278 /* Split the bio if it's too big for single page bvec */ 279 if (!blk_crypto_split_bio_if_needed(bio_ptr)) 280 return false; 281 282 src_bio = *bio_ptr; 283 bc = src_bio->bi_crypt_context; 284 data_unit_size = bc->bc_key->crypto_cfg.data_unit_size; 285 286 /* Allocate bounce bio for encryption */ 287 enc_bio = blk_crypto_clone_bio(src_bio); 288 if (!enc_bio) { 289 src_bio->bi_status = BLK_STS_RESOURCE; 290 return false; 291 } 292 293 /* 294 * Use the crypto API fallback keyslot manager to get a crypto_skcipher 295 * for the algorithm and key specified for this bio. 296 */ 297 blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot); 298 if (blk_st != BLK_STS_OK) { 299 src_bio->bi_status = blk_st; 300 goto out_put_enc_bio; 301 } 302 303 /* and then allocate an skcipher_request for it */ 304 if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) { 305 src_bio->bi_status = BLK_STS_RESOURCE; 306 goto out_release_keyslot; 307 } 308 309 memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun)); 310 sg_init_table(&src, 1); 311 sg_init_table(&dst, 1); 312 313 skcipher_request_set_crypt(ciph_req, &src, &dst, data_unit_size, 314 iv.bytes); 315 316 /* Encrypt each page in the bounce bio */ 317 for (i = 0; i < enc_bio->bi_vcnt; i++) { 318 struct bio_vec *enc_bvec = &enc_bio->bi_io_vec[i]; 319 struct page *plaintext_page = enc_bvec->bv_page; 320 struct page *ciphertext_page = 321 mempool_alloc(blk_crypto_bounce_page_pool, GFP_NOIO); 322 323 enc_bvec->bv_page = ciphertext_page; 324 325 if (!ciphertext_page) { 326 src_bio->bi_status = BLK_STS_RESOURCE; 327 goto out_free_bounce_pages; 328 } 329 330 sg_set_page(&src, plaintext_page, data_unit_size, 331 enc_bvec->bv_offset); 332 sg_set_page(&dst, ciphertext_page, data_unit_size, 333 enc_bvec->bv_offset); 334 335 /* Encrypt each data unit in this page */ 336 for (j = 0; j < enc_bvec->bv_len; j += data_unit_size) { 337 blk_crypto_dun_to_iv(curr_dun, &iv); 338 if (crypto_wait_req(crypto_skcipher_encrypt(ciph_req), 339 &wait)) { 340 i++; 341 src_bio->bi_status = BLK_STS_IOERR; 342 goto out_free_bounce_pages; 343 } 344 bio_crypt_dun_increment(curr_dun, 1); 345 src.offset += data_unit_size; 346 dst.offset += data_unit_size; 347 } 348 } 349 350 enc_bio->bi_private = src_bio; 351 enc_bio->bi_end_io = blk_crypto_fallback_encrypt_endio; 352 *bio_ptr = enc_bio; 353 ret = true; 354 355 enc_bio = NULL; 356 goto out_free_ciph_req; 357 358 out_free_bounce_pages: 359 while (i > 0) 360 mempool_free(enc_bio->bi_io_vec[--i].bv_page, 361 blk_crypto_bounce_page_pool); 362 out_free_ciph_req: 363 skcipher_request_free(ciph_req); 364 out_release_keyslot: 365 blk_ksm_put_slot(slot); 366 out_put_enc_bio: 367 if (enc_bio) 368 bio_put(enc_bio); 369 370 return ret; 371 } 372 373 /* 374 * The crypto API fallback's main decryption routine. 375 * Decrypts input bio in place, and calls bio_endio on the bio. 376 */ 377 static void blk_crypto_fallback_decrypt_bio(struct work_struct *work) 378 { 379 struct bio_fallback_crypt_ctx *f_ctx = 380 container_of(work, struct bio_fallback_crypt_ctx, work); 381 struct bio *bio = f_ctx->bio; 382 struct bio_crypt_ctx *bc = &f_ctx->crypt_ctx; 383 struct blk_ksm_keyslot *slot; 384 struct skcipher_request *ciph_req = NULL; 385 DECLARE_CRYPTO_WAIT(wait); 386 u64 curr_dun[BLK_CRYPTO_DUN_ARRAY_SIZE]; 387 union blk_crypto_iv iv; 388 struct scatterlist sg; 389 struct bio_vec bv; 390 struct bvec_iter iter; 391 const int data_unit_size = bc->bc_key->crypto_cfg.data_unit_size; 392 unsigned int i; 393 blk_status_t blk_st; 394 395 /* 396 * Use the crypto API fallback keyslot manager to get a crypto_skcipher 397 * for the algorithm and key specified for this bio. 398 */ 399 blk_st = blk_ksm_get_slot_for_key(&blk_crypto_ksm, bc->bc_key, &slot); 400 if (blk_st != BLK_STS_OK) { 401 bio->bi_status = blk_st; 402 goto out_no_keyslot; 403 } 404 405 /* and then allocate an skcipher_request for it */ 406 if (!blk_crypto_alloc_cipher_req(slot, &ciph_req, &wait)) { 407 bio->bi_status = BLK_STS_RESOURCE; 408 goto out; 409 } 410 411 memcpy(curr_dun, bc->bc_dun, sizeof(curr_dun)); 412 sg_init_table(&sg, 1); 413 skcipher_request_set_crypt(ciph_req, &sg, &sg, data_unit_size, 414 iv.bytes); 415 416 /* Decrypt each segment in the bio */ 417 __bio_for_each_segment(bv, bio, iter, f_ctx->crypt_iter) { 418 struct page *page = bv.bv_page; 419 420 sg_set_page(&sg, page, data_unit_size, bv.bv_offset); 421 422 /* Decrypt each data unit in the segment */ 423 for (i = 0; i < bv.bv_len; i += data_unit_size) { 424 blk_crypto_dun_to_iv(curr_dun, &iv); 425 if (crypto_wait_req(crypto_skcipher_decrypt(ciph_req), 426 &wait)) { 427 bio->bi_status = BLK_STS_IOERR; 428 goto out; 429 } 430 bio_crypt_dun_increment(curr_dun, 1); 431 sg.offset += data_unit_size; 432 } 433 } 434 435 out: 436 skcipher_request_free(ciph_req); 437 blk_ksm_put_slot(slot); 438 out_no_keyslot: 439 mempool_free(f_ctx, bio_fallback_crypt_ctx_pool); 440 bio_endio(bio); 441 } 442 443 /** 444 * blk_crypto_fallback_decrypt_endio - queue bio for fallback decryption 445 * 446 * @bio: the bio to queue 447 * 448 * Restore bi_private and bi_end_io, and queue the bio for decryption into a 449 * workqueue, since this function will be called from an atomic context. 450 */ 451 static void blk_crypto_fallback_decrypt_endio(struct bio *bio) 452 { 453 struct bio_fallback_crypt_ctx *f_ctx = bio->bi_private; 454 455 bio->bi_private = f_ctx->bi_private_orig; 456 bio->bi_end_io = f_ctx->bi_end_io_orig; 457 458 /* If there was an IO error, don't queue for decrypt. */ 459 if (bio->bi_status) { 460 mempool_free(f_ctx, bio_fallback_crypt_ctx_pool); 461 bio_endio(bio); 462 return; 463 } 464 465 INIT_WORK(&f_ctx->work, blk_crypto_fallback_decrypt_bio); 466 f_ctx->bio = bio; 467 queue_work(blk_crypto_wq, &f_ctx->work); 468 } 469 470 /** 471 * blk_crypto_fallback_bio_prep - Prepare a bio to use fallback en/decryption 472 * 473 * @bio_ptr: pointer to the bio to prepare 474 * 475 * If bio is doing a WRITE operation, this splits the bio into two parts if it's 476 * too big (see blk_crypto_split_bio_if_needed). It then allocates a bounce bio 477 * for the first part, encrypts it, and update bio_ptr to point to the bounce 478 * bio. 479 * 480 * For a READ operation, we mark the bio for decryption by using bi_private and 481 * bi_end_io. 482 * 483 * In either case, this function will make the bio look like a regular bio (i.e. 484 * as if no encryption context was ever specified) for the purposes of the rest 485 * of the stack except for blk-integrity (blk-integrity and blk-crypto are not 486 * currently supported together). 487 * 488 * Return: true on success. Sets bio->bi_status and returns false on error. 489 */ 490 bool blk_crypto_fallback_bio_prep(struct bio **bio_ptr) 491 { 492 struct bio *bio = *bio_ptr; 493 struct bio_crypt_ctx *bc = bio->bi_crypt_context; 494 struct bio_fallback_crypt_ctx *f_ctx; 495 496 if (WARN_ON_ONCE(!tfms_inited[bc->bc_key->crypto_cfg.crypto_mode])) { 497 /* User didn't call blk_crypto_start_using_key() first */ 498 bio->bi_status = BLK_STS_IOERR; 499 return false; 500 } 501 502 if (!blk_ksm_crypto_cfg_supported(&blk_crypto_ksm, 503 &bc->bc_key->crypto_cfg)) { 504 bio->bi_status = BLK_STS_NOTSUPP; 505 return false; 506 } 507 508 if (bio_data_dir(bio) == WRITE) 509 return blk_crypto_fallback_encrypt_bio(bio_ptr); 510 511 /* 512 * bio READ case: Set up a f_ctx in the bio's bi_private and set the 513 * bi_end_io appropriately to trigger decryption when the bio is ended. 514 */ 515 f_ctx = mempool_alloc(bio_fallback_crypt_ctx_pool, GFP_NOIO); 516 f_ctx->crypt_ctx = *bc; 517 f_ctx->crypt_iter = bio->bi_iter; 518 f_ctx->bi_private_orig = bio->bi_private; 519 f_ctx->bi_end_io_orig = bio->bi_end_io; 520 bio->bi_private = (void *)f_ctx; 521 bio->bi_end_io = blk_crypto_fallback_decrypt_endio; 522 bio_crypt_free_ctx(bio); 523 524 return true; 525 } 526 527 int blk_crypto_fallback_evict_key(const struct blk_crypto_key *key) 528 { 529 return blk_ksm_evict_key(&blk_crypto_ksm, key); 530 } 531 532 static bool blk_crypto_fallback_inited; 533 static int blk_crypto_fallback_init(void) 534 { 535 int i; 536 int err; 537 538 if (blk_crypto_fallback_inited) 539 return 0; 540 541 prandom_bytes(blank_key, BLK_CRYPTO_MAX_KEY_SIZE); 542 543 err = bioset_init(&crypto_bio_split, 64, 0, 0); 544 if (err) 545 goto out; 546 547 err = blk_ksm_init(&blk_crypto_ksm, blk_crypto_num_keyslots); 548 if (err) 549 goto fail_free_bioset; 550 err = -ENOMEM; 551 552 blk_crypto_ksm.ksm_ll_ops = blk_crypto_ksm_ll_ops; 553 blk_crypto_ksm.max_dun_bytes_supported = BLK_CRYPTO_MAX_IV_SIZE; 554 555 /* All blk-crypto modes have a crypto API fallback. */ 556 for (i = 0; i < BLK_ENCRYPTION_MODE_MAX; i++) 557 blk_crypto_ksm.crypto_modes_supported[i] = 0xFFFFFFFF; 558 blk_crypto_ksm.crypto_modes_supported[BLK_ENCRYPTION_MODE_INVALID] = 0; 559 560 blk_crypto_wq = alloc_workqueue("blk_crypto_wq", 561 WQ_UNBOUND | WQ_HIGHPRI | 562 WQ_MEM_RECLAIM, num_online_cpus()); 563 if (!blk_crypto_wq) 564 goto fail_free_ksm; 565 566 blk_crypto_keyslots = kcalloc(blk_crypto_num_keyslots, 567 sizeof(blk_crypto_keyslots[0]), 568 GFP_KERNEL); 569 if (!blk_crypto_keyslots) 570 goto fail_free_wq; 571 572 blk_crypto_bounce_page_pool = 573 mempool_create_page_pool(num_prealloc_bounce_pg, 0); 574 if (!blk_crypto_bounce_page_pool) 575 goto fail_free_keyslots; 576 577 bio_fallback_crypt_ctx_cache = KMEM_CACHE(bio_fallback_crypt_ctx, 0); 578 if (!bio_fallback_crypt_ctx_cache) 579 goto fail_free_bounce_page_pool; 580 581 bio_fallback_crypt_ctx_pool = 582 mempool_create_slab_pool(num_prealloc_fallback_crypt_ctxs, 583 bio_fallback_crypt_ctx_cache); 584 if (!bio_fallback_crypt_ctx_pool) 585 goto fail_free_crypt_ctx_cache; 586 587 blk_crypto_fallback_inited = true; 588 589 return 0; 590 fail_free_crypt_ctx_cache: 591 kmem_cache_destroy(bio_fallback_crypt_ctx_cache); 592 fail_free_bounce_page_pool: 593 mempool_destroy(blk_crypto_bounce_page_pool); 594 fail_free_keyslots: 595 kfree(blk_crypto_keyslots); 596 fail_free_wq: 597 destroy_workqueue(blk_crypto_wq); 598 fail_free_ksm: 599 blk_ksm_destroy(&blk_crypto_ksm); 600 fail_free_bioset: 601 bioset_exit(&crypto_bio_split); 602 out: 603 return err; 604 } 605 606 /* 607 * Prepare blk-crypto-fallback for the specified crypto mode. 608 * Returns -ENOPKG if the needed crypto API support is missing. 609 */ 610 int blk_crypto_fallback_start_using_mode(enum blk_crypto_mode_num mode_num) 611 { 612 const char *cipher_str = blk_crypto_modes[mode_num].cipher_str; 613 struct blk_crypto_keyslot *slotp; 614 unsigned int i; 615 int err = 0; 616 617 /* 618 * Fast path 619 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] 620 * for each i are visible before we try to access them. 621 */ 622 if (likely(smp_load_acquire(&tfms_inited[mode_num]))) 623 return 0; 624 625 mutex_lock(&tfms_init_lock); 626 if (tfms_inited[mode_num]) 627 goto out; 628 629 err = blk_crypto_fallback_init(); 630 if (err) 631 goto out; 632 633 for (i = 0; i < blk_crypto_num_keyslots; i++) { 634 slotp = &blk_crypto_keyslots[i]; 635 slotp->tfms[mode_num] = crypto_alloc_skcipher(cipher_str, 0, 0); 636 if (IS_ERR(slotp->tfms[mode_num])) { 637 err = PTR_ERR(slotp->tfms[mode_num]); 638 if (err == -ENOENT) { 639 pr_warn_once("Missing crypto API support for \"%s\"\n", 640 cipher_str); 641 err = -ENOPKG; 642 } 643 slotp->tfms[mode_num] = NULL; 644 goto out_free_tfms; 645 } 646 647 crypto_skcipher_set_flags(slotp->tfms[mode_num], 648 CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 649 } 650 651 /* 652 * Ensure that updates to blk_crypto_keyslots[i].tfms[mode_num] 653 * for each i are visible before we set tfms_inited[mode_num]. 654 */ 655 smp_store_release(&tfms_inited[mode_num], true); 656 goto out; 657 658 out_free_tfms: 659 for (i = 0; i < blk_crypto_num_keyslots; i++) { 660 slotp = &blk_crypto_keyslots[i]; 661 crypto_free_skcipher(slotp->tfms[mode_num]); 662 slotp->tfms[mode_num] = NULL; 663 } 664 out: 665 mutex_unlock(&tfms_init_lock); 666 return err; 667 } 668