xref: /linux/block/blk-core.c (revision fc4fa6e112c0f999fab022a4eb7f6614bb47c7ab)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39 
40 #include "blk.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 
49 DEFINE_IDA(blk_queue_ida);
50 
51 /*
52  * For the allocated request tables
53  */
54 struct kmem_cache *request_cachep = NULL;
55 
56 /*
57  * For queue allocation
58  */
59 struct kmem_cache *blk_requestq_cachep;
60 
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue;
65 
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 	clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 	/*
72 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 	 * flip its congestion state for events on other blkcgs.
74 	 */
75 	if (rl == &rl->q->root_rl)
76 		clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79 
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 	set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 	/* see blk_clear_congested() */
86 	if (rl == &rl->q->root_rl)
87 		set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90 
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 	int nr;
94 
95 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 	if (nr > q->nr_requests)
97 		nr = q->nr_requests;
98 	q->nr_congestion_on = nr;
99 
100 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 	if (nr < 1)
102 		nr = 1;
103 	q->nr_congestion_off = nr;
104 }
105 
106 /**
107  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108  * @bdev:	device
109  *
110  * Locates the passed device's request queue and returns the address of its
111  * backing_dev_info.  This function can only be called if @bdev is opened
112  * and the return value is never NULL.
113  */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 	struct request_queue *q = bdev_get_queue(bdev);
117 
118 	return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121 
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 	memset(rq, 0, sizeof(*rq));
125 
126 	INIT_LIST_HEAD(&rq->queuelist);
127 	INIT_LIST_HEAD(&rq->timeout_list);
128 	rq->cpu = -1;
129 	rq->q = q;
130 	rq->__sector = (sector_t) -1;
131 	INIT_HLIST_NODE(&rq->hash);
132 	RB_CLEAR_NODE(&rq->rb_node);
133 	rq->cmd = rq->__cmd;
134 	rq->cmd_len = BLK_MAX_CDB;
135 	rq->tag = -1;
136 	rq->start_time = jiffies;
137 	set_start_time_ns(rq);
138 	rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141 
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 			  unsigned int nbytes, int error)
144 {
145 	if (error)
146 		bio->bi_error = error;
147 
148 	if (unlikely(rq->cmd_flags & REQ_QUIET))
149 		bio_set_flag(bio, BIO_QUIET);
150 
151 	bio_advance(bio, nbytes);
152 
153 	/* don't actually finish bio if it's part of flush sequence */
154 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 		bio_endio(bio);
156 }
157 
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 	int bit;
161 
162 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 		(unsigned long long) rq->cmd_flags);
165 
166 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
167 	       (unsigned long long)blk_rq_pos(rq),
168 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
170 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
171 
172 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 		printk(KERN_INFO "  cdb: ");
174 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 			printk("%02x ", rq->cmd[bit]);
176 		printk("\n");
177 	}
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180 
181 static void blk_delay_work(struct work_struct *work)
182 {
183 	struct request_queue *q;
184 
185 	q = container_of(work, struct request_queue, delay_work.work);
186 	spin_lock_irq(q->queue_lock);
187 	__blk_run_queue(q);
188 	spin_unlock_irq(q->queue_lock);
189 }
190 
191 /**
192  * blk_delay_queue - restart queueing after defined interval
193  * @q:		The &struct request_queue in question
194  * @msecs:	Delay in msecs
195  *
196  * Description:
197  *   Sometimes queueing needs to be postponed for a little while, to allow
198  *   resources to come back. This function will make sure that queueing is
199  *   restarted around the specified time. Queue lock must be held.
200  */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 	if (likely(!blk_queue_dead(q)))
204 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 				   msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208 
209 /**
210  * blk_start_queue - restart a previously stopped queue
211  * @q:    The &struct request_queue in question
212  *
213  * Description:
214  *   blk_start_queue() will clear the stop flag on the queue, and call
215  *   the request_fn for the queue if it was in a stopped state when
216  *   entered. Also see blk_stop_queue(). Queue lock must be held.
217  **/
218 void blk_start_queue(struct request_queue *q)
219 {
220 	WARN_ON(!irqs_disabled());
221 
222 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
223 	__blk_run_queue(q);
224 }
225 EXPORT_SYMBOL(blk_start_queue);
226 
227 /**
228  * blk_stop_queue - stop a queue
229  * @q:    The &struct request_queue in question
230  *
231  * Description:
232  *   The Linux block layer assumes that a block driver will consume all
233  *   entries on the request queue when the request_fn strategy is called.
234  *   Often this will not happen, because of hardware limitations (queue
235  *   depth settings). If a device driver gets a 'queue full' response,
236  *   or if it simply chooses not to queue more I/O at one point, it can
237  *   call this function to prevent the request_fn from being called until
238  *   the driver has signalled it's ready to go again. This happens by calling
239  *   blk_start_queue() to restart queue operations. Queue lock must be held.
240  **/
241 void blk_stop_queue(struct request_queue *q)
242 {
243 	cancel_delayed_work(&q->delay_work);
244 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
245 }
246 EXPORT_SYMBOL(blk_stop_queue);
247 
248 /**
249  * blk_sync_queue - cancel any pending callbacks on a queue
250  * @q: the queue
251  *
252  * Description:
253  *     The block layer may perform asynchronous callback activity
254  *     on a queue, such as calling the unplug function after a timeout.
255  *     A block device may call blk_sync_queue to ensure that any
256  *     such activity is cancelled, thus allowing it to release resources
257  *     that the callbacks might use. The caller must already have made sure
258  *     that its ->make_request_fn will not re-add plugging prior to calling
259  *     this function.
260  *
261  *     This function does not cancel any asynchronous activity arising
262  *     out of elevator or throttling code. That would require elevator_exit()
263  *     and blkcg_exit_queue() to be called with queue lock initialized.
264  *
265  */
266 void blk_sync_queue(struct request_queue *q)
267 {
268 	del_timer_sync(&q->timeout);
269 
270 	if (q->mq_ops) {
271 		struct blk_mq_hw_ctx *hctx;
272 		int i;
273 
274 		queue_for_each_hw_ctx(q, hctx, i) {
275 			cancel_delayed_work_sync(&hctx->run_work);
276 			cancel_delayed_work_sync(&hctx->delay_work);
277 		}
278 	} else {
279 		cancel_delayed_work_sync(&q->delay_work);
280 	}
281 }
282 EXPORT_SYMBOL(blk_sync_queue);
283 
284 /**
285  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
286  * @q:	The queue to run
287  *
288  * Description:
289  *    Invoke request handling on a queue if there are any pending requests.
290  *    May be used to restart request handling after a request has completed.
291  *    This variant runs the queue whether or not the queue has been
292  *    stopped. Must be called with the queue lock held and interrupts
293  *    disabled. See also @blk_run_queue.
294  */
295 inline void __blk_run_queue_uncond(struct request_queue *q)
296 {
297 	if (unlikely(blk_queue_dead(q)))
298 		return;
299 
300 	/*
301 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
302 	 * the queue lock internally. As a result multiple threads may be
303 	 * running such a request function concurrently. Keep track of the
304 	 * number of active request_fn invocations such that blk_drain_queue()
305 	 * can wait until all these request_fn calls have finished.
306 	 */
307 	q->request_fn_active++;
308 	q->request_fn(q);
309 	q->request_fn_active--;
310 }
311 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
312 
313 /**
314  * __blk_run_queue - run a single device queue
315  * @q:	The queue to run
316  *
317  * Description:
318  *    See @blk_run_queue. This variant must be called with the queue lock
319  *    held and interrupts disabled.
320  */
321 void __blk_run_queue(struct request_queue *q)
322 {
323 	if (unlikely(blk_queue_stopped(q)))
324 		return;
325 
326 	__blk_run_queue_uncond(q);
327 }
328 EXPORT_SYMBOL(__blk_run_queue);
329 
330 /**
331  * blk_run_queue_async - run a single device queue in workqueue context
332  * @q:	The queue to run
333  *
334  * Description:
335  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
336  *    of us. The caller must hold the queue lock.
337  */
338 void blk_run_queue_async(struct request_queue *q)
339 {
340 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
341 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
342 }
343 EXPORT_SYMBOL(blk_run_queue_async);
344 
345 /**
346  * blk_run_queue - run a single device queue
347  * @q: The queue to run
348  *
349  * Description:
350  *    Invoke request handling on this queue, if it has pending work to do.
351  *    May be used to restart queueing when a request has completed.
352  */
353 void blk_run_queue(struct request_queue *q)
354 {
355 	unsigned long flags;
356 
357 	spin_lock_irqsave(q->queue_lock, flags);
358 	__blk_run_queue(q);
359 	spin_unlock_irqrestore(q->queue_lock, flags);
360 }
361 EXPORT_SYMBOL(blk_run_queue);
362 
363 void blk_put_queue(struct request_queue *q)
364 {
365 	kobject_put(&q->kobj);
366 }
367 EXPORT_SYMBOL(blk_put_queue);
368 
369 /**
370  * __blk_drain_queue - drain requests from request_queue
371  * @q: queue to drain
372  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
373  *
374  * Drain requests from @q.  If @drain_all is set, all requests are drained.
375  * If not, only ELVPRIV requests are drained.  The caller is responsible
376  * for ensuring that no new requests which need to be drained are queued.
377  */
378 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
379 	__releases(q->queue_lock)
380 	__acquires(q->queue_lock)
381 {
382 	int i;
383 
384 	lockdep_assert_held(q->queue_lock);
385 
386 	while (true) {
387 		bool drain = false;
388 
389 		/*
390 		 * The caller might be trying to drain @q before its
391 		 * elevator is initialized.
392 		 */
393 		if (q->elevator)
394 			elv_drain_elevator(q);
395 
396 		blkcg_drain_queue(q);
397 
398 		/*
399 		 * This function might be called on a queue which failed
400 		 * driver init after queue creation or is not yet fully
401 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
402 		 * in such cases.  Kick queue iff dispatch queue has
403 		 * something on it and @q has request_fn set.
404 		 */
405 		if (!list_empty(&q->queue_head) && q->request_fn)
406 			__blk_run_queue(q);
407 
408 		drain |= q->nr_rqs_elvpriv;
409 		drain |= q->request_fn_active;
410 
411 		/*
412 		 * Unfortunately, requests are queued at and tracked from
413 		 * multiple places and there's no single counter which can
414 		 * be drained.  Check all the queues and counters.
415 		 */
416 		if (drain_all) {
417 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
418 			drain |= !list_empty(&q->queue_head);
419 			for (i = 0; i < 2; i++) {
420 				drain |= q->nr_rqs[i];
421 				drain |= q->in_flight[i];
422 				if (fq)
423 				    drain |= !list_empty(&fq->flush_queue[i]);
424 			}
425 		}
426 
427 		if (!drain)
428 			break;
429 
430 		spin_unlock_irq(q->queue_lock);
431 
432 		msleep(10);
433 
434 		spin_lock_irq(q->queue_lock);
435 	}
436 
437 	/*
438 	 * With queue marked dead, any woken up waiter will fail the
439 	 * allocation path, so the wakeup chaining is lost and we're
440 	 * left with hung waiters. We need to wake up those waiters.
441 	 */
442 	if (q->request_fn) {
443 		struct request_list *rl;
444 
445 		blk_queue_for_each_rl(rl, q)
446 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
447 				wake_up_all(&rl->wait[i]);
448 	}
449 }
450 
451 /**
452  * blk_queue_bypass_start - enter queue bypass mode
453  * @q: queue of interest
454  *
455  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
456  * function makes @q enter bypass mode and drains all requests which were
457  * throttled or issued before.  On return, it's guaranteed that no request
458  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
459  * inside queue or RCU read lock.
460  */
461 void blk_queue_bypass_start(struct request_queue *q)
462 {
463 	spin_lock_irq(q->queue_lock);
464 	q->bypass_depth++;
465 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
466 	spin_unlock_irq(q->queue_lock);
467 
468 	/*
469 	 * Queues start drained.  Skip actual draining till init is
470 	 * complete.  This avoids lenghty delays during queue init which
471 	 * can happen many times during boot.
472 	 */
473 	if (blk_queue_init_done(q)) {
474 		spin_lock_irq(q->queue_lock);
475 		__blk_drain_queue(q, false);
476 		spin_unlock_irq(q->queue_lock);
477 
478 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
479 		synchronize_rcu();
480 	}
481 }
482 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
483 
484 /**
485  * blk_queue_bypass_end - leave queue bypass mode
486  * @q: queue of interest
487  *
488  * Leave bypass mode and restore the normal queueing behavior.
489  */
490 void blk_queue_bypass_end(struct request_queue *q)
491 {
492 	spin_lock_irq(q->queue_lock);
493 	if (!--q->bypass_depth)
494 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
495 	WARN_ON_ONCE(q->bypass_depth < 0);
496 	spin_unlock_irq(q->queue_lock);
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
499 
500 void blk_set_queue_dying(struct request_queue *q)
501 {
502 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
503 
504 	if (q->mq_ops)
505 		blk_mq_wake_waiters(q);
506 	else {
507 		struct request_list *rl;
508 
509 		blk_queue_for_each_rl(rl, q) {
510 			if (rl->rq_pool) {
511 				wake_up(&rl->wait[BLK_RW_SYNC]);
512 				wake_up(&rl->wait[BLK_RW_ASYNC]);
513 			}
514 		}
515 	}
516 }
517 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
518 
519 /**
520  * blk_cleanup_queue - shutdown a request queue
521  * @q: request queue to shutdown
522  *
523  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
524  * put it.  All future requests will be failed immediately with -ENODEV.
525  */
526 void blk_cleanup_queue(struct request_queue *q)
527 {
528 	spinlock_t *lock = q->queue_lock;
529 
530 	/* mark @q DYING, no new request or merges will be allowed afterwards */
531 	mutex_lock(&q->sysfs_lock);
532 	blk_set_queue_dying(q);
533 	spin_lock_irq(lock);
534 
535 	/*
536 	 * A dying queue is permanently in bypass mode till released.  Note
537 	 * that, unlike blk_queue_bypass_start(), we aren't performing
538 	 * synchronize_rcu() after entering bypass mode to avoid the delay
539 	 * as some drivers create and destroy a lot of queues while
540 	 * probing.  This is still safe because blk_release_queue() will be
541 	 * called only after the queue refcnt drops to zero and nothing,
542 	 * RCU or not, would be traversing the queue by then.
543 	 */
544 	q->bypass_depth++;
545 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
546 
547 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
548 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
549 	queue_flag_set(QUEUE_FLAG_DYING, q);
550 	spin_unlock_irq(lock);
551 	mutex_unlock(&q->sysfs_lock);
552 
553 	/*
554 	 * Drain all requests queued before DYING marking. Set DEAD flag to
555 	 * prevent that q->request_fn() gets invoked after draining finished.
556 	 */
557 	blk_freeze_queue(q);
558 	spin_lock_irq(lock);
559 	if (!q->mq_ops)
560 		__blk_drain_queue(q, true);
561 	queue_flag_set(QUEUE_FLAG_DEAD, q);
562 	spin_unlock_irq(lock);
563 
564 	/* for synchronous bio-based driver finish in-flight integrity i/o */
565 	blk_flush_integrity();
566 
567 	/* @q won't process any more request, flush async actions */
568 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
569 	blk_sync_queue(q);
570 
571 	if (q->mq_ops)
572 		blk_mq_free_queue(q);
573 	percpu_ref_exit(&q->q_usage_counter);
574 
575 	spin_lock_irq(lock);
576 	if (q->queue_lock != &q->__queue_lock)
577 		q->queue_lock = &q->__queue_lock;
578 	spin_unlock_irq(lock);
579 
580 	bdi_unregister(&q->backing_dev_info);
581 
582 	/* @q is and will stay empty, shutdown and put */
583 	blk_put_queue(q);
584 }
585 EXPORT_SYMBOL(blk_cleanup_queue);
586 
587 /* Allocate memory local to the request queue */
588 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
589 {
590 	int nid = (int)(long)data;
591 	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
592 }
593 
594 static void free_request_struct(void *element, void *unused)
595 {
596 	kmem_cache_free(request_cachep, element);
597 }
598 
599 int blk_init_rl(struct request_list *rl, struct request_queue *q,
600 		gfp_t gfp_mask)
601 {
602 	if (unlikely(rl->rq_pool))
603 		return 0;
604 
605 	rl->q = q;
606 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
607 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
608 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
609 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
610 
611 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
612 					  free_request_struct,
613 					  (void *)(long)q->node, gfp_mask,
614 					  q->node);
615 	if (!rl->rq_pool)
616 		return -ENOMEM;
617 
618 	return 0;
619 }
620 
621 void blk_exit_rl(struct request_list *rl)
622 {
623 	if (rl->rq_pool)
624 		mempool_destroy(rl->rq_pool);
625 }
626 
627 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
628 {
629 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
630 }
631 EXPORT_SYMBOL(blk_alloc_queue);
632 
633 int blk_queue_enter(struct request_queue *q, gfp_t gfp)
634 {
635 	while (true) {
636 		int ret;
637 
638 		if (percpu_ref_tryget_live(&q->q_usage_counter))
639 			return 0;
640 
641 		if (!(gfp & __GFP_WAIT))
642 			return -EBUSY;
643 
644 		ret = wait_event_interruptible(q->mq_freeze_wq,
645 				!atomic_read(&q->mq_freeze_depth) ||
646 				blk_queue_dying(q));
647 		if (blk_queue_dying(q))
648 			return -ENODEV;
649 		if (ret)
650 			return ret;
651 	}
652 }
653 
654 void blk_queue_exit(struct request_queue *q)
655 {
656 	percpu_ref_put(&q->q_usage_counter);
657 }
658 
659 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
660 {
661 	struct request_queue *q =
662 		container_of(ref, struct request_queue, q_usage_counter);
663 
664 	wake_up_all(&q->mq_freeze_wq);
665 }
666 
667 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
668 {
669 	struct request_queue *q;
670 	int err;
671 
672 	q = kmem_cache_alloc_node(blk_requestq_cachep,
673 				gfp_mask | __GFP_ZERO, node_id);
674 	if (!q)
675 		return NULL;
676 
677 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
678 	if (q->id < 0)
679 		goto fail_q;
680 
681 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
682 	if (!q->bio_split)
683 		goto fail_id;
684 
685 	q->backing_dev_info.ra_pages =
686 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
687 	q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
688 	q->backing_dev_info.name = "block";
689 	q->node = node_id;
690 
691 	err = bdi_init(&q->backing_dev_info);
692 	if (err)
693 		goto fail_split;
694 
695 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
696 		    laptop_mode_timer_fn, (unsigned long) q);
697 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
698 	INIT_LIST_HEAD(&q->queue_head);
699 	INIT_LIST_HEAD(&q->timeout_list);
700 	INIT_LIST_HEAD(&q->icq_list);
701 #ifdef CONFIG_BLK_CGROUP
702 	INIT_LIST_HEAD(&q->blkg_list);
703 #endif
704 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
705 
706 	kobject_init(&q->kobj, &blk_queue_ktype);
707 
708 	mutex_init(&q->sysfs_lock);
709 	spin_lock_init(&q->__queue_lock);
710 
711 	/*
712 	 * By default initialize queue_lock to internal lock and driver can
713 	 * override it later if need be.
714 	 */
715 	q->queue_lock = &q->__queue_lock;
716 
717 	/*
718 	 * A queue starts its life with bypass turned on to avoid
719 	 * unnecessary bypass on/off overhead and nasty surprises during
720 	 * init.  The initial bypass will be finished when the queue is
721 	 * registered by blk_register_queue().
722 	 */
723 	q->bypass_depth = 1;
724 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
725 
726 	init_waitqueue_head(&q->mq_freeze_wq);
727 
728 	/*
729 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
730 	 * See blk_register_queue() for details.
731 	 */
732 	if (percpu_ref_init(&q->q_usage_counter,
733 				blk_queue_usage_counter_release,
734 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
735 		goto fail_bdi;
736 
737 	if (blkcg_init_queue(q))
738 		goto fail_ref;
739 
740 	return q;
741 
742 fail_ref:
743 	percpu_ref_exit(&q->q_usage_counter);
744 fail_bdi:
745 	bdi_destroy(&q->backing_dev_info);
746 fail_split:
747 	bioset_free(q->bio_split);
748 fail_id:
749 	ida_simple_remove(&blk_queue_ida, q->id);
750 fail_q:
751 	kmem_cache_free(blk_requestq_cachep, q);
752 	return NULL;
753 }
754 EXPORT_SYMBOL(blk_alloc_queue_node);
755 
756 /**
757  * blk_init_queue  - prepare a request queue for use with a block device
758  * @rfn:  The function to be called to process requests that have been
759  *        placed on the queue.
760  * @lock: Request queue spin lock
761  *
762  * Description:
763  *    If a block device wishes to use the standard request handling procedures,
764  *    which sorts requests and coalesces adjacent requests, then it must
765  *    call blk_init_queue().  The function @rfn will be called when there
766  *    are requests on the queue that need to be processed.  If the device
767  *    supports plugging, then @rfn may not be called immediately when requests
768  *    are available on the queue, but may be called at some time later instead.
769  *    Plugged queues are generally unplugged when a buffer belonging to one
770  *    of the requests on the queue is needed, or due to memory pressure.
771  *
772  *    @rfn is not required, or even expected, to remove all requests off the
773  *    queue, but only as many as it can handle at a time.  If it does leave
774  *    requests on the queue, it is responsible for arranging that the requests
775  *    get dealt with eventually.
776  *
777  *    The queue spin lock must be held while manipulating the requests on the
778  *    request queue; this lock will be taken also from interrupt context, so irq
779  *    disabling is needed for it.
780  *
781  *    Function returns a pointer to the initialized request queue, or %NULL if
782  *    it didn't succeed.
783  *
784  * Note:
785  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
786  *    when the block device is deactivated (such as at module unload).
787  **/
788 
789 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
790 {
791 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
792 }
793 EXPORT_SYMBOL(blk_init_queue);
794 
795 struct request_queue *
796 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
797 {
798 	struct request_queue *uninit_q, *q;
799 
800 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
801 	if (!uninit_q)
802 		return NULL;
803 
804 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
805 	if (!q)
806 		blk_cleanup_queue(uninit_q);
807 
808 	return q;
809 }
810 EXPORT_SYMBOL(blk_init_queue_node);
811 
812 static void blk_queue_bio(struct request_queue *q, struct bio *bio);
813 
814 struct request_queue *
815 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
816 			 spinlock_t *lock)
817 {
818 	if (!q)
819 		return NULL;
820 
821 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
822 	if (!q->fq)
823 		return NULL;
824 
825 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
826 		goto fail;
827 
828 	q->request_fn		= rfn;
829 	q->prep_rq_fn		= NULL;
830 	q->unprep_rq_fn		= NULL;
831 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
832 
833 	/* Override internal queue lock with supplied lock pointer */
834 	if (lock)
835 		q->queue_lock		= lock;
836 
837 	/*
838 	 * This also sets hw/phys segments, boundary and size
839 	 */
840 	blk_queue_make_request(q, blk_queue_bio);
841 
842 	q->sg_reserved_size = INT_MAX;
843 
844 	/* Protect q->elevator from elevator_change */
845 	mutex_lock(&q->sysfs_lock);
846 
847 	/* init elevator */
848 	if (elevator_init(q, NULL)) {
849 		mutex_unlock(&q->sysfs_lock);
850 		goto fail;
851 	}
852 
853 	mutex_unlock(&q->sysfs_lock);
854 
855 	return q;
856 
857 fail:
858 	blk_free_flush_queue(q->fq);
859 	return NULL;
860 }
861 EXPORT_SYMBOL(blk_init_allocated_queue);
862 
863 bool blk_get_queue(struct request_queue *q)
864 {
865 	if (likely(!blk_queue_dying(q))) {
866 		__blk_get_queue(q);
867 		return true;
868 	}
869 
870 	return false;
871 }
872 EXPORT_SYMBOL(blk_get_queue);
873 
874 static inline void blk_free_request(struct request_list *rl, struct request *rq)
875 {
876 	if (rq->cmd_flags & REQ_ELVPRIV) {
877 		elv_put_request(rl->q, rq);
878 		if (rq->elv.icq)
879 			put_io_context(rq->elv.icq->ioc);
880 	}
881 
882 	mempool_free(rq, rl->rq_pool);
883 }
884 
885 /*
886  * ioc_batching returns true if the ioc is a valid batching request and
887  * should be given priority access to a request.
888  */
889 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
890 {
891 	if (!ioc)
892 		return 0;
893 
894 	/*
895 	 * Make sure the process is able to allocate at least 1 request
896 	 * even if the batch times out, otherwise we could theoretically
897 	 * lose wakeups.
898 	 */
899 	return ioc->nr_batch_requests == q->nr_batching ||
900 		(ioc->nr_batch_requests > 0
901 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
902 }
903 
904 /*
905  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
906  * will cause the process to be a "batcher" on all queues in the system. This
907  * is the behaviour we want though - once it gets a wakeup it should be given
908  * a nice run.
909  */
910 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
911 {
912 	if (!ioc || ioc_batching(q, ioc))
913 		return;
914 
915 	ioc->nr_batch_requests = q->nr_batching;
916 	ioc->last_waited = jiffies;
917 }
918 
919 static void __freed_request(struct request_list *rl, int sync)
920 {
921 	struct request_queue *q = rl->q;
922 
923 	if (rl->count[sync] < queue_congestion_off_threshold(q))
924 		blk_clear_congested(rl, sync);
925 
926 	if (rl->count[sync] + 1 <= q->nr_requests) {
927 		if (waitqueue_active(&rl->wait[sync]))
928 			wake_up(&rl->wait[sync]);
929 
930 		blk_clear_rl_full(rl, sync);
931 	}
932 }
933 
934 /*
935  * A request has just been released.  Account for it, update the full and
936  * congestion status, wake up any waiters.   Called under q->queue_lock.
937  */
938 static void freed_request(struct request_list *rl, unsigned int flags)
939 {
940 	struct request_queue *q = rl->q;
941 	int sync = rw_is_sync(flags);
942 
943 	q->nr_rqs[sync]--;
944 	rl->count[sync]--;
945 	if (flags & REQ_ELVPRIV)
946 		q->nr_rqs_elvpriv--;
947 
948 	__freed_request(rl, sync);
949 
950 	if (unlikely(rl->starved[sync ^ 1]))
951 		__freed_request(rl, sync ^ 1);
952 }
953 
954 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
955 {
956 	struct request_list *rl;
957 	int on_thresh, off_thresh;
958 
959 	spin_lock_irq(q->queue_lock);
960 	q->nr_requests = nr;
961 	blk_queue_congestion_threshold(q);
962 	on_thresh = queue_congestion_on_threshold(q);
963 	off_thresh = queue_congestion_off_threshold(q);
964 
965 	blk_queue_for_each_rl(rl, q) {
966 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
967 			blk_set_congested(rl, BLK_RW_SYNC);
968 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
969 			blk_clear_congested(rl, BLK_RW_SYNC);
970 
971 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
972 			blk_set_congested(rl, BLK_RW_ASYNC);
973 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
974 			blk_clear_congested(rl, BLK_RW_ASYNC);
975 
976 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
977 			blk_set_rl_full(rl, BLK_RW_SYNC);
978 		} else {
979 			blk_clear_rl_full(rl, BLK_RW_SYNC);
980 			wake_up(&rl->wait[BLK_RW_SYNC]);
981 		}
982 
983 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
984 			blk_set_rl_full(rl, BLK_RW_ASYNC);
985 		} else {
986 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
987 			wake_up(&rl->wait[BLK_RW_ASYNC]);
988 		}
989 	}
990 
991 	spin_unlock_irq(q->queue_lock);
992 	return 0;
993 }
994 
995 /*
996  * Determine if elevator data should be initialized when allocating the
997  * request associated with @bio.
998  */
999 static bool blk_rq_should_init_elevator(struct bio *bio)
1000 {
1001 	if (!bio)
1002 		return true;
1003 
1004 	/*
1005 	 * Flush requests do not use the elevator so skip initialization.
1006 	 * This allows a request to share the flush and elevator data.
1007 	 */
1008 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1009 		return false;
1010 
1011 	return true;
1012 }
1013 
1014 /**
1015  * rq_ioc - determine io_context for request allocation
1016  * @bio: request being allocated is for this bio (can be %NULL)
1017  *
1018  * Determine io_context to use for request allocation for @bio.  May return
1019  * %NULL if %current->io_context doesn't exist.
1020  */
1021 static struct io_context *rq_ioc(struct bio *bio)
1022 {
1023 #ifdef CONFIG_BLK_CGROUP
1024 	if (bio && bio->bi_ioc)
1025 		return bio->bi_ioc;
1026 #endif
1027 	return current->io_context;
1028 }
1029 
1030 /**
1031  * __get_request - get a free request
1032  * @rl: request list to allocate from
1033  * @rw_flags: RW and SYNC flags
1034  * @bio: bio to allocate request for (can be %NULL)
1035  * @gfp_mask: allocation mask
1036  *
1037  * Get a free request from @q.  This function may fail under memory
1038  * pressure or if @q is dead.
1039  *
1040  * Must be called with @q->queue_lock held and,
1041  * Returns ERR_PTR on failure, with @q->queue_lock held.
1042  * Returns request pointer on success, with @q->queue_lock *not held*.
1043  */
1044 static struct request *__get_request(struct request_list *rl, int rw_flags,
1045 				     struct bio *bio, gfp_t gfp_mask)
1046 {
1047 	struct request_queue *q = rl->q;
1048 	struct request *rq;
1049 	struct elevator_type *et = q->elevator->type;
1050 	struct io_context *ioc = rq_ioc(bio);
1051 	struct io_cq *icq = NULL;
1052 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1053 	int may_queue;
1054 
1055 	if (unlikely(blk_queue_dying(q)))
1056 		return ERR_PTR(-ENODEV);
1057 
1058 	may_queue = elv_may_queue(q, rw_flags);
1059 	if (may_queue == ELV_MQUEUE_NO)
1060 		goto rq_starved;
1061 
1062 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1063 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1064 			/*
1065 			 * The queue will fill after this allocation, so set
1066 			 * it as full, and mark this process as "batching".
1067 			 * This process will be allowed to complete a batch of
1068 			 * requests, others will be blocked.
1069 			 */
1070 			if (!blk_rl_full(rl, is_sync)) {
1071 				ioc_set_batching(q, ioc);
1072 				blk_set_rl_full(rl, is_sync);
1073 			} else {
1074 				if (may_queue != ELV_MQUEUE_MUST
1075 						&& !ioc_batching(q, ioc)) {
1076 					/*
1077 					 * The queue is full and the allocating
1078 					 * process is not a "batcher", and not
1079 					 * exempted by the IO scheduler
1080 					 */
1081 					return ERR_PTR(-ENOMEM);
1082 				}
1083 			}
1084 		}
1085 		blk_set_congested(rl, is_sync);
1086 	}
1087 
1088 	/*
1089 	 * Only allow batching queuers to allocate up to 50% over the defined
1090 	 * limit of requests, otherwise we could have thousands of requests
1091 	 * allocated with any setting of ->nr_requests
1092 	 */
1093 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1094 		return ERR_PTR(-ENOMEM);
1095 
1096 	q->nr_rqs[is_sync]++;
1097 	rl->count[is_sync]++;
1098 	rl->starved[is_sync] = 0;
1099 
1100 	/*
1101 	 * Decide whether the new request will be managed by elevator.  If
1102 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1103 	 * prevent the current elevator from being destroyed until the new
1104 	 * request is freed.  This guarantees icq's won't be destroyed and
1105 	 * makes creating new ones safe.
1106 	 *
1107 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1108 	 * it will be created after releasing queue_lock.
1109 	 */
1110 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1111 		rw_flags |= REQ_ELVPRIV;
1112 		q->nr_rqs_elvpriv++;
1113 		if (et->icq_cache && ioc)
1114 			icq = ioc_lookup_icq(ioc, q);
1115 	}
1116 
1117 	if (blk_queue_io_stat(q))
1118 		rw_flags |= REQ_IO_STAT;
1119 	spin_unlock_irq(q->queue_lock);
1120 
1121 	/* allocate and init request */
1122 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1123 	if (!rq)
1124 		goto fail_alloc;
1125 
1126 	blk_rq_init(q, rq);
1127 	blk_rq_set_rl(rq, rl);
1128 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1129 
1130 	/* init elvpriv */
1131 	if (rw_flags & REQ_ELVPRIV) {
1132 		if (unlikely(et->icq_cache && !icq)) {
1133 			if (ioc)
1134 				icq = ioc_create_icq(ioc, q, gfp_mask);
1135 			if (!icq)
1136 				goto fail_elvpriv;
1137 		}
1138 
1139 		rq->elv.icq = icq;
1140 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1141 			goto fail_elvpriv;
1142 
1143 		/* @rq->elv.icq holds io_context until @rq is freed */
1144 		if (icq)
1145 			get_io_context(icq->ioc);
1146 	}
1147 out:
1148 	/*
1149 	 * ioc may be NULL here, and ioc_batching will be false. That's
1150 	 * OK, if the queue is under the request limit then requests need
1151 	 * not count toward the nr_batch_requests limit. There will always
1152 	 * be some limit enforced by BLK_BATCH_TIME.
1153 	 */
1154 	if (ioc_batching(q, ioc))
1155 		ioc->nr_batch_requests--;
1156 
1157 	trace_block_getrq(q, bio, rw_flags & 1);
1158 	return rq;
1159 
1160 fail_elvpriv:
1161 	/*
1162 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1163 	 * and may fail indefinitely under memory pressure and thus
1164 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1165 	 * disturb iosched and blkcg but weird is bettern than dead.
1166 	 */
1167 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1168 			   __func__, dev_name(q->backing_dev_info.dev));
1169 
1170 	rq->cmd_flags &= ~REQ_ELVPRIV;
1171 	rq->elv.icq = NULL;
1172 
1173 	spin_lock_irq(q->queue_lock);
1174 	q->nr_rqs_elvpriv--;
1175 	spin_unlock_irq(q->queue_lock);
1176 	goto out;
1177 
1178 fail_alloc:
1179 	/*
1180 	 * Allocation failed presumably due to memory. Undo anything we
1181 	 * might have messed up.
1182 	 *
1183 	 * Allocating task should really be put onto the front of the wait
1184 	 * queue, but this is pretty rare.
1185 	 */
1186 	spin_lock_irq(q->queue_lock);
1187 	freed_request(rl, rw_flags);
1188 
1189 	/*
1190 	 * in the very unlikely event that allocation failed and no
1191 	 * requests for this direction was pending, mark us starved so that
1192 	 * freeing of a request in the other direction will notice
1193 	 * us. another possible fix would be to split the rq mempool into
1194 	 * READ and WRITE
1195 	 */
1196 rq_starved:
1197 	if (unlikely(rl->count[is_sync] == 0))
1198 		rl->starved[is_sync] = 1;
1199 	return ERR_PTR(-ENOMEM);
1200 }
1201 
1202 /**
1203  * get_request - get a free request
1204  * @q: request_queue to allocate request from
1205  * @rw_flags: RW and SYNC flags
1206  * @bio: bio to allocate request for (can be %NULL)
1207  * @gfp_mask: allocation mask
1208  *
1209  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1210  * function keeps retrying under memory pressure and fails iff @q is dead.
1211  *
1212  * Must be called with @q->queue_lock held and,
1213  * Returns ERR_PTR on failure, with @q->queue_lock held.
1214  * Returns request pointer on success, with @q->queue_lock *not held*.
1215  */
1216 static struct request *get_request(struct request_queue *q, int rw_flags,
1217 				   struct bio *bio, gfp_t gfp_mask)
1218 {
1219 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1220 	DEFINE_WAIT(wait);
1221 	struct request_list *rl;
1222 	struct request *rq;
1223 
1224 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1225 retry:
1226 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1227 	if (!IS_ERR(rq))
1228 		return rq;
1229 
1230 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1231 		blk_put_rl(rl);
1232 		return rq;
1233 	}
1234 
1235 	/* wait on @rl and retry */
1236 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1237 				  TASK_UNINTERRUPTIBLE);
1238 
1239 	trace_block_sleeprq(q, bio, rw_flags & 1);
1240 
1241 	spin_unlock_irq(q->queue_lock);
1242 	io_schedule();
1243 
1244 	/*
1245 	 * After sleeping, we become a "batching" process and will be able
1246 	 * to allocate at least one request, and up to a big batch of them
1247 	 * for a small period time.  See ioc_batching, ioc_set_batching
1248 	 */
1249 	ioc_set_batching(q, current->io_context);
1250 
1251 	spin_lock_irq(q->queue_lock);
1252 	finish_wait(&rl->wait[is_sync], &wait);
1253 
1254 	goto retry;
1255 }
1256 
1257 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1258 		gfp_t gfp_mask)
1259 {
1260 	struct request *rq;
1261 
1262 	BUG_ON(rw != READ && rw != WRITE);
1263 
1264 	/* create ioc upfront */
1265 	create_io_context(gfp_mask, q->node);
1266 
1267 	spin_lock_irq(q->queue_lock);
1268 	rq = get_request(q, rw, NULL, gfp_mask);
1269 	if (IS_ERR(rq))
1270 		spin_unlock_irq(q->queue_lock);
1271 	/* q->queue_lock is unlocked at this point */
1272 
1273 	return rq;
1274 }
1275 
1276 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1277 {
1278 	if (q->mq_ops)
1279 		return blk_mq_alloc_request(q, rw, gfp_mask, false);
1280 	else
1281 		return blk_old_get_request(q, rw, gfp_mask);
1282 }
1283 EXPORT_SYMBOL(blk_get_request);
1284 
1285 /**
1286  * blk_make_request - given a bio, allocate a corresponding struct request.
1287  * @q: target request queue
1288  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1289  *        It may be a chained-bio properly constructed by block/bio layer.
1290  * @gfp_mask: gfp flags to be used for memory allocation
1291  *
1292  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1293  * type commands. Where the struct request needs to be farther initialized by
1294  * the caller. It is passed a &struct bio, which describes the memory info of
1295  * the I/O transfer.
1296  *
1297  * The caller of blk_make_request must make sure that bi_io_vec
1298  * are set to describe the memory buffers. That bio_data_dir() will return
1299  * the needed direction of the request. (And all bio's in the passed bio-chain
1300  * are properly set accordingly)
1301  *
1302  * If called under none-sleepable conditions, mapped bio buffers must not
1303  * need bouncing, by calling the appropriate masked or flagged allocator,
1304  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1305  * BUG.
1306  *
1307  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1308  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1309  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1310  * completion of a bio that hasn't been submitted yet, thus resulting in a
1311  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1312  * of bio_alloc(), as that avoids the mempool deadlock.
1313  * If possible a big IO should be split into smaller parts when allocation
1314  * fails. Partial allocation should not be an error, or you risk a live-lock.
1315  */
1316 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1317 				 gfp_t gfp_mask)
1318 {
1319 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1320 
1321 	if (IS_ERR(rq))
1322 		return rq;
1323 
1324 	blk_rq_set_block_pc(rq);
1325 
1326 	for_each_bio(bio) {
1327 		struct bio *bounce_bio = bio;
1328 		int ret;
1329 
1330 		blk_queue_bounce(q, &bounce_bio);
1331 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1332 		if (unlikely(ret)) {
1333 			blk_put_request(rq);
1334 			return ERR_PTR(ret);
1335 		}
1336 	}
1337 
1338 	return rq;
1339 }
1340 EXPORT_SYMBOL(blk_make_request);
1341 
1342 /**
1343  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1344  * @rq:		request to be initialized
1345  *
1346  */
1347 void blk_rq_set_block_pc(struct request *rq)
1348 {
1349 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1350 	rq->__data_len = 0;
1351 	rq->__sector = (sector_t) -1;
1352 	rq->bio = rq->biotail = NULL;
1353 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1354 }
1355 EXPORT_SYMBOL(blk_rq_set_block_pc);
1356 
1357 /**
1358  * blk_requeue_request - put a request back on queue
1359  * @q:		request queue where request should be inserted
1360  * @rq:		request to be inserted
1361  *
1362  * Description:
1363  *    Drivers often keep queueing requests until the hardware cannot accept
1364  *    more, when that condition happens we need to put the request back
1365  *    on the queue. Must be called with queue lock held.
1366  */
1367 void blk_requeue_request(struct request_queue *q, struct request *rq)
1368 {
1369 	blk_delete_timer(rq);
1370 	blk_clear_rq_complete(rq);
1371 	trace_block_rq_requeue(q, rq);
1372 
1373 	if (rq->cmd_flags & REQ_QUEUED)
1374 		blk_queue_end_tag(q, rq);
1375 
1376 	BUG_ON(blk_queued_rq(rq));
1377 
1378 	elv_requeue_request(q, rq);
1379 }
1380 EXPORT_SYMBOL(blk_requeue_request);
1381 
1382 static void add_acct_request(struct request_queue *q, struct request *rq,
1383 			     int where)
1384 {
1385 	blk_account_io_start(rq, true);
1386 	__elv_add_request(q, rq, where);
1387 }
1388 
1389 static void part_round_stats_single(int cpu, struct hd_struct *part,
1390 				    unsigned long now)
1391 {
1392 	int inflight;
1393 
1394 	if (now == part->stamp)
1395 		return;
1396 
1397 	inflight = part_in_flight(part);
1398 	if (inflight) {
1399 		__part_stat_add(cpu, part, time_in_queue,
1400 				inflight * (now - part->stamp));
1401 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1402 	}
1403 	part->stamp = now;
1404 }
1405 
1406 /**
1407  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1408  * @cpu: cpu number for stats access
1409  * @part: target partition
1410  *
1411  * The average IO queue length and utilisation statistics are maintained
1412  * by observing the current state of the queue length and the amount of
1413  * time it has been in this state for.
1414  *
1415  * Normally, that accounting is done on IO completion, but that can result
1416  * in more than a second's worth of IO being accounted for within any one
1417  * second, leading to >100% utilisation.  To deal with that, we call this
1418  * function to do a round-off before returning the results when reading
1419  * /proc/diskstats.  This accounts immediately for all queue usage up to
1420  * the current jiffies and restarts the counters again.
1421  */
1422 void part_round_stats(int cpu, struct hd_struct *part)
1423 {
1424 	unsigned long now = jiffies;
1425 
1426 	if (part->partno)
1427 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1428 	part_round_stats_single(cpu, part, now);
1429 }
1430 EXPORT_SYMBOL_GPL(part_round_stats);
1431 
1432 #ifdef CONFIG_PM
1433 static void blk_pm_put_request(struct request *rq)
1434 {
1435 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1436 		pm_runtime_mark_last_busy(rq->q->dev);
1437 }
1438 #else
1439 static inline void blk_pm_put_request(struct request *rq) {}
1440 #endif
1441 
1442 /*
1443  * queue lock must be held
1444  */
1445 void __blk_put_request(struct request_queue *q, struct request *req)
1446 {
1447 	if (unlikely(!q))
1448 		return;
1449 
1450 	if (q->mq_ops) {
1451 		blk_mq_free_request(req);
1452 		return;
1453 	}
1454 
1455 	blk_pm_put_request(req);
1456 
1457 	elv_completed_request(q, req);
1458 
1459 	/* this is a bio leak */
1460 	WARN_ON(req->bio != NULL);
1461 
1462 	/*
1463 	 * Request may not have originated from ll_rw_blk. if not,
1464 	 * it didn't come out of our reserved rq pools
1465 	 */
1466 	if (req->cmd_flags & REQ_ALLOCED) {
1467 		unsigned int flags = req->cmd_flags;
1468 		struct request_list *rl = blk_rq_rl(req);
1469 
1470 		BUG_ON(!list_empty(&req->queuelist));
1471 		BUG_ON(ELV_ON_HASH(req));
1472 
1473 		blk_free_request(rl, req);
1474 		freed_request(rl, flags);
1475 		blk_put_rl(rl);
1476 	}
1477 }
1478 EXPORT_SYMBOL_GPL(__blk_put_request);
1479 
1480 void blk_put_request(struct request *req)
1481 {
1482 	struct request_queue *q = req->q;
1483 
1484 	if (q->mq_ops)
1485 		blk_mq_free_request(req);
1486 	else {
1487 		unsigned long flags;
1488 
1489 		spin_lock_irqsave(q->queue_lock, flags);
1490 		__blk_put_request(q, req);
1491 		spin_unlock_irqrestore(q->queue_lock, flags);
1492 	}
1493 }
1494 EXPORT_SYMBOL(blk_put_request);
1495 
1496 /**
1497  * blk_add_request_payload - add a payload to a request
1498  * @rq: request to update
1499  * @page: page backing the payload
1500  * @len: length of the payload.
1501  *
1502  * This allows to later add a payload to an already submitted request by
1503  * a block driver.  The driver needs to take care of freeing the payload
1504  * itself.
1505  *
1506  * Note that this is a quite horrible hack and nothing but handling of
1507  * discard requests should ever use it.
1508  */
1509 void blk_add_request_payload(struct request *rq, struct page *page,
1510 		unsigned int len)
1511 {
1512 	struct bio *bio = rq->bio;
1513 
1514 	bio->bi_io_vec->bv_page = page;
1515 	bio->bi_io_vec->bv_offset = 0;
1516 	bio->bi_io_vec->bv_len = len;
1517 
1518 	bio->bi_iter.bi_size = len;
1519 	bio->bi_vcnt = 1;
1520 	bio->bi_phys_segments = 1;
1521 
1522 	rq->__data_len = rq->resid_len = len;
1523 	rq->nr_phys_segments = 1;
1524 }
1525 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1526 
1527 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1528 			    struct bio *bio)
1529 {
1530 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1531 
1532 	if (!ll_back_merge_fn(q, req, bio))
1533 		return false;
1534 
1535 	trace_block_bio_backmerge(q, req, bio);
1536 
1537 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1538 		blk_rq_set_mixed_merge(req);
1539 
1540 	req->biotail->bi_next = bio;
1541 	req->biotail = bio;
1542 	req->__data_len += bio->bi_iter.bi_size;
1543 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1544 
1545 	blk_account_io_start(req, false);
1546 	return true;
1547 }
1548 
1549 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1550 			     struct bio *bio)
1551 {
1552 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1553 
1554 	if (!ll_front_merge_fn(q, req, bio))
1555 		return false;
1556 
1557 	trace_block_bio_frontmerge(q, req, bio);
1558 
1559 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1560 		blk_rq_set_mixed_merge(req);
1561 
1562 	bio->bi_next = req->bio;
1563 	req->bio = bio;
1564 
1565 	req->__sector = bio->bi_iter.bi_sector;
1566 	req->__data_len += bio->bi_iter.bi_size;
1567 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1568 
1569 	blk_account_io_start(req, false);
1570 	return true;
1571 }
1572 
1573 /**
1574  * blk_attempt_plug_merge - try to merge with %current's plugged list
1575  * @q: request_queue new bio is being queued at
1576  * @bio: new bio being queued
1577  * @request_count: out parameter for number of traversed plugged requests
1578  *
1579  * Determine whether @bio being queued on @q can be merged with a request
1580  * on %current's plugged list.  Returns %true if merge was successful,
1581  * otherwise %false.
1582  *
1583  * Plugging coalesces IOs from the same issuer for the same purpose without
1584  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1585  * than scheduling, and the request, while may have elvpriv data, is not
1586  * added on the elevator at this point.  In addition, we don't have
1587  * reliable access to the elevator outside queue lock.  Only check basic
1588  * merging parameters without querying the elevator.
1589  *
1590  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1591  */
1592 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1593 			    unsigned int *request_count,
1594 			    struct request **same_queue_rq)
1595 {
1596 	struct blk_plug *plug;
1597 	struct request *rq;
1598 	bool ret = false;
1599 	struct list_head *plug_list;
1600 
1601 	plug = current->plug;
1602 	if (!plug)
1603 		goto out;
1604 	*request_count = 0;
1605 
1606 	if (q->mq_ops)
1607 		plug_list = &plug->mq_list;
1608 	else
1609 		plug_list = &plug->list;
1610 
1611 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1612 		int el_ret;
1613 
1614 		if (rq->q == q) {
1615 			(*request_count)++;
1616 			/*
1617 			 * Only blk-mq multiple hardware queues case checks the
1618 			 * rq in the same queue, there should be only one such
1619 			 * rq in a queue
1620 			 **/
1621 			if (same_queue_rq)
1622 				*same_queue_rq = rq;
1623 		}
1624 
1625 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1626 			continue;
1627 
1628 		el_ret = blk_try_merge(rq, bio);
1629 		if (el_ret == ELEVATOR_BACK_MERGE) {
1630 			ret = bio_attempt_back_merge(q, rq, bio);
1631 			if (ret)
1632 				break;
1633 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1634 			ret = bio_attempt_front_merge(q, rq, bio);
1635 			if (ret)
1636 				break;
1637 		}
1638 	}
1639 out:
1640 	return ret;
1641 }
1642 
1643 unsigned int blk_plug_queued_count(struct request_queue *q)
1644 {
1645 	struct blk_plug *plug;
1646 	struct request *rq;
1647 	struct list_head *plug_list;
1648 	unsigned int ret = 0;
1649 
1650 	plug = current->plug;
1651 	if (!plug)
1652 		goto out;
1653 
1654 	if (q->mq_ops)
1655 		plug_list = &plug->mq_list;
1656 	else
1657 		plug_list = &plug->list;
1658 
1659 	list_for_each_entry(rq, plug_list, queuelist) {
1660 		if (rq->q == q)
1661 			ret++;
1662 	}
1663 out:
1664 	return ret;
1665 }
1666 
1667 void init_request_from_bio(struct request *req, struct bio *bio)
1668 {
1669 	req->cmd_type = REQ_TYPE_FS;
1670 
1671 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1672 	if (bio->bi_rw & REQ_RAHEAD)
1673 		req->cmd_flags |= REQ_FAILFAST_MASK;
1674 
1675 	req->errors = 0;
1676 	req->__sector = bio->bi_iter.bi_sector;
1677 	req->ioprio = bio_prio(bio);
1678 	blk_rq_bio_prep(req->q, req, bio);
1679 }
1680 
1681 static void blk_queue_bio(struct request_queue *q, struct bio *bio)
1682 {
1683 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1684 	struct blk_plug *plug;
1685 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1686 	struct request *req;
1687 	unsigned int request_count = 0;
1688 
1689 	blk_queue_split(q, &bio, q->bio_split);
1690 
1691 	/*
1692 	 * low level driver can indicate that it wants pages above a
1693 	 * certain limit bounced to low memory (ie for highmem, or even
1694 	 * ISA dma in theory)
1695 	 */
1696 	blk_queue_bounce(q, &bio);
1697 
1698 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1699 		bio->bi_error = -EIO;
1700 		bio_endio(bio);
1701 		return;
1702 	}
1703 
1704 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1705 		spin_lock_irq(q->queue_lock);
1706 		where = ELEVATOR_INSERT_FLUSH;
1707 		goto get_rq;
1708 	}
1709 
1710 	/*
1711 	 * Check if we can merge with the plugged list before grabbing
1712 	 * any locks.
1713 	 */
1714 	if (!blk_queue_nomerges(q)) {
1715 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1716 			return;
1717 	} else
1718 		request_count = blk_plug_queued_count(q);
1719 
1720 	spin_lock_irq(q->queue_lock);
1721 
1722 	el_ret = elv_merge(q, &req, bio);
1723 	if (el_ret == ELEVATOR_BACK_MERGE) {
1724 		if (bio_attempt_back_merge(q, req, bio)) {
1725 			elv_bio_merged(q, req, bio);
1726 			if (!attempt_back_merge(q, req))
1727 				elv_merged_request(q, req, el_ret);
1728 			goto out_unlock;
1729 		}
1730 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1731 		if (bio_attempt_front_merge(q, req, bio)) {
1732 			elv_bio_merged(q, req, bio);
1733 			if (!attempt_front_merge(q, req))
1734 				elv_merged_request(q, req, el_ret);
1735 			goto out_unlock;
1736 		}
1737 	}
1738 
1739 get_rq:
1740 	/*
1741 	 * This sync check and mask will be re-done in init_request_from_bio(),
1742 	 * but we need to set it earlier to expose the sync flag to the
1743 	 * rq allocator and io schedulers.
1744 	 */
1745 	rw_flags = bio_data_dir(bio);
1746 	if (sync)
1747 		rw_flags |= REQ_SYNC;
1748 
1749 	/*
1750 	 * Grab a free request. This is might sleep but can not fail.
1751 	 * Returns with the queue unlocked.
1752 	 */
1753 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1754 	if (IS_ERR(req)) {
1755 		bio->bi_error = PTR_ERR(req);
1756 		bio_endio(bio);
1757 		goto out_unlock;
1758 	}
1759 
1760 	/*
1761 	 * After dropping the lock and possibly sleeping here, our request
1762 	 * may now be mergeable after it had proven unmergeable (above).
1763 	 * We don't worry about that case for efficiency. It won't happen
1764 	 * often, and the elevators are able to handle it.
1765 	 */
1766 	init_request_from_bio(req, bio);
1767 
1768 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1769 		req->cpu = raw_smp_processor_id();
1770 
1771 	plug = current->plug;
1772 	if (plug) {
1773 		/*
1774 		 * If this is the first request added after a plug, fire
1775 		 * of a plug trace.
1776 		 */
1777 		if (!request_count)
1778 			trace_block_plug(q);
1779 		else {
1780 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1781 				blk_flush_plug_list(plug, false);
1782 				trace_block_plug(q);
1783 			}
1784 		}
1785 		list_add_tail(&req->queuelist, &plug->list);
1786 		blk_account_io_start(req, true);
1787 	} else {
1788 		spin_lock_irq(q->queue_lock);
1789 		add_acct_request(q, req, where);
1790 		__blk_run_queue(q);
1791 out_unlock:
1792 		spin_unlock_irq(q->queue_lock);
1793 	}
1794 }
1795 
1796 /*
1797  * If bio->bi_dev is a partition, remap the location
1798  */
1799 static inline void blk_partition_remap(struct bio *bio)
1800 {
1801 	struct block_device *bdev = bio->bi_bdev;
1802 
1803 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1804 		struct hd_struct *p = bdev->bd_part;
1805 
1806 		bio->bi_iter.bi_sector += p->start_sect;
1807 		bio->bi_bdev = bdev->bd_contains;
1808 
1809 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1810 				      bdev->bd_dev,
1811 				      bio->bi_iter.bi_sector - p->start_sect);
1812 	}
1813 }
1814 
1815 static void handle_bad_sector(struct bio *bio)
1816 {
1817 	char b[BDEVNAME_SIZE];
1818 
1819 	printk(KERN_INFO "attempt to access beyond end of device\n");
1820 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1821 			bdevname(bio->bi_bdev, b),
1822 			bio->bi_rw,
1823 			(unsigned long long)bio_end_sector(bio),
1824 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1825 }
1826 
1827 #ifdef CONFIG_FAIL_MAKE_REQUEST
1828 
1829 static DECLARE_FAULT_ATTR(fail_make_request);
1830 
1831 static int __init setup_fail_make_request(char *str)
1832 {
1833 	return setup_fault_attr(&fail_make_request, str);
1834 }
1835 __setup("fail_make_request=", setup_fail_make_request);
1836 
1837 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1838 {
1839 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1840 }
1841 
1842 static int __init fail_make_request_debugfs(void)
1843 {
1844 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1845 						NULL, &fail_make_request);
1846 
1847 	return PTR_ERR_OR_ZERO(dir);
1848 }
1849 
1850 late_initcall(fail_make_request_debugfs);
1851 
1852 #else /* CONFIG_FAIL_MAKE_REQUEST */
1853 
1854 static inline bool should_fail_request(struct hd_struct *part,
1855 					unsigned int bytes)
1856 {
1857 	return false;
1858 }
1859 
1860 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1861 
1862 /*
1863  * Check whether this bio extends beyond the end of the device.
1864  */
1865 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1866 {
1867 	sector_t maxsector;
1868 
1869 	if (!nr_sectors)
1870 		return 0;
1871 
1872 	/* Test device or partition size, when known. */
1873 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1874 	if (maxsector) {
1875 		sector_t sector = bio->bi_iter.bi_sector;
1876 
1877 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1878 			/*
1879 			 * This may well happen - the kernel calls bread()
1880 			 * without checking the size of the device, e.g., when
1881 			 * mounting a device.
1882 			 */
1883 			handle_bad_sector(bio);
1884 			return 1;
1885 		}
1886 	}
1887 
1888 	return 0;
1889 }
1890 
1891 static noinline_for_stack bool
1892 generic_make_request_checks(struct bio *bio)
1893 {
1894 	struct request_queue *q;
1895 	int nr_sectors = bio_sectors(bio);
1896 	int err = -EIO;
1897 	char b[BDEVNAME_SIZE];
1898 	struct hd_struct *part;
1899 
1900 	might_sleep();
1901 
1902 	if (bio_check_eod(bio, nr_sectors))
1903 		goto end_io;
1904 
1905 	q = bdev_get_queue(bio->bi_bdev);
1906 	if (unlikely(!q)) {
1907 		printk(KERN_ERR
1908 		       "generic_make_request: Trying to access "
1909 			"nonexistent block-device %s (%Lu)\n",
1910 			bdevname(bio->bi_bdev, b),
1911 			(long long) bio->bi_iter.bi_sector);
1912 		goto end_io;
1913 	}
1914 
1915 	part = bio->bi_bdev->bd_part;
1916 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1917 	    should_fail_request(&part_to_disk(part)->part0,
1918 				bio->bi_iter.bi_size))
1919 		goto end_io;
1920 
1921 	/*
1922 	 * If this device has partitions, remap block n
1923 	 * of partition p to block n+start(p) of the disk.
1924 	 */
1925 	blk_partition_remap(bio);
1926 
1927 	if (bio_check_eod(bio, nr_sectors))
1928 		goto end_io;
1929 
1930 	/*
1931 	 * Filter flush bio's early so that make_request based
1932 	 * drivers without flush support don't have to worry
1933 	 * about them.
1934 	 */
1935 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1936 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1937 		if (!nr_sectors) {
1938 			err = 0;
1939 			goto end_io;
1940 		}
1941 	}
1942 
1943 	if ((bio->bi_rw & REQ_DISCARD) &&
1944 	    (!blk_queue_discard(q) ||
1945 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1946 		err = -EOPNOTSUPP;
1947 		goto end_io;
1948 	}
1949 
1950 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1951 		err = -EOPNOTSUPP;
1952 		goto end_io;
1953 	}
1954 
1955 	/*
1956 	 * Various block parts want %current->io_context and lazy ioc
1957 	 * allocation ends up trading a lot of pain for a small amount of
1958 	 * memory.  Just allocate it upfront.  This may fail and block
1959 	 * layer knows how to live with it.
1960 	 */
1961 	create_io_context(GFP_ATOMIC, q->node);
1962 
1963 	if (!blkcg_bio_issue_check(q, bio))
1964 		return false;
1965 
1966 	trace_block_bio_queue(q, bio);
1967 	return true;
1968 
1969 end_io:
1970 	bio->bi_error = err;
1971 	bio_endio(bio);
1972 	return false;
1973 }
1974 
1975 /**
1976  * generic_make_request - hand a buffer to its device driver for I/O
1977  * @bio:  The bio describing the location in memory and on the device.
1978  *
1979  * generic_make_request() is used to make I/O requests of block
1980  * devices. It is passed a &struct bio, which describes the I/O that needs
1981  * to be done.
1982  *
1983  * generic_make_request() does not return any status.  The
1984  * success/failure status of the request, along with notification of
1985  * completion, is delivered asynchronously through the bio->bi_end_io
1986  * function described (one day) else where.
1987  *
1988  * The caller of generic_make_request must make sure that bi_io_vec
1989  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1990  * set to describe the device address, and the
1991  * bi_end_io and optionally bi_private are set to describe how
1992  * completion notification should be signaled.
1993  *
1994  * generic_make_request and the drivers it calls may use bi_next if this
1995  * bio happens to be merged with someone else, and may resubmit the bio to
1996  * a lower device by calling into generic_make_request recursively, which
1997  * means the bio should NOT be touched after the call to ->make_request_fn.
1998  */
1999 void generic_make_request(struct bio *bio)
2000 {
2001 	struct bio_list bio_list_on_stack;
2002 
2003 	if (!generic_make_request_checks(bio))
2004 		return;
2005 
2006 	/*
2007 	 * We only want one ->make_request_fn to be active at a time, else
2008 	 * stack usage with stacked devices could be a problem.  So use
2009 	 * current->bio_list to keep a list of requests submited by a
2010 	 * make_request_fn function.  current->bio_list is also used as a
2011 	 * flag to say if generic_make_request is currently active in this
2012 	 * task or not.  If it is NULL, then no make_request is active.  If
2013 	 * it is non-NULL, then a make_request is active, and new requests
2014 	 * should be added at the tail
2015 	 */
2016 	if (current->bio_list) {
2017 		bio_list_add(current->bio_list, bio);
2018 		return;
2019 	}
2020 
2021 	/* following loop may be a bit non-obvious, and so deserves some
2022 	 * explanation.
2023 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2024 	 * ensure that) so we have a list with a single bio.
2025 	 * We pretend that we have just taken it off a longer list, so
2026 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2027 	 * thus initialising the bio_list of new bios to be
2028 	 * added.  ->make_request() may indeed add some more bios
2029 	 * through a recursive call to generic_make_request.  If it
2030 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2031 	 * from the top.  In this case we really did just take the bio
2032 	 * of the top of the list (no pretending) and so remove it from
2033 	 * bio_list, and call into ->make_request() again.
2034 	 */
2035 	BUG_ON(bio->bi_next);
2036 	bio_list_init(&bio_list_on_stack);
2037 	current->bio_list = &bio_list_on_stack;
2038 	do {
2039 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2040 
2041 		if (likely(blk_queue_enter(q, __GFP_WAIT) == 0)) {
2042 
2043 			q->make_request_fn(q, bio);
2044 
2045 			blk_queue_exit(q);
2046 
2047 			bio = bio_list_pop(current->bio_list);
2048 		} else {
2049 			struct bio *bio_next = bio_list_pop(current->bio_list);
2050 
2051 			bio_io_error(bio);
2052 			bio = bio_next;
2053 		}
2054 	} while (bio);
2055 	current->bio_list = NULL; /* deactivate */
2056 }
2057 EXPORT_SYMBOL(generic_make_request);
2058 
2059 /**
2060  * submit_bio - submit a bio to the block device layer for I/O
2061  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2062  * @bio: The &struct bio which describes the I/O
2063  *
2064  * submit_bio() is very similar in purpose to generic_make_request(), and
2065  * uses that function to do most of the work. Both are fairly rough
2066  * interfaces; @bio must be presetup and ready for I/O.
2067  *
2068  */
2069 void submit_bio(int rw, struct bio *bio)
2070 {
2071 	bio->bi_rw |= rw;
2072 
2073 	/*
2074 	 * If it's a regular read/write or a barrier with data attached,
2075 	 * go through the normal accounting stuff before submission.
2076 	 */
2077 	if (bio_has_data(bio)) {
2078 		unsigned int count;
2079 
2080 		if (unlikely(rw & REQ_WRITE_SAME))
2081 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2082 		else
2083 			count = bio_sectors(bio);
2084 
2085 		if (rw & WRITE) {
2086 			count_vm_events(PGPGOUT, count);
2087 		} else {
2088 			task_io_account_read(bio->bi_iter.bi_size);
2089 			count_vm_events(PGPGIN, count);
2090 		}
2091 
2092 		if (unlikely(block_dump)) {
2093 			char b[BDEVNAME_SIZE];
2094 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2095 			current->comm, task_pid_nr(current),
2096 				(rw & WRITE) ? "WRITE" : "READ",
2097 				(unsigned long long)bio->bi_iter.bi_sector,
2098 				bdevname(bio->bi_bdev, b),
2099 				count);
2100 		}
2101 	}
2102 
2103 	generic_make_request(bio);
2104 }
2105 EXPORT_SYMBOL(submit_bio);
2106 
2107 /**
2108  * blk_rq_check_limits - Helper function to check a request for the queue limit
2109  * @q:  the queue
2110  * @rq: the request being checked
2111  *
2112  * Description:
2113  *    @rq may have been made based on weaker limitations of upper-level queues
2114  *    in request stacking drivers, and it may violate the limitation of @q.
2115  *    Since the block layer and the underlying device driver trust @rq
2116  *    after it is inserted to @q, it should be checked against @q before
2117  *    the insertion using this generic function.
2118  *
2119  *    This function should also be useful for request stacking drivers
2120  *    in some cases below, so export this function.
2121  *    Request stacking drivers like request-based dm may change the queue
2122  *    limits while requests are in the queue (e.g. dm's table swapping).
2123  *    Such request stacking drivers should check those requests against
2124  *    the new queue limits again when they dispatch those requests,
2125  *    although such checkings are also done against the old queue limits
2126  *    when submitting requests.
2127  */
2128 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2129 {
2130 	if (!rq_mergeable(rq))
2131 		return 0;
2132 
2133 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2134 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2135 		return -EIO;
2136 	}
2137 
2138 	/*
2139 	 * queue's settings related to segment counting like q->bounce_pfn
2140 	 * may differ from that of other stacking queues.
2141 	 * Recalculate it to check the request correctly on this queue's
2142 	 * limitation.
2143 	 */
2144 	blk_recalc_rq_segments(rq);
2145 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2146 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2147 		return -EIO;
2148 	}
2149 
2150 	return 0;
2151 }
2152 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2153 
2154 /**
2155  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2156  * @q:  the queue to submit the request
2157  * @rq: the request being queued
2158  */
2159 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2160 {
2161 	unsigned long flags;
2162 	int where = ELEVATOR_INSERT_BACK;
2163 
2164 	if (blk_rq_check_limits(q, rq))
2165 		return -EIO;
2166 
2167 	if (rq->rq_disk &&
2168 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2169 		return -EIO;
2170 
2171 	if (q->mq_ops) {
2172 		if (blk_queue_io_stat(q))
2173 			blk_account_io_start(rq, true);
2174 		blk_mq_insert_request(rq, false, true, true);
2175 		return 0;
2176 	}
2177 
2178 	spin_lock_irqsave(q->queue_lock, flags);
2179 	if (unlikely(blk_queue_dying(q))) {
2180 		spin_unlock_irqrestore(q->queue_lock, flags);
2181 		return -ENODEV;
2182 	}
2183 
2184 	/*
2185 	 * Submitting request must be dequeued before calling this function
2186 	 * because it will be linked to another request_queue
2187 	 */
2188 	BUG_ON(blk_queued_rq(rq));
2189 
2190 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2191 		where = ELEVATOR_INSERT_FLUSH;
2192 
2193 	add_acct_request(q, rq, where);
2194 	if (where == ELEVATOR_INSERT_FLUSH)
2195 		__blk_run_queue(q);
2196 	spin_unlock_irqrestore(q->queue_lock, flags);
2197 
2198 	return 0;
2199 }
2200 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2201 
2202 /**
2203  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2204  * @rq: request to examine
2205  *
2206  * Description:
2207  *     A request could be merge of IOs which require different failure
2208  *     handling.  This function determines the number of bytes which
2209  *     can be failed from the beginning of the request without
2210  *     crossing into area which need to be retried further.
2211  *
2212  * Return:
2213  *     The number of bytes to fail.
2214  *
2215  * Context:
2216  *     queue_lock must be held.
2217  */
2218 unsigned int blk_rq_err_bytes(const struct request *rq)
2219 {
2220 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2221 	unsigned int bytes = 0;
2222 	struct bio *bio;
2223 
2224 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2225 		return blk_rq_bytes(rq);
2226 
2227 	/*
2228 	 * Currently the only 'mixing' which can happen is between
2229 	 * different fastfail types.  We can safely fail portions
2230 	 * which have all the failfast bits that the first one has -
2231 	 * the ones which are at least as eager to fail as the first
2232 	 * one.
2233 	 */
2234 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2235 		if ((bio->bi_rw & ff) != ff)
2236 			break;
2237 		bytes += bio->bi_iter.bi_size;
2238 	}
2239 
2240 	/* this could lead to infinite loop */
2241 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2242 	return bytes;
2243 }
2244 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2245 
2246 void blk_account_io_completion(struct request *req, unsigned int bytes)
2247 {
2248 	if (blk_do_io_stat(req)) {
2249 		const int rw = rq_data_dir(req);
2250 		struct hd_struct *part;
2251 		int cpu;
2252 
2253 		cpu = part_stat_lock();
2254 		part = req->part;
2255 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2256 		part_stat_unlock();
2257 	}
2258 }
2259 
2260 void blk_account_io_done(struct request *req)
2261 {
2262 	/*
2263 	 * Account IO completion.  flush_rq isn't accounted as a
2264 	 * normal IO on queueing nor completion.  Accounting the
2265 	 * containing request is enough.
2266 	 */
2267 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2268 		unsigned long duration = jiffies - req->start_time;
2269 		const int rw = rq_data_dir(req);
2270 		struct hd_struct *part;
2271 		int cpu;
2272 
2273 		cpu = part_stat_lock();
2274 		part = req->part;
2275 
2276 		part_stat_inc(cpu, part, ios[rw]);
2277 		part_stat_add(cpu, part, ticks[rw], duration);
2278 		part_round_stats(cpu, part);
2279 		part_dec_in_flight(part, rw);
2280 
2281 		hd_struct_put(part);
2282 		part_stat_unlock();
2283 	}
2284 }
2285 
2286 #ifdef CONFIG_PM
2287 /*
2288  * Don't process normal requests when queue is suspended
2289  * or in the process of suspending/resuming
2290  */
2291 static struct request *blk_pm_peek_request(struct request_queue *q,
2292 					   struct request *rq)
2293 {
2294 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2295 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2296 		return NULL;
2297 	else
2298 		return rq;
2299 }
2300 #else
2301 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2302 						  struct request *rq)
2303 {
2304 	return rq;
2305 }
2306 #endif
2307 
2308 void blk_account_io_start(struct request *rq, bool new_io)
2309 {
2310 	struct hd_struct *part;
2311 	int rw = rq_data_dir(rq);
2312 	int cpu;
2313 
2314 	if (!blk_do_io_stat(rq))
2315 		return;
2316 
2317 	cpu = part_stat_lock();
2318 
2319 	if (!new_io) {
2320 		part = rq->part;
2321 		part_stat_inc(cpu, part, merges[rw]);
2322 	} else {
2323 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2324 		if (!hd_struct_try_get(part)) {
2325 			/*
2326 			 * The partition is already being removed,
2327 			 * the request will be accounted on the disk only
2328 			 *
2329 			 * We take a reference on disk->part0 although that
2330 			 * partition will never be deleted, so we can treat
2331 			 * it as any other partition.
2332 			 */
2333 			part = &rq->rq_disk->part0;
2334 			hd_struct_get(part);
2335 		}
2336 		part_round_stats(cpu, part);
2337 		part_inc_in_flight(part, rw);
2338 		rq->part = part;
2339 	}
2340 
2341 	part_stat_unlock();
2342 }
2343 
2344 /**
2345  * blk_peek_request - peek at the top of a request queue
2346  * @q: request queue to peek at
2347  *
2348  * Description:
2349  *     Return the request at the top of @q.  The returned request
2350  *     should be started using blk_start_request() before LLD starts
2351  *     processing it.
2352  *
2353  * Return:
2354  *     Pointer to the request at the top of @q if available.  Null
2355  *     otherwise.
2356  *
2357  * Context:
2358  *     queue_lock must be held.
2359  */
2360 struct request *blk_peek_request(struct request_queue *q)
2361 {
2362 	struct request *rq;
2363 	int ret;
2364 
2365 	while ((rq = __elv_next_request(q)) != NULL) {
2366 
2367 		rq = blk_pm_peek_request(q, rq);
2368 		if (!rq)
2369 			break;
2370 
2371 		if (!(rq->cmd_flags & REQ_STARTED)) {
2372 			/*
2373 			 * This is the first time the device driver
2374 			 * sees this request (possibly after
2375 			 * requeueing).  Notify IO scheduler.
2376 			 */
2377 			if (rq->cmd_flags & REQ_SORTED)
2378 				elv_activate_rq(q, rq);
2379 
2380 			/*
2381 			 * just mark as started even if we don't start
2382 			 * it, a request that has been delayed should
2383 			 * not be passed by new incoming requests
2384 			 */
2385 			rq->cmd_flags |= REQ_STARTED;
2386 			trace_block_rq_issue(q, rq);
2387 		}
2388 
2389 		if (!q->boundary_rq || q->boundary_rq == rq) {
2390 			q->end_sector = rq_end_sector(rq);
2391 			q->boundary_rq = NULL;
2392 		}
2393 
2394 		if (rq->cmd_flags & REQ_DONTPREP)
2395 			break;
2396 
2397 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2398 			/*
2399 			 * make sure space for the drain appears we
2400 			 * know we can do this because max_hw_segments
2401 			 * has been adjusted to be one fewer than the
2402 			 * device can handle
2403 			 */
2404 			rq->nr_phys_segments++;
2405 		}
2406 
2407 		if (!q->prep_rq_fn)
2408 			break;
2409 
2410 		ret = q->prep_rq_fn(q, rq);
2411 		if (ret == BLKPREP_OK) {
2412 			break;
2413 		} else if (ret == BLKPREP_DEFER) {
2414 			/*
2415 			 * the request may have been (partially) prepped.
2416 			 * we need to keep this request in the front to
2417 			 * avoid resource deadlock.  REQ_STARTED will
2418 			 * prevent other fs requests from passing this one.
2419 			 */
2420 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2421 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2422 				/*
2423 				 * remove the space for the drain we added
2424 				 * so that we don't add it again
2425 				 */
2426 				--rq->nr_phys_segments;
2427 			}
2428 
2429 			rq = NULL;
2430 			break;
2431 		} else if (ret == BLKPREP_KILL) {
2432 			rq->cmd_flags |= REQ_QUIET;
2433 			/*
2434 			 * Mark this request as started so we don't trigger
2435 			 * any debug logic in the end I/O path.
2436 			 */
2437 			blk_start_request(rq);
2438 			__blk_end_request_all(rq, -EIO);
2439 		} else {
2440 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2441 			break;
2442 		}
2443 	}
2444 
2445 	return rq;
2446 }
2447 EXPORT_SYMBOL(blk_peek_request);
2448 
2449 void blk_dequeue_request(struct request *rq)
2450 {
2451 	struct request_queue *q = rq->q;
2452 
2453 	BUG_ON(list_empty(&rq->queuelist));
2454 	BUG_ON(ELV_ON_HASH(rq));
2455 
2456 	list_del_init(&rq->queuelist);
2457 
2458 	/*
2459 	 * the time frame between a request being removed from the lists
2460 	 * and to it is freed is accounted as io that is in progress at
2461 	 * the driver side.
2462 	 */
2463 	if (blk_account_rq(rq)) {
2464 		q->in_flight[rq_is_sync(rq)]++;
2465 		set_io_start_time_ns(rq);
2466 	}
2467 }
2468 
2469 /**
2470  * blk_start_request - start request processing on the driver
2471  * @req: request to dequeue
2472  *
2473  * Description:
2474  *     Dequeue @req and start timeout timer on it.  This hands off the
2475  *     request to the driver.
2476  *
2477  *     Block internal functions which don't want to start timer should
2478  *     call blk_dequeue_request().
2479  *
2480  * Context:
2481  *     queue_lock must be held.
2482  */
2483 void blk_start_request(struct request *req)
2484 {
2485 	blk_dequeue_request(req);
2486 
2487 	/*
2488 	 * We are now handing the request to the hardware, initialize
2489 	 * resid_len to full count and add the timeout handler.
2490 	 */
2491 	req->resid_len = blk_rq_bytes(req);
2492 	if (unlikely(blk_bidi_rq(req)))
2493 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2494 
2495 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2496 	blk_add_timer(req);
2497 }
2498 EXPORT_SYMBOL(blk_start_request);
2499 
2500 /**
2501  * blk_fetch_request - fetch a request from a request queue
2502  * @q: request queue to fetch a request from
2503  *
2504  * Description:
2505  *     Return the request at the top of @q.  The request is started on
2506  *     return and LLD can start processing it immediately.
2507  *
2508  * Return:
2509  *     Pointer to the request at the top of @q if available.  Null
2510  *     otherwise.
2511  *
2512  * Context:
2513  *     queue_lock must be held.
2514  */
2515 struct request *blk_fetch_request(struct request_queue *q)
2516 {
2517 	struct request *rq;
2518 
2519 	rq = blk_peek_request(q);
2520 	if (rq)
2521 		blk_start_request(rq);
2522 	return rq;
2523 }
2524 EXPORT_SYMBOL(blk_fetch_request);
2525 
2526 /**
2527  * blk_update_request - Special helper function for request stacking drivers
2528  * @req:      the request being processed
2529  * @error:    %0 for success, < %0 for error
2530  * @nr_bytes: number of bytes to complete @req
2531  *
2532  * Description:
2533  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2534  *     the request structure even if @req doesn't have leftover.
2535  *     If @req has leftover, sets it up for the next range of segments.
2536  *
2537  *     This special helper function is only for request stacking drivers
2538  *     (e.g. request-based dm) so that they can handle partial completion.
2539  *     Actual device drivers should use blk_end_request instead.
2540  *
2541  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2542  *     %false return from this function.
2543  *
2544  * Return:
2545  *     %false - this request doesn't have any more data
2546  *     %true  - this request has more data
2547  **/
2548 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2549 {
2550 	int total_bytes;
2551 
2552 	trace_block_rq_complete(req->q, req, nr_bytes);
2553 
2554 	if (!req->bio)
2555 		return false;
2556 
2557 	/*
2558 	 * For fs requests, rq is just carrier of independent bio's
2559 	 * and each partial completion should be handled separately.
2560 	 * Reset per-request error on each partial completion.
2561 	 *
2562 	 * TODO: tj: This is too subtle.  It would be better to let
2563 	 * low level drivers do what they see fit.
2564 	 */
2565 	if (req->cmd_type == REQ_TYPE_FS)
2566 		req->errors = 0;
2567 
2568 	if (error && req->cmd_type == REQ_TYPE_FS &&
2569 	    !(req->cmd_flags & REQ_QUIET)) {
2570 		char *error_type;
2571 
2572 		switch (error) {
2573 		case -ENOLINK:
2574 			error_type = "recoverable transport";
2575 			break;
2576 		case -EREMOTEIO:
2577 			error_type = "critical target";
2578 			break;
2579 		case -EBADE:
2580 			error_type = "critical nexus";
2581 			break;
2582 		case -ETIMEDOUT:
2583 			error_type = "timeout";
2584 			break;
2585 		case -ENOSPC:
2586 			error_type = "critical space allocation";
2587 			break;
2588 		case -ENODATA:
2589 			error_type = "critical medium";
2590 			break;
2591 		case -EIO:
2592 		default:
2593 			error_type = "I/O";
2594 			break;
2595 		}
2596 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2597 				   __func__, error_type, req->rq_disk ?
2598 				   req->rq_disk->disk_name : "?",
2599 				   (unsigned long long)blk_rq_pos(req));
2600 
2601 	}
2602 
2603 	blk_account_io_completion(req, nr_bytes);
2604 
2605 	total_bytes = 0;
2606 	while (req->bio) {
2607 		struct bio *bio = req->bio;
2608 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2609 
2610 		if (bio_bytes == bio->bi_iter.bi_size)
2611 			req->bio = bio->bi_next;
2612 
2613 		req_bio_endio(req, bio, bio_bytes, error);
2614 
2615 		total_bytes += bio_bytes;
2616 		nr_bytes -= bio_bytes;
2617 
2618 		if (!nr_bytes)
2619 			break;
2620 	}
2621 
2622 	/*
2623 	 * completely done
2624 	 */
2625 	if (!req->bio) {
2626 		/*
2627 		 * Reset counters so that the request stacking driver
2628 		 * can find how many bytes remain in the request
2629 		 * later.
2630 		 */
2631 		req->__data_len = 0;
2632 		return false;
2633 	}
2634 
2635 	req->__data_len -= total_bytes;
2636 
2637 	/* update sector only for requests with clear definition of sector */
2638 	if (req->cmd_type == REQ_TYPE_FS)
2639 		req->__sector += total_bytes >> 9;
2640 
2641 	/* mixed attributes always follow the first bio */
2642 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2643 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2644 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2645 	}
2646 
2647 	/*
2648 	 * If total number of sectors is less than the first segment
2649 	 * size, something has gone terribly wrong.
2650 	 */
2651 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2652 		blk_dump_rq_flags(req, "request botched");
2653 		req->__data_len = blk_rq_cur_bytes(req);
2654 	}
2655 
2656 	/* recalculate the number of segments */
2657 	blk_recalc_rq_segments(req);
2658 
2659 	return true;
2660 }
2661 EXPORT_SYMBOL_GPL(blk_update_request);
2662 
2663 static bool blk_update_bidi_request(struct request *rq, int error,
2664 				    unsigned int nr_bytes,
2665 				    unsigned int bidi_bytes)
2666 {
2667 	if (blk_update_request(rq, error, nr_bytes))
2668 		return true;
2669 
2670 	/* Bidi request must be completed as a whole */
2671 	if (unlikely(blk_bidi_rq(rq)) &&
2672 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2673 		return true;
2674 
2675 	if (blk_queue_add_random(rq->q))
2676 		add_disk_randomness(rq->rq_disk);
2677 
2678 	return false;
2679 }
2680 
2681 /**
2682  * blk_unprep_request - unprepare a request
2683  * @req:	the request
2684  *
2685  * This function makes a request ready for complete resubmission (or
2686  * completion).  It happens only after all error handling is complete,
2687  * so represents the appropriate moment to deallocate any resources
2688  * that were allocated to the request in the prep_rq_fn.  The queue
2689  * lock is held when calling this.
2690  */
2691 void blk_unprep_request(struct request *req)
2692 {
2693 	struct request_queue *q = req->q;
2694 
2695 	req->cmd_flags &= ~REQ_DONTPREP;
2696 	if (q->unprep_rq_fn)
2697 		q->unprep_rq_fn(q, req);
2698 }
2699 EXPORT_SYMBOL_GPL(blk_unprep_request);
2700 
2701 /*
2702  * queue lock must be held
2703  */
2704 void blk_finish_request(struct request *req, int error)
2705 {
2706 	if (req->cmd_flags & REQ_QUEUED)
2707 		blk_queue_end_tag(req->q, req);
2708 
2709 	BUG_ON(blk_queued_rq(req));
2710 
2711 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2712 		laptop_io_completion(&req->q->backing_dev_info);
2713 
2714 	blk_delete_timer(req);
2715 
2716 	if (req->cmd_flags & REQ_DONTPREP)
2717 		blk_unprep_request(req);
2718 
2719 	blk_account_io_done(req);
2720 
2721 	if (req->end_io)
2722 		req->end_io(req, error);
2723 	else {
2724 		if (blk_bidi_rq(req))
2725 			__blk_put_request(req->next_rq->q, req->next_rq);
2726 
2727 		__blk_put_request(req->q, req);
2728 	}
2729 }
2730 EXPORT_SYMBOL(blk_finish_request);
2731 
2732 /**
2733  * blk_end_bidi_request - Complete a bidi request
2734  * @rq:         the request to complete
2735  * @error:      %0 for success, < %0 for error
2736  * @nr_bytes:   number of bytes to complete @rq
2737  * @bidi_bytes: number of bytes to complete @rq->next_rq
2738  *
2739  * Description:
2740  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2741  *     Drivers that supports bidi can safely call this member for any
2742  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2743  *     just ignored.
2744  *
2745  * Return:
2746  *     %false - we are done with this request
2747  *     %true  - still buffers pending for this request
2748  **/
2749 static bool blk_end_bidi_request(struct request *rq, int error,
2750 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2751 {
2752 	struct request_queue *q = rq->q;
2753 	unsigned long flags;
2754 
2755 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2756 		return true;
2757 
2758 	spin_lock_irqsave(q->queue_lock, flags);
2759 	blk_finish_request(rq, error);
2760 	spin_unlock_irqrestore(q->queue_lock, flags);
2761 
2762 	return false;
2763 }
2764 
2765 /**
2766  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2767  * @rq:         the request to complete
2768  * @error:      %0 for success, < %0 for error
2769  * @nr_bytes:   number of bytes to complete @rq
2770  * @bidi_bytes: number of bytes to complete @rq->next_rq
2771  *
2772  * Description:
2773  *     Identical to blk_end_bidi_request() except that queue lock is
2774  *     assumed to be locked on entry and remains so on return.
2775  *
2776  * Return:
2777  *     %false - we are done with this request
2778  *     %true  - still buffers pending for this request
2779  **/
2780 bool __blk_end_bidi_request(struct request *rq, int error,
2781 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2782 {
2783 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2784 		return true;
2785 
2786 	blk_finish_request(rq, error);
2787 
2788 	return false;
2789 }
2790 
2791 /**
2792  * blk_end_request - Helper function for drivers to complete the request.
2793  * @rq:       the request being processed
2794  * @error:    %0 for success, < %0 for error
2795  * @nr_bytes: number of bytes to complete
2796  *
2797  * Description:
2798  *     Ends I/O on a number of bytes attached to @rq.
2799  *     If @rq has leftover, sets it up for the next range of segments.
2800  *
2801  * Return:
2802  *     %false - we are done with this request
2803  *     %true  - still buffers pending for this request
2804  **/
2805 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2806 {
2807 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2808 }
2809 EXPORT_SYMBOL(blk_end_request);
2810 
2811 /**
2812  * blk_end_request_all - Helper function for drives to finish the request.
2813  * @rq: the request to finish
2814  * @error: %0 for success, < %0 for error
2815  *
2816  * Description:
2817  *     Completely finish @rq.
2818  */
2819 void blk_end_request_all(struct request *rq, int error)
2820 {
2821 	bool pending;
2822 	unsigned int bidi_bytes = 0;
2823 
2824 	if (unlikely(blk_bidi_rq(rq)))
2825 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2826 
2827 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2828 	BUG_ON(pending);
2829 }
2830 EXPORT_SYMBOL(blk_end_request_all);
2831 
2832 /**
2833  * blk_end_request_cur - Helper function to finish the current request chunk.
2834  * @rq: the request to finish the current chunk for
2835  * @error: %0 for success, < %0 for error
2836  *
2837  * Description:
2838  *     Complete the current consecutively mapped chunk from @rq.
2839  *
2840  * Return:
2841  *     %false - we are done with this request
2842  *     %true  - still buffers pending for this request
2843  */
2844 bool blk_end_request_cur(struct request *rq, int error)
2845 {
2846 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2847 }
2848 EXPORT_SYMBOL(blk_end_request_cur);
2849 
2850 /**
2851  * blk_end_request_err - Finish a request till the next failure boundary.
2852  * @rq: the request to finish till the next failure boundary for
2853  * @error: must be negative errno
2854  *
2855  * Description:
2856  *     Complete @rq till the next failure boundary.
2857  *
2858  * Return:
2859  *     %false - we are done with this request
2860  *     %true  - still buffers pending for this request
2861  */
2862 bool blk_end_request_err(struct request *rq, int error)
2863 {
2864 	WARN_ON(error >= 0);
2865 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2866 }
2867 EXPORT_SYMBOL_GPL(blk_end_request_err);
2868 
2869 /**
2870  * __blk_end_request - Helper function for drivers to complete the request.
2871  * @rq:       the request being processed
2872  * @error:    %0 for success, < %0 for error
2873  * @nr_bytes: number of bytes to complete
2874  *
2875  * Description:
2876  *     Must be called with queue lock held unlike blk_end_request().
2877  *
2878  * Return:
2879  *     %false - we are done with this request
2880  *     %true  - still buffers pending for this request
2881  **/
2882 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2883 {
2884 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2885 }
2886 EXPORT_SYMBOL(__blk_end_request);
2887 
2888 /**
2889  * __blk_end_request_all - Helper function for drives to finish the request.
2890  * @rq: the request to finish
2891  * @error: %0 for success, < %0 for error
2892  *
2893  * Description:
2894  *     Completely finish @rq.  Must be called with queue lock held.
2895  */
2896 void __blk_end_request_all(struct request *rq, int error)
2897 {
2898 	bool pending;
2899 	unsigned int bidi_bytes = 0;
2900 
2901 	if (unlikely(blk_bidi_rq(rq)))
2902 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2903 
2904 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2905 	BUG_ON(pending);
2906 }
2907 EXPORT_SYMBOL(__blk_end_request_all);
2908 
2909 /**
2910  * __blk_end_request_cur - Helper function to finish the current request chunk.
2911  * @rq: the request to finish the current chunk for
2912  * @error: %0 for success, < %0 for error
2913  *
2914  * Description:
2915  *     Complete the current consecutively mapped chunk from @rq.  Must
2916  *     be called with queue lock held.
2917  *
2918  * Return:
2919  *     %false - we are done with this request
2920  *     %true  - still buffers pending for this request
2921  */
2922 bool __blk_end_request_cur(struct request *rq, int error)
2923 {
2924 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2925 }
2926 EXPORT_SYMBOL(__blk_end_request_cur);
2927 
2928 /**
2929  * __blk_end_request_err - Finish a request till the next failure boundary.
2930  * @rq: the request to finish till the next failure boundary for
2931  * @error: must be negative errno
2932  *
2933  * Description:
2934  *     Complete @rq till the next failure boundary.  Must be called
2935  *     with queue lock held.
2936  *
2937  * Return:
2938  *     %false - we are done with this request
2939  *     %true  - still buffers pending for this request
2940  */
2941 bool __blk_end_request_err(struct request *rq, int error)
2942 {
2943 	WARN_ON(error >= 0);
2944 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2945 }
2946 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2947 
2948 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2949 		     struct bio *bio)
2950 {
2951 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2952 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2953 
2954 	if (bio_has_data(bio))
2955 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2956 
2957 	rq->__data_len = bio->bi_iter.bi_size;
2958 	rq->bio = rq->biotail = bio;
2959 
2960 	if (bio->bi_bdev)
2961 		rq->rq_disk = bio->bi_bdev->bd_disk;
2962 }
2963 
2964 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2965 /**
2966  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2967  * @rq: the request to be flushed
2968  *
2969  * Description:
2970  *     Flush all pages in @rq.
2971  */
2972 void rq_flush_dcache_pages(struct request *rq)
2973 {
2974 	struct req_iterator iter;
2975 	struct bio_vec bvec;
2976 
2977 	rq_for_each_segment(bvec, rq, iter)
2978 		flush_dcache_page(bvec.bv_page);
2979 }
2980 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2981 #endif
2982 
2983 /**
2984  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2985  * @q : the queue of the device being checked
2986  *
2987  * Description:
2988  *    Check if underlying low-level drivers of a device are busy.
2989  *    If the drivers want to export their busy state, they must set own
2990  *    exporting function using blk_queue_lld_busy() first.
2991  *
2992  *    Basically, this function is used only by request stacking drivers
2993  *    to stop dispatching requests to underlying devices when underlying
2994  *    devices are busy.  This behavior helps more I/O merging on the queue
2995  *    of the request stacking driver and prevents I/O throughput regression
2996  *    on burst I/O load.
2997  *
2998  * Return:
2999  *    0 - Not busy (The request stacking driver should dispatch request)
3000  *    1 - Busy (The request stacking driver should stop dispatching request)
3001  */
3002 int blk_lld_busy(struct request_queue *q)
3003 {
3004 	if (q->lld_busy_fn)
3005 		return q->lld_busy_fn(q);
3006 
3007 	return 0;
3008 }
3009 EXPORT_SYMBOL_GPL(blk_lld_busy);
3010 
3011 /**
3012  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3013  * @rq: the clone request to be cleaned up
3014  *
3015  * Description:
3016  *     Free all bios in @rq for a cloned request.
3017  */
3018 void blk_rq_unprep_clone(struct request *rq)
3019 {
3020 	struct bio *bio;
3021 
3022 	while ((bio = rq->bio) != NULL) {
3023 		rq->bio = bio->bi_next;
3024 
3025 		bio_put(bio);
3026 	}
3027 }
3028 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3029 
3030 /*
3031  * Copy attributes of the original request to the clone request.
3032  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3033  */
3034 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3035 {
3036 	dst->cpu = src->cpu;
3037 	dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3038 	dst->cmd_type = src->cmd_type;
3039 	dst->__sector = blk_rq_pos(src);
3040 	dst->__data_len = blk_rq_bytes(src);
3041 	dst->nr_phys_segments = src->nr_phys_segments;
3042 	dst->ioprio = src->ioprio;
3043 	dst->extra_len = src->extra_len;
3044 }
3045 
3046 /**
3047  * blk_rq_prep_clone - Helper function to setup clone request
3048  * @rq: the request to be setup
3049  * @rq_src: original request to be cloned
3050  * @bs: bio_set that bios for clone are allocated from
3051  * @gfp_mask: memory allocation mask for bio
3052  * @bio_ctr: setup function to be called for each clone bio.
3053  *           Returns %0 for success, non %0 for failure.
3054  * @data: private data to be passed to @bio_ctr
3055  *
3056  * Description:
3057  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3058  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3059  *     are not copied, and copying such parts is the caller's responsibility.
3060  *     Also, pages which the original bios are pointing to are not copied
3061  *     and the cloned bios just point same pages.
3062  *     So cloned bios must be completed before original bios, which means
3063  *     the caller must complete @rq before @rq_src.
3064  */
3065 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3066 		      struct bio_set *bs, gfp_t gfp_mask,
3067 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3068 		      void *data)
3069 {
3070 	struct bio *bio, *bio_src;
3071 
3072 	if (!bs)
3073 		bs = fs_bio_set;
3074 
3075 	__rq_for_each_bio(bio_src, rq_src) {
3076 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3077 		if (!bio)
3078 			goto free_and_out;
3079 
3080 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3081 			goto free_and_out;
3082 
3083 		if (rq->bio) {
3084 			rq->biotail->bi_next = bio;
3085 			rq->biotail = bio;
3086 		} else
3087 			rq->bio = rq->biotail = bio;
3088 	}
3089 
3090 	__blk_rq_prep_clone(rq, rq_src);
3091 
3092 	return 0;
3093 
3094 free_and_out:
3095 	if (bio)
3096 		bio_put(bio);
3097 	blk_rq_unprep_clone(rq);
3098 
3099 	return -ENOMEM;
3100 }
3101 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3102 
3103 int kblockd_schedule_work(struct work_struct *work)
3104 {
3105 	return queue_work(kblockd_workqueue, work);
3106 }
3107 EXPORT_SYMBOL(kblockd_schedule_work);
3108 
3109 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3110 				  unsigned long delay)
3111 {
3112 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3113 }
3114 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3115 
3116 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3117 				     unsigned long delay)
3118 {
3119 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3120 }
3121 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3122 
3123 /**
3124  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3125  * @plug:	The &struct blk_plug that needs to be initialized
3126  *
3127  * Description:
3128  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3129  *   pending I/O should the task end up blocking between blk_start_plug() and
3130  *   blk_finish_plug(). This is important from a performance perspective, but
3131  *   also ensures that we don't deadlock. For instance, if the task is blocking
3132  *   for a memory allocation, memory reclaim could end up wanting to free a
3133  *   page belonging to that request that is currently residing in our private
3134  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3135  *   this kind of deadlock.
3136  */
3137 void blk_start_plug(struct blk_plug *plug)
3138 {
3139 	struct task_struct *tsk = current;
3140 
3141 	/*
3142 	 * If this is a nested plug, don't actually assign it.
3143 	 */
3144 	if (tsk->plug)
3145 		return;
3146 
3147 	INIT_LIST_HEAD(&plug->list);
3148 	INIT_LIST_HEAD(&plug->mq_list);
3149 	INIT_LIST_HEAD(&plug->cb_list);
3150 	/*
3151 	 * Store ordering should not be needed here, since a potential
3152 	 * preempt will imply a full memory barrier
3153 	 */
3154 	tsk->plug = plug;
3155 }
3156 EXPORT_SYMBOL(blk_start_plug);
3157 
3158 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3159 {
3160 	struct request *rqa = container_of(a, struct request, queuelist);
3161 	struct request *rqb = container_of(b, struct request, queuelist);
3162 
3163 	return !(rqa->q < rqb->q ||
3164 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3165 }
3166 
3167 /*
3168  * If 'from_schedule' is true, then postpone the dispatch of requests
3169  * until a safe kblockd context. We due this to avoid accidental big
3170  * additional stack usage in driver dispatch, in places where the originally
3171  * plugger did not intend it.
3172  */
3173 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3174 			    bool from_schedule)
3175 	__releases(q->queue_lock)
3176 {
3177 	trace_block_unplug(q, depth, !from_schedule);
3178 
3179 	if (from_schedule)
3180 		blk_run_queue_async(q);
3181 	else
3182 		__blk_run_queue(q);
3183 	spin_unlock(q->queue_lock);
3184 }
3185 
3186 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3187 {
3188 	LIST_HEAD(callbacks);
3189 
3190 	while (!list_empty(&plug->cb_list)) {
3191 		list_splice_init(&plug->cb_list, &callbacks);
3192 
3193 		while (!list_empty(&callbacks)) {
3194 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3195 							  struct blk_plug_cb,
3196 							  list);
3197 			list_del(&cb->list);
3198 			cb->callback(cb, from_schedule);
3199 		}
3200 	}
3201 }
3202 
3203 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3204 				      int size)
3205 {
3206 	struct blk_plug *plug = current->plug;
3207 	struct blk_plug_cb *cb;
3208 
3209 	if (!plug)
3210 		return NULL;
3211 
3212 	list_for_each_entry(cb, &plug->cb_list, list)
3213 		if (cb->callback == unplug && cb->data == data)
3214 			return cb;
3215 
3216 	/* Not currently on the callback list */
3217 	BUG_ON(size < sizeof(*cb));
3218 	cb = kzalloc(size, GFP_ATOMIC);
3219 	if (cb) {
3220 		cb->data = data;
3221 		cb->callback = unplug;
3222 		list_add(&cb->list, &plug->cb_list);
3223 	}
3224 	return cb;
3225 }
3226 EXPORT_SYMBOL(blk_check_plugged);
3227 
3228 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3229 {
3230 	struct request_queue *q;
3231 	unsigned long flags;
3232 	struct request *rq;
3233 	LIST_HEAD(list);
3234 	unsigned int depth;
3235 
3236 	flush_plug_callbacks(plug, from_schedule);
3237 
3238 	if (!list_empty(&plug->mq_list))
3239 		blk_mq_flush_plug_list(plug, from_schedule);
3240 
3241 	if (list_empty(&plug->list))
3242 		return;
3243 
3244 	list_splice_init(&plug->list, &list);
3245 
3246 	list_sort(NULL, &list, plug_rq_cmp);
3247 
3248 	q = NULL;
3249 	depth = 0;
3250 
3251 	/*
3252 	 * Save and disable interrupts here, to avoid doing it for every
3253 	 * queue lock we have to take.
3254 	 */
3255 	local_irq_save(flags);
3256 	while (!list_empty(&list)) {
3257 		rq = list_entry_rq(list.next);
3258 		list_del_init(&rq->queuelist);
3259 		BUG_ON(!rq->q);
3260 		if (rq->q != q) {
3261 			/*
3262 			 * This drops the queue lock
3263 			 */
3264 			if (q)
3265 				queue_unplugged(q, depth, from_schedule);
3266 			q = rq->q;
3267 			depth = 0;
3268 			spin_lock(q->queue_lock);
3269 		}
3270 
3271 		/*
3272 		 * Short-circuit if @q is dead
3273 		 */
3274 		if (unlikely(blk_queue_dying(q))) {
3275 			__blk_end_request_all(rq, -ENODEV);
3276 			continue;
3277 		}
3278 
3279 		/*
3280 		 * rq is already accounted, so use raw insert
3281 		 */
3282 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3283 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3284 		else
3285 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3286 
3287 		depth++;
3288 	}
3289 
3290 	/*
3291 	 * This drops the queue lock
3292 	 */
3293 	if (q)
3294 		queue_unplugged(q, depth, from_schedule);
3295 
3296 	local_irq_restore(flags);
3297 }
3298 
3299 void blk_finish_plug(struct blk_plug *plug)
3300 {
3301 	if (plug != current->plug)
3302 		return;
3303 	blk_flush_plug_list(plug, false);
3304 
3305 	current->plug = NULL;
3306 }
3307 EXPORT_SYMBOL(blk_finish_plug);
3308 
3309 #ifdef CONFIG_PM
3310 /**
3311  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3312  * @q: the queue of the device
3313  * @dev: the device the queue belongs to
3314  *
3315  * Description:
3316  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3317  *    @dev. Drivers that want to take advantage of request-based runtime PM
3318  *    should call this function after @dev has been initialized, and its
3319  *    request queue @q has been allocated, and runtime PM for it can not happen
3320  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3321  *    cases, driver should call this function before any I/O has taken place.
3322  *
3323  *    This function takes care of setting up using auto suspend for the device,
3324  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3325  *    until an updated value is either set by user or by driver. Drivers do
3326  *    not need to touch other autosuspend settings.
3327  *
3328  *    The block layer runtime PM is request based, so only works for drivers
3329  *    that use request as their IO unit instead of those directly use bio's.
3330  */
3331 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3332 {
3333 	q->dev = dev;
3334 	q->rpm_status = RPM_ACTIVE;
3335 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3336 	pm_runtime_use_autosuspend(q->dev);
3337 }
3338 EXPORT_SYMBOL(blk_pm_runtime_init);
3339 
3340 /**
3341  * blk_pre_runtime_suspend - Pre runtime suspend check
3342  * @q: the queue of the device
3343  *
3344  * Description:
3345  *    This function will check if runtime suspend is allowed for the device
3346  *    by examining if there are any requests pending in the queue. If there
3347  *    are requests pending, the device can not be runtime suspended; otherwise,
3348  *    the queue's status will be updated to SUSPENDING and the driver can
3349  *    proceed to suspend the device.
3350  *
3351  *    For the not allowed case, we mark last busy for the device so that
3352  *    runtime PM core will try to autosuspend it some time later.
3353  *
3354  *    This function should be called near the start of the device's
3355  *    runtime_suspend callback.
3356  *
3357  * Return:
3358  *    0		- OK to runtime suspend the device
3359  *    -EBUSY	- Device should not be runtime suspended
3360  */
3361 int blk_pre_runtime_suspend(struct request_queue *q)
3362 {
3363 	int ret = 0;
3364 
3365 	spin_lock_irq(q->queue_lock);
3366 	if (q->nr_pending) {
3367 		ret = -EBUSY;
3368 		pm_runtime_mark_last_busy(q->dev);
3369 	} else {
3370 		q->rpm_status = RPM_SUSPENDING;
3371 	}
3372 	spin_unlock_irq(q->queue_lock);
3373 	return ret;
3374 }
3375 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3376 
3377 /**
3378  * blk_post_runtime_suspend - Post runtime suspend processing
3379  * @q: the queue of the device
3380  * @err: return value of the device's runtime_suspend function
3381  *
3382  * Description:
3383  *    Update the queue's runtime status according to the return value of the
3384  *    device's runtime suspend function and mark last busy for the device so
3385  *    that PM core will try to auto suspend the device at a later time.
3386  *
3387  *    This function should be called near the end of the device's
3388  *    runtime_suspend callback.
3389  */
3390 void blk_post_runtime_suspend(struct request_queue *q, int err)
3391 {
3392 	spin_lock_irq(q->queue_lock);
3393 	if (!err) {
3394 		q->rpm_status = RPM_SUSPENDED;
3395 	} else {
3396 		q->rpm_status = RPM_ACTIVE;
3397 		pm_runtime_mark_last_busy(q->dev);
3398 	}
3399 	spin_unlock_irq(q->queue_lock);
3400 }
3401 EXPORT_SYMBOL(blk_post_runtime_suspend);
3402 
3403 /**
3404  * blk_pre_runtime_resume - Pre runtime resume processing
3405  * @q: the queue of the device
3406  *
3407  * Description:
3408  *    Update the queue's runtime status to RESUMING in preparation for the
3409  *    runtime resume of the device.
3410  *
3411  *    This function should be called near the start of the device's
3412  *    runtime_resume callback.
3413  */
3414 void blk_pre_runtime_resume(struct request_queue *q)
3415 {
3416 	spin_lock_irq(q->queue_lock);
3417 	q->rpm_status = RPM_RESUMING;
3418 	spin_unlock_irq(q->queue_lock);
3419 }
3420 EXPORT_SYMBOL(blk_pre_runtime_resume);
3421 
3422 /**
3423  * blk_post_runtime_resume - Post runtime resume processing
3424  * @q: the queue of the device
3425  * @err: return value of the device's runtime_resume function
3426  *
3427  * Description:
3428  *    Update the queue's runtime status according to the return value of the
3429  *    device's runtime_resume function. If it is successfully resumed, process
3430  *    the requests that are queued into the device's queue when it is resuming
3431  *    and then mark last busy and initiate autosuspend for it.
3432  *
3433  *    This function should be called near the end of the device's
3434  *    runtime_resume callback.
3435  */
3436 void blk_post_runtime_resume(struct request_queue *q, int err)
3437 {
3438 	spin_lock_irq(q->queue_lock);
3439 	if (!err) {
3440 		q->rpm_status = RPM_ACTIVE;
3441 		__blk_run_queue(q);
3442 		pm_runtime_mark_last_busy(q->dev);
3443 		pm_request_autosuspend(q->dev);
3444 	} else {
3445 		q->rpm_status = RPM_SUSPENDED;
3446 	}
3447 	spin_unlock_irq(q->queue_lock);
3448 }
3449 EXPORT_SYMBOL(blk_post_runtime_resume);
3450 #endif
3451 
3452 int __init blk_dev_init(void)
3453 {
3454 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3455 			FIELD_SIZEOF(struct request, cmd_flags));
3456 
3457 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3458 	kblockd_workqueue = alloc_workqueue("kblockd",
3459 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3460 	if (!kblockd_workqueue)
3461 		panic("Failed to create kblockd\n");
3462 
3463 	request_cachep = kmem_cache_create("blkdev_requests",
3464 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3465 
3466 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3467 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3468 
3469 	return 0;
3470 }
3471