1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/interrupt.h> 30 #include <linux/cpu.h> 31 #include <linux/blktrace_api.h> 32 #include <linux/fault-inject.h> 33 34 #include "blk.h" 35 36 static int __make_request(struct request_queue *q, struct bio *bio); 37 38 /* 39 * For the allocated request tables 40 */ 41 static struct kmem_cache *request_cachep; 42 43 /* 44 * For queue allocation 45 */ 46 struct kmem_cache *blk_requestq_cachep; 47 48 /* 49 * Controlling structure to kblockd 50 */ 51 static struct workqueue_struct *kblockd_workqueue; 52 53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done); 54 55 static void drive_stat_acct(struct request *rq, int new_io) 56 { 57 int rw = rq_data_dir(rq); 58 59 if (!blk_fs_request(rq) || !rq->rq_disk) 60 return; 61 62 if (!new_io) { 63 __all_stat_inc(rq->rq_disk, merges[rw], rq->sector); 64 } else { 65 struct hd_struct *part = get_part(rq->rq_disk, rq->sector); 66 disk_round_stats(rq->rq_disk); 67 rq->rq_disk->in_flight++; 68 if (part) { 69 part_round_stats(part); 70 part->in_flight++; 71 } 72 } 73 } 74 75 void blk_queue_congestion_threshold(struct request_queue *q) 76 { 77 int nr; 78 79 nr = q->nr_requests - (q->nr_requests / 8) + 1; 80 if (nr > q->nr_requests) 81 nr = q->nr_requests; 82 q->nr_congestion_on = nr; 83 84 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 85 if (nr < 1) 86 nr = 1; 87 q->nr_congestion_off = nr; 88 } 89 90 /** 91 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 92 * @bdev: device 93 * 94 * Locates the passed device's request queue and returns the address of its 95 * backing_dev_info 96 * 97 * Will return NULL if the request queue cannot be located. 98 */ 99 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 100 { 101 struct backing_dev_info *ret = NULL; 102 struct request_queue *q = bdev_get_queue(bdev); 103 104 if (q) 105 ret = &q->backing_dev_info; 106 return ret; 107 } 108 EXPORT_SYMBOL(blk_get_backing_dev_info); 109 110 void blk_rq_init(struct request_queue *q, struct request *rq) 111 { 112 memset(rq, 0, sizeof(*rq)); 113 114 INIT_LIST_HEAD(&rq->queuelist); 115 INIT_LIST_HEAD(&rq->donelist); 116 rq->q = q; 117 rq->sector = rq->hard_sector = (sector_t) -1; 118 INIT_HLIST_NODE(&rq->hash); 119 RB_CLEAR_NODE(&rq->rb_node); 120 rq->cmd = rq->__cmd; 121 rq->tag = -1; 122 rq->ref_count = 1; 123 } 124 EXPORT_SYMBOL(blk_rq_init); 125 126 static void req_bio_endio(struct request *rq, struct bio *bio, 127 unsigned int nbytes, int error) 128 { 129 struct request_queue *q = rq->q; 130 131 if (&q->bar_rq != rq) { 132 if (error) 133 clear_bit(BIO_UPTODATE, &bio->bi_flags); 134 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 135 error = -EIO; 136 137 if (unlikely(nbytes > bio->bi_size)) { 138 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 139 __FUNCTION__, nbytes, bio->bi_size); 140 nbytes = bio->bi_size; 141 } 142 143 bio->bi_size -= nbytes; 144 bio->bi_sector += (nbytes >> 9); 145 if (bio->bi_size == 0) 146 bio_endio(bio, error); 147 } else { 148 149 /* 150 * Okay, this is the barrier request in progress, just 151 * record the error; 152 */ 153 if (error && !q->orderr) 154 q->orderr = error; 155 } 156 } 157 158 void blk_dump_rq_flags(struct request *rq, char *msg) 159 { 160 int bit; 161 162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 164 rq->cmd_flags); 165 166 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n", 167 (unsigned long long)rq->sector, 168 rq->nr_sectors, 169 rq->current_nr_sectors); 170 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n", 171 rq->bio, rq->biotail, 172 rq->buffer, rq->data, 173 rq->data_len); 174 175 if (blk_pc_request(rq)) { 176 printk(KERN_INFO " cdb: "); 177 for (bit = 0; bit < BLK_MAX_CDB; bit++) 178 printk("%02x ", rq->cmd[bit]); 179 printk("\n"); 180 } 181 } 182 EXPORT_SYMBOL(blk_dump_rq_flags); 183 184 /* 185 * "plug" the device if there are no outstanding requests: this will 186 * force the transfer to start only after we have put all the requests 187 * on the list. 188 * 189 * This is called with interrupts off and no requests on the queue and 190 * with the queue lock held. 191 */ 192 void blk_plug_device(struct request_queue *q) 193 { 194 WARN_ON(!irqs_disabled()); 195 196 /* 197 * don't plug a stopped queue, it must be paired with blk_start_queue() 198 * which will restart the queueing 199 */ 200 if (blk_queue_stopped(q)) 201 return; 202 203 if (!test_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) { 204 __set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags); 205 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 206 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG); 207 } 208 } 209 EXPORT_SYMBOL(blk_plug_device); 210 211 /* 212 * remove the queue from the plugged list, if present. called with 213 * queue lock held and interrupts disabled. 214 */ 215 int blk_remove_plug(struct request_queue *q) 216 { 217 WARN_ON(!irqs_disabled()); 218 219 if (!test_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) 220 return 0; 221 222 queue_flag_clear(QUEUE_FLAG_PLUGGED, q); 223 del_timer(&q->unplug_timer); 224 return 1; 225 } 226 EXPORT_SYMBOL(blk_remove_plug); 227 228 /* 229 * remove the plug and let it rip.. 230 */ 231 void __generic_unplug_device(struct request_queue *q) 232 { 233 if (unlikely(blk_queue_stopped(q))) 234 return; 235 236 if (!blk_remove_plug(q)) 237 return; 238 239 q->request_fn(q); 240 } 241 EXPORT_SYMBOL(__generic_unplug_device); 242 243 /** 244 * generic_unplug_device - fire a request queue 245 * @q: The &struct request_queue in question 246 * 247 * Description: 248 * Linux uses plugging to build bigger requests queues before letting 249 * the device have at them. If a queue is plugged, the I/O scheduler 250 * is still adding and merging requests on the queue. Once the queue 251 * gets unplugged, the request_fn defined for the queue is invoked and 252 * transfers started. 253 **/ 254 void generic_unplug_device(struct request_queue *q) 255 { 256 spin_lock_irq(q->queue_lock); 257 __generic_unplug_device(q); 258 spin_unlock_irq(q->queue_lock); 259 } 260 EXPORT_SYMBOL(generic_unplug_device); 261 262 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 263 struct page *page) 264 { 265 struct request_queue *q = bdi->unplug_io_data; 266 267 blk_unplug(q); 268 } 269 270 void blk_unplug_work(struct work_struct *work) 271 { 272 struct request_queue *q = 273 container_of(work, struct request_queue, unplug_work); 274 275 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 276 q->rq.count[READ] + q->rq.count[WRITE]); 277 278 q->unplug_fn(q); 279 } 280 281 void blk_unplug_timeout(unsigned long data) 282 { 283 struct request_queue *q = (struct request_queue *)data; 284 285 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL, 286 q->rq.count[READ] + q->rq.count[WRITE]); 287 288 kblockd_schedule_work(&q->unplug_work); 289 } 290 291 void blk_unplug(struct request_queue *q) 292 { 293 /* 294 * devices don't necessarily have an ->unplug_fn defined 295 */ 296 if (q->unplug_fn) { 297 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 298 q->rq.count[READ] + q->rq.count[WRITE]); 299 300 q->unplug_fn(q); 301 } 302 } 303 EXPORT_SYMBOL(blk_unplug); 304 305 /** 306 * blk_start_queue - restart a previously stopped queue 307 * @q: The &struct request_queue in question 308 * 309 * Description: 310 * blk_start_queue() will clear the stop flag on the queue, and call 311 * the request_fn for the queue if it was in a stopped state when 312 * entered. Also see blk_stop_queue(). Queue lock must be held. 313 **/ 314 void blk_start_queue(struct request_queue *q) 315 { 316 WARN_ON(!irqs_disabled()); 317 318 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 319 320 /* 321 * one level of recursion is ok and is much faster than kicking 322 * the unplug handling 323 */ 324 if (!test_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) { 325 queue_flag_set(QUEUE_FLAG_REENTER, q); 326 q->request_fn(q); 327 queue_flag_clear(QUEUE_FLAG_REENTER, q); 328 } else { 329 blk_plug_device(q); 330 kblockd_schedule_work(&q->unplug_work); 331 } 332 } 333 EXPORT_SYMBOL(blk_start_queue); 334 335 /** 336 * blk_stop_queue - stop a queue 337 * @q: The &struct request_queue in question 338 * 339 * Description: 340 * The Linux block layer assumes that a block driver will consume all 341 * entries on the request queue when the request_fn strategy is called. 342 * Often this will not happen, because of hardware limitations (queue 343 * depth settings). If a device driver gets a 'queue full' response, 344 * or if it simply chooses not to queue more I/O at one point, it can 345 * call this function to prevent the request_fn from being called until 346 * the driver has signalled it's ready to go again. This happens by calling 347 * blk_start_queue() to restart queue operations. Queue lock must be held. 348 **/ 349 void blk_stop_queue(struct request_queue *q) 350 { 351 blk_remove_plug(q); 352 queue_flag_set(QUEUE_FLAG_STOPPED, q); 353 } 354 EXPORT_SYMBOL(blk_stop_queue); 355 356 /** 357 * blk_sync_queue - cancel any pending callbacks on a queue 358 * @q: the queue 359 * 360 * Description: 361 * The block layer may perform asynchronous callback activity 362 * on a queue, such as calling the unplug function after a timeout. 363 * A block device may call blk_sync_queue to ensure that any 364 * such activity is cancelled, thus allowing it to release resources 365 * that the callbacks might use. The caller must already have made sure 366 * that its ->make_request_fn will not re-add plugging prior to calling 367 * this function. 368 * 369 */ 370 void blk_sync_queue(struct request_queue *q) 371 { 372 del_timer_sync(&q->unplug_timer); 373 kblockd_flush_work(&q->unplug_work); 374 } 375 EXPORT_SYMBOL(blk_sync_queue); 376 377 /** 378 * blk_run_queue - run a single device queue 379 * @q: The queue to run 380 */ 381 void __blk_run_queue(struct request_queue *q) 382 { 383 blk_remove_plug(q); 384 385 /* 386 * Only recurse once to avoid overrunning the stack, let the unplug 387 * handling reinvoke the handler shortly if we already got there. 388 */ 389 if (!elv_queue_empty(q)) { 390 if (!test_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) { 391 queue_flag_set(QUEUE_FLAG_REENTER, q); 392 q->request_fn(q); 393 queue_flag_clear(QUEUE_FLAG_REENTER, q); 394 } else { 395 blk_plug_device(q); 396 kblockd_schedule_work(&q->unplug_work); 397 } 398 } 399 } 400 EXPORT_SYMBOL(__blk_run_queue); 401 402 /** 403 * blk_run_queue - run a single device queue 404 * @q: The queue to run 405 */ 406 void blk_run_queue(struct request_queue *q) 407 { 408 unsigned long flags; 409 410 spin_lock_irqsave(q->queue_lock, flags); 411 __blk_run_queue(q); 412 spin_unlock_irqrestore(q->queue_lock, flags); 413 } 414 EXPORT_SYMBOL(blk_run_queue); 415 416 void blk_put_queue(struct request_queue *q) 417 { 418 kobject_put(&q->kobj); 419 } 420 421 void blk_cleanup_queue(struct request_queue *q) 422 { 423 mutex_lock(&q->sysfs_lock); 424 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 425 mutex_unlock(&q->sysfs_lock); 426 427 if (q->elevator) 428 elevator_exit(q->elevator); 429 430 blk_put_queue(q); 431 } 432 EXPORT_SYMBOL(blk_cleanup_queue); 433 434 static int blk_init_free_list(struct request_queue *q) 435 { 436 struct request_list *rl = &q->rq; 437 438 rl->count[READ] = rl->count[WRITE] = 0; 439 rl->starved[READ] = rl->starved[WRITE] = 0; 440 rl->elvpriv = 0; 441 init_waitqueue_head(&rl->wait[READ]); 442 init_waitqueue_head(&rl->wait[WRITE]); 443 444 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 445 mempool_free_slab, request_cachep, q->node); 446 447 if (!rl->rq_pool) 448 return -ENOMEM; 449 450 return 0; 451 } 452 453 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 454 { 455 return blk_alloc_queue_node(gfp_mask, -1); 456 } 457 EXPORT_SYMBOL(blk_alloc_queue); 458 459 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 460 { 461 struct request_queue *q; 462 int err; 463 464 q = kmem_cache_alloc_node(blk_requestq_cachep, 465 gfp_mask | __GFP_ZERO, node_id); 466 if (!q) 467 return NULL; 468 469 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 470 q->backing_dev_info.unplug_io_data = q; 471 err = bdi_init(&q->backing_dev_info); 472 if (err) { 473 kmem_cache_free(blk_requestq_cachep, q); 474 return NULL; 475 } 476 477 init_timer(&q->unplug_timer); 478 479 kobject_init(&q->kobj, &blk_queue_ktype); 480 481 mutex_init(&q->sysfs_lock); 482 483 return q; 484 } 485 EXPORT_SYMBOL(blk_alloc_queue_node); 486 487 /** 488 * blk_init_queue - prepare a request queue for use with a block device 489 * @rfn: The function to be called to process requests that have been 490 * placed on the queue. 491 * @lock: Request queue spin lock 492 * 493 * Description: 494 * If a block device wishes to use the standard request handling procedures, 495 * which sorts requests and coalesces adjacent requests, then it must 496 * call blk_init_queue(). The function @rfn will be called when there 497 * are requests on the queue that need to be processed. If the device 498 * supports plugging, then @rfn may not be called immediately when requests 499 * are available on the queue, but may be called at some time later instead. 500 * Plugged queues are generally unplugged when a buffer belonging to one 501 * of the requests on the queue is needed, or due to memory pressure. 502 * 503 * @rfn is not required, or even expected, to remove all requests off the 504 * queue, but only as many as it can handle at a time. If it does leave 505 * requests on the queue, it is responsible for arranging that the requests 506 * get dealt with eventually. 507 * 508 * The queue spin lock must be held while manipulating the requests on the 509 * request queue; this lock will be taken also from interrupt context, so irq 510 * disabling is needed for it. 511 * 512 * Function returns a pointer to the initialized request queue, or NULL if 513 * it didn't succeed. 514 * 515 * Note: 516 * blk_init_queue() must be paired with a blk_cleanup_queue() call 517 * when the block device is deactivated (such as at module unload). 518 **/ 519 520 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 521 { 522 return blk_init_queue_node(rfn, lock, -1); 523 } 524 EXPORT_SYMBOL(blk_init_queue); 525 526 struct request_queue * 527 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 528 { 529 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 530 531 if (!q) 532 return NULL; 533 534 q->node = node_id; 535 if (blk_init_free_list(q)) { 536 kmem_cache_free(blk_requestq_cachep, q); 537 return NULL; 538 } 539 540 /* 541 * if caller didn't supply a lock, they get per-queue locking with 542 * our embedded lock 543 */ 544 if (!lock) { 545 spin_lock_init(&q->__queue_lock); 546 lock = &q->__queue_lock; 547 } 548 549 q->request_fn = rfn; 550 q->prep_rq_fn = NULL; 551 q->unplug_fn = generic_unplug_device; 552 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER); 553 q->queue_lock = lock; 554 555 blk_queue_segment_boundary(q, 0xffffffff); 556 557 blk_queue_make_request(q, __make_request); 558 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); 559 560 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 561 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 562 563 q->sg_reserved_size = INT_MAX; 564 565 /* 566 * all done 567 */ 568 if (!elevator_init(q, NULL)) { 569 blk_queue_congestion_threshold(q); 570 return q; 571 } 572 573 blk_put_queue(q); 574 return NULL; 575 } 576 EXPORT_SYMBOL(blk_init_queue_node); 577 578 int blk_get_queue(struct request_queue *q) 579 { 580 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 581 kobject_get(&q->kobj); 582 return 0; 583 } 584 585 return 1; 586 } 587 588 static inline void blk_free_request(struct request_queue *q, struct request *rq) 589 { 590 if (rq->cmd_flags & REQ_ELVPRIV) 591 elv_put_request(q, rq); 592 mempool_free(rq, q->rq.rq_pool); 593 } 594 595 static struct request * 596 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask) 597 { 598 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 599 600 if (!rq) 601 return NULL; 602 603 blk_rq_init(q, rq); 604 605 /* 606 * first three bits are identical in rq->cmd_flags and bio->bi_rw, 607 * see bio.h and blkdev.h 608 */ 609 rq->cmd_flags = rw | REQ_ALLOCED; 610 611 if (priv) { 612 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 613 mempool_free(rq, q->rq.rq_pool); 614 return NULL; 615 } 616 rq->cmd_flags |= REQ_ELVPRIV; 617 } 618 619 return rq; 620 } 621 622 /* 623 * ioc_batching returns true if the ioc is a valid batching request and 624 * should be given priority access to a request. 625 */ 626 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 627 { 628 if (!ioc) 629 return 0; 630 631 /* 632 * Make sure the process is able to allocate at least 1 request 633 * even if the batch times out, otherwise we could theoretically 634 * lose wakeups. 635 */ 636 return ioc->nr_batch_requests == q->nr_batching || 637 (ioc->nr_batch_requests > 0 638 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 639 } 640 641 /* 642 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 643 * will cause the process to be a "batcher" on all queues in the system. This 644 * is the behaviour we want though - once it gets a wakeup it should be given 645 * a nice run. 646 */ 647 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 648 { 649 if (!ioc || ioc_batching(q, ioc)) 650 return; 651 652 ioc->nr_batch_requests = q->nr_batching; 653 ioc->last_waited = jiffies; 654 } 655 656 static void __freed_request(struct request_queue *q, int rw) 657 { 658 struct request_list *rl = &q->rq; 659 660 if (rl->count[rw] < queue_congestion_off_threshold(q)) 661 blk_clear_queue_congested(q, rw); 662 663 if (rl->count[rw] + 1 <= q->nr_requests) { 664 if (waitqueue_active(&rl->wait[rw])) 665 wake_up(&rl->wait[rw]); 666 667 blk_clear_queue_full(q, rw); 668 } 669 } 670 671 /* 672 * A request has just been released. Account for it, update the full and 673 * congestion status, wake up any waiters. Called under q->queue_lock. 674 */ 675 static void freed_request(struct request_queue *q, int rw, int priv) 676 { 677 struct request_list *rl = &q->rq; 678 679 rl->count[rw]--; 680 if (priv) 681 rl->elvpriv--; 682 683 __freed_request(q, rw); 684 685 if (unlikely(rl->starved[rw ^ 1])) 686 __freed_request(q, rw ^ 1); 687 } 688 689 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist) 690 /* 691 * Get a free request, queue_lock must be held. 692 * Returns NULL on failure, with queue_lock held. 693 * Returns !NULL on success, with queue_lock *not held*. 694 */ 695 static struct request *get_request(struct request_queue *q, int rw_flags, 696 struct bio *bio, gfp_t gfp_mask) 697 { 698 struct request *rq = NULL; 699 struct request_list *rl = &q->rq; 700 struct io_context *ioc = NULL; 701 const int rw = rw_flags & 0x01; 702 int may_queue, priv; 703 704 may_queue = elv_may_queue(q, rw_flags); 705 if (may_queue == ELV_MQUEUE_NO) 706 goto rq_starved; 707 708 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) { 709 if (rl->count[rw]+1 >= q->nr_requests) { 710 ioc = current_io_context(GFP_ATOMIC, q->node); 711 /* 712 * The queue will fill after this allocation, so set 713 * it as full, and mark this process as "batching". 714 * This process will be allowed to complete a batch of 715 * requests, others will be blocked. 716 */ 717 if (!blk_queue_full(q, rw)) { 718 ioc_set_batching(q, ioc); 719 blk_set_queue_full(q, rw); 720 } else { 721 if (may_queue != ELV_MQUEUE_MUST 722 && !ioc_batching(q, ioc)) { 723 /* 724 * The queue is full and the allocating 725 * process is not a "batcher", and not 726 * exempted by the IO scheduler 727 */ 728 goto out; 729 } 730 } 731 } 732 blk_set_queue_congested(q, rw); 733 } 734 735 /* 736 * Only allow batching queuers to allocate up to 50% over the defined 737 * limit of requests, otherwise we could have thousands of requests 738 * allocated with any setting of ->nr_requests 739 */ 740 if (rl->count[rw] >= (3 * q->nr_requests / 2)) 741 goto out; 742 743 rl->count[rw]++; 744 rl->starved[rw] = 0; 745 746 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 747 if (priv) 748 rl->elvpriv++; 749 750 spin_unlock_irq(q->queue_lock); 751 752 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 753 if (unlikely(!rq)) { 754 /* 755 * Allocation failed presumably due to memory. Undo anything 756 * we might have messed up. 757 * 758 * Allocating task should really be put onto the front of the 759 * wait queue, but this is pretty rare. 760 */ 761 spin_lock_irq(q->queue_lock); 762 freed_request(q, rw, priv); 763 764 /* 765 * in the very unlikely event that allocation failed and no 766 * requests for this direction was pending, mark us starved 767 * so that freeing of a request in the other direction will 768 * notice us. another possible fix would be to split the 769 * rq mempool into READ and WRITE 770 */ 771 rq_starved: 772 if (unlikely(rl->count[rw] == 0)) 773 rl->starved[rw] = 1; 774 775 goto out; 776 } 777 778 /* 779 * ioc may be NULL here, and ioc_batching will be false. That's 780 * OK, if the queue is under the request limit then requests need 781 * not count toward the nr_batch_requests limit. There will always 782 * be some limit enforced by BLK_BATCH_TIME. 783 */ 784 if (ioc_batching(q, ioc)) 785 ioc->nr_batch_requests--; 786 787 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ); 788 out: 789 return rq; 790 } 791 792 /* 793 * No available requests for this queue, unplug the device and wait for some 794 * requests to become available. 795 * 796 * Called with q->queue_lock held, and returns with it unlocked. 797 */ 798 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 799 struct bio *bio) 800 { 801 const int rw = rw_flags & 0x01; 802 struct request *rq; 803 804 rq = get_request(q, rw_flags, bio, GFP_NOIO); 805 while (!rq) { 806 DEFINE_WAIT(wait); 807 struct request_list *rl = &q->rq; 808 809 prepare_to_wait_exclusive(&rl->wait[rw], &wait, 810 TASK_UNINTERRUPTIBLE); 811 812 rq = get_request(q, rw_flags, bio, GFP_NOIO); 813 814 if (!rq) { 815 struct io_context *ioc; 816 817 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ); 818 819 __generic_unplug_device(q); 820 spin_unlock_irq(q->queue_lock); 821 io_schedule(); 822 823 /* 824 * After sleeping, we become a "batching" process and 825 * will be able to allocate at least one request, and 826 * up to a big batch of them for a small period time. 827 * See ioc_batching, ioc_set_batching 828 */ 829 ioc = current_io_context(GFP_NOIO, q->node); 830 ioc_set_batching(q, ioc); 831 832 spin_lock_irq(q->queue_lock); 833 } 834 finish_wait(&rl->wait[rw], &wait); 835 } 836 837 return rq; 838 } 839 840 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 841 { 842 struct request *rq; 843 844 BUG_ON(rw != READ && rw != WRITE); 845 846 spin_lock_irq(q->queue_lock); 847 if (gfp_mask & __GFP_WAIT) { 848 rq = get_request_wait(q, rw, NULL); 849 } else { 850 rq = get_request(q, rw, NULL, gfp_mask); 851 if (!rq) 852 spin_unlock_irq(q->queue_lock); 853 } 854 /* q->queue_lock is unlocked at this point */ 855 856 return rq; 857 } 858 EXPORT_SYMBOL(blk_get_request); 859 860 /** 861 * blk_start_queueing - initiate dispatch of requests to device 862 * @q: request queue to kick into gear 863 * 864 * This is basically a helper to remove the need to know whether a queue 865 * is plugged or not if someone just wants to initiate dispatch of requests 866 * for this queue. 867 * 868 * The queue lock must be held with interrupts disabled. 869 */ 870 void blk_start_queueing(struct request_queue *q) 871 { 872 if (!blk_queue_plugged(q)) 873 q->request_fn(q); 874 else 875 __generic_unplug_device(q); 876 } 877 EXPORT_SYMBOL(blk_start_queueing); 878 879 /** 880 * blk_requeue_request - put a request back on queue 881 * @q: request queue where request should be inserted 882 * @rq: request to be inserted 883 * 884 * Description: 885 * Drivers often keep queueing requests until the hardware cannot accept 886 * more, when that condition happens we need to put the request back 887 * on the queue. Must be called with queue lock held. 888 */ 889 void blk_requeue_request(struct request_queue *q, struct request *rq) 890 { 891 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE); 892 893 if (blk_rq_tagged(rq)) 894 blk_queue_end_tag(q, rq); 895 896 elv_requeue_request(q, rq); 897 } 898 EXPORT_SYMBOL(blk_requeue_request); 899 900 /** 901 * blk_insert_request - insert a special request in to a request queue 902 * @q: request queue where request should be inserted 903 * @rq: request to be inserted 904 * @at_head: insert request at head or tail of queue 905 * @data: private data 906 * 907 * Description: 908 * Many block devices need to execute commands asynchronously, so they don't 909 * block the whole kernel from preemption during request execution. This is 910 * accomplished normally by inserting aritficial requests tagged as 911 * REQ_SPECIAL in to the corresponding request queue, and letting them be 912 * scheduled for actual execution by the request queue. 913 * 914 * We have the option of inserting the head or the tail of the queue. 915 * Typically we use the tail for new ioctls and so forth. We use the head 916 * of the queue for things like a QUEUE_FULL message from a device, or a 917 * host that is unable to accept a particular command. 918 */ 919 void blk_insert_request(struct request_queue *q, struct request *rq, 920 int at_head, void *data) 921 { 922 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 923 unsigned long flags; 924 925 /* 926 * tell I/O scheduler that this isn't a regular read/write (ie it 927 * must not attempt merges on this) and that it acts as a soft 928 * barrier 929 */ 930 rq->cmd_type = REQ_TYPE_SPECIAL; 931 rq->cmd_flags |= REQ_SOFTBARRIER; 932 933 rq->special = data; 934 935 spin_lock_irqsave(q->queue_lock, flags); 936 937 /* 938 * If command is tagged, release the tag 939 */ 940 if (blk_rq_tagged(rq)) 941 blk_queue_end_tag(q, rq); 942 943 drive_stat_acct(rq, 1); 944 __elv_add_request(q, rq, where, 0); 945 blk_start_queueing(q); 946 spin_unlock_irqrestore(q->queue_lock, flags); 947 } 948 EXPORT_SYMBOL(blk_insert_request); 949 950 /* 951 * add-request adds a request to the linked list. 952 * queue lock is held and interrupts disabled, as we muck with the 953 * request queue list. 954 */ 955 static inline void add_request(struct request_queue *q, struct request *req) 956 { 957 drive_stat_acct(req, 1); 958 959 /* 960 * elevator indicated where it wants this request to be 961 * inserted at elevator_merge time 962 */ 963 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 964 } 965 966 /* 967 * disk_round_stats() - Round off the performance stats on a struct 968 * disk_stats. 969 * 970 * The average IO queue length and utilisation statistics are maintained 971 * by observing the current state of the queue length and the amount of 972 * time it has been in this state for. 973 * 974 * Normally, that accounting is done on IO completion, but that can result 975 * in more than a second's worth of IO being accounted for within any one 976 * second, leading to >100% utilisation. To deal with that, we call this 977 * function to do a round-off before returning the results when reading 978 * /proc/diskstats. This accounts immediately for all queue usage up to 979 * the current jiffies and restarts the counters again. 980 */ 981 void disk_round_stats(struct gendisk *disk) 982 { 983 unsigned long now = jiffies; 984 985 if (now == disk->stamp) 986 return; 987 988 if (disk->in_flight) { 989 __disk_stat_add(disk, time_in_queue, 990 disk->in_flight * (now - disk->stamp)); 991 __disk_stat_add(disk, io_ticks, (now - disk->stamp)); 992 } 993 disk->stamp = now; 994 } 995 EXPORT_SYMBOL_GPL(disk_round_stats); 996 997 void part_round_stats(struct hd_struct *part) 998 { 999 unsigned long now = jiffies; 1000 1001 if (now == part->stamp) 1002 return; 1003 1004 if (part->in_flight) { 1005 __part_stat_add(part, time_in_queue, 1006 part->in_flight * (now - part->stamp)); 1007 __part_stat_add(part, io_ticks, (now - part->stamp)); 1008 } 1009 part->stamp = now; 1010 } 1011 1012 /* 1013 * queue lock must be held 1014 */ 1015 void __blk_put_request(struct request_queue *q, struct request *req) 1016 { 1017 if (unlikely(!q)) 1018 return; 1019 if (unlikely(--req->ref_count)) 1020 return; 1021 1022 elv_completed_request(q, req); 1023 1024 /* 1025 * Request may not have originated from ll_rw_blk. if not, 1026 * it didn't come out of our reserved rq pools 1027 */ 1028 if (req->cmd_flags & REQ_ALLOCED) { 1029 int rw = rq_data_dir(req); 1030 int priv = req->cmd_flags & REQ_ELVPRIV; 1031 1032 BUG_ON(!list_empty(&req->queuelist)); 1033 BUG_ON(!hlist_unhashed(&req->hash)); 1034 1035 blk_free_request(q, req); 1036 freed_request(q, rw, priv); 1037 } 1038 } 1039 EXPORT_SYMBOL_GPL(__blk_put_request); 1040 1041 void blk_put_request(struct request *req) 1042 { 1043 unsigned long flags; 1044 struct request_queue *q = req->q; 1045 1046 /* 1047 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the 1048 * following if (q) test. 1049 */ 1050 if (q) { 1051 spin_lock_irqsave(q->queue_lock, flags); 1052 __blk_put_request(q, req); 1053 spin_unlock_irqrestore(q->queue_lock, flags); 1054 } 1055 } 1056 EXPORT_SYMBOL(blk_put_request); 1057 1058 void init_request_from_bio(struct request *req, struct bio *bio) 1059 { 1060 req->cmd_type = REQ_TYPE_FS; 1061 1062 /* 1063 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1064 */ 1065 if (bio_rw_ahead(bio) || bio_failfast(bio)) 1066 req->cmd_flags |= REQ_FAILFAST; 1067 1068 /* 1069 * REQ_BARRIER implies no merging, but lets make it explicit 1070 */ 1071 if (unlikely(bio_barrier(bio))) 1072 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE); 1073 1074 if (bio_sync(bio)) 1075 req->cmd_flags |= REQ_RW_SYNC; 1076 if (bio_rw_meta(bio)) 1077 req->cmd_flags |= REQ_RW_META; 1078 1079 req->errors = 0; 1080 req->hard_sector = req->sector = bio->bi_sector; 1081 req->ioprio = bio_prio(bio); 1082 req->start_time = jiffies; 1083 blk_rq_bio_prep(req->q, req, bio); 1084 } 1085 1086 static int __make_request(struct request_queue *q, struct bio *bio) 1087 { 1088 struct request *req; 1089 int el_ret, nr_sectors, barrier, err; 1090 const unsigned short prio = bio_prio(bio); 1091 const int sync = bio_sync(bio); 1092 int rw_flags; 1093 1094 nr_sectors = bio_sectors(bio); 1095 1096 /* 1097 * low level driver can indicate that it wants pages above a 1098 * certain limit bounced to low memory (ie for highmem, or even 1099 * ISA dma in theory) 1100 */ 1101 blk_queue_bounce(q, &bio); 1102 1103 barrier = bio_barrier(bio); 1104 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) { 1105 err = -EOPNOTSUPP; 1106 goto end_io; 1107 } 1108 1109 spin_lock_irq(q->queue_lock); 1110 1111 if (unlikely(barrier) || elv_queue_empty(q)) 1112 goto get_rq; 1113 1114 el_ret = elv_merge(q, &req, bio); 1115 switch (el_ret) { 1116 case ELEVATOR_BACK_MERGE: 1117 BUG_ON(!rq_mergeable(req)); 1118 1119 if (!ll_back_merge_fn(q, req, bio)) 1120 break; 1121 1122 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE); 1123 1124 req->biotail->bi_next = bio; 1125 req->biotail = bio; 1126 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1127 req->ioprio = ioprio_best(req->ioprio, prio); 1128 drive_stat_acct(req, 0); 1129 if (!attempt_back_merge(q, req)) 1130 elv_merged_request(q, req, el_ret); 1131 goto out; 1132 1133 case ELEVATOR_FRONT_MERGE: 1134 BUG_ON(!rq_mergeable(req)); 1135 1136 if (!ll_front_merge_fn(q, req, bio)) 1137 break; 1138 1139 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE); 1140 1141 bio->bi_next = req->bio; 1142 req->bio = bio; 1143 1144 /* 1145 * may not be valid. if the low level driver said 1146 * it didn't need a bounce buffer then it better 1147 * not touch req->buffer either... 1148 */ 1149 req->buffer = bio_data(bio); 1150 req->current_nr_sectors = bio_cur_sectors(bio); 1151 req->hard_cur_sectors = req->current_nr_sectors; 1152 req->sector = req->hard_sector = bio->bi_sector; 1153 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1154 req->ioprio = ioprio_best(req->ioprio, prio); 1155 drive_stat_acct(req, 0); 1156 if (!attempt_front_merge(q, req)) 1157 elv_merged_request(q, req, el_ret); 1158 goto out; 1159 1160 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1161 default: 1162 ; 1163 } 1164 1165 get_rq: 1166 /* 1167 * This sync check and mask will be re-done in init_request_from_bio(), 1168 * but we need to set it earlier to expose the sync flag to the 1169 * rq allocator and io schedulers. 1170 */ 1171 rw_flags = bio_data_dir(bio); 1172 if (sync) 1173 rw_flags |= REQ_RW_SYNC; 1174 1175 /* 1176 * Grab a free request. This is might sleep but can not fail. 1177 * Returns with the queue unlocked. 1178 */ 1179 req = get_request_wait(q, rw_flags, bio); 1180 1181 /* 1182 * After dropping the lock and possibly sleeping here, our request 1183 * may now be mergeable after it had proven unmergeable (above). 1184 * We don't worry about that case for efficiency. It won't happen 1185 * often, and the elevators are able to handle it. 1186 */ 1187 init_request_from_bio(req, bio); 1188 1189 spin_lock_irq(q->queue_lock); 1190 if (elv_queue_empty(q)) 1191 blk_plug_device(q); 1192 add_request(q, req); 1193 out: 1194 if (sync) 1195 __generic_unplug_device(q); 1196 1197 spin_unlock_irq(q->queue_lock); 1198 return 0; 1199 1200 end_io: 1201 bio_endio(bio, err); 1202 return 0; 1203 } 1204 1205 /* 1206 * If bio->bi_dev is a partition, remap the location 1207 */ 1208 static inline void blk_partition_remap(struct bio *bio) 1209 { 1210 struct block_device *bdev = bio->bi_bdev; 1211 1212 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1213 struct hd_struct *p = bdev->bd_part; 1214 1215 bio->bi_sector += p->start_sect; 1216 bio->bi_bdev = bdev->bd_contains; 1217 1218 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio, 1219 bdev->bd_dev, bio->bi_sector, 1220 bio->bi_sector - p->start_sect); 1221 } 1222 } 1223 1224 static void handle_bad_sector(struct bio *bio) 1225 { 1226 char b[BDEVNAME_SIZE]; 1227 1228 printk(KERN_INFO "attempt to access beyond end of device\n"); 1229 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1230 bdevname(bio->bi_bdev, b), 1231 bio->bi_rw, 1232 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1233 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1234 1235 set_bit(BIO_EOF, &bio->bi_flags); 1236 } 1237 1238 #ifdef CONFIG_FAIL_MAKE_REQUEST 1239 1240 static DECLARE_FAULT_ATTR(fail_make_request); 1241 1242 static int __init setup_fail_make_request(char *str) 1243 { 1244 return setup_fault_attr(&fail_make_request, str); 1245 } 1246 __setup("fail_make_request=", setup_fail_make_request); 1247 1248 static int should_fail_request(struct bio *bio) 1249 { 1250 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) || 1251 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail)) 1252 return should_fail(&fail_make_request, bio->bi_size); 1253 1254 return 0; 1255 } 1256 1257 static int __init fail_make_request_debugfs(void) 1258 { 1259 return init_fault_attr_dentries(&fail_make_request, 1260 "fail_make_request"); 1261 } 1262 1263 late_initcall(fail_make_request_debugfs); 1264 1265 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1266 1267 static inline int should_fail_request(struct bio *bio) 1268 { 1269 return 0; 1270 } 1271 1272 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1273 1274 /* 1275 * Check whether this bio extends beyond the end of the device. 1276 */ 1277 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1278 { 1279 sector_t maxsector; 1280 1281 if (!nr_sectors) 1282 return 0; 1283 1284 /* Test device or partition size, when known. */ 1285 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1286 if (maxsector) { 1287 sector_t sector = bio->bi_sector; 1288 1289 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1290 /* 1291 * This may well happen - the kernel calls bread() 1292 * without checking the size of the device, e.g., when 1293 * mounting a device. 1294 */ 1295 handle_bad_sector(bio); 1296 return 1; 1297 } 1298 } 1299 1300 return 0; 1301 } 1302 1303 /** 1304 * generic_make_request: hand a buffer to its device driver for I/O 1305 * @bio: The bio describing the location in memory and on the device. 1306 * 1307 * generic_make_request() is used to make I/O requests of block 1308 * devices. It is passed a &struct bio, which describes the I/O that needs 1309 * to be done. 1310 * 1311 * generic_make_request() does not return any status. The 1312 * success/failure status of the request, along with notification of 1313 * completion, is delivered asynchronously through the bio->bi_end_io 1314 * function described (one day) else where. 1315 * 1316 * The caller of generic_make_request must make sure that bi_io_vec 1317 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1318 * set to describe the device address, and the 1319 * bi_end_io and optionally bi_private are set to describe how 1320 * completion notification should be signaled. 1321 * 1322 * generic_make_request and the drivers it calls may use bi_next if this 1323 * bio happens to be merged with someone else, and may change bi_dev and 1324 * bi_sector for remaps as it sees fit. So the values of these fields 1325 * should NOT be depended on after the call to generic_make_request. 1326 */ 1327 static inline void __generic_make_request(struct bio *bio) 1328 { 1329 struct request_queue *q; 1330 sector_t old_sector; 1331 int ret, nr_sectors = bio_sectors(bio); 1332 dev_t old_dev; 1333 int err = -EIO; 1334 1335 might_sleep(); 1336 1337 if (bio_check_eod(bio, nr_sectors)) 1338 goto end_io; 1339 1340 /* 1341 * Resolve the mapping until finished. (drivers are 1342 * still free to implement/resolve their own stacking 1343 * by explicitly returning 0) 1344 * 1345 * NOTE: we don't repeat the blk_size check for each new device. 1346 * Stacking drivers are expected to know what they are doing. 1347 */ 1348 old_sector = -1; 1349 old_dev = 0; 1350 do { 1351 char b[BDEVNAME_SIZE]; 1352 1353 q = bdev_get_queue(bio->bi_bdev); 1354 if (!q) { 1355 printk(KERN_ERR 1356 "generic_make_request: Trying to access " 1357 "nonexistent block-device %s (%Lu)\n", 1358 bdevname(bio->bi_bdev, b), 1359 (long long) bio->bi_sector); 1360 end_io: 1361 bio_endio(bio, err); 1362 break; 1363 } 1364 1365 if (unlikely(nr_sectors > q->max_hw_sectors)) { 1366 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1367 bdevname(bio->bi_bdev, b), 1368 bio_sectors(bio), 1369 q->max_hw_sectors); 1370 goto end_io; 1371 } 1372 1373 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1374 goto end_io; 1375 1376 if (should_fail_request(bio)) 1377 goto end_io; 1378 1379 /* 1380 * If this device has partitions, remap block n 1381 * of partition p to block n+start(p) of the disk. 1382 */ 1383 blk_partition_remap(bio); 1384 1385 if (old_sector != -1) 1386 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector, 1387 old_sector); 1388 1389 blk_add_trace_bio(q, bio, BLK_TA_QUEUE); 1390 1391 old_sector = bio->bi_sector; 1392 old_dev = bio->bi_bdev->bd_dev; 1393 1394 if (bio_check_eod(bio, nr_sectors)) 1395 goto end_io; 1396 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) { 1397 err = -EOPNOTSUPP; 1398 goto end_io; 1399 } 1400 1401 ret = q->make_request_fn(q, bio); 1402 } while (ret); 1403 } 1404 1405 /* 1406 * We only want one ->make_request_fn to be active at a time, 1407 * else stack usage with stacked devices could be a problem. 1408 * So use current->bio_{list,tail} to keep a list of requests 1409 * submited by a make_request_fn function. 1410 * current->bio_tail is also used as a flag to say if 1411 * generic_make_request is currently active in this task or not. 1412 * If it is NULL, then no make_request is active. If it is non-NULL, 1413 * then a make_request is active, and new requests should be added 1414 * at the tail 1415 */ 1416 void generic_make_request(struct bio *bio) 1417 { 1418 if (current->bio_tail) { 1419 /* make_request is active */ 1420 *(current->bio_tail) = bio; 1421 bio->bi_next = NULL; 1422 current->bio_tail = &bio->bi_next; 1423 return; 1424 } 1425 /* following loop may be a bit non-obvious, and so deserves some 1426 * explanation. 1427 * Before entering the loop, bio->bi_next is NULL (as all callers 1428 * ensure that) so we have a list with a single bio. 1429 * We pretend that we have just taken it off a longer list, so 1430 * we assign bio_list to the next (which is NULL) and bio_tail 1431 * to &bio_list, thus initialising the bio_list of new bios to be 1432 * added. __generic_make_request may indeed add some more bios 1433 * through a recursive call to generic_make_request. If it 1434 * did, we find a non-NULL value in bio_list and re-enter the loop 1435 * from the top. In this case we really did just take the bio 1436 * of the top of the list (no pretending) and so fixup bio_list and 1437 * bio_tail or bi_next, and call into __generic_make_request again. 1438 * 1439 * The loop was structured like this to make only one call to 1440 * __generic_make_request (which is important as it is large and 1441 * inlined) and to keep the structure simple. 1442 */ 1443 BUG_ON(bio->bi_next); 1444 do { 1445 current->bio_list = bio->bi_next; 1446 if (bio->bi_next == NULL) 1447 current->bio_tail = ¤t->bio_list; 1448 else 1449 bio->bi_next = NULL; 1450 __generic_make_request(bio); 1451 bio = current->bio_list; 1452 } while (bio); 1453 current->bio_tail = NULL; /* deactivate */ 1454 } 1455 EXPORT_SYMBOL(generic_make_request); 1456 1457 /** 1458 * submit_bio: submit a bio to the block device layer for I/O 1459 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1460 * @bio: The &struct bio which describes the I/O 1461 * 1462 * submit_bio() is very similar in purpose to generic_make_request(), and 1463 * uses that function to do most of the work. Both are fairly rough 1464 * interfaces, @bio must be presetup and ready for I/O. 1465 * 1466 */ 1467 void submit_bio(int rw, struct bio *bio) 1468 { 1469 int count = bio_sectors(bio); 1470 1471 bio->bi_rw |= rw; 1472 1473 /* 1474 * If it's a regular read/write or a barrier with data attached, 1475 * go through the normal accounting stuff before submission. 1476 */ 1477 if (!bio_empty_barrier(bio)) { 1478 1479 BIO_BUG_ON(!bio->bi_size); 1480 BIO_BUG_ON(!bio->bi_io_vec); 1481 1482 if (rw & WRITE) { 1483 count_vm_events(PGPGOUT, count); 1484 } else { 1485 task_io_account_read(bio->bi_size); 1486 count_vm_events(PGPGIN, count); 1487 } 1488 1489 if (unlikely(block_dump)) { 1490 char b[BDEVNAME_SIZE]; 1491 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1492 current->comm, task_pid_nr(current), 1493 (rw & WRITE) ? "WRITE" : "READ", 1494 (unsigned long long)bio->bi_sector, 1495 bdevname(bio->bi_bdev, b)); 1496 } 1497 } 1498 1499 generic_make_request(bio); 1500 } 1501 EXPORT_SYMBOL(submit_bio); 1502 1503 /** 1504 * __end_that_request_first - end I/O on a request 1505 * @req: the request being processed 1506 * @error: 0 for success, < 0 for error 1507 * @nr_bytes: number of bytes to complete 1508 * 1509 * Description: 1510 * Ends I/O on a number of bytes attached to @req, and sets it up 1511 * for the next range of segments (if any) in the cluster. 1512 * 1513 * Return: 1514 * 0 - we are done with this request, call end_that_request_last() 1515 * 1 - still buffers pending for this request 1516 **/ 1517 static int __end_that_request_first(struct request *req, int error, 1518 int nr_bytes) 1519 { 1520 int total_bytes, bio_nbytes, next_idx = 0; 1521 struct bio *bio; 1522 1523 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE); 1524 1525 /* 1526 * for a REQ_BLOCK_PC request, we want to carry any eventual 1527 * sense key with us all the way through 1528 */ 1529 if (!blk_pc_request(req)) 1530 req->errors = 0; 1531 1532 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1533 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1534 req->rq_disk ? req->rq_disk->disk_name : "?", 1535 (unsigned long long)req->sector); 1536 } 1537 1538 if (blk_fs_request(req) && req->rq_disk) { 1539 const int rw = rq_data_dir(req); 1540 1541 all_stat_add(req->rq_disk, sectors[rw], 1542 nr_bytes >> 9, req->sector); 1543 } 1544 1545 total_bytes = bio_nbytes = 0; 1546 while ((bio = req->bio) != NULL) { 1547 int nbytes; 1548 1549 /* 1550 * For an empty barrier request, the low level driver must 1551 * store a potential error location in ->sector. We pass 1552 * that back up in ->bi_sector. 1553 */ 1554 if (blk_empty_barrier(req)) 1555 bio->bi_sector = req->sector; 1556 1557 if (nr_bytes >= bio->bi_size) { 1558 req->bio = bio->bi_next; 1559 nbytes = bio->bi_size; 1560 req_bio_endio(req, bio, nbytes, error); 1561 next_idx = 0; 1562 bio_nbytes = 0; 1563 } else { 1564 int idx = bio->bi_idx + next_idx; 1565 1566 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { 1567 blk_dump_rq_flags(req, "__end_that"); 1568 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1569 __FUNCTION__, bio->bi_idx, 1570 bio->bi_vcnt); 1571 break; 1572 } 1573 1574 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1575 BIO_BUG_ON(nbytes > bio->bi_size); 1576 1577 /* 1578 * not a complete bvec done 1579 */ 1580 if (unlikely(nbytes > nr_bytes)) { 1581 bio_nbytes += nr_bytes; 1582 total_bytes += nr_bytes; 1583 break; 1584 } 1585 1586 /* 1587 * advance to the next vector 1588 */ 1589 next_idx++; 1590 bio_nbytes += nbytes; 1591 } 1592 1593 total_bytes += nbytes; 1594 nr_bytes -= nbytes; 1595 1596 bio = req->bio; 1597 if (bio) { 1598 /* 1599 * end more in this run, or just return 'not-done' 1600 */ 1601 if (unlikely(nr_bytes <= 0)) 1602 break; 1603 } 1604 } 1605 1606 /* 1607 * completely done 1608 */ 1609 if (!req->bio) 1610 return 0; 1611 1612 /* 1613 * if the request wasn't completed, update state 1614 */ 1615 if (bio_nbytes) { 1616 req_bio_endio(req, bio, bio_nbytes, error); 1617 bio->bi_idx += next_idx; 1618 bio_iovec(bio)->bv_offset += nr_bytes; 1619 bio_iovec(bio)->bv_len -= nr_bytes; 1620 } 1621 1622 blk_recalc_rq_sectors(req, total_bytes >> 9); 1623 blk_recalc_rq_segments(req); 1624 return 1; 1625 } 1626 1627 /* 1628 * splice the completion data to a local structure and hand off to 1629 * process_completion_queue() to complete the requests 1630 */ 1631 static void blk_done_softirq(struct softirq_action *h) 1632 { 1633 struct list_head *cpu_list, local_list; 1634 1635 local_irq_disable(); 1636 cpu_list = &__get_cpu_var(blk_cpu_done); 1637 list_replace_init(cpu_list, &local_list); 1638 local_irq_enable(); 1639 1640 while (!list_empty(&local_list)) { 1641 struct request *rq; 1642 1643 rq = list_entry(local_list.next, struct request, donelist); 1644 list_del_init(&rq->donelist); 1645 rq->q->softirq_done_fn(rq); 1646 } 1647 } 1648 1649 static int __cpuinit blk_cpu_notify(struct notifier_block *self, 1650 unsigned long action, void *hcpu) 1651 { 1652 /* 1653 * If a CPU goes away, splice its entries to the current CPU 1654 * and trigger a run of the softirq 1655 */ 1656 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1657 int cpu = (unsigned long) hcpu; 1658 1659 local_irq_disable(); 1660 list_splice_init(&per_cpu(blk_cpu_done, cpu), 1661 &__get_cpu_var(blk_cpu_done)); 1662 raise_softirq_irqoff(BLOCK_SOFTIRQ); 1663 local_irq_enable(); 1664 } 1665 1666 return NOTIFY_OK; 1667 } 1668 1669 1670 static struct notifier_block blk_cpu_notifier __cpuinitdata = { 1671 .notifier_call = blk_cpu_notify, 1672 }; 1673 1674 /** 1675 * blk_complete_request - end I/O on a request 1676 * @req: the request being processed 1677 * 1678 * Description: 1679 * Ends all I/O on a request. It does not handle partial completions, 1680 * unless the driver actually implements this in its completion callback 1681 * through requeueing. The actual completion happens out-of-order, 1682 * through a softirq handler. The user must have registered a completion 1683 * callback through blk_queue_softirq_done(). 1684 **/ 1685 1686 void blk_complete_request(struct request *req) 1687 { 1688 struct list_head *cpu_list; 1689 unsigned long flags; 1690 1691 BUG_ON(!req->q->softirq_done_fn); 1692 1693 local_irq_save(flags); 1694 1695 cpu_list = &__get_cpu_var(blk_cpu_done); 1696 list_add_tail(&req->donelist, cpu_list); 1697 raise_softirq_irqoff(BLOCK_SOFTIRQ); 1698 1699 local_irq_restore(flags); 1700 } 1701 EXPORT_SYMBOL(blk_complete_request); 1702 1703 /* 1704 * queue lock must be held 1705 */ 1706 static void end_that_request_last(struct request *req, int error) 1707 { 1708 struct gendisk *disk = req->rq_disk; 1709 1710 if (blk_rq_tagged(req)) 1711 blk_queue_end_tag(req->q, req); 1712 1713 if (blk_queued_rq(req)) 1714 blkdev_dequeue_request(req); 1715 1716 if (unlikely(laptop_mode) && blk_fs_request(req)) 1717 laptop_io_completion(); 1718 1719 /* 1720 * Account IO completion. bar_rq isn't accounted as a normal 1721 * IO on queueing nor completion. Accounting the containing 1722 * request is enough. 1723 */ 1724 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) { 1725 unsigned long duration = jiffies - req->start_time; 1726 const int rw = rq_data_dir(req); 1727 struct hd_struct *part = get_part(disk, req->sector); 1728 1729 __all_stat_inc(disk, ios[rw], req->sector); 1730 __all_stat_add(disk, ticks[rw], duration, req->sector); 1731 disk_round_stats(disk); 1732 disk->in_flight--; 1733 if (part) { 1734 part_round_stats(part); 1735 part->in_flight--; 1736 } 1737 } 1738 1739 if (req->end_io) 1740 req->end_io(req, error); 1741 else { 1742 if (blk_bidi_rq(req)) 1743 __blk_put_request(req->next_rq->q, req->next_rq); 1744 1745 __blk_put_request(req->q, req); 1746 } 1747 } 1748 1749 static inline void __end_request(struct request *rq, int uptodate, 1750 unsigned int nr_bytes) 1751 { 1752 int error = 0; 1753 1754 if (uptodate <= 0) 1755 error = uptodate ? uptodate : -EIO; 1756 1757 __blk_end_request(rq, error, nr_bytes); 1758 } 1759 1760 /** 1761 * blk_rq_bytes - Returns bytes left to complete in the entire request 1762 * @rq: the request being processed 1763 **/ 1764 unsigned int blk_rq_bytes(struct request *rq) 1765 { 1766 if (blk_fs_request(rq)) 1767 return rq->hard_nr_sectors << 9; 1768 1769 return rq->data_len; 1770 } 1771 EXPORT_SYMBOL_GPL(blk_rq_bytes); 1772 1773 /** 1774 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment 1775 * @rq: the request being processed 1776 **/ 1777 unsigned int blk_rq_cur_bytes(struct request *rq) 1778 { 1779 if (blk_fs_request(rq)) 1780 return rq->current_nr_sectors << 9; 1781 1782 if (rq->bio) 1783 return rq->bio->bi_size; 1784 1785 return rq->data_len; 1786 } 1787 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes); 1788 1789 /** 1790 * end_queued_request - end all I/O on a queued request 1791 * @rq: the request being processed 1792 * @uptodate: error value or 0/1 uptodate flag 1793 * 1794 * Description: 1795 * Ends all I/O on a request, and removes it from the block layer queues. 1796 * Not suitable for normal IO completion, unless the driver still has 1797 * the request attached to the block layer. 1798 * 1799 **/ 1800 void end_queued_request(struct request *rq, int uptodate) 1801 { 1802 __end_request(rq, uptodate, blk_rq_bytes(rq)); 1803 } 1804 EXPORT_SYMBOL(end_queued_request); 1805 1806 /** 1807 * end_dequeued_request - end all I/O on a dequeued request 1808 * @rq: the request being processed 1809 * @uptodate: error value or 0/1 uptodate flag 1810 * 1811 * Description: 1812 * Ends all I/O on a request. The request must already have been 1813 * dequeued using blkdev_dequeue_request(), as is normally the case 1814 * for most drivers. 1815 * 1816 **/ 1817 void end_dequeued_request(struct request *rq, int uptodate) 1818 { 1819 __end_request(rq, uptodate, blk_rq_bytes(rq)); 1820 } 1821 EXPORT_SYMBOL(end_dequeued_request); 1822 1823 1824 /** 1825 * end_request - end I/O on the current segment of the request 1826 * @req: the request being processed 1827 * @uptodate: error value or 0/1 uptodate flag 1828 * 1829 * Description: 1830 * Ends I/O on the current segment of a request. If that is the only 1831 * remaining segment, the request is also completed and freed. 1832 * 1833 * This is a remnant of how older block drivers handled IO completions. 1834 * Modern drivers typically end IO on the full request in one go, unless 1835 * they have a residual value to account for. For that case this function 1836 * isn't really useful, unless the residual just happens to be the 1837 * full current segment. In other words, don't use this function in new 1838 * code. Either use end_request_completely(), or the 1839 * end_that_request_chunk() (along with end_that_request_last()) for 1840 * partial completions. 1841 * 1842 **/ 1843 void end_request(struct request *req, int uptodate) 1844 { 1845 __end_request(req, uptodate, req->hard_cur_sectors << 9); 1846 } 1847 EXPORT_SYMBOL(end_request); 1848 1849 /** 1850 * blk_end_io - Generic end_io function to complete a request. 1851 * @rq: the request being processed 1852 * @error: 0 for success, < 0 for error 1853 * @nr_bytes: number of bytes to complete @rq 1854 * @bidi_bytes: number of bytes to complete @rq->next_rq 1855 * @drv_callback: function called between completion of bios in the request 1856 * and completion of the request. 1857 * If the callback returns non 0, this helper returns without 1858 * completion of the request. 1859 * 1860 * Description: 1861 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1862 * If @rq has leftover, sets it up for the next range of segments. 1863 * 1864 * Return: 1865 * 0 - we are done with this request 1866 * 1 - this request is not freed yet, it still has pending buffers. 1867 **/ 1868 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes, 1869 unsigned int bidi_bytes, 1870 int (drv_callback)(struct request *)) 1871 { 1872 struct request_queue *q = rq->q; 1873 unsigned long flags = 0UL; 1874 1875 if (blk_fs_request(rq) || blk_pc_request(rq)) { 1876 if (__end_that_request_first(rq, error, nr_bytes)) 1877 return 1; 1878 1879 /* Bidi request must be completed as a whole */ 1880 if (blk_bidi_rq(rq) && 1881 __end_that_request_first(rq->next_rq, error, bidi_bytes)) 1882 return 1; 1883 } 1884 1885 /* Special feature for tricky drivers */ 1886 if (drv_callback && drv_callback(rq)) 1887 return 1; 1888 1889 add_disk_randomness(rq->rq_disk); 1890 1891 spin_lock_irqsave(q->queue_lock, flags); 1892 end_that_request_last(rq, error); 1893 spin_unlock_irqrestore(q->queue_lock, flags); 1894 1895 return 0; 1896 } 1897 1898 /** 1899 * blk_end_request - Helper function for drivers to complete the request. 1900 * @rq: the request being processed 1901 * @error: 0 for success, < 0 for error 1902 * @nr_bytes: number of bytes to complete 1903 * 1904 * Description: 1905 * Ends I/O on a number of bytes attached to @rq. 1906 * If @rq has leftover, sets it up for the next range of segments. 1907 * 1908 * Return: 1909 * 0 - we are done with this request 1910 * 1 - still buffers pending for this request 1911 **/ 1912 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1913 { 1914 return blk_end_io(rq, error, nr_bytes, 0, NULL); 1915 } 1916 EXPORT_SYMBOL_GPL(blk_end_request); 1917 1918 /** 1919 * __blk_end_request - Helper function for drivers to complete the request. 1920 * @rq: the request being processed 1921 * @error: 0 for success, < 0 for error 1922 * @nr_bytes: number of bytes to complete 1923 * 1924 * Description: 1925 * Must be called with queue lock held unlike blk_end_request(). 1926 * 1927 * Return: 1928 * 0 - we are done with this request 1929 * 1 - still buffers pending for this request 1930 **/ 1931 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1932 { 1933 if (blk_fs_request(rq) || blk_pc_request(rq)) { 1934 if (__end_that_request_first(rq, error, nr_bytes)) 1935 return 1; 1936 } 1937 1938 add_disk_randomness(rq->rq_disk); 1939 1940 end_that_request_last(rq, error); 1941 1942 return 0; 1943 } 1944 EXPORT_SYMBOL_GPL(__blk_end_request); 1945 1946 /** 1947 * blk_end_bidi_request - Helper function for drivers to complete bidi request. 1948 * @rq: the bidi request being processed 1949 * @error: 0 for success, < 0 for error 1950 * @nr_bytes: number of bytes to complete @rq 1951 * @bidi_bytes: number of bytes to complete @rq->next_rq 1952 * 1953 * Description: 1954 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1955 * 1956 * Return: 1957 * 0 - we are done with this request 1958 * 1 - still buffers pending for this request 1959 **/ 1960 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes, 1961 unsigned int bidi_bytes) 1962 { 1963 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL); 1964 } 1965 EXPORT_SYMBOL_GPL(blk_end_bidi_request); 1966 1967 /** 1968 * blk_end_request_callback - Special helper function for tricky drivers 1969 * @rq: the request being processed 1970 * @error: 0 for success, < 0 for error 1971 * @nr_bytes: number of bytes to complete 1972 * @drv_callback: function called between completion of bios in the request 1973 * and completion of the request. 1974 * If the callback returns non 0, this helper returns without 1975 * completion of the request. 1976 * 1977 * Description: 1978 * Ends I/O on a number of bytes attached to @rq. 1979 * If @rq has leftover, sets it up for the next range of segments. 1980 * 1981 * This special helper function is used only for existing tricky drivers. 1982 * (e.g. cdrom_newpc_intr() of ide-cd) 1983 * This interface will be removed when such drivers are rewritten. 1984 * Don't use this interface in other places anymore. 1985 * 1986 * Return: 1987 * 0 - we are done with this request 1988 * 1 - this request is not freed yet. 1989 * this request still has pending buffers or 1990 * the driver doesn't want to finish this request yet. 1991 **/ 1992 int blk_end_request_callback(struct request *rq, int error, 1993 unsigned int nr_bytes, 1994 int (drv_callback)(struct request *)) 1995 { 1996 return blk_end_io(rq, error, nr_bytes, 0, drv_callback); 1997 } 1998 EXPORT_SYMBOL_GPL(blk_end_request_callback); 1999 2000 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2001 struct bio *bio) 2002 { 2003 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */ 2004 rq->cmd_flags |= (bio->bi_rw & 3); 2005 2006 rq->nr_phys_segments = bio_phys_segments(q, bio); 2007 rq->nr_hw_segments = bio_hw_segments(q, bio); 2008 rq->current_nr_sectors = bio_cur_sectors(bio); 2009 rq->hard_cur_sectors = rq->current_nr_sectors; 2010 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); 2011 rq->buffer = bio_data(bio); 2012 rq->data_len = bio->bi_size; 2013 2014 rq->bio = rq->biotail = bio; 2015 2016 if (bio->bi_bdev) 2017 rq->rq_disk = bio->bi_bdev->bd_disk; 2018 } 2019 2020 int kblockd_schedule_work(struct work_struct *work) 2021 { 2022 return queue_work(kblockd_workqueue, work); 2023 } 2024 EXPORT_SYMBOL(kblockd_schedule_work); 2025 2026 void kblockd_flush_work(struct work_struct *work) 2027 { 2028 cancel_work_sync(work); 2029 } 2030 EXPORT_SYMBOL(kblockd_flush_work); 2031 2032 int __init blk_dev_init(void) 2033 { 2034 int i; 2035 2036 kblockd_workqueue = create_workqueue("kblockd"); 2037 if (!kblockd_workqueue) 2038 panic("Failed to create kblockd\n"); 2039 2040 request_cachep = kmem_cache_create("blkdev_requests", 2041 sizeof(struct request), 0, SLAB_PANIC, NULL); 2042 2043 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2044 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2045 2046 for_each_possible_cpu(i) 2047 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i)); 2048 2049 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL); 2050 register_hotcpu_notifier(&blk_cpu_notifier); 2051 2052 return 0; 2053 } 2054 2055