1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/interrupt.h> 30 #include <linux/cpu.h> 31 #include <linux/blktrace_api.h> 32 #include <linux/fault-inject.h> 33 34 #include "blk.h" 35 36 static int __make_request(struct request_queue *q, struct bio *bio); 37 38 /* 39 * For the allocated request tables 40 */ 41 struct kmem_cache *request_cachep; 42 43 /* 44 * For queue allocation 45 */ 46 struct kmem_cache *blk_requestq_cachep; 47 48 /* 49 * Controlling structure to kblockd 50 */ 51 static struct workqueue_struct *kblockd_workqueue; 52 53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done); 54 55 static void drive_stat_acct(struct request *rq, int new_io) 56 { 57 int rw = rq_data_dir(rq); 58 59 if (!blk_fs_request(rq) || !rq->rq_disk) 60 return; 61 62 if (!new_io) { 63 __all_stat_inc(rq->rq_disk, merges[rw], rq->sector); 64 } else { 65 struct hd_struct *part = get_part(rq->rq_disk, rq->sector); 66 disk_round_stats(rq->rq_disk); 67 rq->rq_disk->in_flight++; 68 if (part) { 69 part_round_stats(part); 70 part->in_flight++; 71 } 72 } 73 } 74 75 void blk_queue_congestion_threshold(struct request_queue *q) 76 { 77 int nr; 78 79 nr = q->nr_requests - (q->nr_requests / 8) + 1; 80 if (nr > q->nr_requests) 81 nr = q->nr_requests; 82 q->nr_congestion_on = nr; 83 84 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 85 if (nr < 1) 86 nr = 1; 87 q->nr_congestion_off = nr; 88 } 89 90 /** 91 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 92 * @bdev: device 93 * 94 * Locates the passed device's request queue and returns the address of its 95 * backing_dev_info 96 * 97 * Will return NULL if the request queue cannot be located. 98 */ 99 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 100 { 101 struct backing_dev_info *ret = NULL; 102 struct request_queue *q = bdev_get_queue(bdev); 103 104 if (q) 105 ret = &q->backing_dev_info; 106 return ret; 107 } 108 EXPORT_SYMBOL(blk_get_backing_dev_info); 109 110 /* 111 * We can't just memset() the structure, since the allocation path 112 * already stored some information in the request. 113 */ 114 void rq_init(struct request_queue *q, struct request *rq) 115 { 116 INIT_LIST_HEAD(&rq->queuelist); 117 INIT_LIST_HEAD(&rq->donelist); 118 rq->q = q; 119 rq->sector = rq->hard_sector = (sector_t) -1; 120 rq->nr_sectors = rq->hard_nr_sectors = 0; 121 rq->current_nr_sectors = rq->hard_cur_sectors = 0; 122 rq->bio = rq->biotail = NULL; 123 INIT_HLIST_NODE(&rq->hash); 124 RB_CLEAR_NODE(&rq->rb_node); 125 rq->rq_disk = NULL; 126 rq->nr_phys_segments = 0; 127 rq->nr_hw_segments = 0; 128 rq->ioprio = 0; 129 rq->special = NULL; 130 rq->buffer = NULL; 131 rq->tag = -1; 132 rq->errors = 0; 133 rq->ref_count = 1; 134 rq->cmd_len = 0; 135 memset(rq->cmd, 0, sizeof(rq->cmd)); 136 rq->data_len = 0; 137 rq->sense_len = 0; 138 rq->data = NULL; 139 rq->sense = NULL; 140 rq->end_io = NULL; 141 rq->end_io_data = NULL; 142 rq->next_rq = NULL; 143 } 144 145 static void req_bio_endio(struct request *rq, struct bio *bio, 146 unsigned int nbytes, int error) 147 { 148 struct request_queue *q = rq->q; 149 150 if (&q->bar_rq != rq) { 151 if (error) 152 clear_bit(BIO_UPTODATE, &bio->bi_flags); 153 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 154 error = -EIO; 155 156 if (unlikely(nbytes > bio->bi_size)) { 157 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 158 __FUNCTION__, nbytes, bio->bi_size); 159 nbytes = bio->bi_size; 160 } 161 162 bio->bi_size -= nbytes; 163 bio->bi_sector += (nbytes >> 9); 164 if (bio->bi_size == 0) 165 bio_endio(bio, error); 166 } else { 167 168 /* 169 * Okay, this is the barrier request in progress, just 170 * record the error; 171 */ 172 if (error && !q->orderr) 173 q->orderr = error; 174 } 175 } 176 177 void blk_dump_rq_flags(struct request *rq, char *msg) 178 { 179 int bit; 180 181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 183 rq->cmd_flags); 184 185 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n", 186 (unsigned long long)rq->sector, 187 rq->nr_sectors, 188 rq->current_nr_sectors); 189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n", 190 rq->bio, rq->biotail, 191 rq->buffer, rq->data, 192 rq->data_len); 193 194 if (blk_pc_request(rq)) { 195 printk(KERN_INFO " cdb: "); 196 for (bit = 0; bit < sizeof(rq->cmd); bit++) 197 printk("%02x ", rq->cmd[bit]); 198 printk("\n"); 199 } 200 } 201 EXPORT_SYMBOL(blk_dump_rq_flags); 202 203 /* 204 * "plug" the device if there are no outstanding requests: this will 205 * force the transfer to start only after we have put all the requests 206 * on the list. 207 * 208 * This is called with interrupts off and no requests on the queue and 209 * with the queue lock held. 210 */ 211 void blk_plug_device(struct request_queue *q) 212 { 213 WARN_ON(!irqs_disabled()); 214 215 /* 216 * don't plug a stopped queue, it must be paired with blk_start_queue() 217 * which will restart the queueing 218 */ 219 if (blk_queue_stopped(q)) 220 return; 221 222 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) { 223 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 224 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG); 225 } 226 } 227 EXPORT_SYMBOL(blk_plug_device); 228 229 /* 230 * remove the queue from the plugged list, if present. called with 231 * queue lock held and interrupts disabled. 232 */ 233 int blk_remove_plug(struct request_queue *q) 234 { 235 WARN_ON(!irqs_disabled()); 236 237 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) 238 return 0; 239 240 del_timer(&q->unplug_timer); 241 return 1; 242 } 243 EXPORT_SYMBOL(blk_remove_plug); 244 245 /* 246 * remove the plug and let it rip.. 247 */ 248 void __generic_unplug_device(struct request_queue *q) 249 { 250 if (unlikely(blk_queue_stopped(q))) 251 return; 252 253 if (!blk_remove_plug(q)) 254 return; 255 256 q->request_fn(q); 257 } 258 EXPORT_SYMBOL(__generic_unplug_device); 259 260 /** 261 * generic_unplug_device - fire a request queue 262 * @q: The &struct request_queue in question 263 * 264 * Description: 265 * Linux uses plugging to build bigger requests queues before letting 266 * the device have at them. If a queue is plugged, the I/O scheduler 267 * is still adding and merging requests on the queue. Once the queue 268 * gets unplugged, the request_fn defined for the queue is invoked and 269 * transfers started. 270 **/ 271 void generic_unplug_device(struct request_queue *q) 272 { 273 spin_lock_irq(q->queue_lock); 274 __generic_unplug_device(q); 275 spin_unlock_irq(q->queue_lock); 276 } 277 EXPORT_SYMBOL(generic_unplug_device); 278 279 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 280 struct page *page) 281 { 282 struct request_queue *q = bdi->unplug_io_data; 283 284 blk_unplug(q); 285 } 286 287 void blk_unplug_work(struct work_struct *work) 288 { 289 struct request_queue *q = 290 container_of(work, struct request_queue, unplug_work); 291 292 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 293 q->rq.count[READ] + q->rq.count[WRITE]); 294 295 q->unplug_fn(q); 296 } 297 298 void blk_unplug_timeout(unsigned long data) 299 { 300 struct request_queue *q = (struct request_queue *)data; 301 302 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL, 303 q->rq.count[READ] + q->rq.count[WRITE]); 304 305 kblockd_schedule_work(&q->unplug_work); 306 } 307 308 void blk_unplug(struct request_queue *q) 309 { 310 /* 311 * devices don't necessarily have an ->unplug_fn defined 312 */ 313 if (q->unplug_fn) { 314 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 315 q->rq.count[READ] + q->rq.count[WRITE]); 316 317 q->unplug_fn(q); 318 } 319 } 320 EXPORT_SYMBOL(blk_unplug); 321 322 /** 323 * blk_start_queue - restart a previously stopped queue 324 * @q: The &struct request_queue in question 325 * 326 * Description: 327 * blk_start_queue() will clear the stop flag on the queue, and call 328 * the request_fn for the queue if it was in a stopped state when 329 * entered. Also see blk_stop_queue(). Queue lock must be held. 330 **/ 331 void blk_start_queue(struct request_queue *q) 332 { 333 WARN_ON(!irqs_disabled()); 334 335 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags); 336 337 /* 338 * one level of recursion is ok and is much faster than kicking 339 * the unplug handling 340 */ 341 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) { 342 q->request_fn(q); 343 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags); 344 } else { 345 blk_plug_device(q); 346 kblockd_schedule_work(&q->unplug_work); 347 } 348 } 349 EXPORT_SYMBOL(blk_start_queue); 350 351 /** 352 * blk_stop_queue - stop a queue 353 * @q: The &struct request_queue in question 354 * 355 * Description: 356 * The Linux block layer assumes that a block driver will consume all 357 * entries on the request queue when the request_fn strategy is called. 358 * Often this will not happen, because of hardware limitations (queue 359 * depth settings). If a device driver gets a 'queue full' response, 360 * or if it simply chooses not to queue more I/O at one point, it can 361 * call this function to prevent the request_fn from being called until 362 * the driver has signalled it's ready to go again. This happens by calling 363 * blk_start_queue() to restart queue operations. Queue lock must be held. 364 **/ 365 void blk_stop_queue(struct request_queue *q) 366 { 367 blk_remove_plug(q); 368 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags); 369 } 370 EXPORT_SYMBOL(blk_stop_queue); 371 372 /** 373 * blk_sync_queue - cancel any pending callbacks on a queue 374 * @q: the queue 375 * 376 * Description: 377 * The block layer may perform asynchronous callback activity 378 * on a queue, such as calling the unplug function after a timeout. 379 * A block device may call blk_sync_queue to ensure that any 380 * such activity is cancelled, thus allowing it to release resources 381 * that the callbacks might use. The caller must already have made sure 382 * that its ->make_request_fn will not re-add plugging prior to calling 383 * this function. 384 * 385 */ 386 void blk_sync_queue(struct request_queue *q) 387 { 388 del_timer_sync(&q->unplug_timer); 389 kblockd_flush_work(&q->unplug_work); 390 } 391 EXPORT_SYMBOL(blk_sync_queue); 392 393 /** 394 * blk_run_queue - run a single device queue 395 * @q: The queue to run 396 */ 397 void blk_run_queue(struct request_queue *q) 398 { 399 unsigned long flags; 400 401 spin_lock_irqsave(q->queue_lock, flags); 402 blk_remove_plug(q); 403 404 /* 405 * Only recurse once to avoid overrunning the stack, let the unplug 406 * handling reinvoke the handler shortly if we already got there. 407 */ 408 if (!elv_queue_empty(q)) { 409 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) { 410 q->request_fn(q); 411 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags); 412 } else { 413 blk_plug_device(q); 414 kblockd_schedule_work(&q->unplug_work); 415 } 416 } 417 418 spin_unlock_irqrestore(q->queue_lock, flags); 419 } 420 EXPORT_SYMBOL(blk_run_queue); 421 422 void blk_put_queue(struct request_queue *q) 423 { 424 kobject_put(&q->kobj); 425 } 426 EXPORT_SYMBOL(blk_put_queue); 427 428 void blk_cleanup_queue(struct request_queue *q) 429 { 430 mutex_lock(&q->sysfs_lock); 431 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags); 432 mutex_unlock(&q->sysfs_lock); 433 434 if (q->elevator) 435 elevator_exit(q->elevator); 436 437 blk_put_queue(q); 438 } 439 EXPORT_SYMBOL(blk_cleanup_queue); 440 441 static int blk_init_free_list(struct request_queue *q) 442 { 443 struct request_list *rl = &q->rq; 444 445 rl->count[READ] = rl->count[WRITE] = 0; 446 rl->starved[READ] = rl->starved[WRITE] = 0; 447 rl->elvpriv = 0; 448 init_waitqueue_head(&rl->wait[READ]); 449 init_waitqueue_head(&rl->wait[WRITE]); 450 451 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 452 mempool_free_slab, request_cachep, q->node); 453 454 if (!rl->rq_pool) 455 return -ENOMEM; 456 457 return 0; 458 } 459 460 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 461 { 462 return blk_alloc_queue_node(gfp_mask, -1); 463 } 464 EXPORT_SYMBOL(blk_alloc_queue); 465 466 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 467 { 468 struct request_queue *q; 469 int err; 470 471 q = kmem_cache_alloc_node(blk_requestq_cachep, 472 gfp_mask | __GFP_ZERO, node_id); 473 if (!q) 474 return NULL; 475 476 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 477 q->backing_dev_info.unplug_io_data = q; 478 err = bdi_init(&q->backing_dev_info); 479 if (err) { 480 kmem_cache_free(blk_requestq_cachep, q); 481 return NULL; 482 } 483 484 init_timer(&q->unplug_timer); 485 486 kobject_init(&q->kobj, &blk_queue_ktype); 487 488 mutex_init(&q->sysfs_lock); 489 490 return q; 491 } 492 EXPORT_SYMBOL(blk_alloc_queue_node); 493 494 /** 495 * blk_init_queue - prepare a request queue for use with a block device 496 * @rfn: The function to be called to process requests that have been 497 * placed on the queue. 498 * @lock: Request queue spin lock 499 * 500 * Description: 501 * If a block device wishes to use the standard request handling procedures, 502 * which sorts requests and coalesces adjacent requests, then it must 503 * call blk_init_queue(). The function @rfn will be called when there 504 * are requests on the queue that need to be processed. If the device 505 * supports plugging, then @rfn may not be called immediately when requests 506 * are available on the queue, but may be called at some time later instead. 507 * Plugged queues are generally unplugged when a buffer belonging to one 508 * of the requests on the queue is needed, or due to memory pressure. 509 * 510 * @rfn is not required, or even expected, to remove all requests off the 511 * queue, but only as many as it can handle at a time. If it does leave 512 * requests on the queue, it is responsible for arranging that the requests 513 * get dealt with eventually. 514 * 515 * The queue spin lock must be held while manipulating the requests on the 516 * request queue; this lock will be taken also from interrupt context, so irq 517 * disabling is needed for it. 518 * 519 * Function returns a pointer to the initialized request queue, or NULL if 520 * it didn't succeed. 521 * 522 * Note: 523 * blk_init_queue() must be paired with a blk_cleanup_queue() call 524 * when the block device is deactivated (such as at module unload). 525 **/ 526 527 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 528 { 529 return blk_init_queue_node(rfn, lock, -1); 530 } 531 EXPORT_SYMBOL(blk_init_queue); 532 533 struct request_queue * 534 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 535 { 536 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 537 538 if (!q) 539 return NULL; 540 541 q->node = node_id; 542 if (blk_init_free_list(q)) { 543 kmem_cache_free(blk_requestq_cachep, q); 544 return NULL; 545 } 546 547 /* 548 * if caller didn't supply a lock, they get per-queue locking with 549 * our embedded lock 550 */ 551 if (!lock) { 552 spin_lock_init(&q->__queue_lock); 553 lock = &q->__queue_lock; 554 } 555 556 q->request_fn = rfn; 557 q->prep_rq_fn = NULL; 558 q->unplug_fn = generic_unplug_device; 559 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER); 560 q->queue_lock = lock; 561 562 blk_queue_segment_boundary(q, 0xffffffff); 563 564 blk_queue_make_request(q, __make_request); 565 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); 566 567 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 568 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 569 570 q->sg_reserved_size = INT_MAX; 571 572 /* 573 * all done 574 */ 575 if (!elevator_init(q, NULL)) { 576 blk_queue_congestion_threshold(q); 577 return q; 578 } 579 580 blk_put_queue(q); 581 return NULL; 582 } 583 EXPORT_SYMBOL(blk_init_queue_node); 584 585 int blk_get_queue(struct request_queue *q) 586 { 587 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 588 kobject_get(&q->kobj); 589 return 0; 590 } 591 592 return 1; 593 } 594 EXPORT_SYMBOL(blk_get_queue); 595 596 static inline void blk_free_request(struct request_queue *q, struct request *rq) 597 { 598 if (rq->cmd_flags & REQ_ELVPRIV) 599 elv_put_request(q, rq); 600 mempool_free(rq, q->rq.rq_pool); 601 } 602 603 static struct request * 604 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask) 605 { 606 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 607 608 if (!rq) 609 return NULL; 610 611 /* 612 * first three bits are identical in rq->cmd_flags and bio->bi_rw, 613 * see bio.h and blkdev.h 614 */ 615 rq->cmd_flags = rw | REQ_ALLOCED; 616 617 if (priv) { 618 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 619 mempool_free(rq, q->rq.rq_pool); 620 return NULL; 621 } 622 rq->cmd_flags |= REQ_ELVPRIV; 623 } 624 625 return rq; 626 } 627 628 /* 629 * ioc_batching returns true if the ioc is a valid batching request and 630 * should be given priority access to a request. 631 */ 632 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 633 { 634 if (!ioc) 635 return 0; 636 637 /* 638 * Make sure the process is able to allocate at least 1 request 639 * even if the batch times out, otherwise we could theoretically 640 * lose wakeups. 641 */ 642 return ioc->nr_batch_requests == q->nr_batching || 643 (ioc->nr_batch_requests > 0 644 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 645 } 646 647 /* 648 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 649 * will cause the process to be a "batcher" on all queues in the system. This 650 * is the behaviour we want though - once it gets a wakeup it should be given 651 * a nice run. 652 */ 653 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 654 { 655 if (!ioc || ioc_batching(q, ioc)) 656 return; 657 658 ioc->nr_batch_requests = q->nr_batching; 659 ioc->last_waited = jiffies; 660 } 661 662 static void __freed_request(struct request_queue *q, int rw) 663 { 664 struct request_list *rl = &q->rq; 665 666 if (rl->count[rw] < queue_congestion_off_threshold(q)) 667 blk_clear_queue_congested(q, rw); 668 669 if (rl->count[rw] + 1 <= q->nr_requests) { 670 if (waitqueue_active(&rl->wait[rw])) 671 wake_up(&rl->wait[rw]); 672 673 blk_clear_queue_full(q, rw); 674 } 675 } 676 677 /* 678 * A request has just been released. Account for it, update the full and 679 * congestion status, wake up any waiters. Called under q->queue_lock. 680 */ 681 static void freed_request(struct request_queue *q, int rw, int priv) 682 { 683 struct request_list *rl = &q->rq; 684 685 rl->count[rw]--; 686 if (priv) 687 rl->elvpriv--; 688 689 __freed_request(q, rw); 690 691 if (unlikely(rl->starved[rw ^ 1])) 692 __freed_request(q, rw ^ 1); 693 } 694 695 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist) 696 /* 697 * Get a free request, queue_lock must be held. 698 * Returns NULL on failure, with queue_lock held. 699 * Returns !NULL on success, with queue_lock *not held*. 700 */ 701 static struct request *get_request(struct request_queue *q, int rw_flags, 702 struct bio *bio, gfp_t gfp_mask) 703 { 704 struct request *rq = NULL; 705 struct request_list *rl = &q->rq; 706 struct io_context *ioc = NULL; 707 const int rw = rw_flags & 0x01; 708 int may_queue, priv; 709 710 may_queue = elv_may_queue(q, rw_flags); 711 if (may_queue == ELV_MQUEUE_NO) 712 goto rq_starved; 713 714 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) { 715 if (rl->count[rw]+1 >= q->nr_requests) { 716 ioc = current_io_context(GFP_ATOMIC, q->node); 717 /* 718 * The queue will fill after this allocation, so set 719 * it as full, and mark this process as "batching". 720 * This process will be allowed to complete a batch of 721 * requests, others will be blocked. 722 */ 723 if (!blk_queue_full(q, rw)) { 724 ioc_set_batching(q, ioc); 725 blk_set_queue_full(q, rw); 726 } else { 727 if (may_queue != ELV_MQUEUE_MUST 728 && !ioc_batching(q, ioc)) { 729 /* 730 * The queue is full and the allocating 731 * process is not a "batcher", and not 732 * exempted by the IO scheduler 733 */ 734 goto out; 735 } 736 } 737 } 738 blk_set_queue_congested(q, rw); 739 } 740 741 /* 742 * Only allow batching queuers to allocate up to 50% over the defined 743 * limit of requests, otherwise we could have thousands of requests 744 * allocated with any setting of ->nr_requests 745 */ 746 if (rl->count[rw] >= (3 * q->nr_requests / 2)) 747 goto out; 748 749 rl->count[rw]++; 750 rl->starved[rw] = 0; 751 752 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 753 if (priv) 754 rl->elvpriv++; 755 756 spin_unlock_irq(q->queue_lock); 757 758 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 759 if (unlikely(!rq)) { 760 /* 761 * Allocation failed presumably due to memory. Undo anything 762 * we might have messed up. 763 * 764 * Allocating task should really be put onto the front of the 765 * wait queue, but this is pretty rare. 766 */ 767 spin_lock_irq(q->queue_lock); 768 freed_request(q, rw, priv); 769 770 /* 771 * in the very unlikely event that allocation failed and no 772 * requests for this direction was pending, mark us starved 773 * so that freeing of a request in the other direction will 774 * notice us. another possible fix would be to split the 775 * rq mempool into READ and WRITE 776 */ 777 rq_starved: 778 if (unlikely(rl->count[rw] == 0)) 779 rl->starved[rw] = 1; 780 781 goto out; 782 } 783 784 /* 785 * ioc may be NULL here, and ioc_batching will be false. That's 786 * OK, if the queue is under the request limit then requests need 787 * not count toward the nr_batch_requests limit. There will always 788 * be some limit enforced by BLK_BATCH_TIME. 789 */ 790 if (ioc_batching(q, ioc)) 791 ioc->nr_batch_requests--; 792 793 rq_init(q, rq); 794 795 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ); 796 out: 797 return rq; 798 } 799 800 /* 801 * No available requests for this queue, unplug the device and wait for some 802 * requests to become available. 803 * 804 * Called with q->queue_lock held, and returns with it unlocked. 805 */ 806 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 807 struct bio *bio) 808 { 809 const int rw = rw_flags & 0x01; 810 struct request *rq; 811 812 rq = get_request(q, rw_flags, bio, GFP_NOIO); 813 while (!rq) { 814 DEFINE_WAIT(wait); 815 struct request_list *rl = &q->rq; 816 817 prepare_to_wait_exclusive(&rl->wait[rw], &wait, 818 TASK_UNINTERRUPTIBLE); 819 820 rq = get_request(q, rw_flags, bio, GFP_NOIO); 821 822 if (!rq) { 823 struct io_context *ioc; 824 825 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ); 826 827 __generic_unplug_device(q); 828 spin_unlock_irq(q->queue_lock); 829 io_schedule(); 830 831 /* 832 * After sleeping, we become a "batching" process and 833 * will be able to allocate at least one request, and 834 * up to a big batch of them for a small period time. 835 * See ioc_batching, ioc_set_batching 836 */ 837 ioc = current_io_context(GFP_NOIO, q->node); 838 ioc_set_batching(q, ioc); 839 840 spin_lock_irq(q->queue_lock); 841 } 842 finish_wait(&rl->wait[rw], &wait); 843 } 844 845 return rq; 846 } 847 848 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 849 { 850 struct request *rq; 851 852 BUG_ON(rw != READ && rw != WRITE); 853 854 spin_lock_irq(q->queue_lock); 855 if (gfp_mask & __GFP_WAIT) { 856 rq = get_request_wait(q, rw, NULL); 857 } else { 858 rq = get_request(q, rw, NULL, gfp_mask); 859 if (!rq) 860 spin_unlock_irq(q->queue_lock); 861 } 862 /* q->queue_lock is unlocked at this point */ 863 864 return rq; 865 } 866 EXPORT_SYMBOL(blk_get_request); 867 868 /** 869 * blk_start_queueing - initiate dispatch of requests to device 870 * @q: request queue to kick into gear 871 * 872 * This is basically a helper to remove the need to know whether a queue 873 * is plugged or not if someone just wants to initiate dispatch of requests 874 * for this queue. 875 * 876 * The queue lock must be held with interrupts disabled. 877 */ 878 void blk_start_queueing(struct request_queue *q) 879 { 880 if (!blk_queue_plugged(q)) 881 q->request_fn(q); 882 else 883 __generic_unplug_device(q); 884 } 885 EXPORT_SYMBOL(blk_start_queueing); 886 887 /** 888 * blk_requeue_request - put a request back on queue 889 * @q: request queue where request should be inserted 890 * @rq: request to be inserted 891 * 892 * Description: 893 * Drivers often keep queueing requests until the hardware cannot accept 894 * more, when that condition happens we need to put the request back 895 * on the queue. Must be called with queue lock held. 896 */ 897 void blk_requeue_request(struct request_queue *q, struct request *rq) 898 { 899 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE); 900 901 if (blk_rq_tagged(rq)) 902 blk_queue_end_tag(q, rq); 903 904 elv_requeue_request(q, rq); 905 } 906 EXPORT_SYMBOL(blk_requeue_request); 907 908 /** 909 * blk_insert_request - insert a special request in to a request queue 910 * @q: request queue where request should be inserted 911 * @rq: request to be inserted 912 * @at_head: insert request at head or tail of queue 913 * @data: private data 914 * 915 * Description: 916 * Many block devices need to execute commands asynchronously, so they don't 917 * block the whole kernel from preemption during request execution. This is 918 * accomplished normally by inserting aritficial requests tagged as 919 * REQ_SPECIAL in to the corresponding request queue, and letting them be 920 * scheduled for actual execution by the request queue. 921 * 922 * We have the option of inserting the head or the tail of the queue. 923 * Typically we use the tail for new ioctls and so forth. We use the head 924 * of the queue for things like a QUEUE_FULL message from a device, or a 925 * host that is unable to accept a particular command. 926 */ 927 void blk_insert_request(struct request_queue *q, struct request *rq, 928 int at_head, void *data) 929 { 930 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 931 unsigned long flags; 932 933 /* 934 * tell I/O scheduler that this isn't a regular read/write (ie it 935 * must not attempt merges on this) and that it acts as a soft 936 * barrier 937 */ 938 rq->cmd_type = REQ_TYPE_SPECIAL; 939 rq->cmd_flags |= REQ_SOFTBARRIER; 940 941 rq->special = data; 942 943 spin_lock_irqsave(q->queue_lock, flags); 944 945 /* 946 * If command is tagged, release the tag 947 */ 948 if (blk_rq_tagged(rq)) 949 blk_queue_end_tag(q, rq); 950 951 drive_stat_acct(rq, 1); 952 __elv_add_request(q, rq, where, 0); 953 blk_start_queueing(q); 954 spin_unlock_irqrestore(q->queue_lock, flags); 955 } 956 EXPORT_SYMBOL(blk_insert_request); 957 958 /* 959 * add-request adds a request to the linked list. 960 * queue lock is held and interrupts disabled, as we muck with the 961 * request queue list. 962 */ 963 static inline void add_request(struct request_queue *q, struct request *req) 964 { 965 drive_stat_acct(req, 1); 966 967 /* 968 * elevator indicated where it wants this request to be 969 * inserted at elevator_merge time 970 */ 971 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 972 } 973 974 /* 975 * disk_round_stats() - Round off the performance stats on a struct 976 * disk_stats. 977 * 978 * The average IO queue length and utilisation statistics are maintained 979 * by observing the current state of the queue length and the amount of 980 * time it has been in this state for. 981 * 982 * Normally, that accounting is done on IO completion, but that can result 983 * in more than a second's worth of IO being accounted for within any one 984 * second, leading to >100% utilisation. To deal with that, we call this 985 * function to do a round-off before returning the results when reading 986 * /proc/diskstats. This accounts immediately for all queue usage up to 987 * the current jiffies and restarts the counters again. 988 */ 989 void disk_round_stats(struct gendisk *disk) 990 { 991 unsigned long now = jiffies; 992 993 if (now == disk->stamp) 994 return; 995 996 if (disk->in_flight) { 997 __disk_stat_add(disk, time_in_queue, 998 disk->in_flight * (now - disk->stamp)); 999 __disk_stat_add(disk, io_ticks, (now - disk->stamp)); 1000 } 1001 disk->stamp = now; 1002 } 1003 EXPORT_SYMBOL_GPL(disk_round_stats); 1004 1005 void part_round_stats(struct hd_struct *part) 1006 { 1007 unsigned long now = jiffies; 1008 1009 if (now == part->stamp) 1010 return; 1011 1012 if (part->in_flight) { 1013 __part_stat_add(part, time_in_queue, 1014 part->in_flight * (now - part->stamp)); 1015 __part_stat_add(part, io_ticks, (now - part->stamp)); 1016 } 1017 part->stamp = now; 1018 } 1019 1020 /* 1021 * queue lock must be held 1022 */ 1023 void __blk_put_request(struct request_queue *q, struct request *req) 1024 { 1025 if (unlikely(!q)) 1026 return; 1027 if (unlikely(--req->ref_count)) 1028 return; 1029 1030 elv_completed_request(q, req); 1031 1032 /* 1033 * Request may not have originated from ll_rw_blk. if not, 1034 * it didn't come out of our reserved rq pools 1035 */ 1036 if (req->cmd_flags & REQ_ALLOCED) { 1037 int rw = rq_data_dir(req); 1038 int priv = req->cmd_flags & REQ_ELVPRIV; 1039 1040 BUG_ON(!list_empty(&req->queuelist)); 1041 BUG_ON(!hlist_unhashed(&req->hash)); 1042 1043 blk_free_request(q, req); 1044 freed_request(q, rw, priv); 1045 } 1046 } 1047 EXPORT_SYMBOL_GPL(__blk_put_request); 1048 1049 void blk_put_request(struct request *req) 1050 { 1051 unsigned long flags; 1052 struct request_queue *q = req->q; 1053 1054 /* 1055 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the 1056 * following if (q) test. 1057 */ 1058 if (q) { 1059 spin_lock_irqsave(q->queue_lock, flags); 1060 __blk_put_request(q, req); 1061 spin_unlock_irqrestore(q->queue_lock, flags); 1062 } 1063 } 1064 EXPORT_SYMBOL(blk_put_request); 1065 1066 void init_request_from_bio(struct request *req, struct bio *bio) 1067 { 1068 req->cmd_type = REQ_TYPE_FS; 1069 1070 /* 1071 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1072 */ 1073 if (bio_rw_ahead(bio) || bio_failfast(bio)) 1074 req->cmd_flags |= REQ_FAILFAST; 1075 1076 /* 1077 * REQ_BARRIER implies no merging, but lets make it explicit 1078 */ 1079 if (unlikely(bio_barrier(bio))) 1080 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE); 1081 1082 if (bio_sync(bio)) 1083 req->cmd_flags |= REQ_RW_SYNC; 1084 if (bio_rw_meta(bio)) 1085 req->cmd_flags |= REQ_RW_META; 1086 1087 req->errors = 0; 1088 req->hard_sector = req->sector = bio->bi_sector; 1089 req->ioprio = bio_prio(bio); 1090 req->start_time = jiffies; 1091 blk_rq_bio_prep(req->q, req, bio); 1092 } 1093 1094 static int __make_request(struct request_queue *q, struct bio *bio) 1095 { 1096 struct request *req; 1097 int el_ret, nr_sectors, barrier, err; 1098 const unsigned short prio = bio_prio(bio); 1099 const int sync = bio_sync(bio); 1100 int rw_flags; 1101 1102 nr_sectors = bio_sectors(bio); 1103 1104 /* 1105 * low level driver can indicate that it wants pages above a 1106 * certain limit bounced to low memory (ie for highmem, or even 1107 * ISA dma in theory) 1108 */ 1109 blk_queue_bounce(q, &bio); 1110 1111 barrier = bio_barrier(bio); 1112 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) { 1113 err = -EOPNOTSUPP; 1114 goto end_io; 1115 } 1116 1117 spin_lock_irq(q->queue_lock); 1118 1119 if (unlikely(barrier) || elv_queue_empty(q)) 1120 goto get_rq; 1121 1122 el_ret = elv_merge(q, &req, bio); 1123 switch (el_ret) { 1124 case ELEVATOR_BACK_MERGE: 1125 BUG_ON(!rq_mergeable(req)); 1126 1127 if (!ll_back_merge_fn(q, req, bio)) 1128 break; 1129 1130 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE); 1131 1132 req->biotail->bi_next = bio; 1133 req->biotail = bio; 1134 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1135 req->ioprio = ioprio_best(req->ioprio, prio); 1136 drive_stat_acct(req, 0); 1137 if (!attempt_back_merge(q, req)) 1138 elv_merged_request(q, req, el_ret); 1139 goto out; 1140 1141 case ELEVATOR_FRONT_MERGE: 1142 BUG_ON(!rq_mergeable(req)); 1143 1144 if (!ll_front_merge_fn(q, req, bio)) 1145 break; 1146 1147 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE); 1148 1149 bio->bi_next = req->bio; 1150 req->bio = bio; 1151 1152 /* 1153 * may not be valid. if the low level driver said 1154 * it didn't need a bounce buffer then it better 1155 * not touch req->buffer either... 1156 */ 1157 req->buffer = bio_data(bio); 1158 req->current_nr_sectors = bio_cur_sectors(bio); 1159 req->hard_cur_sectors = req->current_nr_sectors; 1160 req->sector = req->hard_sector = bio->bi_sector; 1161 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1162 req->ioprio = ioprio_best(req->ioprio, prio); 1163 drive_stat_acct(req, 0); 1164 if (!attempt_front_merge(q, req)) 1165 elv_merged_request(q, req, el_ret); 1166 goto out; 1167 1168 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1169 default: 1170 ; 1171 } 1172 1173 get_rq: 1174 /* 1175 * This sync check and mask will be re-done in init_request_from_bio(), 1176 * but we need to set it earlier to expose the sync flag to the 1177 * rq allocator and io schedulers. 1178 */ 1179 rw_flags = bio_data_dir(bio); 1180 if (sync) 1181 rw_flags |= REQ_RW_SYNC; 1182 1183 /* 1184 * Grab a free request. This is might sleep but can not fail. 1185 * Returns with the queue unlocked. 1186 */ 1187 req = get_request_wait(q, rw_flags, bio); 1188 1189 /* 1190 * After dropping the lock and possibly sleeping here, our request 1191 * may now be mergeable after it had proven unmergeable (above). 1192 * We don't worry about that case for efficiency. It won't happen 1193 * often, and the elevators are able to handle it. 1194 */ 1195 init_request_from_bio(req, bio); 1196 1197 spin_lock_irq(q->queue_lock); 1198 if (elv_queue_empty(q)) 1199 blk_plug_device(q); 1200 add_request(q, req); 1201 out: 1202 if (sync) 1203 __generic_unplug_device(q); 1204 1205 spin_unlock_irq(q->queue_lock); 1206 return 0; 1207 1208 end_io: 1209 bio_endio(bio, err); 1210 return 0; 1211 } 1212 1213 /* 1214 * If bio->bi_dev is a partition, remap the location 1215 */ 1216 static inline void blk_partition_remap(struct bio *bio) 1217 { 1218 struct block_device *bdev = bio->bi_bdev; 1219 1220 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1221 struct hd_struct *p = bdev->bd_part; 1222 1223 bio->bi_sector += p->start_sect; 1224 bio->bi_bdev = bdev->bd_contains; 1225 1226 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio, 1227 bdev->bd_dev, bio->bi_sector, 1228 bio->bi_sector - p->start_sect); 1229 } 1230 } 1231 1232 static void handle_bad_sector(struct bio *bio) 1233 { 1234 char b[BDEVNAME_SIZE]; 1235 1236 printk(KERN_INFO "attempt to access beyond end of device\n"); 1237 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1238 bdevname(bio->bi_bdev, b), 1239 bio->bi_rw, 1240 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1241 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1242 1243 set_bit(BIO_EOF, &bio->bi_flags); 1244 } 1245 1246 #ifdef CONFIG_FAIL_MAKE_REQUEST 1247 1248 static DECLARE_FAULT_ATTR(fail_make_request); 1249 1250 static int __init setup_fail_make_request(char *str) 1251 { 1252 return setup_fault_attr(&fail_make_request, str); 1253 } 1254 __setup("fail_make_request=", setup_fail_make_request); 1255 1256 static int should_fail_request(struct bio *bio) 1257 { 1258 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) || 1259 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail)) 1260 return should_fail(&fail_make_request, bio->bi_size); 1261 1262 return 0; 1263 } 1264 1265 static int __init fail_make_request_debugfs(void) 1266 { 1267 return init_fault_attr_dentries(&fail_make_request, 1268 "fail_make_request"); 1269 } 1270 1271 late_initcall(fail_make_request_debugfs); 1272 1273 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1274 1275 static inline int should_fail_request(struct bio *bio) 1276 { 1277 return 0; 1278 } 1279 1280 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1281 1282 /* 1283 * Check whether this bio extends beyond the end of the device. 1284 */ 1285 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1286 { 1287 sector_t maxsector; 1288 1289 if (!nr_sectors) 1290 return 0; 1291 1292 /* Test device or partition size, when known. */ 1293 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1294 if (maxsector) { 1295 sector_t sector = bio->bi_sector; 1296 1297 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1298 /* 1299 * This may well happen - the kernel calls bread() 1300 * without checking the size of the device, e.g., when 1301 * mounting a device. 1302 */ 1303 handle_bad_sector(bio); 1304 return 1; 1305 } 1306 } 1307 1308 return 0; 1309 } 1310 1311 /** 1312 * generic_make_request: hand a buffer to its device driver for I/O 1313 * @bio: The bio describing the location in memory and on the device. 1314 * 1315 * generic_make_request() is used to make I/O requests of block 1316 * devices. It is passed a &struct bio, which describes the I/O that needs 1317 * to be done. 1318 * 1319 * generic_make_request() does not return any status. The 1320 * success/failure status of the request, along with notification of 1321 * completion, is delivered asynchronously through the bio->bi_end_io 1322 * function described (one day) else where. 1323 * 1324 * The caller of generic_make_request must make sure that bi_io_vec 1325 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1326 * set to describe the device address, and the 1327 * bi_end_io and optionally bi_private are set to describe how 1328 * completion notification should be signaled. 1329 * 1330 * generic_make_request and the drivers it calls may use bi_next if this 1331 * bio happens to be merged with someone else, and may change bi_dev and 1332 * bi_sector for remaps as it sees fit. So the values of these fields 1333 * should NOT be depended on after the call to generic_make_request. 1334 */ 1335 static inline void __generic_make_request(struct bio *bio) 1336 { 1337 struct request_queue *q; 1338 sector_t old_sector; 1339 int ret, nr_sectors = bio_sectors(bio); 1340 dev_t old_dev; 1341 int err = -EIO; 1342 1343 might_sleep(); 1344 1345 if (bio_check_eod(bio, nr_sectors)) 1346 goto end_io; 1347 1348 /* 1349 * Resolve the mapping until finished. (drivers are 1350 * still free to implement/resolve their own stacking 1351 * by explicitly returning 0) 1352 * 1353 * NOTE: we don't repeat the blk_size check for each new device. 1354 * Stacking drivers are expected to know what they are doing. 1355 */ 1356 old_sector = -1; 1357 old_dev = 0; 1358 do { 1359 char b[BDEVNAME_SIZE]; 1360 1361 q = bdev_get_queue(bio->bi_bdev); 1362 if (!q) { 1363 printk(KERN_ERR 1364 "generic_make_request: Trying to access " 1365 "nonexistent block-device %s (%Lu)\n", 1366 bdevname(bio->bi_bdev, b), 1367 (long long) bio->bi_sector); 1368 end_io: 1369 bio_endio(bio, err); 1370 break; 1371 } 1372 1373 if (unlikely(nr_sectors > q->max_hw_sectors)) { 1374 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1375 bdevname(bio->bi_bdev, b), 1376 bio_sectors(bio), 1377 q->max_hw_sectors); 1378 goto end_io; 1379 } 1380 1381 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1382 goto end_io; 1383 1384 if (should_fail_request(bio)) 1385 goto end_io; 1386 1387 /* 1388 * If this device has partitions, remap block n 1389 * of partition p to block n+start(p) of the disk. 1390 */ 1391 blk_partition_remap(bio); 1392 1393 if (old_sector != -1) 1394 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector, 1395 old_sector); 1396 1397 blk_add_trace_bio(q, bio, BLK_TA_QUEUE); 1398 1399 old_sector = bio->bi_sector; 1400 old_dev = bio->bi_bdev->bd_dev; 1401 1402 if (bio_check_eod(bio, nr_sectors)) 1403 goto end_io; 1404 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) { 1405 err = -EOPNOTSUPP; 1406 goto end_io; 1407 } 1408 1409 ret = q->make_request_fn(q, bio); 1410 } while (ret); 1411 } 1412 1413 /* 1414 * We only want one ->make_request_fn to be active at a time, 1415 * else stack usage with stacked devices could be a problem. 1416 * So use current->bio_{list,tail} to keep a list of requests 1417 * submited by a make_request_fn function. 1418 * current->bio_tail is also used as a flag to say if 1419 * generic_make_request is currently active in this task or not. 1420 * If it is NULL, then no make_request is active. If it is non-NULL, 1421 * then a make_request is active, and new requests should be added 1422 * at the tail 1423 */ 1424 void generic_make_request(struct bio *bio) 1425 { 1426 if (current->bio_tail) { 1427 /* make_request is active */ 1428 *(current->bio_tail) = bio; 1429 bio->bi_next = NULL; 1430 current->bio_tail = &bio->bi_next; 1431 return; 1432 } 1433 /* following loop may be a bit non-obvious, and so deserves some 1434 * explanation. 1435 * Before entering the loop, bio->bi_next is NULL (as all callers 1436 * ensure that) so we have a list with a single bio. 1437 * We pretend that we have just taken it off a longer list, so 1438 * we assign bio_list to the next (which is NULL) and bio_tail 1439 * to &bio_list, thus initialising the bio_list of new bios to be 1440 * added. __generic_make_request may indeed add some more bios 1441 * through a recursive call to generic_make_request. If it 1442 * did, we find a non-NULL value in bio_list and re-enter the loop 1443 * from the top. In this case we really did just take the bio 1444 * of the top of the list (no pretending) and so fixup bio_list and 1445 * bio_tail or bi_next, and call into __generic_make_request again. 1446 * 1447 * The loop was structured like this to make only one call to 1448 * __generic_make_request (which is important as it is large and 1449 * inlined) and to keep the structure simple. 1450 */ 1451 BUG_ON(bio->bi_next); 1452 do { 1453 current->bio_list = bio->bi_next; 1454 if (bio->bi_next == NULL) 1455 current->bio_tail = ¤t->bio_list; 1456 else 1457 bio->bi_next = NULL; 1458 __generic_make_request(bio); 1459 bio = current->bio_list; 1460 } while (bio); 1461 current->bio_tail = NULL; /* deactivate */ 1462 } 1463 EXPORT_SYMBOL(generic_make_request); 1464 1465 /** 1466 * submit_bio: submit a bio to the block device layer for I/O 1467 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1468 * @bio: The &struct bio which describes the I/O 1469 * 1470 * submit_bio() is very similar in purpose to generic_make_request(), and 1471 * uses that function to do most of the work. Both are fairly rough 1472 * interfaces, @bio must be presetup and ready for I/O. 1473 * 1474 */ 1475 void submit_bio(int rw, struct bio *bio) 1476 { 1477 int count = bio_sectors(bio); 1478 1479 bio->bi_rw |= rw; 1480 1481 /* 1482 * If it's a regular read/write or a barrier with data attached, 1483 * go through the normal accounting stuff before submission. 1484 */ 1485 if (!bio_empty_barrier(bio)) { 1486 1487 BIO_BUG_ON(!bio->bi_size); 1488 BIO_BUG_ON(!bio->bi_io_vec); 1489 1490 if (rw & WRITE) { 1491 count_vm_events(PGPGOUT, count); 1492 } else { 1493 task_io_account_read(bio->bi_size); 1494 count_vm_events(PGPGIN, count); 1495 } 1496 1497 if (unlikely(block_dump)) { 1498 char b[BDEVNAME_SIZE]; 1499 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1500 current->comm, task_pid_nr(current), 1501 (rw & WRITE) ? "WRITE" : "READ", 1502 (unsigned long long)bio->bi_sector, 1503 bdevname(bio->bi_bdev, b)); 1504 } 1505 } 1506 1507 generic_make_request(bio); 1508 } 1509 EXPORT_SYMBOL(submit_bio); 1510 1511 /** 1512 * __end_that_request_first - end I/O on a request 1513 * @req: the request being processed 1514 * @error: 0 for success, < 0 for error 1515 * @nr_bytes: number of bytes to complete 1516 * 1517 * Description: 1518 * Ends I/O on a number of bytes attached to @req, and sets it up 1519 * for the next range of segments (if any) in the cluster. 1520 * 1521 * Return: 1522 * 0 - we are done with this request, call end_that_request_last() 1523 * 1 - still buffers pending for this request 1524 **/ 1525 static int __end_that_request_first(struct request *req, int error, 1526 int nr_bytes) 1527 { 1528 int total_bytes, bio_nbytes, next_idx = 0; 1529 struct bio *bio; 1530 1531 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE); 1532 1533 /* 1534 * for a REQ_BLOCK_PC request, we want to carry any eventual 1535 * sense key with us all the way through 1536 */ 1537 if (!blk_pc_request(req)) 1538 req->errors = 0; 1539 1540 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1541 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1542 req->rq_disk ? req->rq_disk->disk_name : "?", 1543 (unsigned long long)req->sector); 1544 } 1545 1546 if (blk_fs_request(req) && req->rq_disk) { 1547 const int rw = rq_data_dir(req); 1548 1549 all_stat_add(req->rq_disk, sectors[rw], 1550 nr_bytes >> 9, req->sector); 1551 } 1552 1553 total_bytes = bio_nbytes = 0; 1554 while ((bio = req->bio) != NULL) { 1555 int nbytes; 1556 1557 /* 1558 * For an empty barrier request, the low level driver must 1559 * store a potential error location in ->sector. We pass 1560 * that back up in ->bi_sector. 1561 */ 1562 if (blk_empty_barrier(req)) 1563 bio->bi_sector = req->sector; 1564 1565 if (nr_bytes >= bio->bi_size) { 1566 req->bio = bio->bi_next; 1567 nbytes = bio->bi_size; 1568 req_bio_endio(req, bio, nbytes, error); 1569 next_idx = 0; 1570 bio_nbytes = 0; 1571 } else { 1572 int idx = bio->bi_idx + next_idx; 1573 1574 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { 1575 blk_dump_rq_flags(req, "__end_that"); 1576 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1577 __FUNCTION__, bio->bi_idx, 1578 bio->bi_vcnt); 1579 break; 1580 } 1581 1582 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1583 BIO_BUG_ON(nbytes > bio->bi_size); 1584 1585 /* 1586 * not a complete bvec done 1587 */ 1588 if (unlikely(nbytes > nr_bytes)) { 1589 bio_nbytes += nr_bytes; 1590 total_bytes += nr_bytes; 1591 break; 1592 } 1593 1594 /* 1595 * advance to the next vector 1596 */ 1597 next_idx++; 1598 bio_nbytes += nbytes; 1599 } 1600 1601 total_bytes += nbytes; 1602 nr_bytes -= nbytes; 1603 1604 bio = req->bio; 1605 if (bio) { 1606 /* 1607 * end more in this run, or just return 'not-done' 1608 */ 1609 if (unlikely(nr_bytes <= 0)) 1610 break; 1611 } 1612 } 1613 1614 /* 1615 * completely done 1616 */ 1617 if (!req->bio) 1618 return 0; 1619 1620 /* 1621 * if the request wasn't completed, update state 1622 */ 1623 if (bio_nbytes) { 1624 req_bio_endio(req, bio, bio_nbytes, error); 1625 bio->bi_idx += next_idx; 1626 bio_iovec(bio)->bv_offset += nr_bytes; 1627 bio_iovec(bio)->bv_len -= nr_bytes; 1628 } 1629 1630 blk_recalc_rq_sectors(req, total_bytes >> 9); 1631 blk_recalc_rq_segments(req); 1632 return 1; 1633 } 1634 1635 /* 1636 * splice the completion data to a local structure and hand off to 1637 * process_completion_queue() to complete the requests 1638 */ 1639 static void blk_done_softirq(struct softirq_action *h) 1640 { 1641 struct list_head *cpu_list, local_list; 1642 1643 local_irq_disable(); 1644 cpu_list = &__get_cpu_var(blk_cpu_done); 1645 list_replace_init(cpu_list, &local_list); 1646 local_irq_enable(); 1647 1648 while (!list_empty(&local_list)) { 1649 struct request *rq; 1650 1651 rq = list_entry(local_list.next, struct request, donelist); 1652 list_del_init(&rq->donelist); 1653 rq->q->softirq_done_fn(rq); 1654 } 1655 } 1656 1657 static int __cpuinit blk_cpu_notify(struct notifier_block *self, 1658 unsigned long action, void *hcpu) 1659 { 1660 /* 1661 * If a CPU goes away, splice its entries to the current CPU 1662 * and trigger a run of the softirq 1663 */ 1664 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1665 int cpu = (unsigned long) hcpu; 1666 1667 local_irq_disable(); 1668 list_splice_init(&per_cpu(blk_cpu_done, cpu), 1669 &__get_cpu_var(blk_cpu_done)); 1670 raise_softirq_irqoff(BLOCK_SOFTIRQ); 1671 local_irq_enable(); 1672 } 1673 1674 return NOTIFY_OK; 1675 } 1676 1677 1678 static struct notifier_block blk_cpu_notifier __cpuinitdata = { 1679 .notifier_call = blk_cpu_notify, 1680 }; 1681 1682 /** 1683 * blk_complete_request - end I/O on a request 1684 * @req: the request being processed 1685 * 1686 * Description: 1687 * Ends all I/O on a request. It does not handle partial completions, 1688 * unless the driver actually implements this in its completion callback 1689 * through requeueing. The actual completion happens out-of-order, 1690 * through a softirq handler. The user must have registered a completion 1691 * callback through blk_queue_softirq_done(). 1692 **/ 1693 1694 void blk_complete_request(struct request *req) 1695 { 1696 struct list_head *cpu_list; 1697 unsigned long flags; 1698 1699 BUG_ON(!req->q->softirq_done_fn); 1700 1701 local_irq_save(flags); 1702 1703 cpu_list = &__get_cpu_var(blk_cpu_done); 1704 list_add_tail(&req->donelist, cpu_list); 1705 raise_softirq_irqoff(BLOCK_SOFTIRQ); 1706 1707 local_irq_restore(flags); 1708 } 1709 EXPORT_SYMBOL(blk_complete_request); 1710 1711 /* 1712 * queue lock must be held 1713 */ 1714 static void end_that_request_last(struct request *req, int error) 1715 { 1716 struct gendisk *disk = req->rq_disk; 1717 1718 if (blk_rq_tagged(req)) 1719 blk_queue_end_tag(req->q, req); 1720 1721 if (blk_queued_rq(req)) 1722 blkdev_dequeue_request(req); 1723 1724 if (unlikely(laptop_mode) && blk_fs_request(req)) 1725 laptop_io_completion(); 1726 1727 /* 1728 * Account IO completion. bar_rq isn't accounted as a normal 1729 * IO on queueing nor completion. Accounting the containing 1730 * request is enough. 1731 */ 1732 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) { 1733 unsigned long duration = jiffies - req->start_time; 1734 const int rw = rq_data_dir(req); 1735 struct hd_struct *part = get_part(disk, req->sector); 1736 1737 __all_stat_inc(disk, ios[rw], req->sector); 1738 __all_stat_add(disk, ticks[rw], duration, req->sector); 1739 disk_round_stats(disk); 1740 disk->in_flight--; 1741 if (part) { 1742 part_round_stats(part); 1743 part->in_flight--; 1744 } 1745 } 1746 1747 if (req->end_io) 1748 req->end_io(req, error); 1749 else { 1750 if (blk_bidi_rq(req)) 1751 __blk_put_request(req->next_rq->q, req->next_rq); 1752 1753 __blk_put_request(req->q, req); 1754 } 1755 } 1756 1757 static inline void __end_request(struct request *rq, int uptodate, 1758 unsigned int nr_bytes) 1759 { 1760 int error = 0; 1761 1762 if (uptodate <= 0) 1763 error = uptodate ? uptodate : -EIO; 1764 1765 __blk_end_request(rq, error, nr_bytes); 1766 } 1767 1768 /** 1769 * blk_rq_bytes - Returns bytes left to complete in the entire request 1770 **/ 1771 unsigned int blk_rq_bytes(struct request *rq) 1772 { 1773 if (blk_fs_request(rq)) 1774 return rq->hard_nr_sectors << 9; 1775 1776 return rq->data_len; 1777 } 1778 EXPORT_SYMBOL_GPL(blk_rq_bytes); 1779 1780 /** 1781 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment 1782 **/ 1783 unsigned int blk_rq_cur_bytes(struct request *rq) 1784 { 1785 if (blk_fs_request(rq)) 1786 return rq->current_nr_sectors << 9; 1787 1788 if (rq->bio) 1789 return rq->bio->bi_size; 1790 1791 return rq->data_len; 1792 } 1793 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes); 1794 1795 /** 1796 * end_queued_request - end all I/O on a queued request 1797 * @rq: the request being processed 1798 * @uptodate: error value or 0/1 uptodate flag 1799 * 1800 * Description: 1801 * Ends all I/O on a request, and removes it from the block layer queues. 1802 * Not suitable for normal IO completion, unless the driver still has 1803 * the request attached to the block layer. 1804 * 1805 **/ 1806 void end_queued_request(struct request *rq, int uptodate) 1807 { 1808 __end_request(rq, uptodate, blk_rq_bytes(rq)); 1809 } 1810 EXPORT_SYMBOL(end_queued_request); 1811 1812 /** 1813 * end_dequeued_request - end all I/O on a dequeued request 1814 * @rq: the request being processed 1815 * @uptodate: error value or 0/1 uptodate flag 1816 * 1817 * Description: 1818 * Ends all I/O on a request. The request must already have been 1819 * dequeued using blkdev_dequeue_request(), as is normally the case 1820 * for most drivers. 1821 * 1822 **/ 1823 void end_dequeued_request(struct request *rq, int uptodate) 1824 { 1825 __end_request(rq, uptodate, blk_rq_bytes(rq)); 1826 } 1827 EXPORT_SYMBOL(end_dequeued_request); 1828 1829 1830 /** 1831 * end_request - end I/O on the current segment of the request 1832 * @req: the request being processed 1833 * @uptodate: error value or 0/1 uptodate flag 1834 * 1835 * Description: 1836 * Ends I/O on the current segment of a request. If that is the only 1837 * remaining segment, the request is also completed and freed. 1838 * 1839 * This is a remnant of how older block drivers handled IO completions. 1840 * Modern drivers typically end IO on the full request in one go, unless 1841 * they have a residual value to account for. For that case this function 1842 * isn't really useful, unless the residual just happens to be the 1843 * full current segment. In other words, don't use this function in new 1844 * code. Either use end_request_completely(), or the 1845 * end_that_request_chunk() (along with end_that_request_last()) for 1846 * partial completions. 1847 * 1848 **/ 1849 void end_request(struct request *req, int uptodate) 1850 { 1851 __end_request(req, uptodate, req->hard_cur_sectors << 9); 1852 } 1853 EXPORT_SYMBOL(end_request); 1854 1855 /** 1856 * blk_end_io - Generic end_io function to complete a request. 1857 * @rq: the request being processed 1858 * @error: 0 for success, < 0 for error 1859 * @nr_bytes: number of bytes to complete @rq 1860 * @bidi_bytes: number of bytes to complete @rq->next_rq 1861 * @drv_callback: function called between completion of bios in the request 1862 * and completion of the request. 1863 * If the callback returns non 0, this helper returns without 1864 * completion of the request. 1865 * 1866 * Description: 1867 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1868 * If @rq has leftover, sets it up for the next range of segments. 1869 * 1870 * Return: 1871 * 0 - we are done with this request 1872 * 1 - this request is not freed yet, it still has pending buffers. 1873 **/ 1874 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes, 1875 unsigned int bidi_bytes, 1876 int (drv_callback)(struct request *)) 1877 { 1878 struct request_queue *q = rq->q; 1879 unsigned long flags = 0UL; 1880 1881 if (blk_fs_request(rq) || blk_pc_request(rq)) { 1882 if (__end_that_request_first(rq, error, nr_bytes)) 1883 return 1; 1884 1885 /* Bidi request must be completed as a whole */ 1886 if (blk_bidi_rq(rq) && 1887 __end_that_request_first(rq->next_rq, error, bidi_bytes)) 1888 return 1; 1889 } 1890 1891 /* Special feature for tricky drivers */ 1892 if (drv_callback && drv_callback(rq)) 1893 return 1; 1894 1895 add_disk_randomness(rq->rq_disk); 1896 1897 spin_lock_irqsave(q->queue_lock, flags); 1898 end_that_request_last(rq, error); 1899 spin_unlock_irqrestore(q->queue_lock, flags); 1900 1901 return 0; 1902 } 1903 1904 /** 1905 * blk_end_request - Helper function for drivers to complete the request. 1906 * @rq: the request being processed 1907 * @error: 0 for success, < 0 for error 1908 * @nr_bytes: number of bytes to complete 1909 * 1910 * Description: 1911 * Ends I/O on a number of bytes attached to @rq. 1912 * If @rq has leftover, sets it up for the next range of segments. 1913 * 1914 * Return: 1915 * 0 - we are done with this request 1916 * 1 - still buffers pending for this request 1917 **/ 1918 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1919 { 1920 return blk_end_io(rq, error, nr_bytes, 0, NULL); 1921 } 1922 EXPORT_SYMBOL_GPL(blk_end_request); 1923 1924 /** 1925 * __blk_end_request - Helper function for drivers to complete the request. 1926 * @rq: the request being processed 1927 * @error: 0 for success, < 0 for error 1928 * @nr_bytes: number of bytes to complete 1929 * 1930 * Description: 1931 * Must be called with queue lock held unlike blk_end_request(). 1932 * 1933 * Return: 1934 * 0 - we are done with this request 1935 * 1 - still buffers pending for this request 1936 **/ 1937 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1938 { 1939 if (blk_fs_request(rq) || blk_pc_request(rq)) { 1940 if (__end_that_request_first(rq, error, nr_bytes)) 1941 return 1; 1942 } 1943 1944 add_disk_randomness(rq->rq_disk); 1945 1946 end_that_request_last(rq, error); 1947 1948 return 0; 1949 } 1950 EXPORT_SYMBOL_GPL(__blk_end_request); 1951 1952 /** 1953 * blk_end_bidi_request - Helper function for drivers to complete bidi request. 1954 * @rq: the bidi request being processed 1955 * @error: 0 for success, < 0 for error 1956 * @nr_bytes: number of bytes to complete @rq 1957 * @bidi_bytes: number of bytes to complete @rq->next_rq 1958 * 1959 * Description: 1960 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1961 * 1962 * Return: 1963 * 0 - we are done with this request 1964 * 1 - still buffers pending for this request 1965 **/ 1966 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes, 1967 unsigned int bidi_bytes) 1968 { 1969 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL); 1970 } 1971 EXPORT_SYMBOL_GPL(blk_end_bidi_request); 1972 1973 /** 1974 * blk_end_request_callback - Special helper function for tricky drivers 1975 * @rq: the request being processed 1976 * @error: 0 for success, < 0 for error 1977 * @nr_bytes: number of bytes to complete 1978 * @drv_callback: function called between completion of bios in the request 1979 * and completion of the request. 1980 * If the callback returns non 0, this helper returns without 1981 * completion of the request. 1982 * 1983 * Description: 1984 * Ends I/O on a number of bytes attached to @rq. 1985 * If @rq has leftover, sets it up for the next range of segments. 1986 * 1987 * This special helper function is used only for existing tricky drivers. 1988 * (e.g. cdrom_newpc_intr() of ide-cd) 1989 * This interface will be removed when such drivers are rewritten. 1990 * Don't use this interface in other places anymore. 1991 * 1992 * Return: 1993 * 0 - we are done with this request 1994 * 1 - this request is not freed yet. 1995 * this request still has pending buffers or 1996 * the driver doesn't want to finish this request yet. 1997 **/ 1998 int blk_end_request_callback(struct request *rq, int error, 1999 unsigned int nr_bytes, 2000 int (drv_callback)(struct request *)) 2001 { 2002 return blk_end_io(rq, error, nr_bytes, 0, drv_callback); 2003 } 2004 EXPORT_SYMBOL_GPL(blk_end_request_callback); 2005 2006 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2007 struct bio *bio) 2008 { 2009 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */ 2010 rq->cmd_flags |= (bio->bi_rw & 3); 2011 2012 rq->nr_phys_segments = bio_phys_segments(q, bio); 2013 rq->nr_hw_segments = bio_hw_segments(q, bio); 2014 rq->current_nr_sectors = bio_cur_sectors(bio); 2015 rq->hard_cur_sectors = rq->current_nr_sectors; 2016 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); 2017 rq->buffer = bio_data(bio); 2018 rq->data_len = bio->bi_size; 2019 2020 rq->bio = rq->biotail = bio; 2021 2022 if (bio->bi_bdev) 2023 rq->rq_disk = bio->bi_bdev->bd_disk; 2024 } 2025 2026 int kblockd_schedule_work(struct work_struct *work) 2027 { 2028 return queue_work(kblockd_workqueue, work); 2029 } 2030 EXPORT_SYMBOL(kblockd_schedule_work); 2031 2032 void kblockd_flush_work(struct work_struct *work) 2033 { 2034 cancel_work_sync(work); 2035 } 2036 EXPORT_SYMBOL(kblockd_flush_work); 2037 2038 int __init blk_dev_init(void) 2039 { 2040 int i; 2041 2042 kblockd_workqueue = create_workqueue("kblockd"); 2043 if (!kblockd_workqueue) 2044 panic("Failed to create kblockd\n"); 2045 2046 request_cachep = kmem_cache_create("blkdev_requests", 2047 sizeof(struct request), 0, SLAB_PANIC, NULL); 2048 2049 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2050 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2051 2052 for_each_possible_cpu(i) 2053 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i)); 2054 2055 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL); 2056 register_hotcpu_notifier(&blk_cpu_notifier); 2057 2058 return 0; 2059 } 2060 2061