1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 #include "blk-mq.h" 43 #include "blk-mq-sched.h" 44 #include "blk-wbt.h" 45 46 #ifdef CONFIG_DEBUG_FS 47 struct dentry *blk_debugfs_root; 48 #endif 49 50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 55 56 DEFINE_IDA(blk_queue_ida); 57 58 /* 59 * For the allocated request tables 60 */ 61 struct kmem_cache *request_cachep; 62 63 /* 64 * For queue allocation 65 */ 66 struct kmem_cache *blk_requestq_cachep; 67 68 /* 69 * Controlling structure to kblockd 70 */ 71 static struct workqueue_struct *kblockd_workqueue; 72 73 static void blk_clear_congested(struct request_list *rl, int sync) 74 { 75 #ifdef CONFIG_CGROUP_WRITEBACK 76 clear_wb_congested(rl->blkg->wb_congested, sync); 77 #else 78 /* 79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 80 * flip its congestion state for events on other blkcgs. 81 */ 82 if (rl == &rl->q->root_rl) 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 84 #endif 85 } 86 87 static void blk_set_congested(struct request_list *rl, int sync) 88 { 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 set_wb_congested(rl->blkg->wb_congested, sync); 91 #else 92 /* see blk_clear_congested() */ 93 if (rl == &rl->q->root_rl) 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 95 #endif 96 } 97 98 void blk_queue_congestion_threshold(struct request_queue *q) 99 { 100 int nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) + 1; 103 if (nr > q->nr_requests) 104 nr = q->nr_requests; 105 q->nr_congestion_on = nr; 106 107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 108 if (nr < 1) 109 nr = 1; 110 q->nr_congestion_off = nr; 111 } 112 113 void blk_rq_init(struct request_queue *q, struct request *rq) 114 { 115 memset(rq, 0, sizeof(*rq)); 116 117 INIT_LIST_HEAD(&rq->queuelist); 118 INIT_LIST_HEAD(&rq->timeout_list); 119 rq->cpu = -1; 120 rq->q = q; 121 rq->__sector = (sector_t) -1; 122 INIT_HLIST_NODE(&rq->hash); 123 RB_CLEAR_NODE(&rq->rb_node); 124 rq->tag = -1; 125 rq->internal_tag = -1; 126 rq->start_time = jiffies; 127 set_start_time_ns(rq); 128 rq->part = NULL; 129 } 130 EXPORT_SYMBOL(blk_rq_init); 131 132 static void req_bio_endio(struct request *rq, struct bio *bio, 133 unsigned int nbytes, int error) 134 { 135 if (error) 136 bio->bi_error = error; 137 138 if (unlikely(rq->rq_flags & RQF_QUIET)) 139 bio_set_flag(bio, BIO_QUIET); 140 141 bio_advance(bio, nbytes); 142 143 /* don't actually finish bio if it's part of flush sequence */ 144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 145 bio_endio(bio); 146 } 147 148 void blk_dump_rq_flags(struct request *rq, char *msg) 149 { 150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 151 rq->rq_disk ? rq->rq_disk->disk_name : "?", 152 (unsigned long long) rq->cmd_flags); 153 154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 155 (unsigned long long)blk_rq_pos(rq), 156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 157 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 158 rq->bio, rq->biotail, blk_rq_bytes(rq)); 159 } 160 EXPORT_SYMBOL(blk_dump_rq_flags); 161 162 static void blk_delay_work(struct work_struct *work) 163 { 164 struct request_queue *q; 165 166 q = container_of(work, struct request_queue, delay_work.work); 167 spin_lock_irq(q->queue_lock); 168 __blk_run_queue(q); 169 spin_unlock_irq(q->queue_lock); 170 } 171 172 /** 173 * blk_delay_queue - restart queueing after defined interval 174 * @q: The &struct request_queue in question 175 * @msecs: Delay in msecs 176 * 177 * Description: 178 * Sometimes queueing needs to be postponed for a little while, to allow 179 * resources to come back. This function will make sure that queueing is 180 * restarted around the specified time. Queue lock must be held. 181 */ 182 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 183 { 184 if (likely(!blk_queue_dead(q))) 185 queue_delayed_work(kblockd_workqueue, &q->delay_work, 186 msecs_to_jiffies(msecs)); 187 } 188 EXPORT_SYMBOL(blk_delay_queue); 189 190 /** 191 * blk_start_queue_async - asynchronously restart a previously stopped queue 192 * @q: The &struct request_queue in question 193 * 194 * Description: 195 * blk_start_queue_async() will clear the stop flag on the queue, and 196 * ensure that the request_fn for the queue is run from an async 197 * context. 198 **/ 199 void blk_start_queue_async(struct request_queue *q) 200 { 201 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 202 blk_run_queue_async(q); 203 } 204 EXPORT_SYMBOL(blk_start_queue_async); 205 206 /** 207 * blk_start_queue - restart a previously stopped queue 208 * @q: The &struct request_queue in question 209 * 210 * Description: 211 * blk_start_queue() will clear the stop flag on the queue, and call 212 * the request_fn for the queue if it was in a stopped state when 213 * entered. Also see blk_stop_queue(). Queue lock must be held. 214 **/ 215 void blk_start_queue(struct request_queue *q) 216 { 217 WARN_ON(!irqs_disabled()); 218 219 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 220 __blk_run_queue(q); 221 } 222 EXPORT_SYMBOL(blk_start_queue); 223 224 /** 225 * blk_stop_queue - stop a queue 226 * @q: The &struct request_queue in question 227 * 228 * Description: 229 * The Linux block layer assumes that a block driver will consume all 230 * entries on the request queue when the request_fn strategy is called. 231 * Often this will not happen, because of hardware limitations (queue 232 * depth settings). If a device driver gets a 'queue full' response, 233 * or if it simply chooses not to queue more I/O at one point, it can 234 * call this function to prevent the request_fn from being called until 235 * the driver has signalled it's ready to go again. This happens by calling 236 * blk_start_queue() to restart queue operations. Queue lock must be held. 237 **/ 238 void blk_stop_queue(struct request_queue *q) 239 { 240 cancel_delayed_work(&q->delay_work); 241 queue_flag_set(QUEUE_FLAG_STOPPED, q); 242 } 243 EXPORT_SYMBOL(blk_stop_queue); 244 245 /** 246 * blk_sync_queue - cancel any pending callbacks on a queue 247 * @q: the queue 248 * 249 * Description: 250 * The block layer may perform asynchronous callback activity 251 * on a queue, such as calling the unplug function after a timeout. 252 * A block device may call blk_sync_queue to ensure that any 253 * such activity is cancelled, thus allowing it to release resources 254 * that the callbacks might use. The caller must already have made sure 255 * that its ->make_request_fn will not re-add plugging prior to calling 256 * this function. 257 * 258 * This function does not cancel any asynchronous activity arising 259 * out of elevator or throttling code. That would require elevator_exit() 260 * and blkcg_exit_queue() to be called with queue lock initialized. 261 * 262 */ 263 void blk_sync_queue(struct request_queue *q) 264 { 265 del_timer_sync(&q->timeout); 266 267 if (q->mq_ops) { 268 struct blk_mq_hw_ctx *hctx; 269 int i; 270 271 queue_for_each_hw_ctx(q, hctx, i) 272 cancel_delayed_work_sync(&hctx->run_work); 273 } else { 274 cancel_delayed_work_sync(&q->delay_work); 275 } 276 } 277 EXPORT_SYMBOL(blk_sync_queue); 278 279 /** 280 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 281 * @q: The queue to run 282 * 283 * Description: 284 * Invoke request handling on a queue if there are any pending requests. 285 * May be used to restart request handling after a request has completed. 286 * This variant runs the queue whether or not the queue has been 287 * stopped. Must be called with the queue lock held and interrupts 288 * disabled. See also @blk_run_queue. 289 */ 290 inline void __blk_run_queue_uncond(struct request_queue *q) 291 { 292 if (unlikely(blk_queue_dead(q))) 293 return; 294 295 /* 296 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 297 * the queue lock internally. As a result multiple threads may be 298 * running such a request function concurrently. Keep track of the 299 * number of active request_fn invocations such that blk_drain_queue() 300 * can wait until all these request_fn calls have finished. 301 */ 302 q->request_fn_active++; 303 q->request_fn(q); 304 q->request_fn_active--; 305 } 306 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 307 308 /** 309 * __blk_run_queue - run a single device queue 310 * @q: The queue to run 311 * 312 * Description: 313 * See @blk_run_queue. This variant must be called with the queue lock 314 * held and interrupts disabled. 315 */ 316 void __blk_run_queue(struct request_queue *q) 317 { 318 if (unlikely(blk_queue_stopped(q))) 319 return; 320 321 __blk_run_queue_uncond(q); 322 } 323 EXPORT_SYMBOL(__blk_run_queue); 324 325 /** 326 * blk_run_queue_async - run a single device queue in workqueue context 327 * @q: The queue to run 328 * 329 * Description: 330 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 331 * of us. The caller must hold the queue lock. 332 */ 333 void blk_run_queue_async(struct request_queue *q) 334 { 335 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 336 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 337 } 338 EXPORT_SYMBOL(blk_run_queue_async); 339 340 /** 341 * blk_run_queue - run a single device queue 342 * @q: The queue to run 343 * 344 * Description: 345 * Invoke request handling on this queue, if it has pending work to do. 346 * May be used to restart queueing when a request has completed. 347 */ 348 void blk_run_queue(struct request_queue *q) 349 { 350 unsigned long flags; 351 352 spin_lock_irqsave(q->queue_lock, flags); 353 __blk_run_queue(q); 354 spin_unlock_irqrestore(q->queue_lock, flags); 355 } 356 EXPORT_SYMBOL(blk_run_queue); 357 358 void blk_put_queue(struct request_queue *q) 359 { 360 kobject_put(&q->kobj); 361 } 362 EXPORT_SYMBOL(blk_put_queue); 363 364 /** 365 * __blk_drain_queue - drain requests from request_queue 366 * @q: queue to drain 367 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 368 * 369 * Drain requests from @q. If @drain_all is set, all requests are drained. 370 * If not, only ELVPRIV requests are drained. The caller is responsible 371 * for ensuring that no new requests which need to be drained are queued. 372 */ 373 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 374 __releases(q->queue_lock) 375 __acquires(q->queue_lock) 376 { 377 int i; 378 379 lockdep_assert_held(q->queue_lock); 380 381 while (true) { 382 bool drain = false; 383 384 /* 385 * The caller might be trying to drain @q before its 386 * elevator is initialized. 387 */ 388 if (q->elevator) 389 elv_drain_elevator(q); 390 391 blkcg_drain_queue(q); 392 393 /* 394 * This function might be called on a queue which failed 395 * driver init after queue creation or is not yet fully 396 * active yet. Some drivers (e.g. fd and loop) get unhappy 397 * in such cases. Kick queue iff dispatch queue has 398 * something on it and @q has request_fn set. 399 */ 400 if (!list_empty(&q->queue_head) && q->request_fn) 401 __blk_run_queue(q); 402 403 drain |= q->nr_rqs_elvpriv; 404 drain |= q->request_fn_active; 405 406 /* 407 * Unfortunately, requests are queued at and tracked from 408 * multiple places and there's no single counter which can 409 * be drained. Check all the queues and counters. 410 */ 411 if (drain_all) { 412 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 413 drain |= !list_empty(&q->queue_head); 414 for (i = 0; i < 2; i++) { 415 drain |= q->nr_rqs[i]; 416 drain |= q->in_flight[i]; 417 if (fq) 418 drain |= !list_empty(&fq->flush_queue[i]); 419 } 420 } 421 422 if (!drain) 423 break; 424 425 spin_unlock_irq(q->queue_lock); 426 427 msleep(10); 428 429 spin_lock_irq(q->queue_lock); 430 } 431 432 /* 433 * With queue marked dead, any woken up waiter will fail the 434 * allocation path, so the wakeup chaining is lost and we're 435 * left with hung waiters. We need to wake up those waiters. 436 */ 437 if (q->request_fn) { 438 struct request_list *rl; 439 440 blk_queue_for_each_rl(rl, q) 441 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 442 wake_up_all(&rl->wait[i]); 443 } 444 } 445 446 /** 447 * blk_queue_bypass_start - enter queue bypass mode 448 * @q: queue of interest 449 * 450 * In bypass mode, only the dispatch FIFO queue of @q is used. This 451 * function makes @q enter bypass mode and drains all requests which were 452 * throttled or issued before. On return, it's guaranteed that no request 453 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 454 * inside queue or RCU read lock. 455 */ 456 void blk_queue_bypass_start(struct request_queue *q) 457 { 458 spin_lock_irq(q->queue_lock); 459 q->bypass_depth++; 460 queue_flag_set(QUEUE_FLAG_BYPASS, q); 461 spin_unlock_irq(q->queue_lock); 462 463 /* 464 * Queues start drained. Skip actual draining till init is 465 * complete. This avoids lenghty delays during queue init which 466 * can happen many times during boot. 467 */ 468 if (blk_queue_init_done(q)) { 469 spin_lock_irq(q->queue_lock); 470 __blk_drain_queue(q, false); 471 spin_unlock_irq(q->queue_lock); 472 473 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 474 synchronize_rcu(); 475 } 476 } 477 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 478 479 /** 480 * blk_queue_bypass_end - leave queue bypass mode 481 * @q: queue of interest 482 * 483 * Leave bypass mode and restore the normal queueing behavior. 484 */ 485 void blk_queue_bypass_end(struct request_queue *q) 486 { 487 spin_lock_irq(q->queue_lock); 488 if (!--q->bypass_depth) 489 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 490 WARN_ON_ONCE(q->bypass_depth < 0); 491 spin_unlock_irq(q->queue_lock); 492 } 493 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 494 495 void blk_set_queue_dying(struct request_queue *q) 496 { 497 spin_lock_irq(q->queue_lock); 498 queue_flag_set(QUEUE_FLAG_DYING, q); 499 spin_unlock_irq(q->queue_lock); 500 501 /* 502 * When queue DYING flag is set, we need to block new req 503 * entering queue, so we call blk_freeze_queue_start() to 504 * prevent I/O from crossing blk_queue_enter(). 505 */ 506 blk_freeze_queue_start(q); 507 508 if (q->mq_ops) 509 blk_mq_wake_waiters(q); 510 else { 511 struct request_list *rl; 512 513 spin_lock_irq(q->queue_lock); 514 blk_queue_for_each_rl(rl, q) { 515 if (rl->rq_pool) { 516 wake_up(&rl->wait[BLK_RW_SYNC]); 517 wake_up(&rl->wait[BLK_RW_ASYNC]); 518 } 519 } 520 spin_unlock_irq(q->queue_lock); 521 } 522 } 523 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 524 525 /** 526 * blk_cleanup_queue - shutdown a request queue 527 * @q: request queue to shutdown 528 * 529 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 530 * put it. All future requests will be failed immediately with -ENODEV. 531 */ 532 void blk_cleanup_queue(struct request_queue *q) 533 { 534 spinlock_t *lock = q->queue_lock; 535 536 /* mark @q DYING, no new request or merges will be allowed afterwards */ 537 mutex_lock(&q->sysfs_lock); 538 blk_set_queue_dying(q); 539 spin_lock_irq(lock); 540 541 /* 542 * A dying queue is permanently in bypass mode till released. Note 543 * that, unlike blk_queue_bypass_start(), we aren't performing 544 * synchronize_rcu() after entering bypass mode to avoid the delay 545 * as some drivers create and destroy a lot of queues while 546 * probing. This is still safe because blk_release_queue() will be 547 * called only after the queue refcnt drops to zero and nothing, 548 * RCU or not, would be traversing the queue by then. 549 */ 550 q->bypass_depth++; 551 queue_flag_set(QUEUE_FLAG_BYPASS, q); 552 553 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 554 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 555 queue_flag_set(QUEUE_FLAG_DYING, q); 556 spin_unlock_irq(lock); 557 mutex_unlock(&q->sysfs_lock); 558 559 /* 560 * Drain all requests queued before DYING marking. Set DEAD flag to 561 * prevent that q->request_fn() gets invoked after draining finished. 562 */ 563 blk_freeze_queue(q); 564 spin_lock_irq(lock); 565 if (!q->mq_ops) 566 __blk_drain_queue(q, true); 567 queue_flag_set(QUEUE_FLAG_DEAD, q); 568 spin_unlock_irq(lock); 569 570 /* for synchronous bio-based driver finish in-flight integrity i/o */ 571 blk_flush_integrity(); 572 573 /* @q won't process any more request, flush async actions */ 574 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 575 blk_sync_queue(q); 576 577 if (q->mq_ops) 578 blk_mq_free_queue(q); 579 percpu_ref_exit(&q->q_usage_counter); 580 581 spin_lock_irq(lock); 582 if (q->queue_lock != &q->__queue_lock) 583 q->queue_lock = &q->__queue_lock; 584 spin_unlock_irq(lock); 585 586 /* @q is and will stay empty, shutdown and put */ 587 blk_put_queue(q); 588 } 589 EXPORT_SYMBOL(blk_cleanup_queue); 590 591 /* Allocate memory local to the request queue */ 592 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 593 { 594 struct request_queue *q = data; 595 596 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 597 } 598 599 static void free_request_simple(void *element, void *data) 600 { 601 kmem_cache_free(request_cachep, element); 602 } 603 604 static void *alloc_request_size(gfp_t gfp_mask, void *data) 605 { 606 struct request_queue *q = data; 607 struct request *rq; 608 609 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 610 q->node); 611 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 612 kfree(rq); 613 rq = NULL; 614 } 615 return rq; 616 } 617 618 static void free_request_size(void *element, void *data) 619 { 620 struct request_queue *q = data; 621 622 if (q->exit_rq_fn) 623 q->exit_rq_fn(q, element); 624 kfree(element); 625 } 626 627 int blk_init_rl(struct request_list *rl, struct request_queue *q, 628 gfp_t gfp_mask) 629 { 630 if (unlikely(rl->rq_pool)) 631 return 0; 632 633 rl->q = q; 634 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 635 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 636 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 637 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 638 639 if (q->cmd_size) { 640 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 641 alloc_request_size, free_request_size, 642 q, gfp_mask, q->node); 643 } else { 644 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 645 alloc_request_simple, free_request_simple, 646 q, gfp_mask, q->node); 647 } 648 if (!rl->rq_pool) 649 return -ENOMEM; 650 651 if (rl != &q->root_rl) 652 WARN_ON_ONCE(!blk_get_queue(q)); 653 654 return 0; 655 } 656 657 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 658 { 659 if (rl->rq_pool) { 660 mempool_destroy(rl->rq_pool); 661 if (rl != &q->root_rl) 662 blk_put_queue(q); 663 } 664 } 665 666 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 667 { 668 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 669 } 670 EXPORT_SYMBOL(blk_alloc_queue); 671 672 int blk_queue_enter(struct request_queue *q, bool nowait) 673 { 674 while (true) { 675 int ret; 676 677 if (percpu_ref_tryget_live(&q->q_usage_counter)) 678 return 0; 679 680 if (nowait) 681 return -EBUSY; 682 683 /* 684 * read pair of barrier in blk_freeze_queue_start(), 685 * we need to order reading __PERCPU_REF_DEAD flag of 686 * .q_usage_counter and reading .mq_freeze_depth or 687 * queue dying flag, otherwise the following wait may 688 * never return if the two reads are reordered. 689 */ 690 smp_rmb(); 691 692 ret = wait_event_interruptible(q->mq_freeze_wq, 693 !atomic_read(&q->mq_freeze_depth) || 694 blk_queue_dying(q)); 695 if (blk_queue_dying(q)) 696 return -ENODEV; 697 if (ret) 698 return ret; 699 } 700 } 701 702 void blk_queue_exit(struct request_queue *q) 703 { 704 percpu_ref_put(&q->q_usage_counter); 705 } 706 707 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 708 { 709 struct request_queue *q = 710 container_of(ref, struct request_queue, q_usage_counter); 711 712 wake_up_all(&q->mq_freeze_wq); 713 } 714 715 static void blk_rq_timed_out_timer(unsigned long data) 716 { 717 struct request_queue *q = (struct request_queue *)data; 718 719 kblockd_schedule_work(&q->timeout_work); 720 } 721 722 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 723 { 724 struct request_queue *q; 725 726 q = kmem_cache_alloc_node(blk_requestq_cachep, 727 gfp_mask | __GFP_ZERO, node_id); 728 if (!q) 729 return NULL; 730 731 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 732 if (q->id < 0) 733 goto fail_q; 734 735 q->bio_split = bioset_create(BIO_POOL_SIZE, 0); 736 if (!q->bio_split) 737 goto fail_id; 738 739 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 740 if (!q->backing_dev_info) 741 goto fail_split; 742 743 q->stats = blk_alloc_queue_stats(); 744 if (!q->stats) 745 goto fail_stats; 746 747 q->backing_dev_info->ra_pages = 748 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 749 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 750 q->backing_dev_info->name = "block"; 751 q->node = node_id; 752 753 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer, 754 laptop_mode_timer_fn, (unsigned long) q); 755 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 756 INIT_LIST_HEAD(&q->queue_head); 757 INIT_LIST_HEAD(&q->timeout_list); 758 INIT_LIST_HEAD(&q->icq_list); 759 #ifdef CONFIG_BLK_CGROUP 760 INIT_LIST_HEAD(&q->blkg_list); 761 #endif 762 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 763 764 kobject_init(&q->kobj, &blk_queue_ktype); 765 766 mutex_init(&q->sysfs_lock); 767 spin_lock_init(&q->__queue_lock); 768 769 /* 770 * By default initialize queue_lock to internal lock and driver can 771 * override it later if need be. 772 */ 773 q->queue_lock = &q->__queue_lock; 774 775 /* 776 * A queue starts its life with bypass turned on to avoid 777 * unnecessary bypass on/off overhead and nasty surprises during 778 * init. The initial bypass will be finished when the queue is 779 * registered by blk_register_queue(). 780 */ 781 q->bypass_depth = 1; 782 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 783 784 init_waitqueue_head(&q->mq_freeze_wq); 785 786 /* 787 * Init percpu_ref in atomic mode so that it's faster to shutdown. 788 * See blk_register_queue() for details. 789 */ 790 if (percpu_ref_init(&q->q_usage_counter, 791 blk_queue_usage_counter_release, 792 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 793 goto fail_bdi; 794 795 if (blkcg_init_queue(q)) 796 goto fail_ref; 797 798 return q; 799 800 fail_ref: 801 percpu_ref_exit(&q->q_usage_counter); 802 fail_bdi: 803 blk_free_queue_stats(q->stats); 804 fail_stats: 805 bdi_put(q->backing_dev_info); 806 fail_split: 807 bioset_free(q->bio_split); 808 fail_id: 809 ida_simple_remove(&blk_queue_ida, q->id); 810 fail_q: 811 kmem_cache_free(blk_requestq_cachep, q); 812 return NULL; 813 } 814 EXPORT_SYMBOL(blk_alloc_queue_node); 815 816 /** 817 * blk_init_queue - prepare a request queue for use with a block device 818 * @rfn: The function to be called to process requests that have been 819 * placed on the queue. 820 * @lock: Request queue spin lock 821 * 822 * Description: 823 * If a block device wishes to use the standard request handling procedures, 824 * which sorts requests and coalesces adjacent requests, then it must 825 * call blk_init_queue(). The function @rfn will be called when there 826 * are requests on the queue that need to be processed. If the device 827 * supports plugging, then @rfn may not be called immediately when requests 828 * are available on the queue, but may be called at some time later instead. 829 * Plugged queues are generally unplugged when a buffer belonging to one 830 * of the requests on the queue is needed, or due to memory pressure. 831 * 832 * @rfn is not required, or even expected, to remove all requests off the 833 * queue, but only as many as it can handle at a time. If it does leave 834 * requests on the queue, it is responsible for arranging that the requests 835 * get dealt with eventually. 836 * 837 * The queue spin lock must be held while manipulating the requests on the 838 * request queue; this lock will be taken also from interrupt context, so irq 839 * disabling is needed for it. 840 * 841 * Function returns a pointer to the initialized request queue, or %NULL if 842 * it didn't succeed. 843 * 844 * Note: 845 * blk_init_queue() must be paired with a blk_cleanup_queue() call 846 * when the block device is deactivated (such as at module unload). 847 **/ 848 849 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 850 { 851 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 852 } 853 EXPORT_SYMBOL(blk_init_queue); 854 855 struct request_queue * 856 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 857 { 858 struct request_queue *q; 859 860 q = blk_alloc_queue_node(GFP_KERNEL, node_id); 861 if (!q) 862 return NULL; 863 864 q->request_fn = rfn; 865 if (lock) 866 q->queue_lock = lock; 867 if (blk_init_allocated_queue(q) < 0) { 868 blk_cleanup_queue(q); 869 return NULL; 870 } 871 872 return q; 873 } 874 EXPORT_SYMBOL(blk_init_queue_node); 875 876 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 877 878 879 int blk_init_allocated_queue(struct request_queue *q) 880 { 881 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 882 if (!q->fq) 883 return -ENOMEM; 884 885 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 886 goto out_free_flush_queue; 887 888 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 889 goto out_exit_flush_rq; 890 891 INIT_WORK(&q->timeout_work, blk_timeout_work); 892 q->queue_flags |= QUEUE_FLAG_DEFAULT; 893 894 /* 895 * This also sets hw/phys segments, boundary and size 896 */ 897 blk_queue_make_request(q, blk_queue_bio); 898 899 q->sg_reserved_size = INT_MAX; 900 901 /* Protect q->elevator from elevator_change */ 902 mutex_lock(&q->sysfs_lock); 903 904 /* init elevator */ 905 if (elevator_init(q, NULL)) { 906 mutex_unlock(&q->sysfs_lock); 907 goto out_exit_flush_rq; 908 } 909 910 mutex_unlock(&q->sysfs_lock); 911 return 0; 912 913 out_exit_flush_rq: 914 if (q->exit_rq_fn) 915 q->exit_rq_fn(q, q->fq->flush_rq); 916 out_free_flush_queue: 917 blk_free_flush_queue(q->fq); 918 return -ENOMEM; 919 } 920 EXPORT_SYMBOL(blk_init_allocated_queue); 921 922 bool blk_get_queue(struct request_queue *q) 923 { 924 if (likely(!blk_queue_dying(q))) { 925 __blk_get_queue(q); 926 return true; 927 } 928 929 return false; 930 } 931 EXPORT_SYMBOL(blk_get_queue); 932 933 static inline void blk_free_request(struct request_list *rl, struct request *rq) 934 { 935 if (rq->rq_flags & RQF_ELVPRIV) { 936 elv_put_request(rl->q, rq); 937 if (rq->elv.icq) 938 put_io_context(rq->elv.icq->ioc); 939 } 940 941 mempool_free(rq, rl->rq_pool); 942 } 943 944 /* 945 * ioc_batching returns true if the ioc is a valid batching request and 946 * should be given priority access to a request. 947 */ 948 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 949 { 950 if (!ioc) 951 return 0; 952 953 /* 954 * Make sure the process is able to allocate at least 1 request 955 * even if the batch times out, otherwise we could theoretically 956 * lose wakeups. 957 */ 958 return ioc->nr_batch_requests == q->nr_batching || 959 (ioc->nr_batch_requests > 0 960 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 961 } 962 963 /* 964 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 965 * will cause the process to be a "batcher" on all queues in the system. This 966 * is the behaviour we want though - once it gets a wakeup it should be given 967 * a nice run. 968 */ 969 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 970 { 971 if (!ioc || ioc_batching(q, ioc)) 972 return; 973 974 ioc->nr_batch_requests = q->nr_batching; 975 ioc->last_waited = jiffies; 976 } 977 978 static void __freed_request(struct request_list *rl, int sync) 979 { 980 struct request_queue *q = rl->q; 981 982 if (rl->count[sync] < queue_congestion_off_threshold(q)) 983 blk_clear_congested(rl, sync); 984 985 if (rl->count[sync] + 1 <= q->nr_requests) { 986 if (waitqueue_active(&rl->wait[sync])) 987 wake_up(&rl->wait[sync]); 988 989 blk_clear_rl_full(rl, sync); 990 } 991 } 992 993 /* 994 * A request has just been released. Account for it, update the full and 995 * congestion status, wake up any waiters. Called under q->queue_lock. 996 */ 997 static void freed_request(struct request_list *rl, bool sync, 998 req_flags_t rq_flags) 999 { 1000 struct request_queue *q = rl->q; 1001 1002 q->nr_rqs[sync]--; 1003 rl->count[sync]--; 1004 if (rq_flags & RQF_ELVPRIV) 1005 q->nr_rqs_elvpriv--; 1006 1007 __freed_request(rl, sync); 1008 1009 if (unlikely(rl->starved[sync ^ 1])) 1010 __freed_request(rl, sync ^ 1); 1011 } 1012 1013 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1014 { 1015 struct request_list *rl; 1016 int on_thresh, off_thresh; 1017 1018 spin_lock_irq(q->queue_lock); 1019 q->nr_requests = nr; 1020 blk_queue_congestion_threshold(q); 1021 on_thresh = queue_congestion_on_threshold(q); 1022 off_thresh = queue_congestion_off_threshold(q); 1023 1024 blk_queue_for_each_rl(rl, q) { 1025 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1026 blk_set_congested(rl, BLK_RW_SYNC); 1027 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1028 blk_clear_congested(rl, BLK_RW_SYNC); 1029 1030 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1031 blk_set_congested(rl, BLK_RW_ASYNC); 1032 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1033 blk_clear_congested(rl, BLK_RW_ASYNC); 1034 1035 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1036 blk_set_rl_full(rl, BLK_RW_SYNC); 1037 } else { 1038 blk_clear_rl_full(rl, BLK_RW_SYNC); 1039 wake_up(&rl->wait[BLK_RW_SYNC]); 1040 } 1041 1042 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1043 blk_set_rl_full(rl, BLK_RW_ASYNC); 1044 } else { 1045 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1046 wake_up(&rl->wait[BLK_RW_ASYNC]); 1047 } 1048 } 1049 1050 spin_unlock_irq(q->queue_lock); 1051 return 0; 1052 } 1053 1054 /** 1055 * __get_request - get a free request 1056 * @rl: request list to allocate from 1057 * @op: operation and flags 1058 * @bio: bio to allocate request for (can be %NULL) 1059 * @gfp_mask: allocation mask 1060 * 1061 * Get a free request from @q. This function may fail under memory 1062 * pressure or if @q is dead. 1063 * 1064 * Must be called with @q->queue_lock held and, 1065 * Returns ERR_PTR on failure, with @q->queue_lock held. 1066 * Returns request pointer on success, with @q->queue_lock *not held*. 1067 */ 1068 static struct request *__get_request(struct request_list *rl, unsigned int op, 1069 struct bio *bio, gfp_t gfp_mask) 1070 { 1071 struct request_queue *q = rl->q; 1072 struct request *rq; 1073 struct elevator_type *et = q->elevator->type; 1074 struct io_context *ioc = rq_ioc(bio); 1075 struct io_cq *icq = NULL; 1076 const bool is_sync = op_is_sync(op); 1077 int may_queue; 1078 req_flags_t rq_flags = RQF_ALLOCED; 1079 1080 if (unlikely(blk_queue_dying(q))) 1081 return ERR_PTR(-ENODEV); 1082 1083 may_queue = elv_may_queue(q, op); 1084 if (may_queue == ELV_MQUEUE_NO) 1085 goto rq_starved; 1086 1087 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1088 if (rl->count[is_sync]+1 >= q->nr_requests) { 1089 /* 1090 * The queue will fill after this allocation, so set 1091 * it as full, and mark this process as "batching". 1092 * This process will be allowed to complete a batch of 1093 * requests, others will be blocked. 1094 */ 1095 if (!blk_rl_full(rl, is_sync)) { 1096 ioc_set_batching(q, ioc); 1097 blk_set_rl_full(rl, is_sync); 1098 } else { 1099 if (may_queue != ELV_MQUEUE_MUST 1100 && !ioc_batching(q, ioc)) { 1101 /* 1102 * The queue is full and the allocating 1103 * process is not a "batcher", and not 1104 * exempted by the IO scheduler 1105 */ 1106 return ERR_PTR(-ENOMEM); 1107 } 1108 } 1109 } 1110 blk_set_congested(rl, is_sync); 1111 } 1112 1113 /* 1114 * Only allow batching queuers to allocate up to 50% over the defined 1115 * limit of requests, otherwise we could have thousands of requests 1116 * allocated with any setting of ->nr_requests 1117 */ 1118 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1119 return ERR_PTR(-ENOMEM); 1120 1121 q->nr_rqs[is_sync]++; 1122 rl->count[is_sync]++; 1123 rl->starved[is_sync] = 0; 1124 1125 /* 1126 * Decide whether the new request will be managed by elevator. If 1127 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1128 * prevent the current elevator from being destroyed until the new 1129 * request is freed. This guarantees icq's won't be destroyed and 1130 * makes creating new ones safe. 1131 * 1132 * Flush requests do not use the elevator so skip initialization. 1133 * This allows a request to share the flush and elevator data. 1134 * 1135 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1136 * it will be created after releasing queue_lock. 1137 */ 1138 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1139 rq_flags |= RQF_ELVPRIV; 1140 q->nr_rqs_elvpriv++; 1141 if (et->icq_cache && ioc) 1142 icq = ioc_lookup_icq(ioc, q); 1143 } 1144 1145 if (blk_queue_io_stat(q)) 1146 rq_flags |= RQF_IO_STAT; 1147 spin_unlock_irq(q->queue_lock); 1148 1149 /* allocate and init request */ 1150 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1151 if (!rq) 1152 goto fail_alloc; 1153 1154 blk_rq_init(q, rq); 1155 blk_rq_set_rl(rq, rl); 1156 rq->cmd_flags = op; 1157 rq->rq_flags = rq_flags; 1158 1159 /* init elvpriv */ 1160 if (rq_flags & RQF_ELVPRIV) { 1161 if (unlikely(et->icq_cache && !icq)) { 1162 if (ioc) 1163 icq = ioc_create_icq(ioc, q, gfp_mask); 1164 if (!icq) 1165 goto fail_elvpriv; 1166 } 1167 1168 rq->elv.icq = icq; 1169 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1170 goto fail_elvpriv; 1171 1172 /* @rq->elv.icq holds io_context until @rq is freed */ 1173 if (icq) 1174 get_io_context(icq->ioc); 1175 } 1176 out: 1177 /* 1178 * ioc may be NULL here, and ioc_batching will be false. That's 1179 * OK, if the queue is under the request limit then requests need 1180 * not count toward the nr_batch_requests limit. There will always 1181 * be some limit enforced by BLK_BATCH_TIME. 1182 */ 1183 if (ioc_batching(q, ioc)) 1184 ioc->nr_batch_requests--; 1185 1186 trace_block_getrq(q, bio, op); 1187 return rq; 1188 1189 fail_elvpriv: 1190 /* 1191 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1192 * and may fail indefinitely under memory pressure and thus 1193 * shouldn't stall IO. Treat this request as !elvpriv. This will 1194 * disturb iosched and blkcg but weird is bettern than dead. 1195 */ 1196 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1197 __func__, dev_name(q->backing_dev_info->dev)); 1198 1199 rq->rq_flags &= ~RQF_ELVPRIV; 1200 rq->elv.icq = NULL; 1201 1202 spin_lock_irq(q->queue_lock); 1203 q->nr_rqs_elvpriv--; 1204 spin_unlock_irq(q->queue_lock); 1205 goto out; 1206 1207 fail_alloc: 1208 /* 1209 * Allocation failed presumably due to memory. Undo anything we 1210 * might have messed up. 1211 * 1212 * Allocating task should really be put onto the front of the wait 1213 * queue, but this is pretty rare. 1214 */ 1215 spin_lock_irq(q->queue_lock); 1216 freed_request(rl, is_sync, rq_flags); 1217 1218 /* 1219 * in the very unlikely event that allocation failed and no 1220 * requests for this direction was pending, mark us starved so that 1221 * freeing of a request in the other direction will notice 1222 * us. another possible fix would be to split the rq mempool into 1223 * READ and WRITE 1224 */ 1225 rq_starved: 1226 if (unlikely(rl->count[is_sync] == 0)) 1227 rl->starved[is_sync] = 1; 1228 return ERR_PTR(-ENOMEM); 1229 } 1230 1231 /** 1232 * get_request - get a free request 1233 * @q: request_queue to allocate request from 1234 * @op: operation and flags 1235 * @bio: bio to allocate request for (can be %NULL) 1236 * @gfp_mask: allocation mask 1237 * 1238 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1239 * this function keeps retrying under memory pressure and fails iff @q is dead. 1240 * 1241 * Must be called with @q->queue_lock held and, 1242 * Returns ERR_PTR on failure, with @q->queue_lock held. 1243 * Returns request pointer on success, with @q->queue_lock *not held*. 1244 */ 1245 static struct request *get_request(struct request_queue *q, unsigned int op, 1246 struct bio *bio, gfp_t gfp_mask) 1247 { 1248 const bool is_sync = op_is_sync(op); 1249 DEFINE_WAIT(wait); 1250 struct request_list *rl; 1251 struct request *rq; 1252 1253 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1254 retry: 1255 rq = __get_request(rl, op, bio, gfp_mask); 1256 if (!IS_ERR(rq)) 1257 return rq; 1258 1259 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1260 blk_put_rl(rl); 1261 return rq; 1262 } 1263 1264 /* wait on @rl and retry */ 1265 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1266 TASK_UNINTERRUPTIBLE); 1267 1268 trace_block_sleeprq(q, bio, op); 1269 1270 spin_unlock_irq(q->queue_lock); 1271 io_schedule(); 1272 1273 /* 1274 * After sleeping, we become a "batching" process and will be able 1275 * to allocate at least one request, and up to a big batch of them 1276 * for a small period time. See ioc_batching, ioc_set_batching 1277 */ 1278 ioc_set_batching(q, current->io_context); 1279 1280 spin_lock_irq(q->queue_lock); 1281 finish_wait(&rl->wait[is_sync], &wait); 1282 1283 goto retry; 1284 } 1285 1286 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1287 gfp_t gfp_mask) 1288 { 1289 struct request *rq; 1290 1291 /* create ioc upfront */ 1292 create_io_context(gfp_mask, q->node); 1293 1294 spin_lock_irq(q->queue_lock); 1295 rq = get_request(q, rw, NULL, gfp_mask); 1296 if (IS_ERR(rq)) { 1297 spin_unlock_irq(q->queue_lock); 1298 return rq; 1299 } 1300 1301 /* q->queue_lock is unlocked at this point */ 1302 rq->__data_len = 0; 1303 rq->__sector = (sector_t) -1; 1304 rq->bio = rq->biotail = NULL; 1305 return rq; 1306 } 1307 1308 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1309 { 1310 if (q->mq_ops) 1311 return blk_mq_alloc_request(q, rw, 1312 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1313 0 : BLK_MQ_REQ_NOWAIT); 1314 else 1315 return blk_old_get_request(q, rw, gfp_mask); 1316 } 1317 EXPORT_SYMBOL(blk_get_request); 1318 1319 /** 1320 * blk_requeue_request - put a request back on queue 1321 * @q: request queue where request should be inserted 1322 * @rq: request to be inserted 1323 * 1324 * Description: 1325 * Drivers often keep queueing requests until the hardware cannot accept 1326 * more, when that condition happens we need to put the request back 1327 * on the queue. Must be called with queue lock held. 1328 */ 1329 void blk_requeue_request(struct request_queue *q, struct request *rq) 1330 { 1331 blk_delete_timer(rq); 1332 blk_clear_rq_complete(rq); 1333 trace_block_rq_requeue(q, rq); 1334 wbt_requeue(q->rq_wb, &rq->issue_stat); 1335 1336 if (rq->rq_flags & RQF_QUEUED) 1337 blk_queue_end_tag(q, rq); 1338 1339 BUG_ON(blk_queued_rq(rq)); 1340 1341 elv_requeue_request(q, rq); 1342 } 1343 EXPORT_SYMBOL(blk_requeue_request); 1344 1345 static void add_acct_request(struct request_queue *q, struct request *rq, 1346 int where) 1347 { 1348 blk_account_io_start(rq, true); 1349 __elv_add_request(q, rq, where); 1350 } 1351 1352 static void part_round_stats_single(int cpu, struct hd_struct *part, 1353 unsigned long now) 1354 { 1355 int inflight; 1356 1357 if (now == part->stamp) 1358 return; 1359 1360 inflight = part_in_flight(part); 1361 if (inflight) { 1362 __part_stat_add(cpu, part, time_in_queue, 1363 inflight * (now - part->stamp)); 1364 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1365 } 1366 part->stamp = now; 1367 } 1368 1369 /** 1370 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1371 * @cpu: cpu number for stats access 1372 * @part: target partition 1373 * 1374 * The average IO queue length and utilisation statistics are maintained 1375 * by observing the current state of the queue length and the amount of 1376 * time it has been in this state for. 1377 * 1378 * Normally, that accounting is done on IO completion, but that can result 1379 * in more than a second's worth of IO being accounted for within any one 1380 * second, leading to >100% utilisation. To deal with that, we call this 1381 * function to do a round-off before returning the results when reading 1382 * /proc/diskstats. This accounts immediately for all queue usage up to 1383 * the current jiffies and restarts the counters again. 1384 */ 1385 void part_round_stats(int cpu, struct hd_struct *part) 1386 { 1387 unsigned long now = jiffies; 1388 1389 if (part->partno) 1390 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1391 part_round_stats_single(cpu, part, now); 1392 } 1393 EXPORT_SYMBOL_GPL(part_round_stats); 1394 1395 #ifdef CONFIG_PM 1396 static void blk_pm_put_request(struct request *rq) 1397 { 1398 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1399 pm_runtime_mark_last_busy(rq->q->dev); 1400 } 1401 #else 1402 static inline void blk_pm_put_request(struct request *rq) {} 1403 #endif 1404 1405 /* 1406 * queue lock must be held 1407 */ 1408 void __blk_put_request(struct request_queue *q, struct request *req) 1409 { 1410 req_flags_t rq_flags = req->rq_flags; 1411 1412 if (unlikely(!q)) 1413 return; 1414 1415 if (q->mq_ops) { 1416 blk_mq_free_request(req); 1417 return; 1418 } 1419 1420 blk_pm_put_request(req); 1421 1422 elv_completed_request(q, req); 1423 1424 /* this is a bio leak */ 1425 WARN_ON(req->bio != NULL); 1426 1427 wbt_done(q->rq_wb, &req->issue_stat); 1428 1429 /* 1430 * Request may not have originated from ll_rw_blk. if not, 1431 * it didn't come out of our reserved rq pools 1432 */ 1433 if (rq_flags & RQF_ALLOCED) { 1434 struct request_list *rl = blk_rq_rl(req); 1435 bool sync = op_is_sync(req->cmd_flags); 1436 1437 BUG_ON(!list_empty(&req->queuelist)); 1438 BUG_ON(ELV_ON_HASH(req)); 1439 1440 blk_free_request(rl, req); 1441 freed_request(rl, sync, rq_flags); 1442 blk_put_rl(rl); 1443 } 1444 } 1445 EXPORT_SYMBOL_GPL(__blk_put_request); 1446 1447 void blk_put_request(struct request *req) 1448 { 1449 struct request_queue *q = req->q; 1450 1451 if (q->mq_ops) 1452 blk_mq_free_request(req); 1453 else { 1454 unsigned long flags; 1455 1456 spin_lock_irqsave(q->queue_lock, flags); 1457 __blk_put_request(q, req); 1458 spin_unlock_irqrestore(q->queue_lock, flags); 1459 } 1460 } 1461 EXPORT_SYMBOL(blk_put_request); 1462 1463 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1464 struct bio *bio) 1465 { 1466 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1467 1468 if (!ll_back_merge_fn(q, req, bio)) 1469 return false; 1470 1471 trace_block_bio_backmerge(q, req, bio); 1472 1473 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1474 blk_rq_set_mixed_merge(req); 1475 1476 req->biotail->bi_next = bio; 1477 req->biotail = bio; 1478 req->__data_len += bio->bi_iter.bi_size; 1479 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1480 1481 blk_account_io_start(req, false); 1482 return true; 1483 } 1484 1485 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1486 struct bio *bio) 1487 { 1488 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1489 1490 if (!ll_front_merge_fn(q, req, bio)) 1491 return false; 1492 1493 trace_block_bio_frontmerge(q, req, bio); 1494 1495 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1496 blk_rq_set_mixed_merge(req); 1497 1498 bio->bi_next = req->bio; 1499 req->bio = bio; 1500 1501 req->__sector = bio->bi_iter.bi_sector; 1502 req->__data_len += bio->bi_iter.bi_size; 1503 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1504 1505 blk_account_io_start(req, false); 1506 return true; 1507 } 1508 1509 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1510 struct bio *bio) 1511 { 1512 unsigned short segments = blk_rq_nr_discard_segments(req); 1513 1514 if (segments >= queue_max_discard_segments(q)) 1515 goto no_merge; 1516 if (blk_rq_sectors(req) + bio_sectors(bio) > 1517 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1518 goto no_merge; 1519 1520 req->biotail->bi_next = bio; 1521 req->biotail = bio; 1522 req->__data_len += bio->bi_iter.bi_size; 1523 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1524 req->nr_phys_segments = segments + 1; 1525 1526 blk_account_io_start(req, false); 1527 return true; 1528 no_merge: 1529 req_set_nomerge(q, req); 1530 return false; 1531 } 1532 1533 /** 1534 * blk_attempt_plug_merge - try to merge with %current's plugged list 1535 * @q: request_queue new bio is being queued at 1536 * @bio: new bio being queued 1537 * @request_count: out parameter for number of traversed plugged requests 1538 * @same_queue_rq: pointer to &struct request that gets filled in when 1539 * another request associated with @q is found on the plug list 1540 * (optional, may be %NULL) 1541 * 1542 * Determine whether @bio being queued on @q can be merged with a request 1543 * on %current's plugged list. Returns %true if merge was successful, 1544 * otherwise %false. 1545 * 1546 * Plugging coalesces IOs from the same issuer for the same purpose without 1547 * going through @q->queue_lock. As such it's more of an issuing mechanism 1548 * than scheduling, and the request, while may have elvpriv data, is not 1549 * added on the elevator at this point. In addition, we don't have 1550 * reliable access to the elevator outside queue lock. Only check basic 1551 * merging parameters without querying the elevator. 1552 * 1553 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1554 */ 1555 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1556 unsigned int *request_count, 1557 struct request **same_queue_rq) 1558 { 1559 struct blk_plug *plug; 1560 struct request *rq; 1561 struct list_head *plug_list; 1562 1563 plug = current->plug; 1564 if (!plug) 1565 return false; 1566 *request_count = 0; 1567 1568 if (q->mq_ops) 1569 plug_list = &plug->mq_list; 1570 else 1571 plug_list = &plug->list; 1572 1573 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1574 bool merged = false; 1575 1576 if (rq->q == q) { 1577 (*request_count)++; 1578 /* 1579 * Only blk-mq multiple hardware queues case checks the 1580 * rq in the same queue, there should be only one such 1581 * rq in a queue 1582 **/ 1583 if (same_queue_rq) 1584 *same_queue_rq = rq; 1585 } 1586 1587 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1588 continue; 1589 1590 switch (blk_try_merge(rq, bio)) { 1591 case ELEVATOR_BACK_MERGE: 1592 merged = bio_attempt_back_merge(q, rq, bio); 1593 break; 1594 case ELEVATOR_FRONT_MERGE: 1595 merged = bio_attempt_front_merge(q, rq, bio); 1596 break; 1597 case ELEVATOR_DISCARD_MERGE: 1598 merged = bio_attempt_discard_merge(q, rq, bio); 1599 break; 1600 default: 1601 break; 1602 } 1603 1604 if (merged) 1605 return true; 1606 } 1607 1608 return false; 1609 } 1610 1611 unsigned int blk_plug_queued_count(struct request_queue *q) 1612 { 1613 struct blk_plug *plug; 1614 struct request *rq; 1615 struct list_head *plug_list; 1616 unsigned int ret = 0; 1617 1618 plug = current->plug; 1619 if (!plug) 1620 goto out; 1621 1622 if (q->mq_ops) 1623 plug_list = &plug->mq_list; 1624 else 1625 plug_list = &plug->list; 1626 1627 list_for_each_entry(rq, plug_list, queuelist) { 1628 if (rq->q == q) 1629 ret++; 1630 } 1631 out: 1632 return ret; 1633 } 1634 1635 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1636 { 1637 struct io_context *ioc = rq_ioc(bio); 1638 1639 if (bio->bi_opf & REQ_RAHEAD) 1640 req->cmd_flags |= REQ_FAILFAST_MASK; 1641 1642 req->__sector = bio->bi_iter.bi_sector; 1643 if (ioprio_valid(bio_prio(bio))) 1644 req->ioprio = bio_prio(bio); 1645 else if (ioc) 1646 req->ioprio = ioc->ioprio; 1647 else 1648 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1649 blk_rq_bio_prep(req->q, req, bio); 1650 } 1651 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1652 1653 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1654 { 1655 struct blk_plug *plug; 1656 int where = ELEVATOR_INSERT_SORT; 1657 struct request *req, *free; 1658 unsigned int request_count = 0; 1659 unsigned int wb_acct; 1660 1661 /* 1662 * low level driver can indicate that it wants pages above a 1663 * certain limit bounced to low memory (ie for highmem, or even 1664 * ISA dma in theory) 1665 */ 1666 blk_queue_bounce(q, &bio); 1667 1668 blk_queue_split(q, &bio, q->bio_split); 1669 1670 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1671 bio->bi_error = -EIO; 1672 bio_endio(bio); 1673 return BLK_QC_T_NONE; 1674 } 1675 1676 if (op_is_flush(bio->bi_opf)) { 1677 spin_lock_irq(q->queue_lock); 1678 where = ELEVATOR_INSERT_FLUSH; 1679 goto get_rq; 1680 } 1681 1682 /* 1683 * Check if we can merge with the plugged list before grabbing 1684 * any locks. 1685 */ 1686 if (!blk_queue_nomerges(q)) { 1687 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1688 return BLK_QC_T_NONE; 1689 } else 1690 request_count = blk_plug_queued_count(q); 1691 1692 spin_lock_irq(q->queue_lock); 1693 1694 switch (elv_merge(q, &req, bio)) { 1695 case ELEVATOR_BACK_MERGE: 1696 if (!bio_attempt_back_merge(q, req, bio)) 1697 break; 1698 elv_bio_merged(q, req, bio); 1699 free = attempt_back_merge(q, req); 1700 if (free) 1701 __blk_put_request(q, free); 1702 else 1703 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 1704 goto out_unlock; 1705 case ELEVATOR_FRONT_MERGE: 1706 if (!bio_attempt_front_merge(q, req, bio)) 1707 break; 1708 elv_bio_merged(q, req, bio); 1709 free = attempt_front_merge(q, req); 1710 if (free) 1711 __blk_put_request(q, free); 1712 else 1713 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 1714 goto out_unlock; 1715 default: 1716 break; 1717 } 1718 1719 get_rq: 1720 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1721 1722 /* 1723 * Grab a free request. This is might sleep but can not fail. 1724 * Returns with the queue unlocked. 1725 */ 1726 req = get_request(q, bio->bi_opf, bio, GFP_NOIO); 1727 if (IS_ERR(req)) { 1728 __wbt_done(q->rq_wb, wb_acct); 1729 bio->bi_error = PTR_ERR(req); 1730 bio_endio(bio); 1731 goto out_unlock; 1732 } 1733 1734 wbt_track(&req->issue_stat, wb_acct); 1735 1736 /* 1737 * After dropping the lock and possibly sleeping here, our request 1738 * may now be mergeable after it had proven unmergeable (above). 1739 * We don't worry about that case for efficiency. It won't happen 1740 * often, and the elevators are able to handle it. 1741 */ 1742 blk_init_request_from_bio(req, bio); 1743 1744 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1745 req->cpu = raw_smp_processor_id(); 1746 1747 plug = current->plug; 1748 if (plug) { 1749 /* 1750 * If this is the first request added after a plug, fire 1751 * of a plug trace. 1752 * 1753 * @request_count may become stale because of schedule 1754 * out, so check plug list again. 1755 */ 1756 if (!request_count || list_empty(&plug->list)) 1757 trace_block_plug(q); 1758 else { 1759 struct request *last = list_entry_rq(plug->list.prev); 1760 if (request_count >= BLK_MAX_REQUEST_COUNT || 1761 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 1762 blk_flush_plug_list(plug, false); 1763 trace_block_plug(q); 1764 } 1765 } 1766 list_add_tail(&req->queuelist, &plug->list); 1767 blk_account_io_start(req, true); 1768 } else { 1769 spin_lock_irq(q->queue_lock); 1770 add_acct_request(q, req, where); 1771 __blk_run_queue(q); 1772 out_unlock: 1773 spin_unlock_irq(q->queue_lock); 1774 } 1775 1776 return BLK_QC_T_NONE; 1777 } 1778 1779 /* 1780 * If bio->bi_dev is a partition, remap the location 1781 */ 1782 static inline void blk_partition_remap(struct bio *bio) 1783 { 1784 struct block_device *bdev = bio->bi_bdev; 1785 1786 /* 1787 * Zone reset does not include bi_size so bio_sectors() is always 0. 1788 * Include a test for the reset op code and perform the remap if needed. 1789 */ 1790 if (bdev != bdev->bd_contains && 1791 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) { 1792 struct hd_struct *p = bdev->bd_part; 1793 1794 bio->bi_iter.bi_sector += p->start_sect; 1795 bio->bi_bdev = bdev->bd_contains; 1796 1797 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1798 bdev->bd_dev, 1799 bio->bi_iter.bi_sector - p->start_sect); 1800 } 1801 } 1802 1803 static void handle_bad_sector(struct bio *bio) 1804 { 1805 char b[BDEVNAME_SIZE]; 1806 1807 printk(KERN_INFO "attempt to access beyond end of device\n"); 1808 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 1809 bdevname(bio->bi_bdev, b), 1810 bio->bi_opf, 1811 (unsigned long long)bio_end_sector(bio), 1812 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1813 } 1814 1815 #ifdef CONFIG_FAIL_MAKE_REQUEST 1816 1817 static DECLARE_FAULT_ATTR(fail_make_request); 1818 1819 static int __init setup_fail_make_request(char *str) 1820 { 1821 return setup_fault_attr(&fail_make_request, str); 1822 } 1823 __setup("fail_make_request=", setup_fail_make_request); 1824 1825 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1826 { 1827 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1828 } 1829 1830 static int __init fail_make_request_debugfs(void) 1831 { 1832 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1833 NULL, &fail_make_request); 1834 1835 return PTR_ERR_OR_ZERO(dir); 1836 } 1837 1838 late_initcall(fail_make_request_debugfs); 1839 1840 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1841 1842 static inline bool should_fail_request(struct hd_struct *part, 1843 unsigned int bytes) 1844 { 1845 return false; 1846 } 1847 1848 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1849 1850 /* 1851 * Check whether this bio extends beyond the end of the device. 1852 */ 1853 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1854 { 1855 sector_t maxsector; 1856 1857 if (!nr_sectors) 1858 return 0; 1859 1860 /* Test device or partition size, when known. */ 1861 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1862 if (maxsector) { 1863 sector_t sector = bio->bi_iter.bi_sector; 1864 1865 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1866 /* 1867 * This may well happen - the kernel calls bread() 1868 * without checking the size of the device, e.g., when 1869 * mounting a device. 1870 */ 1871 handle_bad_sector(bio); 1872 return 1; 1873 } 1874 } 1875 1876 return 0; 1877 } 1878 1879 static noinline_for_stack bool 1880 generic_make_request_checks(struct bio *bio) 1881 { 1882 struct request_queue *q; 1883 int nr_sectors = bio_sectors(bio); 1884 int err = -EIO; 1885 char b[BDEVNAME_SIZE]; 1886 struct hd_struct *part; 1887 1888 might_sleep(); 1889 1890 if (bio_check_eod(bio, nr_sectors)) 1891 goto end_io; 1892 1893 q = bdev_get_queue(bio->bi_bdev); 1894 if (unlikely(!q)) { 1895 printk(KERN_ERR 1896 "generic_make_request: Trying to access " 1897 "nonexistent block-device %s (%Lu)\n", 1898 bdevname(bio->bi_bdev, b), 1899 (long long) bio->bi_iter.bi_sector); 1900 goto end_io; 1901 } 1902 1903 part = bio->bi_bdev->bd_part; 1904 if (should_fail_request(part, bio->bi_iter.bi_size) || 1905 should_fail_request(&part_to_disk(part)->part0, 1906 bio->bi_iter.bi_size)) 1907 goto end_io; 1908 1909 /* 1910 * If this device has partitions, remap block n 1911 * of partition p to block n+start(p) of the disk. 1912 */ 1913 blk_partition_remap(bio); 1914 1915 if (bio_check_eod(bio, nr_sectors)) 1916 goto end_io; 1917 1918 /* 1919 * Filter flush bio's early so that make_request based 1920 * drivers without flush support don't have to worry 1921 * about them. 1922 */ 1923 if (op_is_flush(bio->bi_opf) && 1924 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 1925 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 1926 if (!nr_sectors) { 1927 err = 0; 1928 goto end_io; 1929 } 1930 } 1931 1932 switch (bio_op(bio)) { 1933 case REQ_OP_DISCARD: 1934 if (!blk_queue_discard(q)) 1935 goto not_supported; 1936 break; 1937 case REQ_OP_SECURE_ERASE: 1938 if (!blk_queue_secure_erase(q)) 1939 goto not_supported; 1940 break; 1941 case REQ_OP_WRITE_SAME: 1942 if (!bdev_write_same(bio->bi_bdev)) 1943 goto not_supported; 1944 break; 1945 case REQ_OP_ZONE_REPORT: 1946 case REQ_OP_ZONE_RESET: 1947 if (!bdev_is_zoned(bio->bi_bdev)) 1948 goto not_supported; 1949 break; 1950 case REQ_OP_WRITE_ZEROES: 1951 if (!bdev_write_zeroes_sectors(bio->bi_bdev)) 1952 goto not_supported; 1953 break; 1954 default: 1955 break; 1956 } 1957 1958 /* 1959 * Various block parts want %current->io_context and lazy ioc 1960 * allocation ends up trading a lot of pain for a small amount of 1961 * memory. Just allocate it upfront. This may fail and block 1962 * layer knows how to live with it. 1963 */ 1964 create_io_context(GFP_ATOMIC, q->node); 1965 1966 if (!blkcg_bio_issue_check(q, bio)) 1967 return false; 1968 1969 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1970 trace_block_bio_queue(q, bio); 1971 /* Now that enqueuing has been traced, we need to trace 1972 * completion as well. 1973 */ 1974 bio_set_flag(bio, BIO_TRACE_COMPLETION); 1975 } 1976 return true; 1977 1978 not_supported: 1979 err = -EOPNOTSUPP; 1980 end_io: 1981 bio->bi_error = err; 1982 bio_endio(bio); 1983 return false; 1984 } 1985 1986 /** 1987 * generic_make_request - hand a buffer to its device driver for I/O 1988 * @bio: The bio describing the location in memory and on the device. 1989 * 1990 * generic_make_request() is used to make I/O requests of block 1991 * devices. It is passed a &struct bio, which describes the I/O that needs 1992 * to be done. 1993 * 1994 * generic_make_request() does not return any status. The 1995 * success/failure status of the request, along with notification of 1996 * completion, is delivered asynchronously through the bio->bi_end_io 1997 * function described (one day) else where. 1998 * 1999 * The caller of generic_make_request must make sure that bi_io_vec 2000 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2001 * set to describe the device address, and the 2002 * bi_end_io and optionally bi_private are set to describe how 2003 * completion notification should be signaled. 2004 * 2005 * generic_make_request and the drivers it calls may use bi_next if this 2006 * bio happens to be merged with someone else, and may resubmit the bio to 2007 * a lower device by calling into generic_make_request recursively, which 2008 * means the bio should NOT be touched after the call to ->make_request_fn. 2009 */ 2010 blk_qc_t generic_make_request(struct bio *bio) 2011 { 2012 /* 2013 * bio_list_on_stack[0] contains bios submitted by the current 2014 * make_request_fn. 2015 * bio_list_on_stack[1] contains bios that were submitted before 2016 * the current make_request_fn, but that haven't been processed 2017 * yet. 2018 */ 2019 struct bio_list bio_list_on_stack[2]; 2020 blk_qc_t ret = BLK_QC_T_NONE; 2021 2022 if (!generic_make_request_checks(bio)) 2023 goto out; 2024 2025 /* 2026 * We only want one ->make_request_fn to be active at a time, else 2027 * stack usage with stacked devices could be a problem. So use 2028 * current->bio_list to keep a list of requests submited by a 2029 * make_request_fn function. current->bio_list is also used as a 2030 * flag to say if generic_make_request is currently active in this 2031 * task or not. If it is NULL, then no make_request is active. If 2032 * it is non-NULL, then a make_request is active, and new requests 2033 * should be added at the tail 2034 */ 2035 if (current->bio_list) { 2036 bio_list_add(¤t->bio_list[0], bio); 2037 goto out; 2038 } 2039 2040 /* following loop may be a bit non-obvious, and so deserves some 2041 * explanation. 2042 * Before entering the loop, bio->bi_next is NULL (as all callers 2043 * ensure that) so we have a list with a single bio. 2044 * We pretend that we have just taken it off a longer list, so 2045 * we assign bio_list to a pointer to the bio_list_on_stack, 2046 * thus initialising the bio_list of new bios to be 2047 * added. ->make_request() may indeed add some more bios 2048 * through a recursive call to generic_make_request. If it 2049 * did, we find a non-NULL value in bio_list and re-enter the loop 2050 * from the top. In this case we really did just take the bio 2051 * of the top of the list (no pretending) and so remove it from 2052 * bio_list, and call into ->make_request() again. 2053 */ 2054 BUG_ON(bio->bi_next); 2055 bio_list_init(&bio_list_on_stack[0]); 2056 current->bio_list = bio_list_on_stack; 2057 do { 2058 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2059 2060 if (likely(blk_queue_enter(q, false) == 0)) { 2061 struct bio_list lower, same; 2062 2063 /* Create a fresh bio_list for all subordinate requests */ 2064 bio_list_on_stack[1] = bio_list_on_stack[0]; 2065 bio_list_init(&bio_list_on_stack[0]); 2066 ret = q->make_request_fn(q, bio); 2067 2068 blk_queue_exit(q); 2069 2070 /* sort new bios into those for a lower level 2071 * and those for the same level 2072 */ 2073 bio_list_init(&lower); 2074 bio_list_init(&same); 2075 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2076 if (q == bdev_get_queue(bio->bi_bdev)) 2077 bio_list_add(&same, bio); 2078 else 2079 bio_list_add(&lower, bio); 2080 /* now assemble so we handle the lowest level first */ 2081 bio_list_merge(&bio_list_on_stack[0], &lower); 2082 bio_list_merge(&bio_list_on_stack[0], &same); 2083 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2084 } else { 2085 bio_io_error(bio); 2086 } 2087 bio = bio_list_pop(&bio_list_on_stack[0]); 2088 } while (bio); 2089 current->bio_list = NULL; /* deactivate */ 2090 2091 out: 2092 return ret; 2093 } 2094 EXPORT_SYMBOL(generic_make_request); 2095 2096 /** 2097 * submit_bio - submit a bio to the block device layer for I/O 2098 * @bio: The &struct bio which describes the I/O 2099 * 2100 * submit_bio() is very similar in purpose to generic_make_request(), and 2101 * uses that function to do most of the work. Both are fairly rough 2102 * interfaces; @bio must be presetup and ready for I/O. 2103 * 2104 */ 2105 blk_qc_t submit_bio(struct bio *bio) 2106 { 2107 /* 2108 * If it's a regular read/write or a barrier with data attached, 2109 * go through the normal accounting stuff before submission. 2110 */ 2111 if (bio_has_data(bio)) { 2112 unsigned int count; 2113 2114 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2115 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2116 else 2117 count = bio_sectors(bio); 2118 2119 if (op_is_write(bio_op(bio))) { 2120 count_vm_events(PGPGOUT, count); 2121 } else { 2122 task_io_account_read(bio->bi_iter.bi_size); 2123 count_vm_events(PGPGIN, count); 2124 } 2125 2126 if (unlikely(block_dump)) { 2127 char b[BDEVNAME_SIZE]; 2128 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2129 current->comm, task_pid_nr(current), 2130 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2131 (unsigned long long)bio->bi_iter.bi_sector, 2132 bdevname(bio->bi_bdev, b), 2133 count); 2134 } 2135 } 2136 2137 return generic_make_request(bio); 2138 } 2139 EXPORT_SYMBOL(submit_bio); 2140 2141 /** 2142 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2143 * for new the queue limits 2144 * @q: the queue 2145 * @rq: the request being checked 2146 * 2147 * Description: 2148 * @rq may have been made based on weaker limitations of upper-level queues 2149 * in request stacking drivers, and it may violate the limitation of @q. 2150 * Since the block layer and the underlying device driver trust @rq 2151 * after it is inserted to @q, it should be checked against @q before 2152 * the insertion using this generic function. 2153 * 2154 * Request stacking drivers like request-based dm may change the queue 2155 * limits when retrying requests on other queues. Those requests need 2156 * to be checked against the new queue limits again during dispatch. 2157 */ 2158 static int blk_cloned_rq_check_limits(struct request_queue *q, 2159 struct request *rq) 2160 { 2161 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2162 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2163 return -EIO; 2164 } 2165 2166 /* 2167 * queue's settings related to segment counting like q->bounce_pfn 2168 * may differ from that of other stacking queues. 2169 * Recalculate it to check the request correctly on this queue's 2170 * limitation. 2171 */ 2172 blk_recalc_rq_segments(rq); 2173 if (rq->nr_phys_segments > queue_max_segments(q)) { 2174 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2175 return -EIO; 2176 } 2177 2178 return 0; 2179 } 2180 2181 /** 2182 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2183 * @q: the queue to submit the request 2184 * @rq: the request being queued 2185 */ 2186 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2187 { 2188 unsigned long flags; 2189 int where = ELEVATOR_INSERT_BACK; 2190 2191 if (blk_cloned_rq_check_limits(q, rq)) 2192 return -EIO; 2193 2194 if (rq->rq_disk && 2195 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2196 return -EIO; 2197 2198 if (q->mq_ops) { 2199 if (blk_queue_io_stat(q)) 2200 blk_account_io_start(rq, true); 2201 blk_mq_sched_insert_request(rq, false, true, false, false); 2202 return 0; 2203 } 2204 2205 spin_lock_irqsave(q->queue_lock, flags); 2206 if (unlikely(blk_queue_dying(q))) { 2207 spin_unlock_irqrestore(q->queue_lock, flags); 2208 return -ENODEV; 2209 } 2210 2211 /* 2212 * Submitting request must be dequeued before calling this function 2213 * because it will be linked to another request_queue 2214 */ 2215 BUG_ON(blk_queued_rq(rq)); 2216 2217 if (op_is_flush(rq->cmd_flags)) 2218 where = ELEVATOR_INSERT_FLUSH; 2219 2220 add_acct_request(q, rq, where); 2221 if (where == ELEVATOR_INSERT_FLUSH) 2222 __blk_run_queue(q); 2223 spin_unlock_irqrestore(q->queue_lock, flags); 2224 2225 return 0; 2226 } 2227 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2228 2229 /** 2230 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2231 * @rq: request to examine 2232 * 2233 * Description: 2234 * A request could be merge of IOs which require different failure 2235 * handling. This function determines the number of bytes which 2236 * can be failed from the beginning of the request without 2237 * crossing into area which need to be retried further. 2238 * 2239 * Return: 2240 * The number of bytes to fail. 2241 * 2242 * Context: 2243 * queue_lock must be held. 2244 */ 2245 unsigned int blk_rq_err_bytes(const struct request *rq) 2246 { 2247 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2248 unsigned int bytes = 0; 2249 struct bio *bio; 2250 2251 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2252 return blk_rq_bytes(rq); 2253 2254 /* 2255 * Currently the only 'mixing' which can happen is between 2256 * different fastfail types. We can safely fail portions 2257 * which have all the failfast bits that the first one has - 2258 * the ones which are at least as eager to fail as the first 2259 * one. 2260 */ 2261 for (bio = rq->bio; bio; bio = bio->bi_next) { 2262 if ((bio->bi_opf & ff) != ff) 2263 break; 2264 bytes += bio->bi_iter.bi_size; 2265 } 2266 2267 /* this could lead to infinite loop */ 2268 BUG_ON(blk_rq_bytes(rq) && !bytes); 2269 return bytes; 2270 } 2271 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2272 2273 void blk_account_io_completion(struct request *req, unsigned int bytes) 2274 { 2275 if (blk_do_io_stat(req)) { 2276 const int rw = rq_data_dir(req); 2277 struct hd_struct *part; 2278 int cpu; 2279 2280 cpu = part_stat_lock(); 2281 part = req->part; 2282 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2283 part_stat_unlock(); 2284 } 2285 } 2286 2287 void blk_account_io_done(struct request *req) 2288 { 2289 /* 2290 * Account IO completion. flush_rq isn't accounted as a 2291 * normal IO on queueing nor completion. Accounting the 2292 * containing request is enough. 2293 */ 2294 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2295 unsigned long duration = jiffies - req->start_time; 2296 const int rw = rq_data_dir(req); 2297 struct hd_struct *part; 2298 int cpu; 2299 2300 cpu = part_stat_lock(); 2301 part = req->part; 2302 2303 part_stat_inc(cpu, part, ios[rw]); 2304 part_stat_add(cpu, part, ticks[rw], duration); 2305 part_round_stats(cpu, part); 2306 part_dec_in_flight(part, rw); 2307 2308 hd_struct_put(part); 2309 part_stat_unlock(); 2310 } 2311 } 2312 2313 #ifdef CONFIG_PM 2314 /* 2315 * Don't process normal requests when queue is suspended 2316 * or in the process of suspending/resuming 2317 */ 2318 static struct request *blk_pm_peek_request(struct request_queue *q, 2319 struct request *rq) 2320 { 2321 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2322 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM)))) 2323 return NULL; 2324 else 2325 return rq; 2326 } 2327 #else 2328 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2329 struct request *rq) 2330 { 2331 return rq; 2332 } 2333 #endif 2334 2335 void blk_account_io_start(struct request *rq, bool new_io) 2336 { 2337 struct hd_struct *part; 2338 int rw = rq_data_dir(rq); 2339 int cpu; 2340 2341 if (!blk_do_io_stat(rq)) 2342 return; 2343 2344 cpu = part_stat_lock(); 2345 2346 if (!new_io) { 2347 part = rq->part; 2348 part_stat_inc(cpu, part, merges[rw]); 2349 } else { 2350 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2351 if (!hd_struct_try_get(part)) { 2352 /* 2353 * The partition is already being removed, 2354 * the request will be accounted on the disk only 2355 * 2356 * We take a reference on disk->part0 although that 2357 * partition will never be deleted, so we can treat 2358 * it as any other partition. 2359 */ 2360 part = &rq->rq_disk->part0; 2361 hd_struct_get(part); 2362 } 2363 part_round_stats(cpu, part); 2364 part_inc_in_flight(part, rw); 2365 rq->part = part; 2366 } 2367 2368 part_stat_unlock(); 2369 } 2370 2371 /** 2372 * blk_peek_request - peek at the top of a request queue 2373 * @q: request queue to peek at 2374 * 2375 * Description: 2376 * Return the request at the top of @q. The returned request 2377 * should be started using blk_start_request() before LLD starts 2378 * processing it. 2379 * 2380 * Return: 2381 * Pointer to the request at the top of @q if available. Null 2382 * otherwise. 2383 * 2384 * Context: 2385 * queue_lock must be held. 2386 */ 2387 struct request *blk_peek_request(struct request_queue *q) 2388 { 2389 struct request *rq; 2390 int ret; 2391 2392 while ((rq = __elv_next_request(q)) != NULL) { 2393 2394 rq = blk_pm_peek_request(q, rq); 2395 if (!rq) 2396 break; 2397 2398 if (!(rq->rq_flags & RQF_STARTED)) { 2399 /* 2400 * This is the first time the device driver 2401 * sees this request (possibly after 2402 * requeueing). Notify IO scheduler. 2403 */ 2404 if (rq->rq_flags & RQF_SORTED) 2405 elv_activate_rq(q, rq); 2406 2407 /* 2408 * just mark as started even if we don't start 2409 * it, a request that has been delayed should 2410 * not be passed by new incoming requests 2411 */ 2412 rq->rq_flags |= RQF_STARTED; 2413 trace_block_rq_issue(q, rq); 2414 } 2415 2416 if (!q->boundary_rq || q->boundary_rq == rq) { 2417 q->end_sector = rq_end_sector(rq); 2418 q->boundary_rq = NULL; 2419 } 2420 2421 if (rq->rq_flags & RQF_DONTPREP) 2422 break; 2423 2424 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2425 /* 2426 * make sure space for the drain appears we 2427 * know we can do this because max_hw_segments 2428 * has been adjusted to be one fewer than the 2429 * device can handle 2430 */ 2431 rq->nr_phys_segments++; 2432 } 2433 2434 if (!q->prep_rq_fn) 2435 break; 2436 2437 ret = q->prep_rq_fn(q, rq); 2438 if (ret == BLKPREP_OK) { 2439 break; 2440 } else if (ret == BLKPREP_DEFER) { 2441 /* 2442 * the request may have been (partially) prepped. 2443 * we need to keep this request in the front to 2444 * avoid resource deadlock. RQF_STARTED will 2445 * prevent other fs requests from passing this one. 2446 */ 2447 if (q->dma_drain_size && blk_rq_bytes(rq) && 2448 !(rq->rq_flags & RQF_DONTPREP)) { 2449 /* 2450 * remove the space for the drain we added 2451 * so that we don't add it again 2452 */ 2453 --rq->nr_phys_segments; 2454 } 2455 2456 rq = NULL; 2457 break; 2458 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2459 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO; 2460 2461 rq->rq_flags |= RQF_QUIET; 2462 /* 2463 * Mark this request as started so we don't trigger 2464 * any debug logic in the end I/O path. 2465 */ 2466 blk_start_request(rq); 2467 __blk_end_request_all(rq, err); 2468 } else { 2469 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2470 break; 2471 } 2472 } 2473 2474 return rq; 2475 } 2476 EXPORT_SYMBOL(blk_peek_request); 2477 2478 void blk_dequeue_request(struct request *rq) 2479 { 2480 struct request_queue *q = rq->q; 2481 2482 BUG_ON(list_empty(&rq->queuelist)); 2483 BUG_ON(ELV_ON_HASH(rq)); 2484 2485 list_del_init(&rq->queuelist); 2486 2487 /* 2488 * the time frame between a request being removed from the lists 2489 * and to it is freed is accounted as io that is in progress at 2490 * the driver side. 2491 */ 2492 if (blk_account_rq(rq)) { 2493 q->in_flight[rq_is_sync(rq)]++; 2494 set_io_start_time_ns(rq); 2495 } 2496 } 2497 2498 /** 2499 * blk_start_request - start request processing on the driver 2500 * @req: request to dequeue 2501 * 2502 * Description: 2503 * Dequeue @req and start timeout timer on it. This hands off the 2504 * request to the driver. 2505 * 2506 * Block internal functions which don't want to start timer should 2507 * call blk_dequeue_request(). 2508 * 2509 * Context: 2510 * queue_lock must be held. 2511 */ 2512 void blk_start_request(struct request *req) 2513 { 2514 blk_dequeue_request(req); 2515 2516 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2517 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req)); 2518 req->rq_flags |= RQF_STATS; 2519 wbt_issue(req->q->rq_wb, &req->issue_stat); 2520 } 2521 2522 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2523 blk_add_timer(req); 2524 } 2525 EXPORT_SYMBOL(blk_start_request); 2526 2527 /** 2528 * blk_fetch_request - fetch a request from a request queue 2529 * @q: request queue to fetch a request from 2530 * 2531 * Description: 2532 * Return the request at the top of @q. The request is started on 2533 * return and LLD can start processing it immediately. 2534 * 2535 * Return: 2536 * Pointer to the request at the top of @q if available. Null 2537 * otherwise. 2538 * 2539 * Context: 2540 * queue_lock must be held. 2541 */ 2542 struct request *blk_fetch_request(struct request_queue *q) 2543 { 2544 struct request *rq; 2545 2546 rq = blk_peek_request(q); 2547 if (rq) 2548 blk_start_request(rq); 2549 return rq; 2550 } 2551 EXPORT_SYMBOL(blk_fetch_request); 2552 2553 /** 2554 * blk_update_request - Special helper function for request stacking drivers 2555 * @req: the request being processed 2556 * @error: %0 for success, < %0 for error 2557 * @nr_bytes: number of bytes to complete @req 2558 * 2559 * Description: 2560 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2561 * the request structure even if @req doesn't have leftover. 2562 * If @req has leftover, sets it up for the next range of segments. 2563 * 2564 * This special helper function is only for request stacking drivers 2565 * (e.g. request-based dm) so that they can handle partial completion. 2566 * Actual device drivers should use blk_end_request instead. 2567 * 2568 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2569 * %false return from this function. 2570 * 2571 * Return: 2572 * %false - this request doesn't have any more data 2573 * %true - this request has more data 2574 **/ 2575 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2576 { 2577 int total_bytes; 2578 2579 trace_block_rq_complete(req, error, nr_bytes); 2580 2581 if (!req->bio) 2582 return false; 2583 2584 if (error && !blk_rq_is_passthrough(req) && 2585 !(req->rq_flags & RQF_QUIET)) { 2586 char *error_type; 2587 2588 switch (error) { 2589 case -ENOLINK: 2590 error_type = "recoverable transport"; 2591 break; 2592 case -EREMOTEIO: 2593 error_type = "critical target"; 2594 break; 2595 case -EBADE: 2596 error_type = "critical nexus"; 2597 break; 2598 case -ETIMEDOUT: 2599 error_type = "timeout"; 2600 break; 2601 case -ENOSPC: 2602 error_type = "critical space allocation"; 2603 break; 2604 case -ENODATA: 2605 error_type = "critical medium"; 2606 break; 2607 case -EIO: 2608 default: 2609 error_type = "I/O"; 2610 break; 2611 } 2612 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2613 __func__, error_type, req->rq_disk ? 2614 req->rq_disk->disk_name : "?", 2615 (unsigned long long)blk_rq_pos(req)); 2616 2617 } 2618 2619 blk_account_io_completion(req, nr_bytes); 2620 2621 total_bytes = 0; 2622 while (req->bio) { 2623 struct bio *bio = req->bio; 2624 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2625 2626 if (bio_bytes == bio->bi_iter.bi_size) 2627 req->bio = bio->bi_next; 2628 2629 /* Completion has already been traced */ 2630 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 2631 req_bio_endio(req, bio, bio_bytes, error); 2632 2633 total_bytes += bio_bytes; 2634 nr_bytes -= bio_bytes; 2635 2636 if (!nr_bytes) 2637 break; 2638 } 2639 2640 /* 2641 * completely done 2642 */ 2643 if (!req->bio) { 2644 /* 2645 * Reset counters so that the request stacking driver 2646 * can find how many bytes remain in the request 2647 * later. 2648 */ 2649 req->__data_len = 0; 2650 return false; 2651 } 2652 2653 req->__data_len -= total_bytes; 2654 2655 /* update sector only for requests with clear definition of sector */ 2656 if (!blk_rq_is_passthrough(req)) 2657 req->__sector += total_bytes >> 9; 2658 2659 /* mixed attributes always follow the first bio */ 2660 if (req->rq_flags & RQF_MIXED_MERGE) { 2661 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2662 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 2663 } 2664 2665 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 2666 /* 2667 * If total number of sectors is less than the first segment 2668 * size, something has gone terribly wrong. 2669 */ 2670 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2671 blk_dump_rq_flags(req, "request botched"); 2672 req->__data_len = blk_rq_cur_bytes(req); 2673 } 2674 2675 /* recalculate the number of segments */ 2676 blk_recalc_rq_segments(req); 2677 } 2678 2679 return true; 2680 } 2681 EXPORT_SYMBOL_GPL(blk_update_request); 2682 2683 static bool blk_update_bidi_request(struct request *rq, int error, 2684 unsigned int nr_bytes, 2685 unsigned int bidi_bytes) 2686 { 2687 if (blk_update_request(rq, error, nr_bytes)) 2688 return true; 2689 2690 /* Bidi request must be completed as a whole */ 2691 if (unlikely(blk_bidi_rq(rq)) && 2692 blk_update_request(rq->next_rq, error, bidi_bytes)) 2693 return true; 2694 2695 if (blk_queue_add_random(rq->q)) 2696 add_disk_randomness(rq->rq_disk); 2697 2698 return false; 2699 } 2700 2701 /** 2702 * blk_unprep_request - unprepare a request 2703 * @req: the request 2704 * 2705 * This function makes a request ready for complete resubmission (or 2706 * completion). It happens only after all error handling is complete, 2707 * so represents the appropriate moment to deallocate any resources 2708 * that were allocated to the request in the prep_rq_fn. The queue 2709 * lock is held when calling this. 2710 */ 2711 void blk_unprep_request(struct request *req) 2712 { 2713 struct request_queue *q = req->q; 2714 2715 req->rq_flags &= ~RQF_DONTPREP; 2716 if (q->unprep_rq_fn) 2717 q->unprep_rq_fn(q, req); 2718 } 2719 EXPORT_SYMBOL_GPL(blk_unprep_request); 2720 2721 /* 2722 * queue lock must be held 2723 */ 2724 void blk_finish_request(struct request *req, int error) 2725 { 2726 struct request_queue *q = req->q; 2727 2728 if (req->rq_flags & RQF_STATS) 2729 blk_stat_add(req); 2730 2731 if (req->rq_flags & RQF_QUEUED) 2732 blk_queue_end_tag(q, req); 2733 2734 BUG_ON(blk_queued_rq(req)); 2735 2736 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 2737 laptop_io_completion(req->q->backing_dev_info); 2738 2739 blk_delete_timer(req); 2740 2741 if (req->rq_flags & RQF_DONTPREP) 2742 blk_unprep_request(req); 2743 2744 blk_account_io_done(req); 2745 2746 if (req->end_io) { 2747 wbt_done(req->q->rq_wb, &req->issue_stat); 2748 req->end_io(req, error); 2749 } else { 2750 if (blk_bidi_rq(req)) 2751 __blk_put_request(req->next_rq->q, req->next_rq); 2752 2753 __blk_put_request(q, req); 2754 } 2755 } 2756 EXPORT_SYMBOL(blk_finish_request); 2757 2758 /** 2759 * blk_end_bidi_request - Complete a bidi request 2760 * @rq: the request to complete 2761 * @error: %0 for success, < %0 for error 2762 * @nr_bytes: number of bytes to complete @rq 2763 * @bidi_bytes: number of bytes to complete @rq->next_rq 2764 * 2765 * Description: 2766 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2767 * Drivers that supports bidi can safely call this member for any 2768 * type of request, bidi or uni. In the later case @bidi_bytes is 2769 * just ignored. 2770 * 2771 * Return: 2772 * %false - we are done with this request 2773 * %true - still buffers pending for this request 2774 **/ 2775 static bool blk_end_bidi_request(struct request *rq, int error, 2776 unsigned int nr_bytes, unsigned int bidi_bytes) 2777 { 2778 struct request_queue *q = rq->q; 2779 unsigned long flags; 2780 2781 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2782 return true; 2783 2784 spin_lock_irqsave(q->queue_lock, flags); 2785 blk_finish_request(rq, error); 2786 spin_unlock_irqrestore(q->queue_lock, flags); 2787 2788 return false; 2789 } 2790 2791 /** 2792 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2793 * @rq: the request to complete 2794 * @error: %0 for success, < %0 for error 2795 * @nr_bytes: number of bytes to complete @rq 2796 * @bidi_bytes: number of bytes to complete @rq->next_rq 2797 * 2798 * Description: 2799 * Identical to blk_end_bidi_request() except that queue lock is 2800 * assumed to be locked on entry and remains so on return. 2801 * 2802 * Return: 2803 * %false - we are done with this request 2804 * %true - still buffers pending for this request 2805 **/ 2806 static bool __blk_end_bidi_request(struct request *rq, int error, 2807 unsigned int nr_bytes, unsigned int bidi_bytes) 2808 { 2809 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2810 return true; 2811 2812 blk_finish_request(rq, error); 2813 2814 return false; 2815 } 2816 2817 /** 2818 * blk_end_request - Helper function for drivers to complete the request. 2819 * @rq: the request being processed 2820 * @error: %0 for success, < %0 for error 2821 * @nr_bytes: number of bytes to complete 2822 * 2823 * Description: 2824 * Ends I/O on a number of bytes attached to @rq. 2825 * If @rq has leftover, sets it up for the next range of segments. 2826 * 2827 * Return: 2828 * %false - we are done with this request 2829 * %true - still buffers pending for this request 2830 **/ 2831 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2832 { 2833 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2834 } 2835 EXPORT_SYMBOL(blk_end_request); 2836 2837 /** 2838 * blk_end_request_all - Helper function for drives to finish the request. 2839 * @rq: the request to finish 2840 * @error: %0 for success, < %0 for error 2841 * 2842 * Description: 2843 * Completely finish @rq. 2844 */ 2845 void blk_end_request_all(struct request *rq, int error) 2846 { 2847 bool pending; 2848 unsigned int bidi_bytes = 0; 2849 2850 if (unlikely(blk_bidi_rq(rq))) 2851 bidi_bytes = blk_rq_bytes(rq->next_rq); 2852 2853 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2854 BUG_ON(pending); 2855 } 2856 EXPORT_SYMBOL(blk_end_request_all); 2857 2858 /** 2859 * __blk_end_request - Helper function for drivers to complete the request. 2860 * @rq: the request being processed 2861 * @error: %0 for success, < %0 for error 2862 * @nr_bytes: number of bytes to complete 2863 * 2864 * Description: 2865 * Must be called with queue lock held unlike blk_end_request(). 2866 * 2867 * Return: 2868 * %false - we are done with this request 2869 * %true - still buffers pending for this request 2870 **/ 2871 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2872 { 2873 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2874 } 2875 EXPORT_SYMBOL(__blk_end_request); 2876 2877 /** 2878 * __blk_end_request_all - Helper function for drives to finish the request. 2879 * @rq: the request to finish 2880 * @error: %0 for success, < %0 for error 2881 * 2882 * Description: 2883 * Completely finish @rq. Must be called with queue lock held. 2884 */ 2885 void __blk_end_request_all(struct request *rq, int error) 2886 { 2887 bool pending; 2888 unsigned int bidi_bytes = 0; 2889 2890 if (unlikely(blk_bidi_rq(rq))) 2891 bidi_bytes = blk_rq_bytes(rq->next_rq); 2892 2893 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2894 BUG_ON(pending); 2895 } 2896 EXPORT_SYMBOL(__blk_end_request_all); 2897 2898 /** 2899 * __blk_end_request_cur - Helper function to finish the current request chunk. 2900 * @rq: the request to finish the current chunk for 2901 * @error: %0 for success, < %0 for error 2902 * 2903 * Description: 2904 * Complete the current consecutively mapped chunk from @rq. Must 2905 * be called with queue lock held. 2906 * 2907 * Return: 2908 * %false - we are done with this request 2909 * %true - still buffers pending for this request 2910 */ 2911 bool __blk_end_request_cur(struct request *rq, int error) 2912 { 2913 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2914 } 2915 EXPORT_SYMBOL(__blk_end_request_cur); 2916 2917 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2918 struct bio *bio) 2919 { 2920 if (bio_has_data(bio)) 2921 rq->nr_phys_segments = bio_phys_segments(q, bio); 2922 2923 rq->__data_len = bio->bi_iter.bi_size; 2924 rq->bio = rq->biotail = bio; 2925 2926 if (bio->bi_bdev) 2927 rq->rq_disk = bio->bi_bdev->bd_disk; 2928 } 2929 2930 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2931 /** 2932 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2933 * @rq: the request to be flushed 2934 * 2935 * Description: 2936 * Flush all pages in @rq. 2937 */ 2938 void rq_flush_dcache_pages(struct request *rq) 2939 { 2940 struct req_iterator iter; 2941 struct bio_vec bvec; 2942 2943 rq_for_each_segment(bvec, rq, iter) 2944 flush_dcache_page(bvec.bv_page); 2945 } 2946 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2947 #endif 2948 2949 /** 2950 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2951 * @q : the queue of the device being checked 2952 * 2953 * Description: 2954 * Check if underlying low-level drivers of a device are busy. 2955 * If the drivers want to export their busy state, they must set own 2956 * exporting function using blk_queue_lld_busy() first. 2957 * 2958 * Basically, this function is used only by request stacking drivers 2959 * to stop dispatching requests to underlying devices when underlying 2960 * devices are busy. This behavior helps more I/O merging on the queue 2961 * of the request stacking driver and prevents I/O throughput regression 2962 * on burst I/O load. 2963 * 2964 * Return: 2965 * 0 - Not busy (The request stacking driver should dispatch request) 2966 * 1 - Busy (The request stacking driver should stop dispatching request) 2967 */ 2968 int blk_lld_busy(struct request_queue *q) 2969 { 2970 if (q->lld_busy_fn) 2971 return q->lld_busy_fn(q); 2972 2973 return 0; 2974 } 2975 EXPORT_SYMBOL_GPL(blk_lld_busy); 2976 2977 /** 2978 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2979 * @rq: the clone request to be cleaned up 2980 * 2981 * Description: 2982 * Free all bios in @rq for a cloned request. 2983 */ 2984 void blk_rq_unprep_clone(struct request *rq) 2985 { 2986 struct bio *bio; 2987 2988 while ((bio = rq->bio) != NULL) { 2989 rq->bio = bio->bi_next; 2990 2991 bio_put(bio); 2992 } 2993 } 2994 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2995 2996 /* 2997 * Copy attributes of the original request to the clone request. 2998 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 2999 */ 3000 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3001 { 3002 dst->cpu = src->cpu; 3003 dst->__sector = blk_rq_pos(src); 3004 dst->__data_len = blk_rq_bytes(src); 3005 dst->nr_phys_segments = src->nr_phys_segments; 3006 dst->ioprio = src->ioprio; 3007 dst->extra_len = src->extra_len; 3008 } 3009 3010 /** 3011 * blk_rq_prep_clone - Helper function to setup clone request 3012 * @rq: the request to be setup 3013 * @rq_src: original request to be cloned 3014 * @bs: bio_set that bios for clone are allocated from 3015 * @gfp_mask: memory allocation mask for bio 3016 * @bio_ctr: setup function to be called for each clone bio. 3017 * Returns %0 for success, non %0 for failure. 3018 * @data: private data to be passed to @bio_ctr 3019 * 3020 * Description: 3021 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3022 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3023 * are not copied, and copying such parts is the caller's responsibility. 3024 * Also, pages which the original bios are pointing to are not copied 3025 * and the cloned bios just point same pages. 3026 * So cloned bios must be completed before original bios, which means 3027 * the caller must complete @rq before @rq_src. 3028 */ 3029 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3030 struct bio_set *bs, gfp_t gfp_mask, 3031 int (*bio_ctr)(struct bio *, struct bio *, void *), 3032 void *data) 3033 { 3034 struct bio *bio, *bio_src; 3035 3036 if (!bs) 3037 bs = fs_bio_set; 3038 3039 __rq_for_each_bio(bio_src, rq_src) { 3040 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3041 if (!bio) 3042 goto free_and_out; 3043 3044 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3045 goto free_and_out; 3046 3047 if (rq->bio) { 3048 rq->biotail->bi_next = bio; 3049 rq->biotail = bio; 3050 } else 3051 rq->bio = rq->biotail = bio; 3052 } 3053 3054 __blk_rq_prep_clone(rq, rq_src); 3055 3056 return 0; 3057 3058 free_and_out: 3059 if (bio) 3060 bio_put(bio); 3061 blk_rq_unprep_clone(rq); 3062 3063 return -ENOMEM; 3064 } 3065 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3066 3067 int kblockd_schedule_work(struct work_struct *work) 3068 { 3069 return queue_work(kblockd_workqueue, work); 3070 } 3071 EXPORT_SYMBOL(kblockd_schedule_work); 3072 3073 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3074 { 3075 return queue_work_on(cpu, kblockd_workqueue, work); 3076 } 3077 EXPORT_SYMBOL(kblockd_schedule_work_on); 3078 3079 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3080 unsigned long delay) 3081 { 3082 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3083 } 3084 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3085 3086 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3087 unsigned long delay) 3088 { 3089 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3090 } 3091 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3092 3093 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3094 unsigned long delay) 3095 { 3096 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3097 } 3098 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3099 3100 /** 3101 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3102 * @plug: The &struct blk_plug that needs to be initialized 3103 * 3104 * Description: 3105 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3106 * pending I/O should the task end up blocking between blk_start_plug() and 3107 * blk_finish_plug(). This is important from a performance perspective, but 3108 * also ensures that we don't deadlock. For instance, if the task is blocking 3109 * for a memory allocation, memory reclaim could end up wanting to free a 3110 * page belonging to that request that is currently residing in our private 3111 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3112 * this kind of deadlock. 3113 */ 3114 void blk_start_plug(struct blk_plug *plug) 3115 { 3116 struct task_struct *tsk = current; 3117 3118 /* 3119 * If this is a nested plug, don't actually assign it. 3120 */ 3121 if (tsk->plug) 3122 return; 3123 3124 INIT_LIST_HEAD(&plug->list); 3125 INIT_LIST_HEAD(&plug->mq_list); 3126 INIT_LIST_HEAD(&plug->cb_list); 3127 /* 3128 * Store ordering should not be needed here, since a potential 3129 * preempt will imply a full memory barrier 3130 */ 3131 tsk->plug = plug; 3132 } 3133 EXPORT_SYMBOL(blk_start_plug); 3134 3135 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3136 { 3137 struct request *rqa = container_of(a, struct request, queuelist); 3138 struct request *rqb = container_of(b, struct request, queuelist); 3139 3140 return !(rqa->q < rqb->q || 3141 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3142 } 3143 3144 /* 3145 * If 'from_schedule' is true, then postpone the dispatch of requests 3146 * until a safe kblockd context. We due this to avoid accidental big 3147 * additional stack usage in driver dispatch, in places where the originally 3148 * plugger did not intend it. 3149 */ 3150 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3151 bool from_schedule) 3152 __releases(q->queue_lock) 3153 { 3154 trace_block_unplug(q, depth, !from_schedule); 3155 3156 if (from_schedule) 3157 blk_run_queue_async(q); 3158 else 3159 __blk_run_queue(q); 3160 spin_unlock(q->queue_lock); 3161 } 3162 3163 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3164 { 3165 LIST_HEAD(callbacks); 3166 3167 while (!list_empty(&plug->cb_list)) { 3168 list_splice_init(&plug->cb_list, &callbacks); 3169 3170 while (!list_empty(&callbacks)) { 3171 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3172 struct blk_plug_cb, 3173 list); 3174 list_del(&cb->list); 3175 cb->callback(cb, from_schedule); 3176 } 3177 } 3178 } 3179 3180 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3181 int size) 3182 { 3183 struct blk_plug *plug = current->plug; 3184 struct blk_plug_cb *cb; 3185 3186 if (!plug) 3187 return NULL; 3188 3189 list_for_each_entry(cb, &plug->cb_list, list) 3190 if (cb->callback == unplug && cb->data == data) 3191 return cb; 3192 3193 /* Not currently on the callback list */ 3194 BUG_ON(size < sizeof(*cb)); 3195 cb = kzalloc(size, GFP_ATOMIC); 3196 if (cb) { 3197 cb->data = data; 3198 cb->callback = unplug; 3199 list_add(&cb->list, &plug->cb_list); 3200 } 3201 return cb; 3202 } 3203 EXPORT_SYMBOL(blk_check_plugged); 3204 3205 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3206 { 3207 struct request_queue *q; 3208 unsigned long flags; 3209 struct request *rq; 3210 LIST_HEAD(list); 3211 unsigned int depth; 3212 3213 flush_plug_callbacks(plug, from_schedule); 3214 3215 if (!list_empty(&plug->mq_list)) 3216 blk_mq_flush_plug_list(plug, from_schedule); 3217 3218 if (list_empty(&plug->list)) 3219 return; 3220 3221 list_splice_init(&plug->list, &list); 3222 3223 list_sort(NULL, &list, plug_rq_cmp); 3224 3225 q = NULL; 3226 depth = 0; 3227 3228 /* 3229 * Save and disable interrupts here, to avoid doing it for every 3230 * queue lock we have to take. 3231 */ 3232 local_irq_save(flags); 3233 while (!list_empty(&list)) { 3234 rq = list_entry_rq(list.next); 3235 list_del_init(&rq->queuelist); 3236 BUG_ON(!rq->q); 3237 if (rq->q != q) { 3238 /* 3239 * This drops the queue lock 3240 */ 3241 if (q) 3242 queue_unplugged(q, depth, from_schedule); 3243 q = rq->q; 3244 depth = 0; 3245 spin_lock(q->queue_lock); 3246 } 3247 3248 /* 3249 * Short-circuit if @q is dead 3250 */ 3251 if (unlikely(blk_queue_dying(q))) { 3252 __blk_end_request_all(rq, -ENODEV); 3253 continue; 3254 } 3255 3256 /* 3257 * rq is already accounted, so use raw insert 3258 */ 3259 if (op_is_flush(rq->cmd_flags)) 3260 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3261 else 3262 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3263 3264 depth++; 3265 } 3266 3267 /* 3268 * This drops the queue lock 3269 */ 3270 if (q) 3271 queue_unplugged(q, depth, from_schedule); 3272 3273 local_irq_restore(flags); 3274 } 3275 3276 void blk_finish_plug(struct blk_plug *plug) 3277 { 3278 if (plug != current->plug) 3279 return; 3280 blk_flush_plug_list(plug, false); 3281 3282 current->plug = NULL; 3283 } 3284 EXPORT_SYMBOL(blk_finish_plug); 3285 3286 #ifdef CONFIG_PM 3287 /** 3288 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3289 * @q: the queue of the device 3290 * @dev: the device the queue belongs to 3291 * 3292 * Description: 3293 * Initialize runtime-PM-related fields for @q and start auto suspend for 3294 * @dev. Drivers that want to take advantage of request-based runtime PM 3295 * should call this function after @dev has been initialized, and its 3296 * request queue @q has been allocated, and runtime PM for it can not happen 3297 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3298 * cases, driver should call this function before any I/O has taken place. 3299 * 3300 * This function takes care of setting up using auto suspend for the device, 3301 * the autosuspend delay is set to -1 to make runtime suspend impossible 3302 * until an updated value is either set by user or by driver. Drivers do 3303 * not need to touch other autosuspend settings. 3304 * 3305 * The block layer runtime PM is request based, so only works for drivers 3306 * that use request as their IO unit instead of those directly use bio's. 3307 */ 3308 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3309 { 3310 q->dev = dev; 3311 q->rpm_status = RPM_ACTIVE; 3312 pm_runtime_set_autosuspend_delay(q->dev, -1); 3313 pm_runtime_use_autosuspend(q->dev); 3314 } 3315 EXPORT_SYMBOL(blk_pm_runtime_init); 3316 3317 /** 3318 * blk_pre_runtime_suspend - Pre runtime suspend check 3319 * @q: the queue of the device 3320 * 3321 * Description: 3322 * This function will check if runtime suspend is allowed for the device 3323 * by examining if there are any requests pending in the queue. If there 3324 * are requests pending, the device can not be runtime suspended; otherwise, 3325 * the queue's status will be updated to SUSPENDING and the driver can 3326 * proceed to suspend the device. 3327 * 3328 * For the not allowed case, we mark last busy for the device so that 3329 * runtime PM core will try to autosuspend it some time later. 3330 * 3331 * This function should be called near the start of the device's 3332 * runtime_suspend callback. 3333 * 3334 * Return: 3335 * 0 - OK to runtime suspend the device 3336 * -EBUSY - Device should not be runtime suspended 3337 */ 3338 int blk_pre_runtime_suspend(struct request_queue *q) 3339 { 3340 int ret = 0; 3341 3342 if (!q->dev) 3343 return ret; 3344 3345 spin_lock_irq(q->queue_lock); 3346 if (q->nr_pending) { 3347 ret = -EBUSY; 3348 pm_runtime_mark_last_busy(q->dev); 3349 } else { 3350 q->rpm_status = RPM_SUSPENDING; 3351 } 3352 spin_unlock_irq(q->queue_lock); 3353 return ret; 3354 } 3355 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3356 3357 /** 3358 * blk_post_runtime_suspend - Post runtime suspend processing 3359 * @q: the queue of the device 3360 * @err: return value of the device's runtime_suspend function 3361 * 3362 * Description: 3363 * Update the queue's runtime status according to the return value of the 3364 * device's runtime suspend function and mark last busy for the device so 3365 * that PM core will try to auto suspend the device at a later time. 3366 * 3367 * This function should be called near the end of the device's 3368 * runtime_suspend callback. 3369 */ 3370 void blk_post_runtime_suspend(struct request_queue *q, int err) 3371 { 3372 if (!q->dev) 3373 return; 3374 3375 spin_lock_irq(q->queue_lock); 3376 if (!err) { 3377 q->rpm_status = RPM_SUSPENDED; 3378 } else { 3379 q->rpm_status = RPM_ACTIVE; 3380 pm_runtime_mark_last_busy(q->dev); 3381 } 3382 spin_unlock_irq(q->queue_lock); 3383 } 3384 EXPORT_SYMBOL(blk_post_runtime_suspend); 3385 3386 /** 3387 * blk_pre_runtime_resume - Pre runtime resume processing 3388 * @q: the queue of the device 3389 * 3390 * Description: 3391 * Update the queue's runtime status to RESUMING in preparation for the 3392 * runtime resume of the device. 3393 * 3394 * This function should be called near the start of the device's 3395 * runtime_resume callback. 3396 */ 3397 void blk_pre_runtime_resume(struct request_queue *q) 3398 { 3399 if (!q->dev) 3400 return; 3401 3402 spin_lock_irq(q->queue_lock); 3403 q->rpm_status = RPM_RESUMING; 3404 spin_unlock_irq(q->queue_lock); 3405 } 3406 EXPORT_SYMBOL(blk_pre_runtime_resume); 3407 3408 /** 3409 * blk_post_runtime_resume - Post runtime resume processing 3410 * @q: the queue of the device 3411 * @err: return value of the device's runtime_resume function 3412 * 3413 * Description: 3414 * Update the queue's runtime status according to the return value of the 3415 * device's runtime_resume function. If it is successfully resumed, process 3416 * the requests that are queued into the device's queue when it is resuming 3417 * and then mark last busy and initiate autosuspend for it. 3418 * 3419 * This function should be called near the end of the device's 3420 * runtime_resume callback. 3421 */ 3422 void blk_post_runtime_resume(struct request_queue *q, int err) 3423 { 3424 if (!q->dev) 3425 return; 3426 3427 spin_lock_irq(q->queue_lock); 3428 if (!err) { 3429 q->rpm_status = RPM_ACTIVE; 3430 __blk_run_queue(q); 3431 pm_runtime_mark_last_busy(q->dev); 3432 pm_request_autosuspend(q->dev); 3433 } else { 3434 q->rpm_status = RPM_SUSPENDED; 3435 } 3436 spin_unlock_irq(q->queue_lock); 3437 } 3438 EXPORT_SYMBOL(blk_post_runtime_resume); 3439 3440 /** 3441 * blk_set_runtime_active - Force runtime status of the queue to be active 3442 * @q: the queue of the device 3443 * 3444 * If the device is left runtime suspended during system suspend the resume 3445 * hook typically resumes the device and corrects runtime status 3446 * accordingly. However, that does not affect the queue runtime PM status 3447 * which is still "suspended". This prevents processing requests from the 3448 * queue. 3449 * 3450 * This function can be used in driver's resume hook to correct queue 3451 * runtime PM status and re-enable peeking requests from the queue. It 3452 * should be called before first request is added to the queue. 3453 */ 3454 void blk_set_runtime_active(struct request_queue *q) 3455 { 3456 spin_lock_irq(q->queue_lock); 3457 q->rpm_status = RPM_ACTIVE; 3458 pm_runtime_mark_last_busy(q->dev); 3459 pm_request_autosuspend(q->dev); 3460 spin_unlock_irq(q->queue_lock); 3461 } 3462 EXPORT_SYMBOL(blk_set_runtime_active); 3463 #endif 3464 3465 int __init blk_dev_init(void) 3466 { 3467 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3468 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3469 FIELD_SIZEOF(struct request, cmd_flags)); 3470 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3471 FIELD_SIZEOF(struct bio, bi_opf)); 3472 3473 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3474 kblockd_workqueue = alloc_workqueue("kblockd", 3475 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3476 if (!kblockd_workqueue) 3477 panic("Failed to create kblockd\n"); 3478 3479 request_cachep = kmem_cache_create("blkdev_requests", 3480 sizeof(struct request), 0, SLAB_PANIC, NULL); 3481 3482 blk_requestq_cachep = kmem_cache_create("request_queue", 3483 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3484 3485 #ifdef CONFIG_DEBUG_FS 3486 blk_debugfs_root = debugfs_create_dir("block", NULL); 3487 #endif 3488 3489 return 0; 3490 } 3491