xref: /linux/block/blk-core.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45 
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49 
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55 
56 DEFINE_IDA(blk_queue_ida);
57 
58 /*
59  * For the allocated request tables
60  */
61 struct kmem_cache *request_cachep;
62 
63 /*
64  * For queue allocation
65  */
66 struct kmem_cache *blk_requestq_cachep;
67 
68 /*
69  * Controlling structure to kblockd
70  */
71 static struct workqueue_struct *kblockd_workqueue;
72 
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 	clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 	/*
79 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 	 * flip its congestion state for events on other blkcgs.
81 	 */
82 	if (rl == &rl->q->root_rl)
83 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86 
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 	set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 	/* see blk_clear_congested() */
93 	if (rl == &rl->q->root_rl)
94 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97 
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 	int nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 	if (nr > q->nr_requests)
104 		nr = q->nr_requests;
105 	q->nr_congestion_on = nr;
106 
107 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 	if (nr < 1)
109 		nr = 1;
110 	q->nr_congestion_off = nr;
111 }
112 
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 	memset(rq, 0, sizeof(*rq));
116 
117 	INIT_LIST_HEAD(&rq->queuelist);
118 	INIT_LIST_HEAD(&rq->timeout_list);
119 	rq->cpu = -1;
120 	rq->q = q;
121 	rq->__sector = (sector_t) -1;
122 	INIT_HLIST_NODE(&rq->hash);
123 	RB_CLEAR_NODE(&rq->rb_node);
124 	rq->tag = -1;
125 	rq->internal_tag = -1;
126 	rq->start_time = jiffies;
127 	set_start_time_ns(rq);
128 	rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131 
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 			  unsigned int nbytes, int error)
134 {
135 	if (error)
136 		bio->bi_error = error;
137 
138 	if (unlikely(rq->rq_flags & RQF_QUIET))
139 		bio_set_flag(bio, BIO_QUIET);
140 
141 	bio_advance(bio, nbytes);
142 
143 	/* don't actually finish bio if it's part of flush sequence */
144 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
145 		bio_endio(bio);
146 }
147 
148 void blk_dump_rq_flags(struct request *rq, char *msg)
149 {
150 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
152 		(unsigned long long) rq->cmd_flags);
153 
154 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
155 	       (unsigned long long)blk_rq_pos(rq),
156 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
157 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
158 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161 
162 static void blk_delay_work(struct work_struct *work)
163 {
164 	struct request_queue *q;
165 
166 	q = container_of(work, struct request_queue, delay_work.work);
167 	spin_lock_irq(q->queue_lock);
168 	__blk_run_queue(q);
169 	spin_unlock_irq(q->queue_lock);
170 }
171 
172 /**
173  * blk_delay_queue - restart queueing after defined interval
174  * @q:		The &struct request_queue in question
175  * @msecs:	Delay in msecs
176  *
177  * Description:
178  *   Sometimes queueing needs to be postponed for a little while, to allow
179  *   resources to come back. This function will make sure that queueing is
180  *   restarted around the specified time. Queue lock must be held.
181  */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 	if (likely(!blk_queue_dead(q)))
185 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 				   msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189 
190 /**
191  * blk_start_queue_async - asynchronously restart a previously stopped queue
192  * @q:    The &struct request_queue in question
193  *
194  * Description:
195  *   blk_start_queue_async() will clear the stop flag on the queue, and
196  *   ensure that the request_fn for the queue is run from an async
197  *   context.
198  **/
199 void blk_start_queue_async(struct request_queue *q)
200 {
201 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 	blk_run_queue_async(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue_async);
205 
206 /**
207  * blk_start_queue - restart a previously stopped queue
208  * @q:    The &struct request_queue in question
209  *
210  * Description:
211  *   blk_start_queue() will clear the stop flag on the queue, and call
212  *   the request_fn for the queue if it was in a stopped state when
213  *   entered. Also see blk_stop_queue(). Queue lock must be held.
214  **/
215 void blk_start_queue(struct request_queue *q)
216 {
217 	WARN_ON(!irqs_disabled());
218 
219 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
220 	__blk_run_queue(q);
221 }
222 EXPORT_SYMBOL(blk_start_queue);
223 
224 /**
225  * blk_stop_queue - stop a queue
226  * @q:    The &struct request_queue in question
227  *
228  * Description:
229  *   The Linux block layer assumes that a block driver will consume all
230  *   entries on the request queue when the request_fn strategy is called.
231  *   Often this will not happen, because of hardware limitations (queue
232  *   depth settings). If a device driver gets a 'queue full' response,
233  *   or if it simply chooses not to queue more I/O at one point, it can
234  *   call this function to prevent the request_fn from being called until
235  *   the driver has signalled it's ready to go again. This happens by calling
236  *   blk_start_queue() to restart queue operations. Queue lock must be held.
237  **/
238 void blk_stop_queue(struct request_queue *q)
239 {
240 	cancel_delayed_work(&q->delay_work);
241 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
242 }
243 EXPORT_SYMBOL(blk_stop_queue);
244 
245 /**
246  * blk_sync_queue - cancel any pending callbacks on a queue
247  * @q: the queue
248  *
249  * Description:
250  *     The block layer may perform asynchronous callback activity
251  *     on a queue, such as calling the unplug function after a timeout.
252  *     A block device may call blk_sync_queue to ensure that any
253  *     such activity is cancelled, thus allowing it to release resources
254  *     that the callbacks might use. The caller must already have made sure
255  *     that its ->make_request_fn will not re-add plugging prior to calling
256  *     this function.
257  *
258  *     This function does not cancel any asynchronous activity arising
259  *     out of elevator or throttling code. That would require elevator_exit()
260  *     and blkcg_exit_queue() to be called with queue lock initialized.
261  *
262  */
263 void blk_sync_queue(struct request_queue *q)
264 {
265 	del_timer_sync(&q->timeout);
266 
267 	if (q->mq_ops) {
268 		struct blk_mq_hw_ctx *hctx;
269 		int i;
270 
271 		queue_for_each_hw_ctx(q, hctx, i)
272 			cancel_delayed_work_sync(&hctx->run_work);
273 	} else {
274 		cancel_delayed_work_sync(&q->delay_work);
275 	}
276 }
277 EXPORT_SYMBOL(blk_sync_queue);
278 
279 /**
280  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
281  * @q:	The queue to run
282  *
283  * Description:
284  *    Invoke request handling on a queue if there are any pending requests.
285  *    May be used to restart request handling after a request has completed.
286  *    This variant runs the queue whether or not the queue has been
287  *    stopped. Must be called with the queue lock held and interrupts
288  *    disabled. See also @blk_run_queue.
289  */
290 inline void __blk_run_queue_uncond(struct request_queue *q)
291 {
292 	if (unlikely(blk_queue_dead(q)))
293 		return;
294 
295 	/*
296 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
297 	 * the queue lock internally. As a result multiple threads may be
298 	 * running such a request function concurrently. Keep track of the
299 	 * number of active request_fn invocations such that blk_drain_queue()
300 	 * can wait until all these request_fn calls have finished.
301 	 */
302 	q->request_fn_active++;
303 	q->request_fn(q);
304 	q->request_fn_active--;
305 }
306 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
307 
308 /**
309  * __blk_run_queue - run a single device queue
310  * @q:	The queue to run
311  *
312  * Description:
313  *    See @blk_run_queue. This variant must be called with the queue lock
314  *    held and interrupts disabled.
315  */
316 void __blk_run_queue(struct request_queue *q)
317 {
318 	if (unlikely(blk_queue_stopped(q)))
319 		return;
320 
321 	__blk_run_queue_uncond(q);
322 }
323 EXPORT_SYMBOL(__blk_run_queue);
324 
325 /**
326  * blk_run_queue_async - run a single device queue in workqueue context
327  * @q:	The queue to run
328  *
329  * Description:
330  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
331  *    of us. The caller must hold the queue lock.
332  */
333 void blk_run_queue_async(struct request_queue *q)
334 {
335 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
336 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
337 }
338 EXPORT_SYMBOL(blk_run_queue_async);
339 
340 /**
341  * blk_run_queue - run a single device queue
342  * @q: The queue to run
343  *
344  * Description:
345  *    Invoke request handling on this queue, if it has pending work to do.
346  *    May be used to restart queueing when a request has completed.
347  */
348 void blk_run_queue(struct request_queue *q)
349 {
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(q->queue_lock, flags);
353 	__blk_run_queue(q);
354 	spin_unlock_irqrestore(q->queue_lock, flags);
355 }
356 EXPORT_SYMBOL(blk_run_queue);
357 
358 void blk_put_queue(struct request_queue *q)
359 {
360 	kobject_put(&q->kobj);
361 }
362 EXPORT_SYMBOL(blk_put_queue);
363 
364 /**
365  * __blk_drain_queue - drain requests from request_queue
366  * @q: queue to drain
367  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
368  *
369  * Drain requests from @q.  If @drain_all is set, all requests are drained.
370  * If not, only ELVPRIV requests are drained.  The caller is responsible
371  * for ensuring that no new requests which need to be drained are queued.
372  */
373 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
374 	__releases(q->queue_lock)
375 	__acquires(q->queue_lock)
376 {
377 	int i;
378 
379 	lockdep_assert_held(q->queue_lock);
380 
381 	while (true) {
382 		bool drain = false;
383 
384 		/*
385 		 * The caller might be trying to drain @q before its
386 		 * elevator is initialized.
387 		 */
388 		if (q->elevator)
389 			elv_drain_elevator(q);
390 
391 		blkcg_drain_queue(q);
392 
393 		/*
394 		 * This function might be called on a queue which failed
395 		 * driver init after queue creation or is not yet fully
396 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
397 		 * in such cases.  Kick queue iff dispatch queue has
398 		 * something on it and @q has request_fn set.
399 		 */
400 		if (!list_empty(&q->queue_head) && q->request_fn)
401 			__blk_run_queue(q);
402 
403 		drain |= q->nr_rqs_elvpriv;
404 		drain |= q->request_fn_active;
405 
406 		/*
407 		 * Unfortunately, requests are queued at and tracked from
408 		 * multiple places and there's no single counter which can
409 		 * be drained.  Check all the queues and counters.
410 		 */
411 		if (drain_all) {
412 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
413 			drain |= !list_empty(&q->queue_head);
414 			for (i = 0; i < 2; i++) {
415 				drain |= q->nr_rqs[i];
416 				drain |= q->in_flight[i];
417 				if (fq)
418 				    drain |= !list_empty(&fq->flush_queue[i]);
419 			}
420 		}
421 
422 		if (!drain)
423 			break;
424 
425 		spin_unlock_irq(q->queue_lock);
426 
427 		msleep(10);
428 
429 		spin_lock_irq(q->queue_lock);
430 	}
431 
432 	/*
433 	 * With queue marked dead, any woken up waiter will fail the
434 	 * allocation path, so the wakeup chaining is lost and we're
435 	 * left with hung waiters. We need to wake up those waiters.
436 	 */
437 	if (q->request_fn) {
438 		struct request_list *rl;
439 
440 		blk_queue_for_each_rl(rl, q)
441 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
442 				wake_up_all(&rl->wait[i]);
443 	}
444 }
445 
446 /**
447  * blk_queue_bypass_start - enter queue bypass mode
448  * @q: queue of interest
449  *
450  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
451  * function makes @q enter bypass mode and drains all requests which were
452  * throttled or issued before.  On return, it's guaranteed that no request
453  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
454  * inside queue or RCU read lock.
455  */
456 void blk_queue_bypass_start(struct request_queue *q)
457 {
458 	spin_lock_irq(q->queue_lock);
459 	q->bypass_depth++;
460 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
461 	spin_unlock_irq(q->queue_lock);
462 
463 	/*
464 	 * Queues start drained.  Skip actual draining till init is
465 	 * complete.  This avoids lenghty delays during queue init which
466 	 * can happen many times during boot.
467 	 */
468 	if (blk_queue_init_done(q)) {
469 		spin_lock_irq(q->queue_lock);
470 		__blk_drain_queue(q, false);
471 		spin_unlock_irq(q->queue_lock);
472 
473 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
474 		synchronize_rcu();
475 	}
476 }
477 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
478 
479 /**
480  * blk_queue_bypass_end - leave queue bypass mode
481  * @q: queue of interest
482  *
483  * Leave bypass mode and restore the normal queueing behavior.
484  */
485 void blk_queue_bypass_end(struct request_queue *q)
486 {
487 	spin_lock_irq(q->queue_lock);
488 	if (!--q->bypass_depth)
489 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
490 	WARN_ON_ONCE(q->bypass_depth < 0);
491 	spin_unlock_irq(q->queue_lock);
492 }
493 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
494 
495 void blk_set_queue_dying(struct request_queue *q)
496 {
497 	spin_lock_irq(q->queue_lock);
498 	queue_flag_set(QUEUE_FLAG_DYING, q);
499 	spin_unlock_irq(q->queue_lock);
500 
501 	/*
502 	 * When queue DYING flag is set, we need to block new req
503 	 * entering queue, so we call blk_freeze_queue_start() to
504 	 * prevent I/O from crossing blk_queue_enter().
505 	 */
506 	blk_freeze_queue_start(q);
507 
508 	if (q->mq_ops)
509 		blk_mq_wake_waiters(q);
510 	else {
511 		struct request_list *rl;
512 
513 		spin_lock_irq(q->queue_lock);
514 		blk_queue_for_each_rl(rl, q) {
515 			if (rl->rq_pool) {
516 				wake_up(&rl->wait[BLK_RW_SYNC]);
517 				wake_up(&rl->wait[BLK_RW_ASYNC]);
518 			}
519 		}
520 		spin_unlock_irq(q->queue_lock);
521 	}
522 }
523 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
524 
525 /**
526  * blk_cleanup_queue - shutdown a request queue
527  * @q: request queue to shutdown
528  *
529  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
530  * put it.  All future requests will be failed immediately with -ENODEV.
531  */
532 void blk_cleanup_queue(struct request_queue *q)
533 {
534 	spinlock_t *lock = q->queue_lock;
535 
536 	/* mark @q DYING, no new request or merges will be allowed afterwards */
537 	mutex_lock(&q->sysfs_lock);
538 	blk_set_queue_dying(q);
539 	spin_lock_irq(lock);
540 
541 	/*
542 	 * A dying queue is permanently in bypass mode till released.  Note
543 	 * that, unlike blk_queue_bypass_start(), we aren't performing
544 	 * synchronize_rcu() after entering bypass mode to avoid the delay
545 	 * as some drivers create and destroy a lot of queues while
546 	 * probing.  This is still safe because blk_release_queue() will be
547 	 * called only after the queue refcnt drops to zero and nothing,
548 	 * RCU or not, would be traversing the queue by then.
549 	 */
550 	q->bypass_depth++;
551 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
552 
553 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
554 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
555 	queue_flag_set(QUEUE_FLAG_DYING, q);
556 	spin_unlock_irq(lock);
557 	mutex_unlock(&q->sysfs_lock);
558 
559 	/*
560 	 * Drain all requests queued before DYING marking. Set DEAD flag to
561 	 * prevent that q->request_fn() gets invoked after draining finished.
562 	 */
563 	blk_freeze_queue(q);
564 	spin_lock_irq(lock);
565 	if (!q->mq_ops)
566 		__blk_drain_queue(q, true);
567 	queue_flag_set(QUEUE_FLAG_DEAD, q);
568 	spin_unlock_irq(lock);
569 
570 	/* for synchronous bio-based driver finish in-flight integrity i/o */
571 	blk_flush_integrity();
572 
573 	/* @q won't process any more request, flush async actions */
574 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
575 	blk_sync_queue(q);
576 
577 	if (q->mq_ops)
578 		blk_mq_free_queue(q);
579 	percpu_ref_exit(&q->q_usage_counter);
580 
581 	spin_lock_irq(lock);
582 	if (q->queue_lock != &q->__queue_lock)
583 		q->queue_lock = &q->__queue_lock;
584 	spin_unlock_irq(lock);
585 
586 	/* @q is and will stay empty, shutdown and put */
587 	blk_put_queue(q);
588 }
589 EXPORT_SYMBOL(blk_cleanup_queue);
590 
591 /* Allocate memory local to the request queue */
592 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
593 {
594 	struct request_queue *q = data;
595 
596 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
597 }
598 
599 static void free_request_simple(void *element, void *data)
600 {
601 	kmem_cache_free(request_cachep, element);
602 }
603 
604 static void *alloc_request_size(gfp_t gfp_mask, void *data)
605 {
606 	struct request_queue *q = data;
607 	struct request *rq;
608 
609 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
610 			q->node);
611 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
612 		kfree(rq);
613 		rq = NULL;
614 	}
615 	return rq;
616 }
617 
618 static void free_request_size(void *element, void *data)
619 {
620 	struct request_queue *q = data;
621 
622 	if (q->exit_rq_fn)
623 		q->exit_rq_fn(q, element);
624 	kfree(element);
625 }
626 
627 int blk_init_rl(struct request_list *rl, struct request_queue *q,
628 		gfp_t gfp_mask)
629 {
630 	if (unlikely(rl->rq_pool))
631 		return 0;
632 
633 	rl->q = q;
634 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
635 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
636 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
637 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
638 
639 	if (q->cmd_size) {
640 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
641 				alloc_request_size, free_request_size,
642 				q, gfp_mask, q->node);
643 	} else {
644 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
645 				alloc_request_simple, free_request_simple,
646 				q, gfp_mask, q->node);
647 	}
648 	if (!rl->rq_pool)
649 		return -ENOMEM;
650 
651 	if (rl != &q->root_rl)
652 		WARN_ON_ONCE(!blk_get_queue(q));
653 
654 	return 0;
655 }
656 
657 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
658 {
659 	if (rl->rq_pool) {
660 		mempool_destroy(rl->rq_pool);
661 		if (rl != &q->root_rl)
662 			blk_put_queue(q);
663 	}
664 }
665 
666 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
667 {
668 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
669 }
670 EXPORT_SYMBOL(blk_alloc_queue);
671 
672 int blk_queue_enter(struct request_queue *q, bool nowait)
673 {
674 	while (true) {
675 		int ret;
676 
677 		if (percpu_ref_tryget_live(&q->q_usage_counter))
678 			return 0;
679 
680 		if (nowait)
681 			return -EBUSY;
682 
683 		/*
684 		 * read pair of barrier in blk_freeze_queue_start(),
685 		 * we need to order reading __PERCPU_REF_DEAD flag of
686 		 * .q_usage_counter and reading .mq_freeze_depth or
687 		 * queue dying flag, otherwise the following wait may
688 		 * never return if the two reads are reordered.
689 		 */
690 		smp_rmb();
691 
692 		ret = wait_event_interruptible(q->mq_freeze_wq,
693 				!atomic_read(&q->mq_freeze_depth) ||
694 				blk_queue_dying(q));
695 		if (blk_queue_dying(q))
696 			return -ENODEV;
697 		if (ret)
698 			return ret;
699 	}
700 }
701 
702 void blk_queue_exit(struct request_queue *q)
703 {
704 	percpu_ref_put(&q->q_usage_counter);
705 }
706 
707 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
708 {
709 	struct request_queue *q =
710 		container_of(ref, struct request_queue, q_usage_counter);
711 
712 	wake_up_all(&q->mq_freeze_wq);
713 }
714 
715 static void blk_rq_timed_out_timer(unsigned long data)
716 {
717 	struct request_queue *q = (struct request_queue *)data;
718 
719 	kblockd_schedule_work(&q->timeout_work);
720 }
721 
722 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
723 {
724 	struct request_queue *q;
725 
726 	q = kmem_cache_alloc_node(blk_requestq_cachep,
727 				gfp_mask | __GFP_ZERO, node_id);
728 	if (!q)
729 		return NULL;
730 
731 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
732 	if (q->id < 0)
733 		goto fail_q;
734 
735 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
736 	if (!q->bio_split)
737 		goto fail_id;
738 
739 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
740 	if (!q->backing_dev_info)
741 		goto fail_split;
742 
743 	q->stats = blk_alloc_queue_stats();
744 	if (!q->stats)
745 		goto fail_stats;
746 
747 	q->backing_dev_info->ra_pages =
748 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
749 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
750 	q->backing_dev_info->name = "block";
751 	q->node = node_id;
752 
753 	setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
754 		    laptop_mode_timer_fn, (unsigned long) q);
755 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
756 	INIT_LIST_HEAD(&q->queue_head);
757 	INIT_LIST_HEAD(&q->timeout_list);
758 	INIT_LIST_HEAD(&q->icq_list);
759 #ifdef CONFIG_BLK_CGROUP
760 	INIT_LIST_HEAD(&q->blkg_list);
761 #endif
762 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
763 
764 	kobject_init(&q->kobj, &blk_queue_ktype);
765 
766 	mutex_init(&q->sysfs_lock);
767 	spin_lock_init(&q->__queue_lock);
768 
769 	/*
770 	 * By default initialize queue_lock to internal lock and driver can
771 	 * override it later if need be.
772 	 */
773 	q->queue_lock = &q->__queue_lock;
774 
775 	/*
776 	 * A queue starts its life with bypass turned on to avoid
777 	 * unnecessary bypass on/off overhead and nasty surprises during
778 	 * init.  The initial bypass will be finished when the queue is
779 	 * registered by blk_register_queue().
780 	 */
781 	q->bypass_depth = 1;
782 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
783 
784 	init_waitqueue_head(&q->mq_freeze_wq);
785 
786 	/*
787 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
788 	 * See blk_register_queue() for details.
789 	 */
790 	if (percpu_ref_init(&q->q_usage_counter,
791 				blk_queue_usage_counter_release,
792 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
793 		goto fail_bdi;
794 
795 	if (blkcg_init_queue(q))
796 		goto fail_ref;
797 
798 	return q;
799 
800 fail_ref:
801 	percpu_ref_exit(&q->q_usage_counter);
802 fail_bdi:
803 	blk_free_queue_stats(q->stats);
804 fail_stats:
805 	bdi_put(q->backing_dev_info);
806 fail_split:
807 	bioset_free(q->bio_split);
808 fail_id:
809 	ida_simple_remove(&blk_queue_ida, q->id);
810 fail_q:
811 	kmem_cache_free(blk_requestq_cachep, q);
812 	return NULL;
813 }
814 EXPORT_SYMBOL(blk_alloc_queue_node);
815 
816 /**
817  * blk_init_queue  - prepare a request queue for use with a block device
818  * @rfn:  The function to be called to process requests that have been
819  *        placed on the queue.
820  * @lock: Request queue spin lock
821  *
822  * Description:
823  *    If a block device wishes to use the standard request handling procedures,
824  *    which sorts requests and coalesces adjacent requests, then it must
825  *    call blk_init_queue().  The function @rfn will be called when there
826  *    are requests on the queue that need to be processed.  If the device
827  *    supports plugging, then @rfn may not be called immediately when requests
828  *    are available on the queue, but may be called at some time later instead.
829  *    Plugged queues are generally unplugged when a buffer belonging to one
830  *    of the requests on the queue is needed, or due to memory pressure.
831  *
832  *    @rfn is not required, or even expected, to remove all requests off the
833  *    queue, but only as many as it can handle at a time.  If it does leave
834  *    requests on the queue, it is responsible for arranging that the requests
835  *    get dealt with eventually.
836  *
837  *    The queue spin lock must be held while manipulating the requests on the
838  *    request queue; this lock will be taken also from interrupt context, so irq
839  *    disabling is needed for it.
840  *
841  *    Function returns a pointer to the initialized request queue, or %NULL if
842  *    it didn't succeed.
843  *
844  * Note:
845  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
846  *    when the block device is deactivated (such as at module unload).
847  **/
848 
849 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
850 {
851 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
852 }
853 EXPORT_SYMBOL(blk_init_queue);
854 
855 struct request_queue *
856 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
857 {
858 	struct request_queue *q;
859 
860 	q = blk_alloc_queue_node(GFP_KERNEL, node_id);
861 	if (!q)
862 		return NULL;
863 
864 	q->request_fn = rfn;
865 	if (lock)
866 		q->queue_lock = lock;
867 	if (blk_init_allocated_queue(q) < 0) {
868 		blk_cleanup_queue(q);
869 		return NULL;
870 	}
871 
872 	return q;
873 }
874 EXPORT_SYMBOL(blk_init_queue_node);
875 
876 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
877 
878 
879 int blk_init_allocated_queue(struct request_queue *q)
880 {
881 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
882 	if (!q->fq)
883 		return -ENOMEM;
884 
885 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
886 		goto out_free_flush_queue;
887 
888 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
889 		goto out_exit_flush_rq;
890 
891 	INIT_WORK(&q->timeout_work, blk_timeout_work);
892 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
893 
894 	/*
895 	 * This also sets hw/phys segments, boundary and size
896 	 */
897 	blk_queue_make_request(q, blk_queue_bio);
898 
899 	q->sg_reserved_size = INT_MAX;
900 
901 	/* Protect q->elevator from elevator_change */
902 	mutex_lock(&q->sysfs_lock);
903 
904 	/* init elevator */
905 	if (elevator_init(q, NULL)) {
906 		mutex_unlock(&q->sysfs_lock);
907 		goto out_exit_flush_rq;
908 	}
909 
910 	mutex_unlock(&q->sysfs_lock);
911 	return 0;
912 
913 out_exit_flush_rq:
914 	if (q->exit_rq_fn)
915 		q->exit_rq_fn(q, q->fq->flush_rq);
916 out_free_flush_queue:
917 	blk_free_flush_queue(q->fq);
918 	return -ENOMEM;
919 }
920 EXPORT_SYMBOL(blk_init_allocated_queue);
921 
922 bool blk_get_queue(struct request_queue *q)
923 {
924 	if (likely(!blk_queue_dying(q))) {
925 		__blk_get_queue(q);
926 		return true;
927 	}
928 
929 	return false;
930 }
931 EXPORT_SYMBOL(blk_get_queue);
932 
933 static inline void blk_free_request(struct request_list *rl, struct request *rq)
934 {
935 	if (rq->rq_flags & RQF_ELVPRIV) {
936 		elv_put_request(rl->q, rq);
937 		if (rq->elv.icq)
938 			put_io_context(rq->elv.icq->ioc);
939 	}
940 
941 	mempool_free(rq, rl->rq_pool);
942 }
943 
944 /*
945  * ioc_batching returns true if the ioc is a valid batching request and
946  * should be given priority access to a request.
947  */
948 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
949 {
950 	if (!ioc)
951 		return 0;
952 
953 	/*
954 	 * Make sure the process is able to allocate at least 1 request
955 	 * even if the batch times out, otherwise we could theoretically
956 	 * lose wakeups.
957 	 */
958 	return ioc->nr_batch_requests == q->nr_batching ||
959 		(ioc->nr_batch_requests > 0
960 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
961 }
962 
963 /*
964  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
965  * will cause the process to be a "batcher" on all queues in the system. This
966  * is the behaviour we want though - once it gets a wakeup it should be given
967  * a nice run.
968  */
969 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
970 {
971 	if (!ioc || ioc_batching(q, ioc))
972 		return;
973 
974 	ioc->nr_batch_requests = q->nr_batching;
975 	ioc->last_waited = jiffies;
976 }
977 
978 static void __freed_request(struct request_list *rl, int sync)
979 {
980 	struct request_queue *q = rl->q;
981 
982 	if (rl->count[sync] < queue_congestion_off_threshold(q))
983 		blk_clear_congested(rl, sync);
984 
985 	if (rl->count[sync] + 1 <= q->nr_requests) {
986 		if (waitqueue_active(&rl->wait[sync]))
987 			wake_up(&rl->wait[sync]);
988 
989 		blk_clear_rl_full(rl, sync);
990 	}
991 }
992 
993 /*
994  * A request has just been released.  Account for it, update the full and
995  * congestion status, wake up any waiters.   Called under q->queue_lock.
996  */
997 static void freed_request(struct request_list *rl, bool sync,
998 		req_flags_t rq_flags)
999 {
1000 	struct request_queue *q = rl->q;
1001 
1002 	q->nr_rqs[sync]--;
1003 	rl->count[sync]--;
1004 	if (rq_flags & RQF_ELVPRIV)
1005 		q->nr_rqs_elvpriv--;
1006 
1007 	__freed_request(rl, sync);
1008 
1009 	if (unlikely(rl->starved[sync ^ 1]))
1010 		__freed_request(rl, sync ^ 1);
1011 }
1012 
1013 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1014 {
1015 	struct request_list *rl;
1016 	int on_thresh, off_thresh;
1017 
1018 	spin_lock_irq(q->queue_lock);
1019 	q->nr_requests = nr;
1020 	blk_queue_congestion_threshold(q);
1021 	on_thresh = queue_congestion_on_threshold(q);
1022 	off_thresh = queue_congestion_off_threshold(q);
1023 
1024 	blk_queue_for_each_rl(rl, q) {
1025 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1026 			blk_set_congested(rl, BLK_RW_SYNC);
1027 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1028 			blk_clear_congested(rl, BLK_RW_SYNC);
1029 
1030 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1031 			blk_set_congested(rl, BLK_RW_ASYNC);
1032 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1033 			blk_clear_congested(rl, BLK_RW_ASYNC);
1034 
1035 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1036 			blk_set_rl_full(rl, BLK_RW_SYNC);
1037 		} else {
1038 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1039 			wake_up(&rl->wait[BLK_RW_SYNC]);
1040 		}
1041 
1042 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1043 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1044 		} else {
1045 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1046 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1047 		}
1048 	}
1049 
1050 	spin_unlock_irq(q->queue_lock);
1051 	return 0;
1052 }
1053 
1054 /**
1055  * __get_request - get a free request
1056  * @rl: request list to allocate from
1057  * @op: operation and flags
1058  * @bio: bio to allocate request for (can be %NULL)
1059  * @gfp_mask: allocation mask
1060  *
1061  * Get a free request from @q.  This function may fail under memory
1062  * pressure or if @q is dead.
1063  *
1064  * Must be called with @q->queue_lock held and,
1065  * Returns ERR_PTR on failure, with @q->queue_lock held.
1066  * Returns request pointer on success, with @q->queue_lock *not held*.
1067  */
1068 static struct request *__get_request(struct request_list *rl, unsigned int op,
1069 		struct bio *bio, gfp_t gfp_mask)
1070 {
1071 	struct request_queue *q = rl->q;
1072 	struct request *rq;
1073 	struct elevator_type *et = q->elevator->type;
1074 	struct io_context *ioc = rq_ioc(bio);
1075 	struct io_cq *icq = NULL;
1076 	const bool is_sync = op_is_sync(op);
1077 	int may_queue;
1078 	req_flags_t rq_flags = RQF_ALLOCED;
1079 
1080 	if (unlikely(blk_queue_dying(q)))
1081 		return ERR_PTR(-ENODEV);
1082 
1083 	may_queue = elv_may_queue(q, op);
1084 	if (may_queue == ELV_MQUEUE_NO)
1085 		goto rq_starved;
1086 
1087 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1088 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1089 			/*
1090 			 * The queue will fill after this allocation, so set
1091 			 * it as full, and mark this process as "batching".
1092 			 * This process will be allowed to complete a batch of
1093 			 * requests, others will be blocked.
1094 			 */
1095 			if (!blk_rl_full(rl, is_sync)) {
1096 				ioc_set_batching(q, ioc);
1097 				blk_set_rl_full(rl, is_sync);
1098 			} else {
1099 				if (may_queue != ELV_MQUEUE_MUST
1100 						&& !ioc_batching(q, ioc)) {
1101 					/*
1102 					 * The queue is full and the allocating
1103 					 * process is not a "batcher", and not
1104 					 * exempted by the IO scheduler
1105 					 */
1106 					return ERR_PTR(-ENOMEM);
1107 				}
1108 			}
1109 		}
1110 		blk_set_congested(rl, is_sync);
1111 	}
1112 
1113 	/*
1114 	 * Only allow batching queuers to allocate up to 50% over the defined
1115 	 * limit of requests, otherwise we could have thousands of requests
1116 	 * allocated with any setting of ->nr_requests
1117 	 */
1118 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1119 		return ERR_PTR(-ENOMEM);
1120 
1121 	q->nr_rqs[is_sync]++;
1122 	rl->count[is_sync]++;
1123 	rl->starved[is_sync] = 0;
1124 
1125 	/*
1126 	 * Decide whether the new request will be managed by elevator.  If
1127 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1128 	 * prevent the current elevator from being destroyed until the new
1129 	 * request is freed.  This guarantees icq's won't be destroyed and
1130 	 * makes creating new ones safe.
1131 	 *
1132 	 * Flush requests do not use the elevator so skip initialization.
1133 	 * This allows a request to share the flush and elevator data.
1134 	 *
1135 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1136 	 * it will be created after releasing queue_lock.
1137 	 */
1138 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1139 		rq_flags |= RQF_ELVPRIV;
1140 		q->nr_rqs_elvpriv++;
1141 		if (et->icq_cache && ioc)
1142 			icq = ioc_lookup_icq(ioc, q);
1143 	}
1144 
1145 	if (blk_queue_io_stat(q))
1146 		rq_flags |= RQF_IO_STAT;
1147 	spin_unlock_irq(q->queue_lock);
1148 
1149 	/* allocate and init request */
1150 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1151 	if (!rq)
1152 		goto fail_alloc;
1153 
1154 	blk_rq_init(q, rq);
1155 	blk_rq_set_rl(rq, rl);
1156 	rq->cmd_flags = op;
1157 	rq->rq_flags = rq_flags;
1158 
1159 	/* init elvpriv */
1160 	if (rq_flags & RQF_ELVPRIV) {
1161 		if (unlikely(et->icq_cache && !icq)) {
1162 			if (ioc)
1163 				icq = ioc_create_icq(ioc, q, gfp_mask);
1164 			if (!icq)
1165 				goto fail_elvpriv;
1166 		}
1167 
1168 		rq->elv.icq = icq;
1169 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1170 			goto fail_elvpriv;
1171 
1172 		/* @rq->elv.icq holds io_context until @rq is freed */
1173 		if (icq)
1174 			get_io_context(icq->ioc);
1175 	}
1176 out:
1177 	/*
1178 	 * ioc may be NULL here, and ioc_batching will be false. That's
1179 	 * OK, if the queue is under the request limit then requests need
1180 	 * not count toward the nr_batch_requests limit. There will always
1181 	 * be some limit enforced by BLK_BATCH_TIME.
1182 	 */
1183 	if (ioc_batching(q, ioc))
1184 		ioc->nr_batch_requests--;
1185 
1186 	trace_block_getrq(q, bio, op);
1187 	return rq;
1188 
1189 fail_elvpriv:
1190 	/*
1191 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1192 	 * and may fail indefinitely under memory pressure and thus
1193 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1194 	 * disturb iosched and blkcg but weird is bettern than dead.
1195 	 */
1196 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1197 			   __func__, dev_name(q->backing_dev_info->dev));
1198 
1199 	rq->rq_flags &= ~RQF_ELVPRIV;
1200 	rq->elv.icq = NULL;
1201 
1202 	spin_lock_irq(q->queue_lock);
1203 	q->nr_rqs_elvpriv--;
1204 	spin_unlock_irq(q->queue_lock);
1205 	goto out;
1206 
1207 fail_alloc:
1208 	/*
1209 	 * Allocation failed presumably due to memory. Undo anything we
1210 	 * might have messed up.
1211 	 *
1212 	 * Allocating task should really be put onto the front of the wait
1213 	 * queue, but this is pretty rare.
1214 	 */
1215 	spin_lock_irq(q->queue_lock);
1216 	freed_request(rl, is_sync, rq_flags);
1217 
1218 	/*
1219 	 * in the very unlikely event that allocation failed and no
1220 	 * requests for this direction was pending, mark us starved so that
1221 	 * freeing of a request in the other direction will notice
1222 	 * us. another possible fix would be to split the rq mempool into
1223 	 * READ and WRITE
1224 	 */
1225 rq_starved:
1226 	if (unlikely(rl->count[is_sync] == 0))
1227 		rl->starved[is_sync] = 1;
1228 	return ERR_PTR(-ENOMEM);
1229 }
1230 
1231 /**
1232  * get_request - get a free request
1233  * @q: request_queue to allocate request from
1234  * @op: operation and flags
1235  * @bio: bio to allocate request for (can be %NULL)
1236  * @gfp_mask: allocation mask
1237  *
1238  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1239  * this function keeps retrying under memory pressure and fails iff @q is dead.
1240  *
1241  * Must be called with @q->queue_lock held and,
1242  * Returns ERR_PTR on failure, with @q->queue_lock held.
1243  * Returns request pointer on success, with @q->queue_lock *not held*.
1244  */
1245 static struct request *get_request(struct request_queue *q, unsigned int op,
1246 		struct bio *bio, gfp_t gfp_mask)
1247 {
1248 	const bool is_sync = op_is_sync(op);
1249 	DEFINE_WAIT(wait);
1250 	struct request_list *rl;
1251 	struct request *rq;
1252 
1253 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1254 retry:
1255 	rq = __get_request(rl, op, bio, gfp_mask);
1256 	if (!IS_ERR(rq))
1257 		return rq;
1258 
1259 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1260 		blk_put_rl(rl);
1261 		return rq;
1262 	}
1263 
1264 	/* wait on @rl and retry */
1265 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1266 				  TASK_UNINTERRUPTIBLE);
1267 
1268 	trace_block_sleeprq(q, bio, op);
1269 
1270 	spin_unlock_irq(q->queue_lock);
1271 	io_schedule();
1272 
1273 	/*
1274 	 * After sleeping, we become a "batching" process and will be able
1275 	 * to allocate at least one request, and up to a big batch of them
1276 	 * for a small period time.  See ioc_batching, ioc_set_batching
1277 	 */
1278 	ioc_set_batching(q, current->io_context);
1279 
1280 	spin_lock_irq(q->queue_lock);
1281 	finish_wait(&rl->wait[is_sync], &wait);
1282 
1283 	goto retry;
1284 }
1285 
1286 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1287 		gfp_t gfp_mask)
1288 {
1289 	struct request *rq;
1290 
1291 	/* create ioc upfront */
1292 	create_io_context(gfp_mask, q->node);
1293 
1294 	spin_lock_irq(q->queue_lock);
1295 	rq = get_request(q, rw, NULL, gfp_mask);
1296 	if (IS_ERR(rq)) {
1297 		spin_unlock_irq(q->queue_lock);
1298 		return rq;
1299 	}
1300 
1301 	/* q->queue_lock is unlocked at this point */
1302 	rq->__data_len = 0;
1303 	rq->__sector = (sector_t) -1;
1304 	rq->bio = rq->biotail = NULL;
1305 	return rq;
1306 }
1307 
1308 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1309 {
1310 	if (q->mq_ops)
1311 		return blk_mq_alloc_request(q, rw,
1312 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1313 				0 : BLK_MQ_REQ_NOWAIT);
1314 	else
1315 		return blk_old_get_request(q, rw, gfp_mask);
1316 }
1317 EXPORT_SYMBOL(blk_get_request);
1318 
1319 /**
1320  * blk_requeue_request - put a request back on queue
1321  * @q:		request queue where request should be inserted
1322  * @rq:		request to be inserted
1323  *
1324  * Description:
1325  *    Drivers often keep queueing requests until the hardware cannot accept
1326  *    more, when that condition happens we need to put the request back
1327  *    on the queue. Must be called with queue lock held.
1328  */
1329 void blk_requeue_request(struct request_queue *q, struct request *rq)
1330 {
1331 	blk_delete_timer(rq);
1332 	blk_clear_rq_complete(rq);
1333 	trace_block_rq_requeue(q, rq);
1334 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1335 
1336 	if (rq->rq_flags & RQF_QUEUED)
1337 		blk_queue_end_tag(q, rq);
1338 
1339 	BUG_ON(blk_queued_rq(rq));
1340 
1341 	elv_requeue_request(q, rq);
1342 }
1343 EXPORT_SYMBOL(blk_requeue_request);
1344 
1345 static void add_acct_request(struct request_queue *q, struct request *rq,
1346 			     int where)
1347 {
1348 	blk_account_io_start(rq, true);
1349 	__elv_add_request(q, rq, where);
1350 }
1351 
1352 static void part_round_stats_single(int cpu, struct hd_struct *part,
1353 				    unsigned long now)
1354 {
1355 	int inflight;
1356 
1357 	if (now == part->stamp)
1358 		return;
1359 
1360 	inflight = part_in_flight(part);
1361 	if (inflight) {
1362 		__part_stat_add(cpu, part, time_in_queue,
1363 				inflight * (now - part->stamp));
1364 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1365 	}
1366 	part->stamp = now;
1367 }
1368 
1369 /**
1370  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1371  * @cpu: cpu number for stats access
1372  * @part: target partition
1373  *
1374  * The average IO queue length and utilisation statistics are maintained
1375  * by observing the current state of the queue length and the amount of
1376  * time it has been in this state for.
1377  *
1378  * Normally, that accounting is done on IO completion, but that can result
1379  * in more than a second's worth of IO being accounted for within any one
1380  * second, leading to >100% utilisation.  To deal with that, we call this
1381  * function to do a round-off before returning the results when reading
1382  * /proc/diskstats.  This accounts immediately for all queue usage up to
1383  * the current jiffies and restarts the counters again.
1384  */
1385 void part_round_stats(int cpu, struct hd_struct *part)
1386 {
1387 	unsigned long now = jiffies;
1388 
1389 	if (part->partno)
1390 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1391 	part_round_stats_single(cpu, part, now);
1392 }
1393 EXPORT_SYMBOL_GPL(part_round_stats);
1394 
1395 #ifdef CONFIG_PM
1396 static void blk_pm_put_request(struct request *rq)
1397 {
1398 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1399 		pm_runtime_mark_last_busy(rq->q->dev);
1400 }
1401 #else
1402 static inline void blk_pm_put_request(struct request *rq) {}
1403 #endif
1404 
1405 /*
1406  * queue lock must be held
1407  */
1408 void __blk_put_request(struct request_queue *q, struct request *req)
1409 {
1410 	req_flags_t rq_flags = req->rq_flags;
1411 
1412 	if (unlikely(!q))
1413 		return;
1414 
1415 	if (q->mq_ops) {
1416 		blk_mq_free_request(req);
1417 		return;
1418 	}
1419 
1420 	blk_pm_put_request(req);
1421 
1422 	elv_completed_request(q, req);
1423 
1424 	/* this is a bio leak */
1425 	WARN_ON(req->bio != NULL);
1426 
1427 	wbt_done(q->rq_wb, &req->issue_stat);
1428 
1429 	/*
1430 	 * Request may not have originated from ll_rw_blk. if not,
1431 	 * it didn't come out of our reserved rq pools
1432 	 */
1433 	if (rq_flags & RQF_ALLOCED) {
1434 		struct request_list *rl = blk_rq_rl(req);
1435 		bool sync = op_is_sync(req->cmd_flags);
1436 
1437 		BUG_ON(!list_empty(&req->queuelist));
1438 		BUG_ON(ELV_ON_HASH(req));
1439 
1440 		blk_free_request(rl, req);
1441 		freed_request(rl, sync, rq_flags);
1442 		blk_put_rl(rl);
1443 	}
1444 }
1445 EXPORT_SYMBOL_GPL(__blk_put_request);
1446 
1447 void blk_put_request(struct request *req)
1448 {
1449 	struct request_queue *q = req->q;
1450 
1451 	if (q->mq_ops)
1452 		blk_mq_free_request(req);
1453 	else {
1454 		unsigned long flags;
1455 
1456 		spin_lock_irqsave(q->queue_lock, flags);
1457 		__blk_put_request(q, req);
1458 		spin_unlock_irqrestore(q->queue_lock, flags);
1459 	}
1460 }
1461 EXPORT_SYMBOL(blk_put_request);
1462 
1463 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1464 			    struct bio *bio)
1465 {
1466 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1467 
1468 	if (!ll_back_merge_fn(q, req, bio))
1469 		return false;
1470 
1471 	trace_block_bio_backmerge(q, req, bio);
1472 
1473 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1474 		blk_rq_set_mixed_merge(req);
1475 
1476 	req->biotail->bi_next = bio;
1477 	req->biotail = bio;
1478 	req->__data_len += bio->bi_iter.bi_size;
1479 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1480 
1481 	blk_account_io_start(req, false);
1482 	return true;
1483 }
1484 
1485 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1486 			     struct bio *bio)
1487 {
1488 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1489 
1490 	if (!ll_front_merge_fn(q, req, bio))
1491 		return false;
1492 
1493 	trace_block_bio_frontmerge(q, req, bio);
1494 
1495 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1496 		blk_rq_set_mixed_merge(req);
1497 
1498 	bio->bi_next = req->bio;
1499 	req->bio = bio;
1500 
1501 	req->__sector = bio->bi_iter.bi_sector;
1502 	req->__data_len += bio->bi_iter.bi_size;
1503 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1504 
1505 	blk_account_io_start(req, false);
1506 	return true;
1507 }
1508 
1509 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1510 		struct bio *bio)
1511 {
1512 	unsigned short segments = blk_rq_nr_discard_segments(req);
1513 
1514 	if (segments >= queue_max_discard_segments(q))
1515 		goto no_merge;
1516 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1517 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1518 		goto no_merge;
1519 
1520 	req->biotail->bi_next = bio;
1521 	req->biotail = bio;
1522 	req->__data_len += bio->bi_iter.bi_size;
1523 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1524 	req->nr_phys_segments = segments + 1;
1525 
1526 	blk_account_io_start(req, false);
1527 	return true;
1528 no_merge:
1529 	req_set_nomerge(q, req);
1530 	return false;
1531 }
1532 
1533 /**
1534  * blk_attempt_plug_merge - try to merge with %current's plugged list
1535  * @q: request_queue new bio is being queued at
1536  * @bio: new bio being queued
1537  * @request_count: out parameter for number of traversed plugged requests
1538  * @same_queue_rq: pointer to &struct request that gets filled in when
1539  * another request associated with @q is found on the plug list
1540  * (optional, may be %NULL)
1541  *
1542  * Determine whether @bio being queued on @q can be merged with a request
1543  * on %current's plugged list.  Returns %true if merge was successful,
1544  * otherwise %false.
1545  *
1546  * Plugging coalesces IOs from the same issuer for the same purpose without
1547  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1548  * than scheduling, and the request, while may have elvpriv data, is not
1549  * added on the elevator at this point.  In addition, we don't have
1550  * reliable access to the elevator outside queue lock.  Only check basic
1551  * merging parameters without querying the elevator.
1552  *
1553  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1554  */
1555 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1556 			    unsigned int *request_count,
1557 			    struct request **same_queue_rq)
1558 {
1559 	struct blk_plug *plug;
1560 	struct request *rq;
1561 	struct list_head *plug_list;
1562 
1563 	plug = current->plug;
1564 	if (!plug)
1565 		return false;
1566 	*request_count = 0;
1567 
1568 	if (q->mq_ops)
1569 		plug_list = &plug->mq_list;
1570 	else
1571 		plug_list = &plug->list;
1572 
1573 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1574 		bool merged = false;
1575 
1576 		if (rq->q == q) {
1577 			(*request_count)++;
1578 			/*
1579 			 * Only blk-mq multiple hardware queues case checks the
1580 			 * rq in the same queue, there should be only one such
1581 			 * rq in a queue
1582 			 **/
1583 			if (same_queue_rq)
1584 				*same_queue_rq = rq;
1585 		}
1586 
1587 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1588 			continue;
1589 
1590 		switch (blk_try_merge(rq, bio)) {
1591 		case ELEVATOR_BACK_MERGE:
1592 			merged = bio_attempt_back_merge(q, rq, bio);
1593 			break;
1594 		case ELEVATOR_FRONT_MERGE:
1595 			merged = bio_attempt_front_merge(q, rq, bio);
1596 			break;
1597 		case ELEVATOR_DISCARD_MERGE:
1598 			merged = bio_attempt_discard_merge(q, rq, bio);
1599 			break;
1600 		default:
1601 			break;
1602 		}
1603 
1604 		if (merged)
1605 			return true;
1606 	}
1607 
1608 	return false;
1609 }
1610 
1611 unsigned int blk_plug_queued_count(struct request_queue *q)
1612 {
1613 	struct blk_plug *plug;
1614 	struct request *rq;
1615 	struct list_head *plug_list;
1616 	unsigned int ret = 0;
1617 
1618 	plug = current->plug;
1619 	if (!plug)
1620 		goto out;
1621 
1622 	if (q->mq_ops)
1623 		plug_list = &plug->mq_list;
1624 	else
1625 		plug_list = &plug->list;
1626 
1627 	list_for_each_entry(rq, plug_list, queuelist) {
1628 		if (rq->q == q)
1629 			ret++;
1630 	}
1631 out:
1632 	return ret;
1633 }
1634 
1635 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1636 {
1637 	struct io_context *ioc = rq_ioc(bio);
1638 
1639 	if (bio->bi_opf & REQ_RAHEAD)
1640 		req->cmd_flags |= REQ_FAILFAST_MASK;
1641 
1642 	req->__sector = bio->bi_iter.bi_sector;
1643 	if (ioprio_valid(bio_prio(bio)))
1644 		req->ioprio = bio_prio(bio);
1645 	else if (ioc)
1646 		req->ioprio = ioc->ioprio;
1647 	else
1648 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1649 	blk_rq_bio_prep(req->q, req, bio);
1650 }
1651 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1652 
1653 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1654 {
1655 	struct blk_plug *plug;
1656 	int where = ELEVATOR_INSERT_SORT;
1657 	struct request *req, *free;
1658 	unsigned int request_count = 0;
1659 	unsigned int wb_acct;
1660 
1661 	/*
1662 	 * low level driver can indicate that it wants pages above a
1663 	 * certain limit bounced to low memory (ie for highmem, or even
1664 	 * ISA dma in theory)
1665 	 */
1666 	blk_queue_bounce(q, &bio);
1667 
1668 	blk_queue_split(q, &bio, q->bio_split);
1669 
1670 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1671 		bio->bi_error = -EIO;
1672 		bio_endio(bio);
1673 		return BLK_QC_T_NONE;
1674 	}
1675 
1676 	if (op_is_flush(bio->bi_opf)) {
1677 		spin_lock_irq(q->queue_lock);
1678 		where = ELEVATOR_INSERT_FLUSH;
1679 		goto get_rq;
1680 	}
1681 
1682 	/*
1683 	 * Check if we can merge with the plugged list before grabbing
1684 	 * any locks.
1685 	 */
1686 	if (!blk_queue_nomerges(q)) {
1687 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1688 			return BLK_QC_T_NONE;
1689 	} else
1690 		request_count = blk_plug_queued_count(q);
1691 
1692 	spin_lock_irq(q->queue_lock);
1693 
1694 	switch (elv_merge(q, &req, bio)) {
1695 	case ELEVATOR_BACK_MERGE:
1696 		if (!bio_attempt_back_merge(q, req, bio))
1697 			break;
1698 		elv_bio_merged(q, req, bio);
1699 		free = attempt_back_merge(q, req);
1700 		if (free)
1701 			__blk_put_request(q, free);
1702 		else
1703 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1704 		goto out_unlock;
1705 	case ELEVATOR_FRONT_MERGE:
1706 		if (!bio_attempt_front_merge(q, req, bio))
1707 			break;
1708 		elv_bio_merged(q, req, bio);
1709 		free = attempt_front_merge(q, req);
1710 		if (free)
1711 			__blk_put_request(q, free);
1712 		else
1713 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1714 		goto out_unlock;
1715 	default:
1716 		break;
1717 	}
1718 
1719 get_rq:
1720 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1721 
1722 	/*
1723 	 * Grab a free request. This is might sleep but can not fail.
1724 	 * Returns with the queue unlocked.
1725 	 */
1726 	req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1727 	if (IS_ERR(req)) {
1728 		__wbt_done(q->rq_wb, wb_acct);
1729 		bio->bi_error = PTR_ERR(req);
1730 		bio_endio(bio);
1731 		goto out_unlock;
1732 	}
1733 
1734 	wbt_track(&req->issue_stat, wb_acct);
1735 
1736 	/*
1737 	 * After dropping the lock and possibly sleeping here, our request
1738 	 * may now be mergeable after it had proven unmergeable (above).
1739 	 * We don't worry about that case for efficiency. It won't happen
1740 	 * often, and the elevators are able to handle it.
1741 	 */
1742 	blk_init_request_from_bio(req, bio);
1743 
1744 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1745 		req->cpu = raw_smp_processor_id();
1746 
1747 	plug = current->plug;
1748 	if (plug) {
1749 		/*
1750 		 * If this is the first request added after a plug, fire
1751 		 * of a plug trace.
1752 		 *
1753 		 * @request_count may become stale because of schedule
1754 		 * out, so check plug list again.
1755 		 */
1756 		if (!request_count || list_empty(&plug->list))
1757 			trace_block_plug(q);
1758 		else {
1759 			struct request *last = list_entry_rq(plug->list.prev);
1760 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
1761 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1762 				blk_flush_plug_list(plug, false);
1763 				trace_block_plug(q);
1764 			}
1765 		}
1766 		list_add_tail(&req->queuelist, &plug->list);
1767 		blk_account_io_start(req, true);
1768 	} else {
1769 		spin_lock_irq(q->queue_lock);
1770 		add_acct_request(q, req, where);
1771 		__blk_run_queue(q);
1772 out_unlock:
1773 		spin_unlock_irq(q->queue_lock);
1774 	}
1775 
1776 	return BLK_QC_T_NONE;
1777 }
1778 
1779 /*
1780  * If bio->bi_dev is a partition, remap the location
1781  */
1782 static inline void blk_partition_remap(struct bio *bio)
1783 {
1784 	struct block_device *bdev = bio->bi_bdev;
1785 
1786 	/*
1787 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
1788 	 * Include a test for the reset op code and perform the remap if needed.
1789 	 */
1790 	if (bdev != bdev->bd_contains &&
1791 	    (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1792 		struct hd_struct *p = bdev->bd_part;
1793 
1794 		bio->bi_iter.bi_sector += p->start_sect;
1795 		bio->bi_bdev = bdev->bd_contains;
1796 
1797 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1798 				      bdev->bd_dev,
1799 				      bio->bi_iter.bi_sector - p->start_sect);
1800 	}
1801 }
1802 
1803 static void handle_bad_sector(struct bio *bio)
1804 {
1805 	char b[BDEVNAME_SIZE];
1806 
1807 	printk(KERN_INFO "attempt to access beyond end of device\n");
1808 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1809 			bdevname(bio->bi_bdev, b),
1810 			bio->bi_opf,
1811 			(unsigned long long)bio_end_sector(bio),
1812 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1813 }
1814 
1815 #ifdef CONFIG_FAIL_MAKE_REQUEST
1816 
1817 static DECLARE_FAULT_ATTR(fail_make_request);
1818 
1819 static int __init setup_fail_make_request(char *str)
1820 {
1821 	return setup_fault_attr(&fail_make_request, str);
1822 }
1823 __setup("fail_make_request=", setup_fail_make_request);
1824 
1825 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1826 {
1827 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1828 }
1829 
1830 static int __init fail_make_request_debugfs(void)
1831 {
1832 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1833 						NULL, &fail_make_request);
1834 
1835 	return PTR_ERR_OR_ZERO(dir);
1836 }
1837 
1838 late_initcall(fail_make_request_debugfs);
1839 
1840 #else /* CONFIG_FAIL_MAKE_REQUEST */
1841 
1842 static inline bool should_fail_request(struct hd_struct *part,
1843 					unsigned int bytes)
1844 {
1845 	return false;
1846 }
1847 
1848 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1849 
1850 /*
1851  * Check whether this bio extends beyond the end of the device.
1852  */
1853 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1854 {
1855 	sector_t maxsector;
1856 
1857 	if (!nr_sectors)
1858 		return 0;
1859 
1860 	/* Test device or partition size, when known. */
1861 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1862 	if (maxsector) {
1863 		sector_t sector = bio->bi_iter.bi_sector;
1864 
1865 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1866 			/*
1867 			 * This may well happen - the kernel calls bread()
1868 			 * without checking the size of the device, e.g., when
1869 			 * mounting a device.
1870 			 */
1871 			handle_bad_sector(bio);
1872 			return 1;
1873 		}
1874 	}
1875 
1876 	return 0;
1877 }
1878 
1879 static noinline_for_stack bool
1880 generic_make_request_checks(struct bio *bio)
1881 {
1882 	struct request_queue *q;
1883 	int nr_sectors = bio_sectors(bio);
1884 	int err = -EIO;
1885 	char b[BDEVNAME_SIZE];
1886 	struct hd_struct *part;
1887 
1888 	might_sleep();
1889 
1890 	if (bio_check_eod(bio, nr_sectors))
1891 		goto end_io;
1892 
1893 	q = bdev_get_queue(bio->bi_bdev);
1894 	if (unlikely(!q)) {
1895 		printk(KERN_ERR
1896 		       "generic_make_request: Trying to access "
1897 			"nonexistent block-device %s (%Lu)\n",
1898 			bdevname(bio->bi_bdev, b),
1899 			(long long) bio->bi_iter.bi_sector);
1900 		goto end_io;
1901 	}
1902 
1903 	part = bio->bi_bdev->bd_part;
1904 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1905 	    should_fail_request(&part_to_disk(part)->part0,
1906 				bio->bi_iter.bi_size))
1907 		goto end_io;
1908 
1909 	/*
1910 	 * If this device has partitions, remap block n
1911 	 * of partition p to block n+start(p) of the disk.
1912 	 */
1913 	blk_partition_remap(bio);
1914 
1915 	if (bio_check_eod(bio, nr_sectors))
1916 		goto end_io;
1917 
1918 	/*
1919 	 * Filter flush bio's early so that make_request based
1920 	 * drivers without flush support don't have to worry
1921 	 * about them.
1922 	 */
1923 	if (op_is_flush(bio->bi_opf) &&
1924 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1925 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1926 		if (!nr_sectors) {
1927 			err = 0;
1928 			goto end_io;
1929 		}
1930 	}
1931 
1932 	switch (bio_op(bio)) {
1933 	case REQ_OP_DISCARD:
1934 		if (!blk_queue_discard(q))
1935 			goto not_supported;
1936 		break;
1937 	case REQ_OP_SECURE_ERASE:
1938 		if (!blk_queue_secure_erase(q))
1939 			goto not_supported;
1940 		break;
1941 	case REQ_OP_WRITE_SAME:
1942 		if (!bdev_write_same(bio->bi_bdev))
1943 			goto not_supported;
1944 		break;
1945 	case REQ_OP_ZONE_REPORT:
1946 	case REQ_OP_ZONE_RESET:
1947 		if (!bdev_is_zoned(bio->bi_bdev))
1948 			goto not_supported;
1949 		break;
1950 	case REQ_OP_WRITE_ZEROES:
1951 		if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1952 			goto not_supported;
1953 		break;
1954 	default:
1955 		break;
1956 	}
1957 
1958 	/*
1959 	 * Various block parts want %current->io_context and lazy ioc
1960 	 * allocation ends up trading a lot of pain for a small amount of
1961 	 * memory.  Just allocate it upfront.  This may fail and block
1962 	 * layer knows how to live with it.
1963 	 */
1964 	create_io_context(GFP_ATOMIC, q->node);
1965 
1966 	if (!blkcg_bio_issue_check(q, bio))
1967 		return false;
1968 
1969 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1970 		trace_block_bio_queue(q, bio);
1971 		/* Now that enqueuing has been traced, we need to trace
1972 		 * completion as well.
1973 		 */
1974 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1975 	}
1976 	return true;
1977 
1978 not_supported:
1979 	err = -EOPNOTSUPP;
1980 end_io:
1981 	bio->bi_error = err;
1982 	bio_endio(bio);
1983 	return false;
1984 }
1985 
1986 /**
1987  * generic_make_request - hand a buffer to its device driver for I/O
1988  * @bio:  The bio describing the location in memory and on the device.
1989  *
1990  * generic_make_request() is used to make I/O requests of block
1991  * devices. It is passed a &struct bio, which describes the I/O that needs
1992  * to be done.
1993  *
1994  * generic_make_request() does not return any status.  The
1995  * success/failure status of the request, along with notification of
1996  * completion, is delivered asynchronously through the bio->bi_end_io
1997  * function described (one day) else where.
1998  *
1999  * The caller of generic_make_request must make sure that bi_io_vec
2000  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2001  * set to describe the device address, and the
2002  * bi_end_io and optionally bi_private are set to describe how
2003  * completion notification should be signaled.
2004  *
2005  * generic_make_request and the drivers it calls may use bi_next if this
2006  * bio happens to be merged with someone else, and may resubmit the bio to
2007  * a lower device by calling into generic_make_request recursively, which
2008  * means the bio should NOT be touched after the call to ->make_request_fn.
2009  */
2010 blk_qc_t generic_make_request(struct bio *bio)
2011 {
2012 	/*
2013 	 * bio_list_on_stack[0] contains bios submitted by the current
2014 	 * make_request_fn.
2015 	 * bio_list_on_stack[1] contains bios that were submitted before
2016 	 * the current make_request_fn, but that haven't been processed
2017 	 * yet.
2018 	 */
2019 	struct bio_list bio_list_on_stack[2];
2020 	blk_qc_t ret = BLK_QC_T_NONE;
2021 
2022 	if (!generic_make_request_checks(bio))
2023 		goto out;
2024 
2025 	/*
2026 	 * We only want one ->make_request_fn to be active at a time, else
2027 	 * stack usage with stacked devices could be a problem.  So use
2028 	 * current->bio_list to keep a list of requests submited by a
2029 	 * make_request_fn function.  current->bio_list is also used as a
2030 	 * flag to say if generic_make_request is currently active in this
2031 	 * task or not.  If it is NULL, then no make_request is active.  If
2032 	 * it is non-NULL, then a make_request is active, and new requests
2033 	 * should be added at the tail
2034 	 */
2035 	if (current->bio_list) {
2036 		bio_list_add(&current->bio_list[0], bio);
2037 		goto out;
2038 	}
2039 
2040 	/* following loop may be a bit non-obvious, and so deserves some
2041 	 * explanation.
2042 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2043 	 * ensure that) so we have a list with a single bio.
2044 	 * We pretend that we have just taken it off a longer list, so
2045 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2046 	 * thus initialising the bio_list of new bios to be
2047 	 * added.  ->make_request() may indeed add some more bios
2048 	 * through a recursive call to generic_make_request.  If it
2049 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2050 	 * from the top.  In this case we really did just take the bio
2051 	 * of the top of the list (no pretending) and so remove it from
2052 	 * bio_list, and call into ->make_request() again.
2053 	 */
2054 	BUG_ON(bio->bi_next);
2055 	bio_list_init(&bio_list_on_stack[0]);
2056 	current->bio_list = bio_list_on_stack;
2057 	do {
2058 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2059 
2060 		if (likely(blk_queue_enter(q, false) == 0)) {
2061 			struct bio_list lower, same;
2062 
2063 			/* Create a fresh bio_list for all subordinate requests */
2064 			bio_list_on_stack[1] = bio_list_on_stack[0];
2065 			bio_list_init(&bio_list_on_stack[0]);
2066 			ret = q->make_request_fn(q, bio);
2067 
2068 			blk_queue_exit(q);
2069 
2070 			/* sort new bios into those for a lower level
2071 			 * and those for the same level
2072 			 */
2073 			bio_list_init(&lower);
2074 			bio_list_init(&same);
2075 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2076 				if (q == bdev_get_queue(bio->bi_bdev))
2077 					bio_list_add(&same, bio);
2078 				else
2079 					bio_list_add(&lower, bio);
2080 			/* now assemble so we handle the lowest level first */
2081 			bio_list_merge(&bio_list_on_stack[0], &lower);
2082 			bio_list_merge(&bio_list_on_stack[0], &same);
2083 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2084 		} else {
2085 			bio_io_error(bio);
2086 		}
2087 		bio = bio_list_pop(&bio_list_on_stack[0]);
2088 	} while (bio);
2089 	current->bio_list = NULL; /* deactivate */
2090 
2091 out:
2092 	return ret;
2093 }
2094 EXPORT_SYMBOL(generic_make_request);
2095 
2096 /**
2097  * submit_bio - submit a bio to the block device layer for I/O
2098  * @bio: The &struct bio which describes the I/O
2099  *
2100  * submit_bio() is very similar in purpose to generic_make_request(), and
2101  * uses that function to do most of the work. Both are fairly rough
2102  * interfaces; @bio must be presetup and ready for I/O.
2103  *
2104  */
2105 blk_qc_t submit_bio(struct bio *bio)
2106 {
2107 	/*
2108 	 * If it's a regular read/write or a barrier with data attached,
2109 	 * go through the normal accounting stuff before submission.
2110 	 */
2111 	if (bio_has_data(bio)) {
2112 		unsigned int count;
2113 
2114 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2115 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2116 		else
2117 			count = bio_sectors(bio);
2118 
2119 		if (op_is_write(bio_op(bio))) {
2120 			count_vm_events(PGPGOUT, count);
2121 		} else {
2122 			task_io_account_read(bio->bi_iter.bi_size);
2123 			count_vm_events(PGPGIN, count);
2124 		}
2125 
2126 		if (unlikely(block_dump)) {
2127 			char b[BDEVNAME_SIZE];
2128 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2129 			current->comm, task_pid_nr(current),
2130 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2131 				(unsigned long long)bio->bi_iter.bi_sector,
2132 				bdevname(bio->bi_bdev, b),
2133 				count);
2134 		}
2135 	}
2136 
2137 	return generic_make_request(bio);
2138 }
2139 EXPORT_SYMBOL(submit_bio);
2140 
2141 /**
2142  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2143  *                              for new the queue limits
2144  * @q:  the queue
2145  * @rq: the request being checked
2146  *
2147  * Description:
2148  *    @rq may have been made based on weaker limitations of upper-level queues
2149  *    in request stacking drivers, and it may violate the limitation of @q.
2150  *    Since the block layer and the underlying device driver trust @rq
2151  *    after it is inserted to @q, it should be checked against @q before
2152  *    the insertion using this generic function.
2153  *
2154  *    Request stacking drivers like request-based dm may change the queue
2155  *    limits when retrying requests on other queues. Those requests need
2156  *    to be checked against the new queue limits again during dispatch.
2157  */
2158 static int blk_cloned_rq_check_limits(struct request_queue *q,
2159 				      struct request *rq)
2160 {
2161 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2162 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2163 		return -EIO;
2164 	}
2165 
2166 	/*
2167 	 * queue's settings related to segment counting like q->bounce_pfn
2168 	 * may differ from that of other stacking queues.
2169 	 * Recalculate it to check the request correctly on this queue's
2170 	 * limitation.
2171 	 */
2172 	blk_recalc_rq_segments(rq);
2173 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2174 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2175 		return -EIO;
2176 	}
2177 
2178 	return 0;
2179 }
2180 
2181 /**
2182  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2183  * @q:  the queue to submit the request
2184  * @rq: the request being queued
2185  */
2186 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2187 {
2188 	unsigned long flags;
2189 	int where = ELEVATOR_INSERT_BACK;
2190 
2191 	if (blk_cloned_rq_check_limits(q, rq))
2192 		return -EIO;
2193 
2194 	if (rq->rq_disk &&
2195 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2196 		return -EIO;
2197 
2198 	if (q->mq_ops) {
2199 		if (blk_queue_io_stat(q))
2200 			blk_account_io_start(rq, true);
2201 		blk_mq_sched_insert_request(rq, false, true, false, false);
2202 		return 0;
2203 	}
2204 
2205 	spin_lock_irqsave(q->queue_lock, flags);
2206 	if (unlikely(blk_queue_dying(q))) {
2207 		spin_unlock_irqrestore(q->queue_lock, flags);
2208 		return -ENODEV;
2209 	}
2210 
2211 	/*
2212 	 * Submitting request must be dequeued before calling this function
2213 	 * because it will be linked to another request_queue
2214 	 */
2215 	BUG_ON(blk_queued_rq(rq));
2216 
2217 	if (op_is_flush(rq->cmd_flags))
2218 		where = ELEVATOR_INSERT_FLUSH;
2219 
2220 	add_acct_request(q, rq, where);
2221 	if (where == ELEVATOR_INSERT_FLUSH)
2222 		__blk_run_queue(q);
2223 	spin_unlock_irqrestore(q->queue_lock, flags);
2224 
2225 	return 0;
2226 }
2227 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2228 
2229 /**
2230  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2231  * @rq: request to examine
2232  *
2233  * Description:
2234  *     A request could be merge of IOs which require different failure
2235  *     handling.  This function determines the number of bytes which
2236  *     can be failed from the beginning of the request without
2237  *     crossing into area which need to be retried further.
2238  *
2239  * Return:
2240  *     The number of bytes to fail.
2241  *
2242  * Context:
2243  *     queue_lock must be held.
2244  */
2245 unsigned int blk_rq_err_bytes(const struct request *rq)
2246 {
2247 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2248 	unsigned int bytes = 0;
2249 	struct bio *bio;
2250 
2251 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2252 		return blk_rq_bytes(rq);
2253 
2254 	/*
2255 	 * Currently the only 'mixing' which can happen is between
2256 	 * different fastfail types.  We can safely fail portions
2257 	 * which have all the failfast bits that the first one has -
2258 	 * the ones which are at least as eager to fail as the first
2259 	 * one.
2260 	 */
2261 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2262 		if ((bio->bi_opf & ff) != ff)
2263 			break;
2264 		bytes += bio->bi_iter.bi_size;
2265 	}
2266 
2267 	/* this could lead to infinite loop */
2268 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2269 	return bytes;
2270 }
2271 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2272 
2273 void blk_account_io_completion(struct request *req, unsigned int bytes)
2274 {
2275 	if (blk_do_io_stat(req)) {
2276 		const int rw = rq_data_dir(req);
2277 		struct hd_struct *part;
2278 		int cpu;
2279 
2280 		cpu = part_stat_lock();
2281 		part = req->part;
2282 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2283 		part_stat_unlock();
2284 	}
2285 }
2286 
2287 void blk_account_io_done(struct request *req)
2288 {
2289 	/*
2290 	 * Account IO completion.  flush_rq isn't accounted as a
2291 	 * normal IO on queueing nor completion.  Accounting the
2292 	 * containing request is enough.
2293 	 */
2294 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2295 		unsigned long duration = jiffies - req->start_time;
2296 		const int rw = rq_data_dir(req);
2297 		struct hd_struct *part;
2298 		int cpu;
2299 
2300 		cpu = part_stat_lock();
2301 		part = req->part;
2302 
2303 		part_stat_inc(cpu, part, ios[rw]);
2304 		part_stat_add(cpu, part, ticks[rw], duration);
2305 		part_round_stats(cpu, part);
2306 		part_dec_in_flight(part, rw);
2307 
2308 		hd_struct_put(part);
2309 		part_stat_unlock();
2310 	}
2311 }
2312 
2313 #ifdef CONFIG_PM
2314 /*
2315  * Don't process normal requests when queue is suspended
2316  * or in the process of suspending/resuming
2317  */
2318 static struct request *blk_pm_peek_request(struct request_queue *q,
2319 					   struct request *rq)
2320 {
2321 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2322 	    (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2323 		return NULL;
2324 	else
2325 		return rq;
2326 }
2327 #else
2328 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2329 						  struct request *rq)
2330 {
2331 	return rq;
2332 }
2333 #endif
2334 
2335 void blk_account_io_start(struct request *rq, bool new_io)
2336 {
2337 	struct hd_struct *part;
2338 	int rw = rq_data_dir(rq);
2339 	int cpu;
2340 
2341 	if (!blk_do_io_stat(rq))
2342 		return;
2343 
2344 	cpu = part_stat_lock();
2345 
2346 	if (!new_io) {
2347 		part = rq->part;
2348 		part_stat_inc(cpu, part, merges[rw]);
2349 	} else {
2350 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2351 		if (!hd_struct_try_get(part)) {
2352 			/*
2353 			 * The partition is already being removed,
2354 			 * the request will be accounted on the disk only
2355 			 *
2356 			 * We take a reference on disk->part0 although that
2357 			 * partition will never be deleted, so we can treat
2358 			 * it as any other partition.
2359 			 */
2360 			part = &rq->rq_disk->part0;
2361 			hd_struct_get(part);
2362 		}
2363 		part_round_stats(cpu, part);
2364 		part_inc_in_flight(part, rw);
2365 		rq->part = part;
2366 	}
2367 
2368 	part_stat_unlock();
2369 }
2370 
2371 /**
2372  * blk_peek_request - peek at the top of a request queue
2373  * @q: request queue to peek at
2374  *
2375  * Description:
2376  *     Return the request at the top of @q.  The returned request
2377  *     should be started using blk_start_request() before LLD starts
2378  *     processing it.
2379  *
2380  * Return:
2381  *     Pointer to the request at the top of @q if available.  Null
2382  *     otherwise.
2383  *
2384  * Context:
2385  *     queue_lock must be held.
2386  */
2387 struct request *blk_peek_request(struct request_queue *q)
2388 {
2389 	struct request *rq;
2390 	int ret;
2391 
2392 	while ((rq = __elv_next_request(q)) != NULL) {
2393 
2394 		rq = blk_pm_peek_request(q, rq);
2395 		if (!rq)
2396 			break;
2397 
2398 		if (!(rq->rq_flags & RQF_STARTED)) {
2399 			/*
2400 			 * This is the first time the device driver
2401 			 * sees this request (possibly after
2402 			 * requeueing).  Notify IO scheduler.
2403 			 */
2404 			if (rq->rq_flags & RQF_SORTED)
2405 				elv_activate_rq(q, rq);
2406 
2407 			/*
2408 			 * just mark as started even if we don't start
2409 			 * it, a request that has been delayed should
2410 			 * not be passed by new incoming requests
2411 			 */
2412 			rq->rq_flags |= RQF_STARTED;
2413 			trace_block_rq_issue(q, rq);
2414 		}
2415 
2416 		if (!q->boundary_rq || q->boundary_rq == rq) {
2417 			q->end_sector = rq_end_sector(rq);
2418 			q->boundary_rq = NULL;
2419 		}
2420 
2421 		if (rq->rq_flags & RQF_DONTPREP)
2422 			break;
2423 
2424 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2425 			/*
2426 			 * make sure space for the drain appears we
2427 			 * know we can do this because max_hw_segments
2428 			 * has been adjusted to be one fewer than the
2429 			 * device can handle
2430 			 */
2431 			rq->nr_phys_segments++;
2432 		}
2433 
2434 		if (!q->prep_rq_fn)
2435 			break;
2436 
2437 		ret = q->prep_rq_fn(q, rq);
2438 		if (ret == BLKPREP_OK) {
2439 			break;
2440 		} else if (ret == BLKPREP_DEFER) {
2441 			/*
2442 			 * the request may have been (partially) prepped.
2443 			 * we need to keep this request in the front to
2444 			 * avoid resource deadlock.  RQF_STARTED will
2445 			 * prevent other fs requests from passing this one.
2446 			 */
2447 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2448 			    !(rq->rq_flags & RQF_DONTPREP)) {
2449 				/*
2450 				 * remove the space for the drain we added
2451 				 * so that we don't add it again
2452 				 */
2453 				--rq->nr_phys_segments;
2454 			}
2455 
2456 			rq = NULL;
2457 			break;
2458 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2459 			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2460 
2461 			rq->rq_flags |= RQF_QUIET;
2462 			/*
2463 			 * Mark this request as started so we don't trigger
2464 			 * any debug logic in the end I/O path.
2465 			 */
2466 			blk_start_request(rq);
2467 			__blk_end_request_all(rq, err);
2468 		} else {
2469 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2470 			break;
2471 		}
2472 	}
2473 
2474 	return rq;
2475 }
2476 EXPORT_SYMBOL(blk_peek_request);
2477 
2478 void blk_dequeue_request(struct request *rq)
2479 {
2480 	struct request_queue *q = rq->q;
2481 
2482 	BUG_ON(list_empty(&rq->queuelist));
2483 	BUG_ON(ELV_ON_HASH(rq));
2484 
2485 	list_del_init(&rq->queuelist);
2486 
2487 	/*
2488 	 * the time frame between a request being removed from the lists
2489 	 * and to it is freed is accounted as io that is in progress at
2490 	 * the driver side.
2491 	 */
2492 	if (blk_account_rq(rq)) {
2493 		q->in_flight[rq_is_sync(rq)]++;
2494 		set_io_start_time_ns(rq);
2495 	}
2496 }
2497 
2498 /**
2499  * blk_start_request - start request processing on the driver
2500  * @req: request to dequeue
2501  *
2502  * Description:
2503  *     Dequeue @req and start timeout timer on it.  This hands off the
2504  *     request to the driver.
2505  *
2506  *     Block internal functions which don't want to start timer should
2507  *     call blk_dequeue_request().
2508  *
2509  * Context:
2510  *     queue_lock must be held.
2511  */
2512 void blk_start_request(struct request *req)
2513 {
2514 	blk_dequeue_request(req);
2515 
2516 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2517 		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2518 		req->rq_flags |= RQF_STATS;
2519 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2520 	}
2521 
2522 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2523 	blk_add_timer(req);
2524 }
2525 EXPORT_SYMBOL(blk_start_request);
2526 
2527 /**
2528  * blk_fetch_request - fetch a request from a request queue
2529  * @q: request queue to fetch a request from
2530  *
2531  * Description:
2532  *     Return the request at the top of @q.  The request is started on
2533  *     return and LLD can start processing it immediately.
2534  *
2535  * Return:
2536  *     Pointer to the request at the top of @q if available.  Null
2537  *     otherwise.
2538  *
2539  * Context:
2540  *     queue_lock must be held.
2541  */
2542 struct request *blk_fetch_request(struct request_queue *q)
2543 {
2544 	struct request *rq;
2545 
2546 	rq = blk_peek_request(q);
2547 	if (rq)
2548 		blk_start_request(rq);
2549 	return rq;
2550 }
2551 EXPORT_SYMBOL(blk_fetch_request);
2552 
2553 /**
2554  * blk_update_request - Special helper function for request stacking drivers
2555  * @req:      the request being processed
2556  * @error:    %0 for success, < %0 for error
2557  * @nr_bytes: number of bytes to complete @req
2558  *
2559  * Description:
2560  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2561  *     the request structure even if @req doesn't have leftover.
2562  *     If @req has leftover, sets it up for the next range of segments.
2563  *
2564  *     This special helper function is only for request stacking drivers
2565  *     (e.g. request-based dm) so that they can handle partial completion.
2566  *     Actual device drivers should use blk_end_request instead.
2567  *
2568  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2569  *     %false return from this function.
2570  *
2571  * Return:
2572  *     %false - this request doesn't have any more data
2573  *     %true  - this request has more data
2574  **/
2575 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2576 {
2577 	int total_bytes;
2578 
2579 	trace_block_rq_complete(req, error, nr_bytes);
2580 
2581 	if (!req->bio)
2582 		return false;
2583 
2584 	if (error && !blk_rq_is_passthrough(req) &&
2585 	    !(req->rq_flags & RQF_QUIET)) {
2586 		char *error_type;
2587 
2588 		switch (error) {
2589 		case -ENOLINK:
2590 			error_type = "recoverable transport";
2591 			break;
2592 		case -EREMOTEIO:
2593 			error_type = "critical target";
2594 			break;
2595 		case -EBADE:
2596 			error_type = "critical nexus";
2597 			break;
2598 		case -ETIMEDOUT:
2599 			error_type = "timeout";
2600 			break;
2601 		case -ENOSPC:
2602 			error_type = "critical space allocation";
2603 			break;
2604 		case -ENODATA:
2605 			error_type = "critical medium";
2606 			break;
2607 		case -EIO:
2608 		default:
2609 			error_type = "I/O";
2610 			break;
2611 		}
2612 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2613 				   __func__, error_type, req->rq_disk ?
2614 				   req->rq_disk->disk_name : "?",
2615 				   (unsigned long long)blk_rq_pos(req));
2616 
2617 	}
2618 
2619 	blk_account_io_completion(req, nr_bytes);
2620 
2621 	total_bytes = 0;
2622 	while (req->bio) {
2623 		struct bio *bio = req->bio;
2624 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2625 
2626 		if (bio_bytes == bio->bi_iter.bi_size)
2627 			req->bio = bio->bi_next;
2628 
2629 		/* Completion has already been traced */
2630 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2631 		req_bio_endio(req, bio, bio_bytes, error);
2632 
2633 		total_bytes += bio_bytes;
2634 		nr_bytes -= bio_bytes;
2635 
2636 		if (!nr_bytes)
2637 			break;
2638 	}
2639 
2640 	/*
2641 	 * completely done
2642 	 */
2643 	if (!req->bio) {
2644 		/*
2645 		 * Reset counters so that the request stacking driver
2646 		 * can find how many bytes remain in the request
2647 		 * later.
2648 		 */
2649 		req->__data_len = 0;
2650 		return false;
2651 	}
2652 
2653 	req->__data_len -= total_bytes;
2654 
2655 	/* update sector only for requests with clear definition of sector */
2656 	if (!blk_rq_is_passthrough(req))
2657 		req->__sector += total_bytes >> 9;
2658 
2659 	/* mixed attributes always follow the first bio */
2660 	if (req->rq_flags & RQF_MIXED_MERGE) {
2661 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2662 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2663 	}
2664 
2665 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2666 		/*
2667 		 * If total number of sectors is less than the first segment
2668 		 * size, something has gone terribly wrong.
2669 		 */
2670 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2671 			blk_dump_rq_flags(req, "request botched");
2672 			req->__data_len = blk_rq_cur_bytes(req);
2673 		}
2674 
2675 		/* recalculate the number of segments */
2676 		blk_recalc_rq_segments(req);
2677 	}
2678 
2679 	return true;
2680 }
2681 EXPORT_SYMBOL_GPL(blk_update_request);
2682 
2683 static bool blk_update_bidi_request(struct request *rq, int error,
2684 				    unsigned int nr_bytes,
2685 				    unsigned int bidi_bytes)
2686 {
2687 	if (blk_update_request(rq, error, nr_bytes))
2688 		return true;
2689 
2690 	/* Bidi request must be completed as a whole */
2691 	if (unlikely(blk_bidi_rq(rq)) &&
2692 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2693 		return true;
2694 
2695 	if (blk_queue_add_random(rq->q))
2696 		add_disk_randomness(rq->rq_disk);
2697 
2698 	return false;
2699 }
2700 
2701 /**
2702  * blk_unprep_request - unprepare a request
2703  * @req:	the request
2704  *
2705  * This function makes a request ready for complete resubmission (or
2706  * completion).  It happens only after all error handling is complete,
2707  * so represents the appropriate moment to deallocate any resources
2708  * that were allocated to the request in the prep_rq_fn.  The queue
2709  * lock is held when calling this.
2710  */
2711 void blk_unprep_request(struct request *req)
2712 {
2713 	struct request_queue *q = req->q;
2714 
2715 	req->rq_flags &= ~RQF_DONTPREP;
2716 	if (q->unprep_rq_fn)
2717 		q->unprep_rq_fn(q, req);
2718 }
2719 EXPORT_SYMBOL_GPL(blk_unprep_request);
2720 
2721 /*
2722  * queue lock must be held
2723  */
2724 void blk_finish_request(struct request *req, int error)
2725 {
2726 	struct request_queue *q = req->q;
2727 
2728 	if (req->rq_flags & RQF_STATS)
2729 		blk_stat_add(req);
2730 
2731 	if (req->rq_flags & RQF_QUEUED)
2732 		blk_queue_end_tag(q, req);
2733 
2734 	BUG_ON(blk_queued_rq(req));
2735 
2736 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2737 		laptop_io_completion(req->q->backing_dev_info);
2738 
2739 	blk_delete_timer(req);
2740 
2741 	if (req->rq_flags & RQF_DONTPREP)
2742 		blk_unprep_request(req);
2743 
2744 	blk_account_io_done(req);
2745 
2746 	if (req->end_io) {
2747 		wbt_done(req->q->rq_wb, &req->issue_stat);
2748 		req->end_io(req, error);
2749 	} else {
2750 		if (blk_bidi_rq(req))
2751 			__blk_put_request(req->next_rq->q, req->next_rq);
2752 
2753 		__blk_put_request(q, req);
2754 	}
2755 }
2756 EXPORT_SYMBOL(blk_finish_request);
2757 
2758 /**
2759  * blk_end_bidi_request - Complete a bidi request
2760  * @rq:         the request to complete
2761  * @error:      %0 for success, < %0 for error
2762  * @nr_bytes:   number of bytes to complete @rq
2763  * @bidi_bytes: number of bytes to complete @rq->next_rq
2764  *
2765  * Description:
2766  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2767  *     Drivers that supports bidi can safely call this member for any
2768  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2769  *     just ignored.
2770  *
2771  * Return:
2772  *     %false - we are done with this request
2773  *     %true  - still buffers pending for this request
2774  **/
2775 static bool blk_end_bidi_request(struct request *rq, int error,
2776 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2777 {
2778 	struct request_queue *q = rq->q;
2779 	unsigned long flags;
2780 
2781 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2782 		return true;
2783 
2784 	spin_lock_irqsave(q->queue_lock, flags);
2785 	blk_finish_request(rq, error);
2786 	spin_unlock_irqrestore(q->queue_lock, flags);
2787 
2788 	return false;
2789 }
2790 
2791 /**
2792  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2793  * @rq:         the request to complete
2794  * @error:      %0 for success, < %0 for error
2795  * @nr_bytes:   number of bytes to complete @rq
2796  * @bidi_bytes: number of bytes to complete @rq->next_rq
2797  *
2798  * Description:
2799  *     Identical to blk_end_bidi_request() except that queue lock is
2800  *     assumed to be locked on entry and remains so on return.
2801  *
2802  * Return:
2803  *     %false - we are done with this request
2804  *     %true  - still buffers pending for this request
2805  **/
2806 static bool __blk_end_bidi_request(struct request *rq, int error,
2807 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2808 {
2809 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2810 		return true;
2811 
2812 	blk_finish_request(rq, error);
2813 
2814 	return false;
2815 }
2816 
2817 /**
2818  * blk_end_request - Helper function for drivers to complete the request.
2819  * @rq:       the request being processed
2820  * @error:    %0 for success, < %0 for error
2821  * @nr_bytes: number of bytes to complete
2822  *
2823  * Description:
2824  *     Ends I/O on a number of bytes attached to @rq.
2825  *     If @rq has leftover, sets it up for the next range of segments.
2826  *
2827  * Return:
2828  *     %false - we are done with this request
2829  *     %true  - still buffers pending for this request
2830  **/
2831 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2832 {
2833 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2834 }
2835 EXPORT_SYMBOL(blk_end_request);
2836 
2837 /**
2838  * blk_end_request_all - Helper function for drives to finish the request.
2839  * @rq: the request to finish
2840  * @error: %0 for success, < %0 for error
2841  *
2842  * Description:
2843  *     Completely finish @rq.
2844  */
2845 void blk_end_request_all(struct request *rq, int error)
2846 {
2847 	bool pending;
2848 	unsigned int bidi_bytes = 0;
2849 
2850 	if (unlikely(blk_bidi_rq(rq)))
2851 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2852 
2853 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2854 	BUG_ON(pending);
2855 }
2856 EXPORT_SYMBOL(blk_end_request_all);
2857 
2858 /**
2859  * __blk_end_request - Helper function for drivers to complete the request.
2860  * @rq:       the request being processed
2861  * @error:    %0 for success, < %0 for error
2862  * @nr_bytes: number of bytes to complete
2863  *
2864  * Description:
2865  *     Must be called with queue lock held unlike blk_end_request().
2866  *
2867  * Return:
2868  *     %false - we are done with this request
2869  *     %true  - still buffers pending for this request
2870  **/
2871 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2872 {
2873 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2874 }
2875 EXPORT_SYMBOL(__blk_end_request);
2876 
2877 /**
2878  * __blk_end_request_all - Helper function for drives to finish the request.
2879  * @rq: the request to finish
2880  * @error: %0 for success, < %0 for error
2881  *
2882  * Description:
2883  *     Completely finish @rq.  Must be called with queue lock held.
2884  */
2885 void __blk_end_request_all(struct request *rq, int error)
2886 {
2887 	bool pending;
2888 	unsigned int bidi_bytes = 0;
2889 
2890 	if (unlikely(blk_bidi_rq(rq)))
2891 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2892 
2893 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2894 	BUG_ON(pending);
2895 }
2896 EXPORT_SYMBOL(__blk_end_request_all);
2897 
2898 /**
2899  * __blk_end_request_cur - Helper function to finish the current request chunk.
2900  * @rq: the request to finish the current chunk for
2901  * @error: %0 for success, < %0 for error
2902  *
2903  * Description:
2904  *     Complete the current consecutively mapped chunk from @rq.  Must
2905  *     be called with queue lock held.
2906  *
2907  * Return:
2908  *     %false - we are done with this request
2909  *     %true  - still buffers pending for this request
2910  */
2911 bool __blk_end_request_cur(struct request *rq, int error)
2912 {
2913 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2914 }
2915 EXPORT_SYMBOL(__blk_end_request_cur);
2916 
2917 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2918 		     struct bio *bio)
2919 {
2920 	if (bio_has_data(bio))
2921 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2922 
2923 	rq->__data_len = bio->bi_iter.bi_size;
2924 	rq->bio = rq->biotail = bio;
2925 
2926 	if (bio->bi_bdev)
2927 		rq->rq_disk = bio->bi_bdev->bd_disk;
2928 }
2929 
2930 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2931 /**
2932  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2933  * @rq: the request to be flushed
2934  *
2935  * Description:
2936  *     Flush all pages in @rq.
2937  */
2938 void rq_flush_dcache_pages(struct request *rq)
2939 {
2940 	struct req_iterator iter;
2941 	struct bio_vec bvec;
2942 
2943 	rq_for_each_segment(bvec, rq, iter)
2944 		flush_dcache_page(bvec.bv_page);
2945 }
2946 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2947 #endif
2948 
2949 /**
2950  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2951  * @q : the queue of the device being checked
2952  *
2953  * Description:
2954  *    Check if underlying low-level drivers of a device are busy.
2955  *    If the drivers want to export their busy state, they must set own
2956  *    exporting function using blk_queue_lld_busy() first.
2957  *
2958  *    Basically, this function is used only by request stacking drivers
2959  *    to stop dispatching requests to underlying devices when underlying
2960  *    devices are busy.  This behavior helps more I/O merging on the queue
2961  *    of the request stacking driver and prevents I/O throughput regression
2962  *    on burst I/O load.
2963  *
2964  * Return:
2965  *    0 - Not busy (The request stacking driver should dispatch request)
2966  *    1 - Busy (The request stacking driver should stop dispatching request)
2967  */
2968 int blk_lld_busy(struct request_queue *q)
2969 {
2970 	if (q->lld_busy_fn)
2971 		return q->lld_busy_fn(q);
2972 
2973 	return 0;
2974 }
2975 EXPORT_SYMBOL_GPL(blk_lld_busy);
2976 
2977 /**
2978  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2979  * @rq: the clone request to be cleaned up
2980  *
2981  * Description:
2982  *     Free all bios in @rq for a cloned request.
2983  */
2984 void blk_rq_unprep_clone(struct request *rq)
2985 {
2986 	struct bio *bio;
2987 
2988 	while ((bio = rq->bio) != NULL) {
2989 		rq->bio = bio->bi_next;
2990 
2991 		bio_put(bio);
2992 	}
2993 }
2994 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2995 
2996 /*
2997  * Copy attributes of the original request to the clone request.
2998  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2999  */
3000 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3001 {
3002 	dst->cpu = src->cpu;
3003 	dst->__sector = blk_rq_pos(src);
3004 	dst->__data_len = blk_rq_bytes(src);
3005 	dst->nr_phys_segments = src->nr_phys_segments;
3006 	dst->ioprio = src->ioprio;
3007 	dst->extra_len = src->extra_len;
3008 }
3009 
3010 /**
3011  * blk_rq_prep_clone - Helper function to setup clone request
3012  * @rq: the request to be setup
3013  * @rq_src: original request to be cloned
3014  * @bs: bio_set that bios for clone are allocated from
3015  * @gfp_mask: memory allocation mask for bio
3016  * @bio_ctr: setup function to be called for each clone bio.
3017  *           Returns %0 for success, non %0 for failure.
3018  * @data: private data to be passed to @bio_ctr
3019  *
3020  * Description:
3021  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3022  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3023  *     are not copied, and copying such parts is the caller's responsibility.
3024  *     Also, pages which the original bios are pointing to are not copied
3025  *     and the cloned bios just point same pages.
3026  *     So cloned bios must be completed before original bios, which means
3027  *     the caller must complete @rq before @rq_src.
3028  */
3029 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3030 		      struct bio_set *bs, gfp_t gfp_mask,
3031 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3032 		      void *data)
3033 {
3034 	struct bio *bio, *bio_src;
3035 
3036 	if (!bs)
3037 		bs = fs_bio_set;
3038 
3039 	__rq_for_each_bio(bio_src, rq_src) {
3040 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3041 		if (!bio)
3042 			goto free_and_out;
3043 
3044 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3045 			goto free_and_out;
3046 
3047 		if (rq->bio) {
3048 			rq->biotail->bi_next = bio;
3049 			rq->biotail = bio;
3050 		} else
3051 			rq->bio = rq->biotail = bio;
3052 	}
3053 
3054 	__blk_rq_prep_clone(rq, rq_src);
3055 
3056 	return 0;
3057 
3058 free_and_out:
3059 	if (bio)
3060 		bio_put(bio);
3061 	blk_rq_unprep_clone(rq);
3062 
3063 	return -ENOMEM;
3064 }
3065 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3066 
3067 int kblockd_schedule_work(struct work_struct *work)
3068 {
3069 	return queue_work(kblockd_workqueue, work);
3070 }
3071 EXPORT_SYMBOL(kblockd_schedule_work);
3072 
3073 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3074 {
3075 	return queue_work_on(cpu, kblockd_workqueue, work);
3076 }
3077 EXPORT_SYMBOL(kblockd_schedule_work_on);
3078 
3079 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3080 				unsigned long delay)
3081 {
3082 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3083 }
3084 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3085 
3086 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3087 				  unsigned long delay)
3088 {
3089 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3090 }
3091 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3092 
3093 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3094 				     unsigned long delay)
3095 {
3096 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3097 }
3098 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3099 
3100 /**
3101  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3102  * @plug:	The &struct blk_plug that needs to be initialized
3103  *
3104  * Description:
3105  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3106  *   pending I/O should the task end up blocking between blk_start_plug() and
3107  *   blk_finish_plug(). This is important from a performance perspective, but
3108  *   also ensures that we don't deadlock. For instance, if the task is blocking
3109  *   for a memory allocation, memory reclaim could end up wanting to free a
3110  *   page belonging to that request that is currently residing in our private
3111  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3112  *   this kind of deadlock.
3113  */
3114 void blk_start_plug(struct blk_plug *plug)
3115 {
3116 	struct task_struct *tsk = current;
3117 
3118 	/*
3119 	 * If this is a nested plug, don't actually assign it.
3120 	 */
3121 	if (tsk->plug)
3122 		return;
3123 
3124 	INIT_LIST_HEAD(&plug->list);
3125 	INIT_LIST_HEAD(&plug->mq_list);
3126 	INIT_LIST_HEAD(&plug->cb_list);
3127 	/*
3128 	 * Store ordering should not be needed here, since a potential
3129 	 * preempt will imply a full memory barrier
3130 	 */
3131 	tsk->plug = plug;
3132 }
3133 EXPORT_SYMBOL(blk_start_plug);
3134 
3135 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3136 {
3137 	struct request *rqa = container_of(a, struct request, queuelist);
3138 	struct request *rqb = container_of(b, struct request, queuelist);
3139 
3140 	return !(rqa->q < rqb->q ||
3141 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3142 }
3143 
3144 /*
3145  * If 'from_schedule' is true, then postpone the dispatch of requests
3146  * until a safe kblockd context. We due this to avoid accidental big
3147  * additional stack usage in driver dispatch, in places where the originally
3148  * plugger did not intend it.
3149  */
3150 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3151 			    bool from_schedule)
3152 	__releases(q->queue_lock)
3153 {
3154 	trace_block_unplug(q, depth, !from_schedule);
3155 
3156 	if (from_schedule)
3157 		blk_run_queue_async(q);
3158 	else
3159 		__blk_run_queue(q);
3160 	spin_unlock(q->queue_lock);
3161 }
3162 
3163 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3164 {
3165 	LIST_HEAD(callbacks);
3166 
3167 	while (!list_empty(&plug->cb_list)) {
3168 		list_splice_init(&plug->cb_list, &callbacks);
3169 
3170 		while (!list_empty(&callbacks)) {
3171 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3172 							  struct blk_plug_cb,
3173 							  list);
3174 			list_del(&cb->list);
3175 			cb->callback(cb, from_schedule);
3176 		}
3177 	}
3178 }
3179 
3180 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3181 				      int size)
3182 {
3183 	struct blk_plug *plug = current->plug;
3184 	struct blk_plug_cb *cb;
3185 
3186 	if (!plug)
3187 		return NULL;
3188 
3189 	list_for_each_entry(cb, &plug->cb_list, list)
3190 		if (cb->callback == unplug && cb->data == data)
3191 			return cb;
3192 
3193 	/* Not currently on the callback list */
3194 	BUG_ON(size < sizeof(*cb));
3195 	cb = kzalloc(size, GFP_ATOMIC);
3196 	if (cb) {
3197 		cb->data = data;
3198 		cb->callback = unplug;
3199 		list_add(&cb->list, &plug->cb_list);
3200 	}
3201 	return cb;
3202 }
3203 EXPORT_SYMBOL(blk_check_plugged);
3204 
3205 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3206 {
3207 	struct request_queue *q;
3208 	unsigned long flags;
3209 	struct request *rq;
3210 	LIST_HEAD(list);
3211 	unsigned int depth;
3212 
3213 	flush_plug_callbacks(plug, from_schedule);
3214 
3215 	if (!list_empty(&plug->mq_list))
3216 		blk_mq_flush_plug_list(plug, from_schedule);
3217 
3218 	if (list_empty(&plug->list))
3219 		return;
3220 
3221 	list_splice_init(&plug->list, &list);
3222 
3223 	list_sort(NULL, &list, plug_rq_cmp);
3224 
3225 	q = NULL;
3226 	depth = 0;
3227 
3228 	/*
3229 	 * Save and disable interrupts here, to avoid doing it for every
3230 	 * queue lock we have to take.
3231 	 */
3232 	local_irq_save(flags);
3233 	while (!list_empty(&list)) {
3234 		rq = list_entry_rq(list.next);
3235 		list_del_init(&rq->queuelist);
3236 		BUG_ON(!rq->q);
3237 		if (rq->q != q) {
3238 			/*
3239 			 * This drops the queue lock
3240 			 */
3241 			if (q)
3242 				queue_unplugged(q, depth, from_schedule);
3243 			q = rq->q;
3244 			depth = 0;
3245 			spin_lock(q->queue_lock);
3246 		}
3247 
3248 		/*
3249 		 * Short-circuit if @q is dead
3250 		 */
3251 		if (unlikely(blk_queue_dying(q))) {
3252 			__blk_end_request_all(rq, -ENODEV);
3253 			continue;
3254 		}
3255 
3256 		/*
3257 		 * rq is already accounted, so use raw insert
3258 		 */
3259 		if (op_is_flush(rq->cmd_flags))
3260 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3261 		else
3262 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3263 
3264 		depth++;
3265 	}
3266 
3267 	/*
3268 	 * This drops the queue lock
3269 	 */
3270 	if (q)
3271 		queue_unplugged(q, depth, from_schedule);
3272 
3273 	local_irq_restore(flags);
3274 }
3275 
3276 void blk_finish_plug(struct blk_plug *plug)
3277 {
3278 	if (plug != current->plug)
3279 		return;
3280 	blk_flush_plug_list(plug, false);
3281 
3282 	current->plug = NULL;
3283 }
3284 EXPORT_SYMBOL(blk_finish_plug);
3285 
3286 #ifdef CONFIG_PM
3287 /**
3288  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3289  * @q: the queue of the device
3290  * @dev: the device the queue belongs to
3291  *
3292  * Description:
3293  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3294  *    @dev. Drivers that want to take advantage of request-based runtime PM
3295  *    should call this function after @dev has been initialized, and its
3296  *    request queue @q has been allocated, and runtime PM for it can not happen
3297  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3298  *    cases, driver should call this function before any I/O has taken place.
3299  *
3300  *    This function takes care of setting up using auto suspend for the device,
3301  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3302  *    until an updated value is either set by user or by driver. Drivers do
3303  *    not need to touch other autosuspend settings.
3304  *
3305  *    The block layer runtime PM is request based, so only works for drivers
3306  *    that use request as their IO unit instead of those directly use bio's.
3307  */
3308 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3309 {
3310 	q->dev = dev;
3311 	q->rpm_status = RPM_ACTIVE;
3312 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3313 	pm_runtime_use_autosuspend(q->dev);
3314 }
3315 EXPORT_SYMBOL(blk_pm_runtime_init);
3316 
3317 /**
3318  * blk_pre_runtime_suspend - Pre runtime suspend check
3319  * @q: the queue of the device
3320  *
3321  * Description:
3322  *    This function will check if runtime suspend is allowed for the device
3323  *    by examining if there are any requests pending in the queue. If there
3324  *    are requests pending, the device can not be runtime suspended; otherwise,
3325  *    the queue's status will be updated to SUSPENDING and the driver can
3326  *    proceed to suspend the device.
3327  *
3328  *    For the not allowed case, we mark last busy for the device so that
3329  *    runtime PM core will try to autosuspend it some time later.
3330  *
3331  *    This function should be called near the start of the device's
3332  *    runtime_suspend callback.
3333  *
3334  * Return:
3335  *    0		- OK to runtime suspend the device
3336  *    -EBUSY	- Device should not be runtime suspended
3337  */
3338 int blk_pre_runtime_suspend(struct request_queue *q)
3339 {
3340 	int ret = 0;
3341 
3342 	if (!q->dev)
3343 		return ret;
3344 
3345 	spin_lock_irq(q->queue_lock);
3346 	if (q->nr_pending) {
3347 		ret = -EBUSY;
3348 		pm_runtime_mark_last_busy(q->dev);
3349 	} else {
3350 		q->rpm_status = RPM_SUSPENDING;
3351 	}
3352 	spin_unlock_irq(q->queue_lock);
3353 	return ret;
3354 }
3355 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3356 
3357 /**
3358  * blk_post_runtime_suspend - Post runtime suspend processing
3359  * @q: the queue of the device
3360  * @err: return value of the device's runtime_suspend function
3361  *
3362  * Description:
3363  *    Update the queue's runtime status according to the return value of the
3364  *    device's runtime suspend function and mark last busy for the device so
3365  *    that PM core will try to auto suspend the device at a later time.
3366  *
3367  *    This function should be called near the end of the device's
3368  *    runtime_suspend callback.
3369  */
3370 void blk_post_runtime_suspend(struct request_queue *q, int err)
3371 {
3372 	if (!q->dev)
3373 		return;
3374 
3375 	spin_lock_irq(q->queue_lock);
3376 	if (!err) {
3377 		q->rpm_status = RPM_SUSPENDED;
3378 	} else {
3379 		q->rpm_status = RPM_ACTIVE;
3380 		pm_runtime_mark_last_busy(q->dev);
3381 	}
3382 	spin_unlock_irq(q->queue_lock);
3383 }
3384 EXPORT_SYMBOL(blk_post_runtime_suspend);
3385 
3386 /**
3387  * blk_pre_runtime_resume - Pre runtime resume processing
3388  * @q: the queue of the device
3389  *
3390  * Description:
3391  *    Update the queue's runtime status to RESUMING in preparation for the
3392  *    runtime resume of the device.
3393  *
3394  *    This function should be called near the start of the device's
3395  *    runtime_resume callback.
3396  */
3397 void blk_pre_runtime_resume(struct request_queue *q)
3398 {
3399 	if (!q->dev)
3400 		return;
3401 
3402 	spin_lock_irq(q->queue_lock);
3403 	q->rpm_status = RPM_RESUMING;
3404 	spin_unlock_irq(q->queue_lock);
3405 }
3406 EXPORT_SYMBOL(blk_pre_runtime_resume);
3407 
3408 /**
3409  * blk_post_runtime_resume - Post runtime resume processing
3410  * @q: the queue of the device
3411  * @err: return value of the device's runtime_resume function
3412  *
3413  * Description:
3414  *    Update the queue's runtime status according to the return value of the
3415  *    device's runtime_resume function. If it is successfully resumed, process
3416  *    the requests that are queued into the device's queue when it is resuming
3417  *    and then mark last busy and initiate autosuspend for it.
3418  *
3419  *    This function should be called near the end of the device's
3420  *    runtime_resume callback.
3421  */
3422 void blk_post_runtime_resume(struct request_queue *q, int err)
3423 {
3424 	if (!q->dev)
3425 		return;
3426 
3427 	spin_lock_irq(q->queue_lock);
3428 	if (!err) {
3429 		q->rpm_status = RPM_ACTIVE;
3430 		__blk_run_queue(q);
3431 		pm_runtime_mark_last_busy(q->dev);
3432 		pm_request_autosuspend(q->dev);
3433 	} else {
3434 		q->rpm_status = RPM_SUSPENDED;
3435 	}
3436 	spin_unlock_irq(q->queue_lock);
3437 }
3438 EXPORT_SYMBOL(blk_post_runtime_resume);
3439 
3440 /**
3441  * blk_set_runtime_active - Force runtime status of the queue to be active
3442  * @q: the queue of the device
3443  *
3444  * If the device is left runtime suspended during system suspend the resume
3445  * hook typically resumes the device and corrects runtime status
3446  * accordingly. However, that does not affect the queue runtime PM status
3447  * which is still "suspended". This prevents processing requests from the
3448  * queue.
3449  *
3450  * This function can be used in driver's resume hook to correct queue
3451  * runtime PM status and re-enable peeking requests from the queue. It
3452  * should be called before first request is added to the queue.
3453  */
3454 void blk_set_runtime_active(struct request_queue *q)
3455 {
3456 	spin_lock_irq(q->queue_lock);
3457 	q->rpm_status = RPM_ACTIVE;
3458 	pm_runtime_mark_last_busy(q->dev);
3459 	pm_request_autosuspend(q->dev);
3460 	spin_unlock_irq(q->queue_lock);
3461 }
3462 EXPORT_SYMBOL(blk_set_runtime_active);
3463 #endif
3464 
3465 int __init blk_dev_init(void)
3466 {
3467 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3468 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3469 			FIELD_SIZEOF(struct request, cmd_flags));
3470 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3471 			FIELD_SIZEOF(struct bio, bi_opf));
3472 
3473 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3474 	kblockd_workqueue = alloc_workqueue("kblockd",
3475 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3476 	if (!kblockd_workqueue)
3477 		panic("Failed to create kblockd\n");
3478 
3479 	request_cachep = kmem_cache_create("blkdev_requests",
3480 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3481 
3482 	blk_requestq_cachep = kmem_cache_create("request_queue",
3483 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3484 
3485 #ifdef CONFIG_DEBUG_FS
3486 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3487 #endif
3488 
3489 	return 0;
3490 }
3491