1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/blktrace_api.h> 30 #include <linux/fault-inject.h> 31 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/block.h> 34 35 #include "blk.h" 36 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 39 40 static int __make_request(struct request_queue *q, struct bio *bio); 41 42 /* 43 * For the allocated request tables 44 */ 45 static struct kmem_cache *request_cachep; 46 47 /* 48 * For queue allocation 49 */ 50 struct kmem_cache *blk_requestq_cachep; 51 52 /* 53 * Controlling structure to kblockd 54 */ 55 static struct workqueue_struct *kblockd_workqueue; 56 57 static void drive_stat_acct(struct request *rq, int new_io) 58 { 59 struct hd_struct *part; 60 int rw = rq_data_dir(rq); 61 int cpu; 62 63 if (!blk_do_io_stat(rq)) 64 return; 65 66 cpu = part_stat_lock(); 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 68 69 if (!new_io) 70 part_stat_inc(cpu, part, merges[rw]); 71 else { 72 part_round_stats(cpu, part); 73 part_inc_in_flight(part); 74 } 75 76 part_stat_unlock(); 77 } 78 79 void blk_queue_congestion_threshold(struct request_queue *q) 80 { 81 int nr; 82 83 nr = q->nr_requests - (q->nr_requests / 8) + 1; 84 if (nr > q->nr_requests) 85 nr = q->nr_requests; 86 q->nr_congestion_on = nr; 87 88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 89 if (nr < 1) 90 nr = 1; 91 q->nr_congestion_off = nr; 92 } 93 94 /** 95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 96 * @bdev: device 97 * 98 * Locates the passed device's request queue and returns the address of its 99 * backing_dev_info 100 * 101 * Will return NULL if the request queue cannot be located. 102 */ 103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 104 { 105 struct backing_dev_info *ret = NULL; 106 struct request_queue *q = bdev_get_queue(bdev); 107 108 if (q) 109 ret = &q->backing_dev_info; 110 return ret; 111 } 112 EXPORT_SYMBOL(blk_get_backing_dev_info); 113 114 void blk_rq_init(struct request_queue *q, struct request *rq) 115 { 116 memset(rq, 0, sizeof(*rq)); 117 118 INIT_LIST_HEAD(&rq->queuelist); 119 INIT_LIST_HEAD(&rq->timeout_list); 120 rq->cpu = -1; 121 rq->q = q; 122 rq->__sector = (sector_t) -1; 123 INIT_HLIST_NODE(&rq->hash); 124 RB_CLEAR_NODE(&rq->rb_node); 125 rq->cmd = rq->__cmd; 126 rq->cmd_len = BLK_MAX_CDB; 127 rq->tag = -1; 128 rq->ref_count = 1; 129 rq->start_time = jiffies; 130 } 131 EXPORT_SYMBOL(blk_rq_init); 132 133 static void req_bio_endio(struct request *rq, struct bio *bio, 134 unsigned int nbytes, int error) 135 { 136 struct request_queue *q = rq->q; 137 138 if (&q->bar_rq != rq) { 139 if (error) 140 clear_bit(BIO_UPTODATE, &bio->bi_flags); 141 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 142 error = -EIO; 143 144 if (unlikely(nbytes > bio->bi_size)) { 145 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 146 __func__, nbytes, bio->bi_size); 147 nbytes = bio->bi_size; 148 } 149 150 if (unlikely(rq->cmd_flags & REQ_QUIET)) 151 set_bit(BIO_QUIET, &bio->bi_flags); 152 153 bio->bi_size -= nbytes; 154 bio->bi_sector += (nbytes >> 9); 155 156 if (bio_integrity(bio)) 157 bio_integrity_advance(bio, nbytes); 158 159 if (bio->bi_size == 0) 160 bio_endio(bio, error); 161 } else { 162 163 /* 164 * Okay, this is the barrier request in progress, just 165 * record the error; 166 */ 167 if (error && !q->orderr) 168 q->orderr = error; 169 } 170 } 171 172 void blk_dump_rq_flags(struct request *rq, char *msg) 173 { 174 int bit; 175 176 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 177 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 178 rq->cmd_flags); 179 180 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 181 (unsigned long long)blk_rq_pos(rq), 182 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 183 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 184 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 185 186 if (blk_pc_request(rq)) { 187 printk(KERN_INFO " cdb: "); 188 for (bit = 0; bit < BLK_MAX_CDB; bit++) 189 printk("%02x ", rq->cmd[bit]); 190 printk("\n"); 191 } 192 } 193 EXPORT_SYMBOL(blk_dump_rq_flags); 194 195 /* 196 * "plug" the device if there are no outstanding requests: this will 197 * force the transfer to start only after we have put all the requests 198 * on the list. 199 * 200 * This is called with interrupts off and no requests on the queue and 201 * with the queue lock held. 202 */ 203 void blk_plug_device(struct request_queue *q) 204 { 205 WARN_ON(!irqs_disabled()); 206 207 /* 208 * don't plug a stopped queue, it must be paired with blk_start_queue() 209 * which will restart the queueing 210 */ 211 if (blk_queue_stopped(q)) 212 return; 213 214 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 215 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 216 trace_block_plug(q); 217 } 218 } 219 EXPORT_SYMBOL(blk_plug_device); 220 221 /** 222 * blk_plug_device_unlocked - plug a device without queue lock held 223 * @q: The &struct request_queue to plug 224 * 225 * Description: 226 * Like @blk_plug_device(), but grabs the queue lock and disables 227 * interrupts. 228 **/ 229 void blk_plug_device_unlocked(struct request_queue *q) 230 { 231 unsigned long flags; 232 233 spin_lock_irqsave(q->queue_lock, flags); 234 blk_plug_device(q); 235 spin_unlock_irqrestore(q->queue_lock, flags); 236 } 237 EXPORT_SYMBOL(blk_plug_device_unlocked); 238 239 /* 240 * remove the queue from the plugged list, if present. called with 241 * queue lock held and interrupts disabled. 242 */ 243 int blk_remove_plug(struct request_queue *q) 244 { 245 WARN_ON(!irqs_disabled()); 246 247 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 248 return 0; 249 250 del_timer(&q->unplug_timer); 251 return 1; 252 } 253 EXPORT_SYMBOL(blk_remove_plug); 254 255 /* 256 * remove the plug and let it rip.. 257 */ 258 void __generic_unplug_device(struct request_queue *q) 259 { 260 if (unlikely(blk_queue_stopped(q))) 261 return; 262 if (!blk_remove_plug(q) && !blk_queue_nonrot(q)) 263 return; 264 265 q->request_fn(q); 266 } 267 268 /** 269 * generic_unplug_device - fire a request queue 270 * @q: The &struct request_queue in question 271 * 272 * Description: 273 * Linux uses plugging to build bigger requests queues before letting 274 * the device have at them. If a queue is plugged, the I/O scheduler 275 * is still adding and merging requests on the queue. Once the queue 276 * gets unplugged, the request_fn defined for the queue is invoked and 277 * transfers started. 278 **/ 279 void generic_unplug_device(struct request_queue *q) 280 { 281 if (blk_queue_plugged(q)) { 282 spin_lock_irq(q->queue_lock); 283 __generic_unplug_device(q); 284 spin_unlock_irq(q->queue_lock); 285 } 286 } 287 EXPORT_SYMBOL(generic_unplug_device); 288 289 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 290 struct page *page) 291 { 292 struct request_queue *q = bdi->unplug_io_data; 293 294 blk_unplug(q); 295 } 296 297 void blk_unplug_work(struct work_struct *work) 298 { 299 struct request_queue *q = 300 container_of(work, struct request_queue, unplug_work); 301 302 trace_block_unplug_io(q); 303 q->unplug_fn(q); 304 } 305 306 void blk_unplug_timeout(unsigned long data) 307 { 308 struct request_queue *q = (struct request_queue *)data; 309 310 trace_block_unplug_timer(q); 311 kblockd_schedule_work(q, &q->unplug_work); 312 } 313 314 void blk_unplug(struct request_queue *q) 315 { 316 /* 317 * devices don't necessarily have an ->unplug_fn defined 318 */ 319 if (q->unplug_fn) { 320 trace_block_unplug_io(q); 321 q->unplug_fn(q); 322 } 323 } 324 EXPORT_SYMBOL(blk_unplug); 325 326 /** 327 * blk_start_queue - restart a previously stopped queue 328 * @q: The &struct request_queue in question 329 * 330 * Description: 331 * blk_start_queue() will clear the stop flag on the queue, and call 332 * the request_fn for the queue if it was in a stopped state when 333 * entered. Also see blk_stop_queue(). Queue lock must be held. 334 **/ 335 void blk_start_queue(struct request_queue *q) 336 { 337 WARN_ON(!irqs_disabled()); 338 339 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 340 __blk_run_queue(q); 341 } 342 EXPORT_SYMBOL(blk_start_queue); 343 344 /** 345 * blk_stop_queue - stop a queue 346 * @q: The &struct request_queue in question 347 * 348 * Description: 349 * The Linux block layer assumes that a block driver will consume all 350 * entries on the request queue when the request_fn strategy is called. 351 * Often this will not happen, because of hardware limitations (queue 352 * depth settings). If a device driver gets a 'queue full' response, 353 * or if it simply chooses not to queue more I/O at one point, it can 354 * call this function to prevent the request_fn from being called until 355 * the driver has signalled it's ready to go again. This happens by calling 356 * blk_start_queue() to restart queue operations. Queue lock must be held. 357 **/ 358 void blk_stop_queue(struct request_queue *q) 359 { 360 blk_remove_plug(q); 361 queue_flag_set(QUEUE_FLAG_STOPPED, q); 362 } 363 EXPORT_SYMBOL(blk_stop_queue); 364 365 /** 366 * blk_sync_queue - cancel any pending callbacks on a queue 367 * @q: the queue 368 * 369 * Description: 370 * The block layer may perform asynchronous callback activity 371 * on a queue, such as calling the unplug function after a timeout. 372 * A block device may call blk_sync_queue to ensure that any 373 * such activity is cancelled, thus allowing it to release resources 374 * that the callbacks might use. The caller must already have made sure 375 * that its ->make_request_fn will not re-add plugging prior to calling 376 * this function. 377 * 378 */ 379 void blk_sync_queue(struct request_queue *q) 380 { 381 del_timer_sync(&q->unplug_timer); 382 del_timer_sync(&q->timeout); 383 cancel_work_sync(&q->unplug_work); 384 } 385 EXPORT_SYMBOL(blk_sync_queue); 386 387 /** 388 * __blk_run_queue - run a single device queue 389 * @q: The queue to run 390 * 391 * Description: 392 * See @blk_run_queue. This variant must be called with the queue lock 393 * held and interrupts disabled. 394 * 395 */ 396 void __blk_run_queue(struct request_queue *q) 397 { 398 blk_remove_plug(q); 399 400 if (unlikely(blk_queue_stopped(q))) 401 return; 402 403 if (elv_queue_empty(q)) 404 return; 405 406 /* 407 * Only recurse once to avoid overrunning the stack, let the unplug 408 * handling reinvoke the handler shortly if we already got there. 409 */ 410 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 411 q->request_fn(q); 412 queue_flag_clear(QUEUE_FLAG_REENTER, q); 413 } else { 414 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 415 kblockd_schedule_work(q, &q->unplug_work); 416 } 417 } 418 EXPORT_SYMBOL(__blk_run_queue); 419 420 /** 421 * blk_run_queue - run a single device queue 422 * @q: The queue to run 423 * 424 * Description: 425 * Invoke request handling on this queue, if it has pending work to do. 426 * May be used to restart queueing when a request has completed. 427 */ 428 void blk_run_queue(struct request_queue *q) 429 { 430 unsigned long flags; 431 432 spin_lock_irqsave(q->queue_lock, flags); 433 __blk_run_queue(q); 434 spin_unlock_irqrestore(q->queue_lock, flags); 435 } 436 EXPORT_SYMBOL(blk_run_queue); 437 438 void blk_put_queue(struct request_queue *q) 439 { 440 kobject_put(&q->kobj); 441 } 442 443 void blk_cleanup_queue(struct request_queue *q) 444 { 445 /* 446 * We know we have process context here, so we can be a little 447 * cautious and ensure that pending block actions on this device 448 * are done before moving on. Going into this function, we should 449 * not have processes doing IO to this device. 450 */ 451 blk_sync_queue(q); 452 453 mutex_lock(&q->sysfs_lock); 454 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 455 mutex_unlock(&q->sysfs_lock); 456 457 if (q->elevator) 458 elevator_exit(q->elevator); 459 460 blk_put_queue(q); 461 } 462 EXPORT_SYMBOL(blk_cleanup_queue); 463 464 static int blk_init_free_list(struct request_queue *q) 465 { 466 struct request_list *rl = &q->rq; 467 468 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 469 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 470 rl->elvpriv = 0; 471 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 472 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 473 474 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 475 mempool_free_slab, request_cachep, q->node); 476 477 if (!rl->rq_pool) 478 return -ENOMEM; 479 480 return 0; 481 } 482 483 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 484 { 485 return blk_alloc_queue_node(gfp_mask, -1); 486 } 487 EXPORT_SYMBOL(blk_alloc_queue); 488 489 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 490 { 491 struct request_queue *q; 492 int err; 493 494 q = kmem_cache_alloc_node(blk_requestq_cachep, 495 gfp_mask | __GFP_ZERO, node_id); 496 if (!q) 497 return NULL; 498 499 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 500 q->backing_dev_info.unplug_io_data = q; 501 err = bdi_init(&q->backing_dev_info); 502 if (err) { 503 kmem_cache_free(blk_requestq_cachep, q); 504 return NULL; 505 } 506 507 init_timer(&q->unplug_timer); 508 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 509 INIT_LIST_HEAD(&q->timeout_list); 510 INIT_WORK(&q->unplug_work, blk_unplug_work); 511 512 kobject_init(&q->kobj, &blk_queue_ktype); 513 514 mutex_init(&q->sysfs_lock); 515 spin_lock_init(&q->__queue_lock); 516 517 return q; 518 } 519 EXPORT_SYMBOL(blk_alloc_queue_node); 520 521 /** 522 * blk_init_queue - prepare a request queue for use with a block device 523 * @rfn: The function to be called to process requests that have been 524 * placed on the queue. 525 * @lock: Request queue spin lock 526 * 527 * Description: 528 * If a block device wishes to use the standard request handling procedures, 529 * which sorts requests and coalesces adjacent requests, then it must 530 * call blk_init_queue(). The function @rfn will be called when there 531 * are requests on the queue that need to be processed. If the device 532 * supports plugging, then @rfn may not be called immediately when requests 533 * are available on the queue, but may be called at some time later instead. 534 * Plugged queues are generally unplugged when a buffer belonging to one 535 * of the requests on the queue is needed, or due to memory pressure. 536 * 537 * @rfn is not required, or even expected, to remove all requests off the 538 * queue, but only as many as it can handle at a time. If it does leave 539 * requests on the queue, it is responsible for arranging that the requests 540 * get dealt with eventually. 541 * 542 * The queue spin lock must be held while manipulating the requests on the 543 * request queue; this lock will be taken also from interrupt context, so irq 544 * disabling is needed for it. 545 * 546 * Function returns a pointer to the initialized request queue, or %NULL if 547 * it didn't succeed. 548 * 549 * Note: 550 * blk_init_queue() must be paired with a blk_cleanup_queue() call 551 * when the block device is deactivated (such as at module unload). 552 **/ 553 554 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 555 { 556 return blk_init_queue_node(rfn, lock, -1); 557 } 558 EXPORT_SYMBOL(blk_init_queue); 559 560 struct request_queue * 561 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 562 { 563 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 564 565 if (!q) 566 return NULL; 567 568 q->node = node_id; 569 if (blk_init_free_list(q)) { 570 kmem_cache_free(blk_requestq_cachep, q); 571 return NULL; 572 } 573 574 /* 575 * if caller didn't supply a lock, they get per-queue locking with 576 * our embedded lock 577 */ 578 if (!lock) 579 lock = &q->__queue_lock; 580 581 q->request_fn = rfn; 582 q->prep_rq_fn = NULL; 583 q->unplug_fn = generic_unplug_device; 584 q->queue_flags = QUEUE_FLAG_DEFAULT; 585 q->queue_lock = lock; 586 587 /* 588 * This also sets hw/phys segments, boundary and size 589 */ 590 blk_queue_make_request(q, __make_request); 591 592 q->sg_reserved_size = INT_MAX; 593 594 blk_set_cmd_filter_defaults(&q->cmd_filter); 595 596 /* 597 * all done 598 */ 599 if (!elevator_init(q, NULL)) { 600 blk_queue_congestion_threshold(q); 601 return q; 602 } 603 604 blk_put_queue(q); 605 return NULL; 606 } 607 EXPORT_SYMBOL(blk_init_queue_node); 608 609 int blk_get_queue(struct request_queue *q) 610 { 611 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 612 kobject_get(&q->kobj); 613 return 0; 614 } 615 616 return 1; 617 } 618 619 static inline void blk_free_request(struct request_queue *q, struct request *rq) 620 { 621 if (rq->cmd_flags & REQ_ELVPRIV) 622 elv_put_request(q, rq); 623 mempool_free(rq, q->rq.rq_pool); 624 } 625 626 static struct request * 627 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 628 { 629 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 630 631 if (!rq) 632 return NULL; 633 634 blk_rq_init(q, rq); 635 636 rq->cmd_flags = flags | REQ_ALLOCED; 637 638 if (priv) { 639 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 640 mempool_free(rq, q->rq.rq_pool); 641 return NULL; 642 } 643 rq->cmd_flags |= REQ_ELVPRIV; 644 } 645 646 return rq; 647 } 648 649 /* 650 * ioc_batching returns true if the ioc is a valid batching request and 651 * should be given priority access to a request. 652 */ 653 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 654 { 655 if (!ioc) 656 return 0; 657 658 /* 659 * Make sure the process is able to allocate at least 1 request 660 * even if the batch times out, otherwise we could theoretically 661 * lose wakeups. 662 */ 663 return ioc->nr_batch_requests == q->nr_batching || 664 (ioc->nr_batch_requests > 0 665 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 666 } 667 668 /* 669 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 670 * will cause the process to be a "batcher" on all queues in the system. This 671 * is the behaviour we want though - once it gets a wakeup it should be given 672 * a nice run. 673 */ 674 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 675 { 676 if (!ioc || ioc_batching(q, ioc)) 677 return; 678 679 ioc->nr_batch_requests = q->nr_batching; 680 ioc->last_waited = jiffies; 681 } 682 683 static void __freed_request(struct request_queue *q, int sync) 684 { 685 struct request_list *rl = &q->rq; 686 687 if (rl->count[sync] < queue_congestion_off_threshold(q)) 688 blk_clear_queue_congested(q, sync); 689 690 if (rl->count[sync] + 1 <= q->nr_requests) { 691 if (waitqueue_active(&rl->wait[sync])) 692 wake_up(&rl->wait[sync]); 693 694 blk_clear_queue_full(q, sync); 695 } 696 } 697 698 /* 699 * A request has just been released. Account for it, update the full and 700 * congestion status, wake up any waiters. Called under q->queue_lock. 701 */ 702 static void freed_request(struct request_queue *q, int sync, int priv) 703 { 704 struct request_list *rl = &q->rq; 705 706 rl->count[sync]--; 707 if (priv) 708 rl->elvpriv--; 709 710 __freed_request(q, sync); 711 712 if (unlikely(rl->starved[sync ^ 1])) 713 __freed_request(q, sync ^ 1); 714 } 715 716 /* 717 * Get a free request, queue_lock must be held. 718 * Returns NULL on failure, with queue_lock held. 719 * Returns !NULL on success, with queue_lock *not held*. 720 */ 721 static struct request *get_request(struct request_queue *q, int rw_flags, 722 struct bio *bio, gfp_t gfp_mask) 723 { 724 struct request *rq = NULL; 725 struct request_list *rl = &q->rq; 726 struct io_context *ioc = NULL; 727 const bool is_sync = rw_is_sync(rw_flags) != 0; 728 int may_queue, priv; 729 730 may_queue = elv_may_queue(q, rw_flags); 731 if (may_queue == ELV_MQUEUE_NO) 732 goto rq_starved; 733 734 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 735 if (rl->count[is_sync]+1 >= q->nr_requests) { 736 ioc = current_io_context(GFP_ATOMIC, q->node); 737 /* 738 * The queue will fill after this allocation, so set 739 * it as full, and mark this process as "batching". 740 * This process will be allowed to complete a batch of 741 * requests, others will be blocked. 742 */ 743 if (!blk_queue_full(q, is_sync)) { 744 ioc_set_batching(q, ioc); 745 blk_set_queue_full(q, is_sync); 746 } else { 747 if (may_queue != ELV_MQUEUE_MUST 748 && !ioc_batching(q, ioc)) { 749 /* 750 * The queue is full and the allocating 751 * process is not a "batcher", and not 752 * exempted by the IO scheduler 753 */ 754 goto out; 755 } 756 } 757 } 758 blk_set_queue_congested(q, is_sync); 759 } 760 761 /* 762 * Only allow batching queuers to allocate up to 50% over the defined 763 * limit of requests, otherwise we could have thousands of requests 764 * allocated with any setting of ->nr_requests 765 */ 766 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 767 goto out; 768 769 rl->count[is_sync]++; 770 rl->starved[is_sync] = 0; 771 772 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 773 if (priv) 774 rl->elvpriv++; 775 776 if (blk_queue_io_stat(q)) 777 rw_flags |= REQ_IO_STAT; 778 spin_unlock_irq(q->queue_lock); 779 780 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 781 if (unlikely(!rq)) { 782 /* 783 * Allocation failed presumably due to memory. Undo anything 784 * we might have messed up. 785 * 786 * Allocating task should really be put onto the front of the 787 * wait queue, but this is pretty rare. 788 */ 789 spin_lock_irq(q->queue_lock); 790 freed_request(q, is_sync, priv); 791 792 /* 793 * in the very unlikely event that allocation failed and no 794 * requests for this direction was pending, mark us starved 795 * so that freeing of a request in the other direction will 796 * notice us. another possible fix would be to split the 797 * rq mempool into READ and WRITE 798 */ 799 rq_starved: 800 if (unlikely(rl->count[is_sync] == 0)) 801 rl->starved[is_sync] = 1; 802 803 goto out; 804 } 805 806 /* 807 * ioc may be NULL here, and ioc_batching will be false. That's 808 * OK, if the queue is under the request limit then requests need 809 * not count toward the nr_batch_requests limit. There will always 810 * be some limit enforced by BLK_BATCH_TIME. 811 */ 812 if (ioc_batching(q, ioc)) 813 ioc->nr_batch_requests--; 814 815 trace_block_getrq(q, bio, rw_flags & 1); 816 out: 817 return rq; 818 } 819 820 /* 821 * No available requests for this queue, unplug the device and wait for some 822 * requests to become available. 823 * 824 * Called with q->queue_lock held, and returns with it unlocked. 825 */ 826 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 827 struct bio *bio) 828 { 829 const bool is_sync = rw_is_sync(rw_flags) != 0; 830 struct request *rq; 831 832 rq = get_request(q, rw_flags, bio, GFP_NOIO); 833 while (!rq) { 834 DEFINE_WAIT(wait); 835 struct io_context *ioc; 836 struct request_list *rl = &q->rq; 837 838 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 839 TASK_UNINTERRUPTIBLE); 840 841 trace_block_sleeprq(q, bio, rw_flags & 1); 842 843 __generic_unplug_device(q); 844 spin_unlock_irq(q->queue_lock); 845 io_schedule(); 846 847 /* 848 * After sleeping, we become a "batching" process and 849 * will be able to allocate at least one request, and 850 * up to a big batch of them for a small period time. 851 * See ioc_batching, ioc_set_batching 852 */ 853 ioc = current_io_context(GFP_NOIO, q->node); 854 ioc_set_batching(q, ioc); 855 856 spin_lock_irq(q->queue_lock); 857 finish_wait(&rl->wait[is_sync], &wait); 858 859 rq = get_request(q, rw_flags, bio, GFP_NOIO); 860 }; 861 862 return rq; 863 } 864 865 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 866 { 867 struct request *rq; 868 869 BUG_ON(rw != READ && rw != WRITE); 870 871 spin_lock_irq(q->queue_lock); 872 if (gfp_mask & __GFP_WAIT) { 873 rq = get_request_wait(q, rw, NULL); 874 } else { 875 rq = get_request(q, rw, NULL, gfp_mask); 876 if (!rq) 877 spin_unlock_irq(q->queue_lock); 878 } 879 /* q->queue_lock is unlocked at this point */ 880 881 return rq; 882 } 883 EXPORT_SYMBOL(blk_get_request); 884 885 /** 886 * blk_make_request - given a bio, allocate a corresponding struct request. 887 * @q: target request queue 888 * @bio: The bio describing the memory mappings that will be submitted for IO. 889 * It may be a chained-bio properly constructed by block/bio layer. 890 * @gfp_mask: gfp flags to be used for memory allocation 891 * 892 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 893 * type commands. Where the struct request needs to be farther initialized by 894 * the caller. It is passed a &struct bio, which describes the memory info of 895 * the I/O transfer. 896 * 897 * The caller of blk_make_request must make sure that bi_io_vec 898 * are set to describe the memory buffers. That bio_data_dir() will return 899 * the needed direction of the request. (And all bio's in the passed bio-chain 900 * are properly set accordingly) 901 * 902 * If called under none-sleepable conditions, mapped bio buffers must not 903 * need bouncing, by calling the appropriate masked or flagged allocator, 904 * suitable for the target device. Otherwise the call to blk_queue_bounce will 905 * BUG. 906 * 907 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 908 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 909 * anything but the first bio in the chain. Otherwise you risk waiting for IO 910 * completion of a bio that hasn't been submitted yet, thus resulting in a 911 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 912 * of bio_alloc(), as that avoids the mempool deadlock. 913 * If possible a big IO should be split into smaller parts when allocation 914 * fails. Partial allocation should not be an error, or you risk a live-lock. 915 */ 916 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 917 gfp_t gfp_mask) 918 { 919 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 920 921 if (unlikely(!rq)) 922 return ERR_PTR(-ENOMEM); 923 924 for_each_bio(bio) { 925 struct bio *bounce_bio = bio; 926 int ret; 927 928 blk_queue_bounce(q, &bounce_bio); 929 ret = blk_rq_append_bio(q, rq, bounce_bio); 930 if (unlikely(ret)) { 931 blk_put_request(rq); 932 return ERR_PTR(ret); 933 } 934 } 935 936 return rq; 937 } 938 EXPORT_SYMBOL(blk_make_request); 939 940 /** 941 * blk_requeue_request - put a request back on queue 942 * @q: request queue where request should be inserted 943 * @rq: request to be inserted 944 * 945 * Description: 946 * Drivers often keep queueing requests until the hardware cannot accept 947 * more, when that condition happens we need to put the request back 948 * on the queue. Must be called with queue lock held. 949 */ 950 void blk_requeue_request(struct request_queue *q, struct request *rq) 951 { 952 blk_delete_timer(rq); 953 blk_clear_rq_complete(rq); 954 trace_block_rq_requeue(q, rq); 955 956 if (blk_rq_tagged(rq)) 957 blk_queue_end_tag(q, rq); 958 959 BUG_ON(blk_queued_rq(rq)); 960 961 elv_requeue_request(q, rq); 962 } 963 EXPORT_SYMBOL(blk_requeue_request); 964 965 /** 966 * blk_insert_request - insert a special request into a request queue 967 * @q: request queue where request should be inserted 968 * @rq: request to be inserted 969 * @at_head: insert request at head or tail of queue 970 * @data: private data 971 * 972 * Description: 973 * Many block devices need to execute commands asynchronously, so they don't 974 * block the whole kernel from preemption during request execution. This is 975 * accomplished normally by inserting aritficial requests tagged as 976 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 977 * be scheduled for actual execution by the request queue. 978 * 979 * We have the option of inserting the head or the tail of the queue. 980 * Typically we use the tail for new ioctls and so forth. We use the head 981 * of the queue for things like a QUEUE_FULL message from a device, or a 982 * host that is unable to accept a particular command. 983 */ 984 void blk_insert_request(struct request_queue *q, struct request *rq, 985 int at_head, void *data) 986 { 987 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 988 unsigned long flags; 989 990 /* 991 * tell I/O scheduler that this isn't a regular read/write (ie it 992 * must not attempt merges on this) and that it acts as a soft 993 * barrier 994 */ 995 rq->cmd_type = REQ_TYPE_SPECIAL; 996 997 rq->special = data; 998 999 spin_lock_irqsave(q->queue_lock, flags); 1000 1001 /* 1002 * If command is tagged, release the tag 1003 */ 1004 if (blk_rq_tagged(rq)) 1005 blk_queue_end_tag(q, rq); 1006 1007 drive_stat_acct(rq, 1); 1008 __elv_add_request(q, rq, where, 0); 1009 __blk_run_queue(q); 1010 spin_unlock_irqrestore(q->queue_lock, flags); 1011 } 1012 EXPORT_SYMBOL(blk_insert_request); 1013 1014 /* 1015 * add-request adds a request to the linked list. 1016 * queue lock is held and interrupts disabled, as we muck with the 1017 * request queue list. 1018 */ 1019 static inline void add_request(struct request_queue *q, struct request *req) 1020 { 1021 drive_stat_acct(req, 1); 1022 1023 /* 1024 * elevator indicated where it wants this request to be 1025 * inserted at elevator_merge time 1026 */ 1027 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 1028 } 1029 1030 static void part_round_stats_single(int cpu, struct hd_struct *part, 1031 unsigned long now) 1032 { 1033 if (now == part->stamp) 1034 return; 1035 1036 if (part->in_flight) { 1037 __part_stat_add(cpu, part, time_in_queue, 1038 part->in_flight * (now - part->stamp)); 1039 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1040 } 1041 part->stamp = now; 1042 } 1043 1044 /** 1045 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1046 * @cpu: cpu number for stats access 1047 * @part: target partition 1048 * 1049 * The average IO queue length and utilisation statistics are maintained 1050 * by observing the current state of the queue length and the amount of 1051 * time it has been in this state for. 1052 * 1053 * Normally, that accounting is done on IO completion, but that can result 1054 * in more than a second's worth of IO being accounted for within any one 1055 * second, leading to >100% utilisation. To deal with that, we call this 1056 * function to do a round-off before returning the results when reading 1057 * /proc/diskstats. This accounts immediately for all queue usage up to 1058 * the current jiffies and restarts the counters again. 1059 */ 1060 void part_round_stats(int cpu, struct hd_struct *part) 1061 { 1062 unsigned long now = jiffies; 1063 1064 if (part->partno) 1065 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1066 part_round_stats_single(cpu, part, now); 1067 } 1068 EXPORT_SYMBOL_GPL(part_round_stats); 1069 1070 /* 1071 * queue lock must be held 1072 */ 1073 void __blk_put_request(struct request_queue *q, struct request *req) 1074 { 1075 if (unlikely(!q)) 1076 return; 1077 if (unlikely(--req->ref_count)) 1078 return; 1079 1080 elv_completed_request(q, req); 1081 1082 /* this is a bio leak */ 1083 WARN_ON(req->bio != NULL); 1084 1085 /* 1086 * Request may not have originated from ll_rw_blk. if not, 1087 * it didn't come out of our reserved rq pools 1088 */ 1089 if (req->cmd_flags & REQ_ALLOCED) { 1090 int is_sync = rq_is_sync(req) != 0; 1091 int priv = req->cmd_flags & REQ_ELVPRIV; 1092 1093 BUG_ON(!list_empty(&req->queuelist)); 1094 BUG_ON(!hlist_unhashed(&req->hash)); 1095 1096 blk_free_request(q, req); 1097 freed_request(q, is_sync, priv); 1098 } 1099 } 1100 EXPORT_SYMBOL_GPL(__blk_put_request); 1101 1102 void blk_put_request(struct request *req) 1103 { 1104 unsigned long flags; 1105 struct request_queue *q = req->q; 1106 1107 spin_lock_irqsave(q->queue_lock, flags); 1108 __blk_put_request(q, req); 1109 spin_unlock_irqrestore(q->queue_lock, flags); 1110 } 1111 EXPORT_SYMBOL(blk_put_request); 1112 1113 void init_request_from_bio(struct request *req, struct bio *bio) 1114 { 1115 req->cpu = bio->bi_comp_cpu; 1116 req->cmd_type = REQ_TYPE_FS; 1117 1118 /* 1119 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1120 */ 1121 if (bio_rw_ahead(bio)) 1122 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | 1123 REQ_FAILFAST_DRIVER); 1124 if (bio_failfast_dev(bio)) 1125 req->cmd_flags |= REQ_FAILFAST_DEV; 1126 if (bio_failfast_transport(bio)) 1127 req->cmd_flags |= REQ_FAILFAST_TRANSPORT; 1128 if (bio_failfast_driver(bio)) 1129 req->cmd_flags |= REQ_FAILFAST_DRIVER; 1130 1131 if (unlikely(bio_discard(bio))) { 1132 req->cmd_flags |= REQ_DISCARD; 1133 if (bio_barrier(bio)) 1134 req->cmd_flags |= REQ_SOFTBARRIER; 1135 req->q->prepare_discard_fn(req->q, req); 1136 } else if (unlikely(bio_barrier(bio))) 1137 req->cmd_flags |= REQ_HARDBARRIER; 1138 1139 if (bio_sync(bio)) 1140 req->cmd_flags |= REQ_RW_SYNC; 1141 if (bio_rw_meta(bio)) 1142 req->cmd_flags |= REQ_RW_META; 1143 if (bio_noidle(bio)) 1144 req->cmd_flags |= REQ_NOIDLE; 1145 1146 req->errors = 0; 1147 req->__sector = bio->bi_sector; 1148 req->ioprio = bio_prio(bio); 1149 blk_rq_bio_prep(req->q, req, bio); 1150 } 1151 1152 /* 1153 * Only disabling plugging for non-rotational devices if it does tagging 1154 * as well, otherwise we do need the proper merging 1155 */ 1156 static inline bool queue_should_plug(struct request_queue *q) 1157 { 1158 return !(blk_queue_nonrot(q) && blk_queue_tagged(q)); 1159 } 1160 1161 static int __make_request(struct request_queue *q, struct bio *bio) 1162 { 1163 struct request *req; 1164 int el_ret; 1165 unsigned int bytes = bio->bi_size; 1166 const unsigned short prio = bio_prio(bio); 1167 const int sync = bio_sync(bio); 1168 const int unplug = bio_unplug(bio); 1169 int rw_flags; 1170 1171 /* 1172 * low level driver can indicate that it wants pages above a 1173 * certain limit bounced to low memory (ie for highmem, or even 1174 * ISA dma in theory) 1175 */ 1176 blk_queue_bounce(q, &bio); 1177 1178 spin_lock_irq(q->queue_lock); 1179 1180 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q)) 1181 goto get_rq; 1182 1183 el_ret = elv_merge(q, &req, bio); 1184 switch (el_ret) { 1185 case ELEVATOR_BACK_MERGE: 1186 BUG_ON(!rq_mergeable(req)); 1187 1188 if (!ll_back_merge_fn(q, req, bio)) 1189 break; 1190 1191 trace_block_bio_backmerge(q, bio); 1192 1193 req->biotail->bi_next = bio; 1194 req->biotail = bio; 1195 req->__data_len += bytes; 1196 req->ioprio = ioprio_best(req->ioprio, prio); 1197 if (!blk_rq_cpu_valid(req)) 1198 req->cpu = bio->bi_comp_cpu; 1199 drive_stat_acct(req, 0); 1200 if (!attempt_back_merge(q, req)) 1201 elv_merged_request(q, req, el_ret); 1202 goto out; 1203 1204 case ELEVATOR_FRONT_MERGE: 1205 BUG_ON(!rq_mergeable(req)); 1206 1207 if (!ll_front_merge_fn(q, req, bio)) 1208 break; 1209 1210 trace_block_bio_frontmerge(q, bio); 1211 1212 bio->bi_next = req->bio; 1213 req->bio = bio; 1214 1215 /* 1216 * may not be valid. if the low level driver said 1217 * it didn't need a bounce buffer then it better 1218 * not touch req->buffer either... 1219 */ 1220 req->buffer = bio_data(bio); 1221 req->__sector = bio->bi_sector; 1222 req->__data_len += bytes; 1223 req->ioprio = ioprio_best(req->ioprio, prio); 1224 if (!blk_rq_cpu_valid(req)) 1225 req->cpu = bio->bi_comp_cpu; 1226 drive_stat_acct(req, 0); 1227 if (!attempt_front_merge(q, req)) 1228 elv_merged_request(q, req, el_ret); 1229 goto out; 1230 1231 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1232 default: 1233 ; 1234 } 1235 1236 get_rq: 1237 /* 1238 * This sync check and mask will be re-done in init_request_from_bio(), 1239 * but we need to set it earlier to expose the sync flag to the 1240 * rq allocator and io schedulers. 1241 */ 1242 rw_flags = bio_data_dir(bio); 1243 if (sync) 1244 rw_flags |= REQ_RW_SYNC; 1245 1246 /* 1247 * Grab a free request. This is might sleep but can not fail. 1248 * Returns with the queue unlocked. 1249 */ 1250 req = get_request_wait(q, rw_flags, bio); 1251 1252 /* 1253 * After dropping the lock and possibly sleeping here, our request 1254 * may now be mergeable after it had proven unmergeable (above). 1255 * We don't worry about that case for efficiency. It won't happen 1256 * often, and the elevators are able to handle it. 1257 */ 1258 init_request_from_bio(req, bio); 1259 1260 spin_lock_irq(q->queue_lock); 1261 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1262 bio_flagged(bio, BIO_CPU_AFFINE)) 1263 req->cpu = blk_cpu_to_group(smp_processor_id()); 1264 if (queue_should_plug(q) && elv_queue_empty(q)) 1265 blk_plug_device(q); 1266 add_request(q, req); 1267 out: 1268 if (unplug || !queue_should_plug(q)) 1269 __generic_unplug_device(q); 1270 spin_unlock_irq(q->queue_lock); 1271 return 0; 1272 } 1273 1274 /* 1275 * If bio->bi_dev is a partition, remap the location 1276 */ 1277 static inline void blk_partition_remap(struct bio *bio) 1278 { 1279 struct block_device *bdev = bio->bi_bdev; 1280 1281 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1282 struct hd_struct *p = bdev->bd_part; 1283 1284 bio->bi_sector += p->start_sect; 1285 bio->bi_bdev = bdev->bd_contains; 1286 1287 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio, 1288 bdev->bd_dev, 1289 bio->bi_sector - p->start_sect); 1290 } 1291 } 1292 1293 static void handle_bad_sector(struct bio *bio) 1294 { 1295 char b[BDEVNAME_SIZE]; 1296 1297 printk(KERN_INFO "attempt to access beyond end of device\n"); 1298 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1299 bdevname(bio->bi_bdev, b), 1300 bio->bi_rw, 1301 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1302 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1303 1304 set_bit(BIO_EOF, &bio->bi_flags); 1305 } 1306 1307 #ifdef CONFIG_FAIL_MAKE_REQUEST 1308 1309 static DECLARE_FAULT_ATTR(fail_make_request); 1310 1311 static int __init setup_fail_make_request(char *str) 1312 { 1313 return setup_fault_attr(&fail_make_request, str); 1314 } 1315 __setup("fail_make_request=", setup_fail_make_request); 1316 1317 static int should_fail_request(struct bio *bio) 1318 { 1319 struct hd_struct *part = bio->bi_bdev->bd_part; 1320 1321 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1322 return should_fail(&fail_make_request, bio->bi_size); 1323 1324 return 0; 1325 } 1326 1327 static int __init fail_make_request_debugfs(void) 1328 { 1329 return init_fault_attr_dentries(&fail_make_request, 1330 "fail_make_request"); 1331 } 1332 1333 late_initcall(fail_make_request_debugfs); 1334 1335 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1336 1337 static inline int should_fail_request(struct bio *bio) 1338 { 1339 return 0; 1340 } 1341 1342 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1343 1344 /* 1345 * Check whether this bio extends beyond the end of the device. 1346 */ 1347 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1348 { 1349 sector_t maxsector; 1350 1351 if (!nr_sectors) 1352 return 0; 1353 1354 /* Test device or partition size, when known. */ 1355 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1356 if (maxsector) { 1357 sector_t sector = bio->bi_sector; 1358 1359 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1360 /* 1361 * This may well happen - the kernel calls bread() 1362 * without checking the size of the device, e.g., when 1363 * mounting a device. 1364 */ 1365 handle_bad_sector(bio); 1366 return 1; 1367 } 1368 } 1369 1370 return 0; 1371 } 1372 1373 /** 1374 * generic_make_request - hand a buffer to its device driver for I/O 1375 * @bio: The bio describing the location in memory and on the device. 1376 * 1377 * generic_make_request() is used to make I/O requests of block 1378 * devices. It is passed a &struct bio, which describes the I/O that needs 1379 * to be done. 1380 * 1381 * generic_make_request() does not return any status. The 1382 * success/failure status of the request, along with notification of 1383 * completion, is delivered asynchronously through the bio->bi_end_io 1384 * function described (one day) else where. 1385 * 1386 * The caller of generic_make_request must make sure that bi_io_vec 1387 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1388 * set to describe the device address, and the 1389 * bi_end_io and optionally bi_private are set to describe how 1390 * completion notification should be signaled. 1391 * 1392 * generic_make_request and the drivers it calls may use bi_next if this 1393 * bio happens to be merged with someone else, and may change bi_dev and 1394 * bi_sector for remaps as it sees fit. So the values of these fields 1395 * should NOT be depended on after the call to generic_make_request. 1396 */ 1397 static inline void __generic_make_request(struct bio *bio) 1398 { 1399 struct request_queue *q; 1400 sector_t old_sector; 1401 int ret, nr_sectors = bio_sectors(bio); 1402 dev_t old_dev; 1403 int err = -EIO; 1404 1405 might_sleep(); 1406 1407 if (bio_check_eod(bio, nr_sectors)) 1408 goto end_io; 1409 1410 /* 1411 * Resolve the mapping until finished. (drivers are 1412 * still free to implement/resolve their own stacking 1413 * by explicitly returning 0) 1414 * 1415 * NOTE: we don't repeat the blk_size check for each new device. 1416 * Stacking drivers are expected to know what they are doing. 1417 */ 1418 old_sector = -1; 1419 old_dev = 0; 1420 do { 1421 char b[BDEVNAME_SIZE]; 1422 1423 q = bdev_get_queue(bio->bi_bdev); 1424 if (unlikely(!q)) { 1425 printk(KERN_ERR 1426 "generic_make_request: Trying to access " 1427 "nonexistent block-device %s (%Lu)\n", 1428 bdevname(bio->bi_bdev, b), 1429 (long long) bio->bi_sector); 1430 goto end_io; 1431 } 1432 1433 if (unlikely(nr_sectors > queue_max_hw_sectors(q))) { 1434 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1435 bdevname(bio->bi_bdev, b), 1436 bio_sectors(bio), 1437 queue_max_hw_sectors(q)); 1438 goto end_io; 1439 } 1440 1441 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1442 goto end_io; 1443 1444 if (should_fail_request(bio)) 1445 goto end_io; 1446 1447 /* 1448 * If this device has partitions, remap block n 1449 * of partition p to block n+start(p) of the disk. 1450 */ 1451 blk_partition_remap(bio); 1452 1453 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1454 goto end_io; 1455 1456 if (old_sector != -1) 1457 trace_block_remap(q, bio, old_dev, old_sector); 1458 1459 trace_block_bio_queue(q, bio); 1460 1461 old_sector = bio->bi_sector; 1462 old_dev = bio->bi_bdev->bd_dev; 1463 1464 if (bio_check_eod(bio, nr_sectors)) 1465 goto end_io; 1466 1467 if (bio_discard(bio) && !q->prepare_discard_fn) { 1468 err = -EOPNOTSUPP; 1469 goto end_io; 1470 } 1471 if (bio_barrier(bio) && bio_has_data(bio) && 1472 (q->next_ordered == QUEUE_ORDERED_NONE)) { 1473 err = -EOPNOTSUPP; 1474 goto end_io; 1475 } 1476 1477 ret = q->make_request_fn(q, bio); 1478 } while (ret); 1479 1480 return; 1481 1482 end_io: 1483 bio_endio(bio, err); 1484 } 1485 1486 /* 1487 * We only want one ->make_request_fn to be active at a time, 1488 * else stack usage with stacked devices could be a problem. 1489 * So use current->bio_{list,tail} to keep a list of requests 1490 * submited by a make_request_fn function. 1491 * current->bio_tail is also used as a flag to say if 1492 * generic_make_request is currently active in this task or not. 1493 * If it is NULL, then no make_request is active. If it is non-NULL, 1494 * then a make_request is active, and new requests should be added 1495 * at the tail 1496 */ 1497 void generic_make_request(struct bio *bio) 1498 { 1499 if (current->bio_tail) { 1500 /* make_request is active */ 1501 *(current->bio_tail) = bio; 1502 bio->bi_next = NULL; 1503 current->bio_tail = &bio->bi_next; 1504 return; 1505 } 1506 /* following loop may be a bit non-obvious, and so deserves some 1507 * explanation. 1508 * Before entering the loop, bio->bi_next is NULL (as all callers 1509 * ensure that) so we have a list with a single bio. 1510 * We pretend that we have just taken it off a longer list, so 1511 * we assign bio_list to the next (which is NULL) and bio_tail 1512 * to &bio_list, thus initialising the bio_list of new bios to be 1513 * added. __generic_make_request may indeed add some more bios 1514 * through a recursive call to generic_make_request. If it 1515 * did, we find a non-NULL value in bio_list and re-enter the loop 1516 * from the top. In this case we really did just take the bio 1517 * of the top of the list (no pretending) and so fixup bio_list and 1518 * bio_tail or bi_next, and call into __generic_make_request again. 1519 * 1520 * The loop was structured like this to make only one call to 1521 * __generic_make_request (which is important as it is large and 1522 * inlined) and to keep the structure simple. 1523 */ 1524 BUG_ON(bio->bi_next); 1525 do { 1526 current->bio_list = bio->bi_next; 1527 if (bio->bi_next == NULL) 1528 current->bio_tail = ¤t->bio_list; 1529 else 1530 bio->bi_next = NULL; 1531 __generic_make_request(bio); 1532 bio = current->bio_list; 1533 } while (bio); 1534 current->bio_tail = NULL; /* deactivate */ 1535 } 1536 EXPORT_SYMBOL(generic_make_request); 1537 1538 /** 1539 * submit_bio - submit a bio to the block device layer for I/O 1540 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1541 * @bio: The &struct bio which describes the I/O 1542 * 1543 * submit_bio() is very similar in purpose to generic_make_request(), and 1544 * uses that function to do most of the work. Both are fairly rough 1545 * interfaces; @bio must be presetup and ready for I/O. 1546 * 1547 */ 1548 void submit_bio(int rw, struct bio *bio) 1549 { 1550 int count = bio_sectors(bio); 1551 1552 bio->bi_rw |= rw; 1553 1554 /* 1555 * If it's a regular read/write or a barrier with data attached, 1556 * go through the normal accounting stuff before submission. 1557 */ 1558 if (bio_has_data(bio)) { 1559 if (rw & WRITE) { 1560 count_vm_events(PGPGOUT, count); 1561 } else { 1562 task_io_account_read(bio->bi_size); 1563 count_vm_events(PGPGIN, count); 1564 } 1565 1566 if (unlikely(block_dump)) { 1567 char b[BDEVNAME_SIZE]; 1568 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1569 current->comm, task_pid_nr(current), 1570 (rw & WRITE) ? "WRITE" : "READ", 1571 (unsigned long long)bio->bi_sector, 1572 bdevname(bio->bi_bdev, b)); 1573 } 1574 } 1575 1576 generic_make_request(bio); 1577 } 1578 EXPORT_SYMBOL(submit_bio); 1579 1580 /** 1581 * blk_rq_check_limits - Helper function to check a request for the queue limit 1582 * @q: the queue 1583 * @rq: the request being checked 1584 * 1585 * Description: 1586 * @rq may have been made based on weaker limitations of upper-level queues 1587 * in request stacking drivers, and it may violate the limitation of @q. 1588 * Since the block layer and the underlying device driver trust @rq 1589 * after it is inserted to @q, it should be checked against @q before 1590 * the insertion using this generic function. 1591 * 1592 * This function should also be useful for request stacking drivers 1593 * in some cases below, so export this fuction. 1594 * Request stacking drivers like request-based dm may change the queue 1595 * limits while requests are in the queue (e.g. dm's table swapping). 1596 * Such request stacking drivers should check those requests agaist 1597 * the new queue limits again when they dispatch those requests, 1598 * although such checkings are also done against the old queue limits 1599 * when submitting requests. 1600 */ 1601 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1602 { 1603 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1604 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1605 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1606 return -EIO; 1607 } 1608 1609 /* 1610 * queue's settings related to segment counting like q->bounce_pfn 1611 * may differ from that of other stacking queues. 1612 * Recalculate it to check the request correctly on this queue's 1613 * limitation. 1614 */ 1615 blk_recalc_rq_segments(rq); 1616 if (rq->nr_phys_segments > queue_max_phys_segments(q) || 1617 rq->nr_phys_segments > queue_max_hw_segments(q)) { 1618 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1619 return -EIO; 1620 } 1621 1622 return 0; 1623 } 1624 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1625 1626 /** 1627 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1628 * @q: the queue to submit the request 1629 * @rq: the request being queued 1630 */ 1631 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1632 { 1633 unsigned long flags; 1634 1635 if (blk_rq_check_limits(q, rq)) 1636 return -EIO; 1637 1638 #ifdef CONFIG_FAIL_MAKE_REQUEST 1639 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1640 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1641 return -EIO; 1642 #endif 1643 1644 spin_lock_irqsave(q->queue_lock, flags); 1645 1646 /* 1647 * Submitting request must be dequeued before calling this function 1648 * because it will be linked to another request_queue 1649 */ 1650 BUG_ON(blk_queued_rq(rq)); 1651 1652 drive_stat_acct(rq, 1); 1653 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1654 1655 spin_unlock_irqrestore(q->queue_lock, flags); 1656 1657 return 0; 1658 } 1659 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1660 1661 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1662 { 1663 if (blk_do_io_stat(req)) { 1664 const int rw = rq_data_dir(req); 1665 struct hd_struct *part; 1666 int cpu; 1667 1668 cpu = part_stat_lock(); 1669 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req)); 1670 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1671 part_stat_unlock(); 1672 } 1673 } 1674 1675 static void blk_account_io_done(struct request *req) 1676 { 1677 /* 1678 * Account IO completion. bar_rq isn't accounted as a normal 1679 * IO on queueing nor completion. Accounting the containing 1680 * request is enough. 1681 */ 1682 if (blk_do_io_stat(req) && req != &req->q->bar_rq) { 1683 unsigned long duration = jiffies - req->start_time; 1684 const int rw = rq_data_dir(req); 1685 struct hd_struct *part; 1686 int cpu; 1687 1688 cpu = part_stat_lock(); 1689 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req)); 1690 1691 part_stat_inc(cpu, part, ios[rw]); 1692 part_stat_add(cpu, part, ticks[rw], duration); 1693 part_round_stats(cpu, part); 1694 part_dec_in_flight(part); 1695 1696 part_stat_unlock(); 1697 } 1698 } 1699 1700 /** 1701 * blk_peek_request - peek at the top of a request queue 1702 * @q: request queue to peek at 1703 * 1704 * Description: 1705 * Return the request at the top of @q. The returned request 1706 * should be started using blk_start_request() before LLD starts 1707 * processing it. 1708 * 1709 * Return: 1710 * Pointer to the request at the top of @q if available. Null 1711 * otherwise. 1712 * 1713 * Context: 1714 * queue_lock must be held. 1715 */ 1716 struct request *blk_peek_request(struct request_queue *q) 1717 { 1718 struct request *rq; 1719 int ret; 1720 1721 while ((rq = __elv_next_request(q)) != NULL) { 1722 if (!(rq->cmd_flags & REQ_STARTED)) { 1723 /* 1724 * This is the first time the device driver 1725 * sees this request (possibly after 1726 * requeueing). Notify IO scheduler. 1727 */ 1728 if (blk_sorted_rq(rq)) 1729 elv_activate_rq(q, rq); 1730 1731 /* 1732 * just mark as started even if we don't start 1733 * it, a request that has been delayed should 1734 * not be passed by new incoming requests 1735 */ 1736 rq->cmd_flags |= REQ_STARTED; 1737 trace_block_rq_issue(q, rq); 1738 } 1739 1740 if (!q->boundary_rq || q->boundary_rq == rq) { 1741 q->end_sector = rq_end_sector(rq); 1742 q->boundary_rq = NULL; 1743 } 1744 1745 if (rq->cmd_flags & REQ_DONTPREP) 1746 break; 1747 1748 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1749 /* 1750 * make sure space for the drain appears we 1751 * know we can do this because max_hw_segments 1752 * has been adjusted to be one fewer than the 1753 * device can handle 1754 */ 1755 rq->nr_phys_segments++; 1756 } 1757 1758 if (!q->prep_rq_fn) 1759 break; 1760 1761 ret = q->prep_rq_fn(q, rq); 1762 if (ret == BLKPREP_OK) { 1763 break; 1764 } else if (ret == BLKPREP_DEFER) { 1765 /* 1766 * the request may have been (partially) prepped. 1767 * we need to keep this request in the front to 1768 * avoid resource deadlock. REQ_STARTED will 1769 * prevent other fs requests from passing this one. 1770 */ 1771 if (q->dma_drain_size && blk_rq_bytes(rq) && 1772 !(rq->cmd_flags & REQ_DONTPREP)) { 1773 /* 1774 * remove the space for the drain we added 1775 * so that we don't add it again 1776 */ 1777 --rq->nr_phys_segments; 1778 } 1779 1780 rq = NULL; 1781 break; 1782 } else if (ret == BLKPREP_KILL) { 1783 rq->cmd_flags |= REQ_QUIET; 1784 /* 1785 * Mark this request as started so we don't trigger 1786 * any debug logic in the end I/O path. 1787 */ 1788 blk_start_request(rq); 1789 __blk_end_request_all(rq, -EIO); 1790 } else { 1791 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1792 break; 1793 } 1794 } 1795 1796 return rq; 1797 } 1798 EXPORT_SYMBOL(blk_peek_request); 1799 1800 void blk_dequeue_request(struct request *rq) 1801 { 1802 struct request_queue *q = rq->q; 1803 1804 BUG_ON(list_empty(&rq->queuelist)); 1805 BUG_ON(ELV_ON_HASH(rq)); 1806 1807 list_del_init(&rq->queuelist); 1808 1809 /* 1810 * the time frame between a request being removed from the lists 1811 * and to it is freed is accounted as io that is in progress at 1812 * the driver side. 1813 */ 1814 if (blk_account_rq(rq)) 1815 q->in_flight[rq_is_sync(rq)]++; 1816 } 1817 1818 /** 1819 * blk_start_request - start request processing on the driver 1820 * @req: request to dequeue 1821 * 1822 * Description: 1823 * Dequeue @req and start timeout timer on it. This hands off the 1824 * request to the driver. 1825 * 1826 * Block internal functions which don't want to start timer should 1827 * call blk_dequeue_request(). 1828 * 1829 * Context: 1830 * queue_lock must be held. 1831 */ 1832 void blk_start_request(struct request *req) 1833 { 1834 blk_dequeue_request(req); 1835 1836 /* 1837 * We are now handing the request to the hardware, initialize 1838 * resid_len to full count and add the timeout handler. 1839 */ 1840 req->resid_len = blk_rq_bytes(req); 1841 if (unlikely(blk_bidi_rq(req))) 1842 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1843 1844 blk_add_timer(req); 1845 } 1846 EXPORT_SYMBOL(blk_start_request); 1847 1848 /** 1849 * blk_fetch_request - fetch a request from a request queue 1850 * @q: request queue to fetch a request from 1851 * 1852 * Description: 1853 * Return the request at the top of @q. The request is started on 1854 * return and LLD can start processing it immediately. 1855 * 1856 * Return: 1857 * Pointer to the request at the top of @q if available. Null 1858 * otherwise. 1859 * 1860 * Context: 1861 * queue_lock must be held. 1862 */ 1863 struct request *blk_fetch_request(struct request_queue *q) 1864 { 1865 struct request *rq; 1866 1867 rq = blk_peek_request(q); 1868 if (rq) 1869 blk_start_request(rq); 1870 return rq; 1871 } 1872 EXPORT_SYMBOL(blk_fetch_request); 1873 1874 /** 1875 * blk_update_request - Special helper function for request stacking drivers 1876 * @req: the request being processed 1877 * @error: %0 for success, < %0 for error 1878 * @nr_bytes: number of bytes to complete @req 1879 * 1880 * Description: 1881 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1882 * the request structure even if @req doesn't have leftover. 1883 * If @req has leftover, sets it up for the next range of segments. 1884 * 1885 * This special helper function is only for request stacking drivers 1886 * (e.g. request-based dm) so that they can handle partial completion. 1887 * Actual device drivers should use blk_end_request instead. 1888 * 1889 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1890 * %false return from this function. 1891 * 1892 * Return: 1893 * %false - this request doesn't have any more data 1894 * %true - this request has more data 1895 **/ 1896 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 1897 { 1898 int total_bytes, bio_nbytes, next_idx = 0; 1899 struct bio *bio; 1900 1901 if (!req->bio) 1902 return false; 1903 1904 trace_block_rq_complete(req->q, req); 1905 1906 /* 1907 * For fs requests, rq is just carrier of independent bio's 1908 * and each partial completion should be handled separately. 1909 * Reset per-request error on each partial completion. 1910 * 1911 * TODO: tj: This is too subtle. It would be better to let 1912 * low level drivers do what they see fit. 1913 */ 1914 if (blk_fs_request(req)) 1915 req->errors = 0; 1916 1917 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1918 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1919 req->rq_disk ? req->rq_disk->disk_name : "?", 1920 (unsigned long long)blk_rq_pos(req)); 1921 } 1922 1923 blk_account_io_completion(req, nr_bytes); 1924 1925 total_bytes = bio_nbytes = 0; 1926 while ((bio = req->bio) != NULL) { 1927 int nbytes; 1928 1929 if (nr_bytes >= bio->bi_size) { 1930 req->bio = bio->bi_next; 1931 nbytes = bio->bi_size; 1932 req_bio_endio(req, bio, nbytes, error); 1933 next_idx = 0; 1934 bio_nbytes = 0; 1935 } else { 1936 int idx = bio->bi_idx + next_idx; 1937 1938 if (unlikely(idx >= bio->bi_vcnt)) { 1939 blk_dump_rq_flags(req, "__end_that"); 1940 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1941 __func__, idx, bio->bi_vcnt); 1942 break; 1943 } 1944 1945 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1946 BIO_BUG_ON(nbytes > bio->bi_size); 1947 1948 /* 1949 * not a complete bvec done 1950 */ 1951 if (unlikely(nbytes > nr_bytes)) { 1952 bio_nbytes += nr_bytes; 1953 total_bytes += nr_bytes; 1954 break; 1955 } 1956 1957 /* 1958 * advance to the next vector 1959 */ 1960 next_idx++; 1961 bio_nbytes += nbytes; 1962 } 1963 1964 total_bytes += nbytes; 1965 nr_bytes -= nbytes; 1966 1967 bio = req->bio; 1968 if (bio) { 1969 /* 1970 * end more in this run, or just return 'not-done' 1971 */ 1972 if (unlikely(nr_bytes <= 0)) 1973 break; 1974 } 1975 } 1976 1977 /* 1978 * completely done 1979 */ 1980 if (!req->bio) { 1981 /* 1982 * Reset counters so that the request stacking driver 1983 * can find how many bytes remain in the request 1984 * later. 1985 */ 1986 req->__data_len = 0; 1987 return false; 1988 } 1989 1990 /* 1991 * if the request wasn't completed, update state 1992 */ 1993 if (bio_nbytes) { 1994 req_bio_endio(req, bio, bio_nbytes, error); 1995 bio->bi_idx += next_idx; 1996 bio_iovec(bio)->bv_offset += nr_bytes; 1997 bio_iovec(bio)->bv_len -= nr_bytes; 1998 } 1999 2000 req->__data_len -= total_bytes; 2001 req->buffer = bio_data(req->bio); 2002 2003 /* update sector only for requests with clear definition of sector */ 2004 if (blk_fs_request(req) || blk_discard_rq(req)) 2005 req->__sector += total_bytes >> 9; 2006 2007 /* 2008 * If total number of sectors is less than the first segment 2009 * size, something has gone terribly wrong. 2010 */ 2011 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2012 printk(KERN_ERR "blk: request botched\n"); 2013 req->__data_len = blk_rq_cur_bytes(req); 2014 } 2015 2016 /* recalculate the number of segments */ 2017 blk_recalc_rq_segments(req); 2018 2019 return true; 2020 } 2021 EXPORT_SYMBOL_GPL(blk_update_request); 2022 2023 static bool blk_update_bidi_request(struct request *rq, int error, 2024 unsigned int nr_bytes, 2025 unsigned int bidi_bytes) 2026 { 2027 if (blk_update_request(rq, error, nr_bytes)) 2028 return true; 2029 2030 /* Bidi request must be completed as a whole */ 2031 if (unlikely(blk_bidi_rq(rq)) && 2032 blk_update_request(rq->next_rq, error, bidi_bytes)) 2033 return true; 2034 2035 add_disk_randomness(rq->rq_disk); 2036 2037 return false; 2038 } 2039 2040 /* 2041 * queue lock must be held 2042 */ 2043 static void blk_finish_request(struct request *req, int error) 2044 { 2045 if (blk_rq_tagged(req)) 2046 blk_queue_end_tag(req->q, req); 2047 2048 BUG_ON(blk_queued_rq(req)); 2049 2050 if (unlikely(laptop_mode) && blk_fs_request(req)) 2051 laptop_io_completion(); 2052 2053 blk_delete_timer(req); 2054 2055 blk_account_io_done(req); 2056 2057 if (req->end_io) 2058 req->end_io(req, error); 2059 else { 2060 if (blk_bidi_rq(req)) 2061 __blk_put_request(req->next_rq->q, req->next_rq); 2062 2063 __blk_put_request(req->q, req); 2064 } 2065 } 2066 2067 /** 2068 * blk_end_bidi_request - Complete a bidi request 2069 * @rq: the request to complete 2070 * @error: %0 for success, < %0 for error 2071 * @nr_bytes: number of bytes to complete @rq 2072 * @bidi_bytes: number of bytes to complete @rq->next_rq 2073 * 2074 * Description: 2075 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2076 * Drivers that supports bidi can safely call this member for any 2077 * type of request, bidi or uni. In the later case @bidi_bytes is 2078 * just ignored. 2079 * 2080 * Return: 2081 * %false - we are done with this request 2082 * %true - still buffers pending for this request 2083 **/ 2084 static bool blk_end_bidi_request(struct request *rq, int error, 2085 unsigned int nr_bytes, unsigned int bidi_bytes) 2086 { 2087 struct request_queue *q = rq->q; 2088 unsigned long flags; 2089 2090 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2091 return true; 2092 2093 spin_lock_irqsave(q->queue_lock, flags); 2094 blk_finish_request(rq, error); 2095 spin_unlock_irqrestore(q->queue_lock, flags); 2096 2097 return false; 2098 } 2099 2100 /** 2101 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2102 * @rq: the request to complete 2103 * @error: %0 for success, < %0 for error 2104 * @nr_bytes: number of bytes to complete @rq 2105 * @bidi_bytes: number of bytes to complete @rq->next_rq 2106 * 2107 * Description: 2108 * Identical to blk_end_bidi_request() except that queue lock is 2109 * assumed to be locked on entry and remains so on return. 2110 * 2111 * Return: 2112 * %false - we are done with this request 2113 * %true - still buffers pending for this request 2114 **/ 2115 static bool __blk_end_bidi_request(struct request *rq, int error, 2116 unsigned int nr_bytes, unsigned int bidi_bytes) 2117 { 2118 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2119 return true; 2120 2121 blk_finish_request(rq, error); 2122 2123 return false; 2124 } 2125 2126 /** 2127 * blk_end_request - Helper function for drivers to complete the request. 2128 * @rq: the request being processed 2129 * @error: %0 for success, < %0 for error 2130 * @nr_bytes: number of bytes to complete 2131 * 2132 * Description: 2133 * Ends I/O on a number of bytes attached to @rq. 2134 * If @rq has leftover, sets it up for the next range of segments. 2135 * 2136 * Return: 2137 * %false - we are done with this request 2138 * %true - still buffers pending for this request 2139 **/ 2140 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2141 { 2142 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2143 } 2144 EXPORT_SYMBOL_GPL(blk_end_request); 2145 2146 /** 2147 * blk_end_request_all - Helper function for drives to finish the request. 2148 * @rq: the request to finish 2149 * @error: %0 for success, < %0 for error 2150 * 2151 * Description: 2152 * Completely finish @rq. 2153 */ 2154 void blk_end_request_all(struct request *rq, int error) 2155 { 2156 bool pending; 2157 unsigned int bidi_bytes = 0; 2158 2159 if (unlikely(blk_bidi_rq(rq))) 2160 bidi_bytes = blk_rq_bytes(rq->next_rq); 2161 2162 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2163 BUG_ON(pending); 2164 } 2165 EXPORT_SYMBOL_GPL(blk_end_request_all); 2166 2167 /** 2168 * blk_end_request_cur - Helper function to finish the current request chunk. 2169 * @rq: the request to finish the current chunk for 2170 * @error: %0 for success, < %0 for error 2171 * 2172 * Description: 2173 * Complete the current consecutively mapped chunk from @rq. 2174 * 2175 * Return: 2176 * %false - we are done with this request 2177 * %true - still buffers pending for this request 2178 */ 2179 bool blk_end_request_cur(struct request *rq, int error) 2180 { 2181 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2182 } 2183 EXPORT_SYMBOL_GPL(blk_end_request_cur); 2184 2185 /** 2186 * __blk_end_request - Helper function for drivers to complete the request. 2187 * @rq: the request being processed 2188 * @error: %0 for success, < %0 for error 2189 * @nr_bytes: number of bytes to complete 2190 * 2191 * Description: 2192 * Must be called with queue lock held unlike blk_end_request(). 2193 * 2194 * Return: 2195 * %false - we are done with this request 2196 * %true - still buffers pending for this request 2197 **/ 2198 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2199 { 2200 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2201 } 2202 EXPORT_SYMBOL_GPL(__blk_end_request); 2203 2204 /** 2205 * __blk_end_request_all - Helper function for drives to finish the request. 2206 * @rq: the request to finish 2207 * @error: %0 for success, < %0 for error 2208 * 2209 * Description: 2210 * Completely finish @rq. Must be called with queue lock held. 2211 */ 2212 void __blk_end_request_all(struct request *rq, int error) 2213 { 2214 bool pending; 2215 unsigned int bidi_bytes = 0; 2216 2217 if (unlikely(blk_bidi_rq(rq))) 2218 bidi_bytes = blk_rq_bytes(rq->next_rq); 2219 2220 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2221 BUG_ON(pending); 2222 } 2223 EXPORT_SYMBOL_GPL(__blk_end_request_all); 2224 2225 /** 2226 * __blk_end_request_cur - Helper function to finish the current request chunk. 2227 * @rq: the request to finish the current chunk for 2228 * @error: %0 for success, < %0 for error 2229 * 2230 * Description: 2231 * Complete the current consecutively mapped chunk from @rq. Must 2232 * be called with queue lock held. 2233 * 2234 * Return: 2235 * %false - we are done with this request 2236 * %true - still buffers pending for this request 2237 */ 2238 bool __blk_end_request_cur(struct request *rq, int error) 2239 { 2240 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2241 } 2242 EXPORT_SYMBOL_GPL(__blk_end_request_cur); 2243 2244 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2245 struct bio *bio) 2246 { 2247 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and 2248 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */ 2249 rq->cmd_flags |= (bio->bi_rw & 3); 2250 2251 if (bio_has_data(bio)) { 2252 rq->nr_phys_segments = bio_phys_segments(q, bio); 2253 rq->buffer = bio_data(bio); 2254 } 2255 rq->__data_len = bio->bi_size; 2256 rq->bio = rq->biotail = bio; 2257 2258 if (bio->bi_bdev) 2259 rq->rq_disk = bio->bi_bdev->bd_disk; 2260 } 2261 2262 /** 2263 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2264 * @q : the queue of the device being checked 2265 * 2266 * Description: 2267 * Check if underlying low-level drivers of a device are busy. 2268 * If the drivers want to export their busy state, they must set own 2269 * exporting function using blk_queue_lld_busy() first. 2270 * 2271 * Basically, this function is used only by request stacking drivers 2272 * to stop dispatching requests to underlying devices when underlying 2273 * devices are busy. This behavior helps more I/O merging on the queue 2274 * of the request stacking driver and prevents I/O throughput regression 2275 * on burst I/O load. 2276 * 2277 * Return: 2278 * 0 - Not busy (The request stacking driver should dispatch request) 2279 * 1 - Busy (The request stacking driver should stop dispatching request) 2280 */ 2281 int blk_lld_busy(struct request_queue *q) 2282 { 2283 if (q->lld_busy_fn) 2284 return q->lld_busy_fn(q); 2285 2286 return 0; 2287 } 2288 EXPORT_SYMBOL_GPL(blk_lld_busy); 2289 2290 /** 2291 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2292 * @rq: the clone request to be cleaned up 2293 * 2294 * Description: 2295 * Free all bios in @rq for a cloned request. 2296 */ 2297 void blk_rq_unprep_clone(struct request *rq) 2298 { 2299 struct bio *bio; 2300 2301 while ((bio = rq->bio) != NULL) { 2302 rq->bio = bio->bi_next; 2303 2304 bio_put(bio); 2305 } 2306 } 2307 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2308 2309 /* 2310 * Copy attributes of the original request to the clone request. 2311 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2312 */ 2313 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2314 { 2315 dst->cpu = src->cpu; 2316 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE); 2317 dst->cmd_type = src->cmd_type; 2318 dst->__sector = blk_rq_pos(src); 2319 dst->__data_len = blk_rq_bytes(src); 2320 dst->nr_phys_segments = src->nr_phys_segments; 2321 dst->ioprio = src->ioprio; 2322 dst->extra_len = src->extra_len; 2323 } 2324 2325 /** 2326 * blk_rq_prep_clone - Helper function to setup clone request 2327 * @rq: the request to be setup 2328 * @rq_src: original request to be cloned 2329 * @bs: bio_set that bios for clone are allocated from 2330 * @gfp_mask: memory allocation mask for bio 2331 * @bio_ctr: setup function to be called for each clone bio. 2332 * Returns %0 for success, non %0 for failure. 2333 * @data: private data to be passed to @bio_ctr 2334 * 2335 * Description: 2336 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2337 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2338 * are not copied, and copying such parts is the caller's responsibility. 2339 * Also, pages which the original bios are pointing to are not copied 2340 * and the cloned bios just point same pages. 2341 * So cloned bios must be completed before original bios, which means 2342 * the caller must complete @rq before @rq_src. 2343 */ 2344 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2345 struct bio_set *bs, gfp_t gfp_mask, 2346 int (*bio_ctr)(struct bio *, struct bio *, void *), 2347 void *data) 2348 { 2349 struct bio *bio, *bio_src; 2350 2351 if (!bs) 2352 bs = fs_bio_set; 2353 2354 blk_rq_init(NULL, rq); 2355 2356 __rq_for_each_bio(bio_src, rq_src) { 2357 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2358 if (!bio) 2359 goto free_and_out; 2360 2361 __bio_clone(bio, bio_src); 2362 2363 if (bio_integrity(bio_src) && 2364 bio_integrity_clone(bio, bio_src, gfp_mask)) 2365 goto free_and_out; 2366 2367 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2368 goto free_and_out; 2369 2370 if (rq->bio) { 2371 rq->biotail->bi_next = bio; 2372 rq->biotail = bio; 2373 } else 2374 rq->bio = rq->biotail = bio; 2375 } 2376 2377 __blk_rq_prep_clone(rq, rq_src); 2378 2379 return 0; 2380 2381 free_and_out: 2382 if (bio) 2383 bio_free(bio, bs); 2384 blk_rq_unprep_clone(rq); 2385 2386 return -ENOMEM; 2387 } 2388 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2389 2390 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2391 { 2392 return queue_work(kblockd_workqueue, work); 2393 } 2394 EXPORT_SYMBOL(kblockd_schedule_work); 2395 2396 int __init blk_dev_init(void) 2397 { 2398 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2399 sizeof(((struct request *)0)->cmd_flags)); 2400 2401 kblockd_workqueue = create_workqueue("kblockd"); 2402 if (!kblockd_workqueue) 2403 panic("Failed to create kblockd\n"); 2404 2405 request_cachep = kmem_cache_create("blkdev_requests", 2406 sizeof(struct request), 0, SLAB_PANIC, NULL); 2407 2408 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2409 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2410 2411 return 0; 2412 } 2413 2414