xref: /linux/block/blk-core.c (revision e0c1b49f5b674cca7b10549c53b3791d0bbc90a8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/blk-pm.h>
21 #include <linux/blk-integrity.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48 
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-throttle.h"
54 
55 struct dentry *blk_debugfs_root;
56 
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63 
64 DEFINE_IDA(blk_queue_ida);
65 
66 /*
67  * For queue allocation
68  */
69 struct kmem_cache *blk_requestq_cachep;
70 
71 /*
72  * Controlling structure to kblockd
73  */
74 static struct workqueue_struct *kblockd_workqueue;
75 
76 /**
77  * blk_queue_flag_set - atomically set a queue flag
78  * @flag: flag to be set
79  * @q: request queue
80  */
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 {
83 	set_bit(flag, &q->queue_flags);
84 }
85 EXPORT_SYMBOL(blk_queue_flag_set);
86 
87 /**
88  * blk_queue_flag_clear - atomically clear a queue flag
89  * @flag: flag to be cleared
90  * @q: request queue
91  */
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 {
94 	clear_bit(flag, &q->queue_flags);
95 }
96 EXPORT_SYMBOL(blk_queue_flag_clear);
97 
98 /**
99  * blk_queue_flag_test_and_set - atomically test and set a queue flag
100  * @flag: flag to be set
101  * @q: request queue
102  *
103  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104  * the flag was already set.
105  */
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 {
108 	return test_and_set_bit(flag, &q->queue_flags);
109 }
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111 
112 void blk_rq_init(struct request_queue *q, struct request *rq)
113 {
114 	memset(rq, 0, sizeof(*rq));
115 
116 	INIT_LIST_HEAD(&rq->queuelist);
117 	rq->q = q;
118 	rq->__sector = (sector_t) -1;
119 	INIT_HLIST_NODE(&rq->hash);
120 	RB_CLEAR_NODE(&rq->rb_node);
121 	rq->tag = BLK_MQ_NO_TAG;
122 	rq->internal_tag = BLK_MQ_NO_TAG;
123 	rq->start_time_ns = ktime_get_ns();
124 	rq->part = NULL;
125 	blk_crypto_rq_set_defaults(rq);
126 }
127 EXPORT_SYMBOL(blk_rq_init);
128 
129 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
130 static const char *const blk_op_name[] = {
131 	REQ_OP_NAME(READ),
132 	REQ_OP_NAME(WRITE),
133 	REQ_OP_NAME(FLUSH),
134 	REQ_OP_NAME(DISCARD),
135 	REQ_OP_NAME(SECURE_ERASE),
136 	REQ_OP_NAME(ZONE_RESET),
137 	REQ_OP_NAME(ZONE_RESET_ALL),
138 	REQ_OP_NAME(ZONE_OPEN),
139 	REQ_OP_NAME(ZONE_CLOSE),
140 	REQ_OP_NAME(ZONE_FINISH),
141 	REQ_OP_NAME(ZONE_APPEND),
142 	REQ_OP_NAME(WRITE_SAME),
143 	REQ_OP_NAME(WRITE_ZEROES),
144 	REQ_OP_NAME(DRV_IN),
145 	REQ_OP_NAME(DRV_OUT),
146 };
147 #undef REQ_OP_NAME
148 
149 /**
150  * blk_op_str - Return string XXX in the REQ_OP_XXX.
151  * @op: REQ_OP_XXX.
152  *
153  * Description: Centralize block layer function to convert REQ_OP_XXX into
154  * string format. Useful in the debugging and tracing bio or request. For
155  * invalid REQ_OP_XXX it returns string "UNKNOWN".
156  */
157 inline const char *blk_op_str(unsigned int op)
158 {
159 	const char *op_str = "UNKNOWN";
160 
161 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
162 		op_str = blk_op_name[op];
163 
164 	return op_str;
165 }
166 EXPORT_SYMBOL_GPL(blk_op_str);
167 
168 static const struct {
169 	int		errno;
170 	const char	*name;
171 } blk_errors[] = {
172 	[BLK_STS_OK]		= { 0,		"" },
173 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
174 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
175 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
176 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
177 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
178 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
179 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
180 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
181 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
182 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
183 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
184 
185 	/* device mapper special case, should not leak out: */
186 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
187 
188 	/* zone device specific errors */
189 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
190 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
191 
192 	/* everything else not covered above: */
193 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
194 };
195 
196 blk_status_t errno_to_blk_status(int errno)
197 {
198 	int i;
199 
200 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
201 		if (blk_errors[i].errno == errno)
202 			return (__force blk_status_t)i;
203 	}
204 
205 	return BLK_STS_IOERR;
206 }
207 EXPORT_SYMBOL_GPL(errno_to_blk_status);
208 
209 int blk_status_to_errno(blk_status_t status)
210 {
211 	int idx = (__force int)status;
212 
213 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
214 		return -EIO;
215 	return blk_errors[idx].errno;
216 }
217 EXPORT_SYMBOL_GPL(blk_status_to_errno);
218 
219 void blk_print_req_error(struct request *req, blk_status_t status)
220 {
221 	int idx = (__force int)status;
222 
223 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
224 		return;
225 
226 	printk_ratelimited(KERN_ERR
227 		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
228 		"phys_seg %u prio class %u\n",
229 		blk_errors[idx].name,
230 		req->rq_disk ? req->rq_disk->disk_name : "?",
231 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
232 		req->cmd_flags & ~REQ_OP_MASK,
233 		req->nr_phys_segments,
234 		IOPRIO_PRIO_CLASS(req->ioprio));
235 }
236 
237 void blk_dump_rq_flags(struct request *rq, char *msg)
238 {
239 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
240 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
241 		(unsigned long long) rq->cmd_flags);
242 
243 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
244 	       (unsigned long long)blk_rq_pos(rq),
245 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
246 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
247 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
248 }
249 EXPORT_SYMBOL(blk_dump_rq_flags);
250 
251 /**
252  * blk_sync_queue - cancel any pending callbacks on a queue
253  * @q: the queue
254  *
255  * Description:
256  *     The block layer may perform asynchronous callback activity
257  *     on a queue, such as calling the unplug function after a timeout.
258  *     A block device may call blk_sync_queue to ensure that any
259  *     such activity is cancelled, thus allowing it to release resources
260  *     that the callbacks might use. The caller must already have made sure
261  *     that its ->submit_bio will not re-add plugging prior to calling
262  *     this function.
263  *
264  *     This function does not cancel any asynchronous activity arising
265  *     out of elevator or throttling code. That would require elevator_exit()
266  *     and blkcg_exit_queue() to be called with queue lock initialized.
267  *
268  */
269 void blk_sync_queue(struct request_queue *q)
270 {
271 	del_timer_sync(&q->timeout);
272 	cancel_work_sync(&q->timeout_work);
273 }
274 EXPORT_SYMBOL(blk_sync_queue);
275 
276 /**
277  * blk_set_pm_only - increment pm_only counter
278  * @q: request queue pointer
279  */
280 void blk_set_pm_only(struct request_queue *q)
281 {
282 	atomic_inc(&q->pm_only);
283 }
284 EXPORT_SYMBOL_GPL(blk_set_pm_only);
285 
286 void blk_clear_pm_only(struct request_queue *q)
287 {
288 	int pm_only;
289 
290 	pm_only = atomic_dec_return(&q->pm_only);
291 	WARN_ON_ONCE(pm_only < 0);
292 	if (pm_only == 0)
293 		wake_up_all(&q->mq_freeze_wq);
294 }
295 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
296 
297 /**
298  * blk_put_queue - decrement the request_queue refcount
299  * @q: the request_queue structure to decrement the refcount for
300  *
301  * Decrements the refcount of the request_queue kobject. When this reaches 0
302  * we'll have blk_release_queue() called.
303  *
304  * Context: Any context, but the last reference must not be dropped from
305  *          atomic context.
306  */
307 void blk_put_queue(struct request_queue *q)
308 {
309 	kobject_put(&q->kobj);
310 }
311 EXPORT_SYMBOL(blk_put_queue);
312 
313 void blk_queue_start_drain(struct request_queue *q)
314 {
315 	/*
316 	 * When queue DYING flag is set, we need to block new req
317 	 * entering queue, so we call blk_freeze_queue_start() to
318 	 * prevent I/O from crossing blk_queue_enter().
319 	 */
320 	blk_freeze_queue_start(q);
321 	if (queue_is_mq(q))
322 		blk_mq_wake_waiters(q);
323 	/* Make blk_queue_enter() reexamine the DYING flag. */
324 	wake_up_all(&q->mq_freeze_wq);
325 }
326 
327 void blk_set_queue_dying(struct request_queue *q)
328 {
329 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
330 	blk_queue_start_drain(q);
331 }
332 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
333 
334 /**
335  * blk_cleanup_queue - shutdown a request queue
336  * @q: request queue to shutdown
337  *
338  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
339  * put it.  All future requests will be failed immediately with -ENODEV.
340  *
341  * Context: can sleep
342  */
343 void blk_cleanup_queue(struct request_queue *q)
344 {
345 	/* cannot be called from atomic context */
346 	might_sleep();
347 
348 	WARN_ON_ONCE(blk_queue_registered(q));
349 
350 	/* mark @q DYING, no new request or merges will be allowed afterwards */
351 	blk_set_queue_dying(q);
352 
353 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
354 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
355 
356 	/*
357 	 * Drain all requests queued before DYING marking. Set DEAD flag to
358 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
359 	 * after draining finished.
360 	 */
361 	blk_freeze_queue(q);
362 
363 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
364 
365 	blk_sync_queue(q);
366 	if (queue_is_mq(q))
367 		blk_mq_exit_queue(q);
368 
369 	/*
370 	 * In theory, request pool of sched_tags belongs to request queue.
371 	 * However, the current implementation requires tag_set for freeing
372 	 * requests, so free the pool now.
373 	 *
374 	 * Queue has become frozen, there can't be any in-queue requests, so
375 	 * it is safe to free requests now.
376 	 */
377 	mutex_lock(&q->sysfs_lock);
378 	if (q->elevator)
379 		blk_mq_sched_free_rqs(q);
380 	mutex_unlock(&q->sysfs_lock);
381 
382 	percpu_ref_exit(&q->q_usage_counter);
383 
384 	/* @q is and will stay empty, shutdown and put */
385 	blk_put_queue(q);
386 }
387 EXPORT_SYMBOL(blk_cleanup_queue);
388 
389 static bool blk_try_enter_queue(struct request_queue *q, bool pm)
390 {
391 	rcu_read_lock();
392 	if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
393 		goto fail;
394 
395 	/*
396 	 * The code that increments the pm_only counter must ensure that the
397 	 * counter is globally visible before the queue is unfrozen.
398 	 */
399 	if (blk_queue_pm_only(q) &&
400 	    (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
401 		goto fail_put;
402 
403 	rcu_read_unlock();
404 	return true;
405 
406 fail_put:
407 	blk_queue_exit(q);
408 fail:
409 	rcu_read_unlock();
410 	return false;
411 }
412 
413 /**
414  * blk_queue_enter() - try to increase q->q_usage_counter
415  * @q: request queue pointer
416  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
417  */
418 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
419 {
420 	const bool pm = flags & BLK_MQ_REQ_PM;
421 
422 	while (!blk_try_enter_queue(q, pm)) {
423 		if (flags & BLK_MQ_REQ_NOWAIT)
424 			return -EBUSY;
425 
426 		/*
427 		 * read pair of barrier in blk_freeze_queue_start(), we need to
428 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
429 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
430 		 * following wait may never return if the two reads are
431 		 * reordered.
432 		 */
433 		smp_rmb();
434 		wait_event(q->mq_freeze_wq,
435 			   (!q->mq_freeze_depth &&
436 			    blk_pm_resume_queue(pm, q)) ||
437 			   blk_queue_dying(q));
438 		if (blk_queue_dying(q))
439 			return -ENODEV;
440 	}
441 
442 	return 0;
443 }
444 
445 static inline int bio_queue_enter(struct bio *bio)
446 {
447 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
448 
449 	while (!blk_try_enter_queue(q, false)) {
450 		struct gendisk *disk = bio->bi_bdev->bd_disk;
451 
452 		if (bio->bi_opf & REQ_NOWAIT) {
453 			if (test_bit(GD_DEAD, &disk->state))
454 				goto dead;
455 			bio_wouldblock_error(bio);
456 			return -EBUSY;
457 		}
458 
459 		/*
460 		 * read pair of barrier in blk_freeze_queue_start(), we need to
461 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
462 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
463 		 * following wait may never return if the two reads are
464 		 * reordered.
465 		 */
466 		smp_rmb();
467 		wait_event(q->mq_freeze_wq,
468 			   (!q->mq_freeze_depth &&
469 			    blk_pm_resume_queue(false, q)) ||
470 			   test_bit(GD_DEAD, &disk->state));
471 		if (test_bit(GD_DEAD, &disk->state))
472 			goto dead;
473 	}
474 
475 	return 0;
476 dead:
477 	bio_io_error(bio);
478 	return -ENODEV;
479 }
480 
481 void blk_queue_exit(struct request_queue *q)
482 {
483 	percpu_ref_put(&q->q_usage_counter);
484 }
485 
486 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
487 {
488 	struct request_queue *q =
489 		container_of(ref, struct request_queue, q_usage_counter);
490 
491 	wake_up_all(&q->mq_freeze_wq);
492 }
493 
494 static void blk_rq_timed_out_timer(struct timer_list *t)
495 {
496 	struct request_queue *q = from_timer(q, t, timeout);
497 
498 	kblockd_schedule_work(&q->timeout_work);
499 }
500 
501 static void blk_timeout_work(struct work_struct *work)
502 {
503 }
504 
505 struct request_queue *blk_alloc_queue(int node_id)
506 {
507 	struct request_queue *q;
508 	int ret;
509 
510 	q = kmem_cache_alloc_node(blk_requestq_cachep,
511 				GFP_KERNEL | __GFP_ZERO, node_id);
512 	if (!q)
513 		return NULL;
514 
515 	q->last_merge = NULL;
516 
517 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
518 	if (q->id < 0)
519 		goto fail_q;
520 
521 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
522 	if (ret)
523 		goto fail_id;
524 
525 	q->stats = blk_alloc_queue_stats();
526 	if (!q->stats)
527 		goto fail_split;
528 
529 	q->node = node_id;
530 
531 	atomic_set(&q->nr_active_requests_shared_tags, 0);
532 
533 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
534 	INIT_WORK(&q->timeout_work, blk_timeout_work);
535 	INIT_LIST_HEAD(&q->icq_list);
536 #ifdef CONFIG_BLK_CGROUP
537 	INIT_LIST_HEAD(&q->blkg_list);
538 #endif
539 
540 	kobject_init(&q->kobj, &blk_queue_ktype);
541 
542 	mutex_init(&q->debugfs_mutex);
543 	mutex_init(&q->sysfs_lock);
544 	mutex_init(&q->sysfs_dir_lock);
545 	spin_lock_init(&q->queue_lock);
546 
547 	init_waitqueue_head(&q->mq_freeze_wq);
548 	mutex_init(&q->mq_freeze_lock);
549 
550 	/*
551 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
552 	 * See blk_register_queue() for details.
553 	 */
554 	if (percpu_ref_init(&q->q_usage_counter,
555 				blk_queue_usage_counter_release,
556 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
557 		goto fail_stats;
558 
559 	if (blkcg_init_queue(q))
560 		goto fail_ref;
561 
562 	blk_queue_dma_alignment(q, 511);
563 	blk_set_default_limits(&q->limits);
564 	q->nr_requests = BLKDEV_DEFAULT_RQ;
565 
566 	return q;
567 
568 fail_ref:
569 	percpu_ref_exit(&q->q_usage_counter);
570 fail_stats:
571 	blk_free_queue_stats(q->stats);
572 fail_split:
573 	bioset_exit(&q->bio_split);
574 fail_id:
575 	ida_simple_remove(&blk_queue_ida, q->id);
576 fail_q:
577 	kmem_cache_free(blk_requestq_cachep, q);
578 	return NULL;
579 }
580 
581 /**
582  * blk_get_queue - increment the request_queue refcount
583  * @q: the request_queue structure to increment the refcount for
584  *
585  * Increment the refcount of the request_queue kobject.
586  *
587  * Context: Any context.
588  */
589 bool blk_get_queue(struct request_queue *q)
590 {
591 	if (likely(!blk_queue_dying(q))) {
592 		__blk_get_queue(q);
593 		return true;
594 	}
595 
596 	return false;
597 }
598 EXPORT_SYMBOL(blk_get_queue);
599 
600 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
601 {
602 	char b[BDEVNAME_SIZE];
603 
604 	pr_info_ratelimited("%s: attempt to access beyond end of device\n"
605 			    "%s: rw=%d, want=%llu, limit=%llu\n",
606 			    current->comm,
607 			    bio_devname(bio, b), bio->bi_opf,
608 			    bio_end_sector(bio), maxsector);
609 }
610 
611 #ifdef CONFIG_FAIL_MAKE_REQUEST
612 
613 static DECLARE_FAULT_ATTR(fail_make_request);
614 
615 static int __init setup_fail_make_request(char *str)
616 {
617 	return setup_fault_attr(&fail_make_request, str);
618 }
619 __setup("fail_make_request=", setup_fail_make_request);
620 
621 static bool should_fail_request(struct block_device *part, unsigned int bytes)
622 {
623 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
624 }
625 
626 static int __init fail_make_request_debugfs(void)
627 {
628 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
629 						NULL, &fail_make_request);
630 
631 	return PTR_ERR_OR_ZERO(dir);
632 }
633 
634 late_initcall(fail_make_request_debugfs);
635 
636 #else /* CONFIG_FAIL_MAKE_REQUEST */
637 
638 static inline bool should_fail_request(struct block_device *part,
639 					unsigned int bytes)
640 {
641 	return false;
642 }
643 
644 #endif /* CONFIG_FAIL_MAKE_REQUEST */
645 
646 static inline bool bio_check_ro(struct bio *bio)
647 {
648 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
649 		char b[BDEVNAME_SIZE];
650 
651 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
652 			return false;
653 
654 		WARN_ONCE(1,
655 		       "Trying to write to read-only block-device %s (partno %d)\n",
656 			bio_devname(bio, b), bio->bi_bdev->bd_partno);
657 		/* Older lvm-tools actually trigger this */
658 		return false;
659 	}
660 
661 	return false;
662 }
663 
664 static noinline int should_fail_bio(struct bio *bio)
665 {
666 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
667 		return -EIO;
668 	return 0;
669 }
670 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
671 
672 /*
673  * Check whether this bio extends beyond the end of the device or partition.
674  * This may well happen - the kernel calls bread() without checking the size of
675  * the device, e.g., when mounting a file system.
676  */
677 static inline int bio_check_eod(struct bio *bio)
678 {
679 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
680 	unsigned int nr_sectors = bio_sectors(bio);
681 
682 	if (nr_sectors && maxsector &&
683 	    (nr_sectors > maxsector ||
684 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
685 		handle_bad_sector(bio, maxsector);
686 		return -EIO;
687 	}
688 	return 0;
689 }
690 
691 /*
692  * Remap block n of partition p to block n+start(p) of the disk.
693  */
694 static int blk_partition_remap(struct bio *bio)
695 {
696 	struct block_device *p = bio->bi_bdev;
697 
698 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
699 		return -EIO;
700 	if (bio_sectors(bio)) {
701 		bio->bi_iter.bi_sector += p->bd_start_sect;
702 		trace_block_bio_remap(bio, p->bd_dev,
703 				      bio->bi_iter.bi_sector -
704 				      p->bd_start_sect);
705 	}
706 	bio_set_flag(bio, BIO_REMAPPED);
707 	return 0;
708 }
709 
710 /*
711  * Check write append to a zoned block device.
712  */
713 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
714 						 struct bio *bio)
715 {
716 	sector_t pos = bio->bi_iter.bi_sector;
717 	int nr_sectors = bio_sectors(bio);
718 
719 	/* Only applicable to zoned block devices */
720 	if (!blk_queue_is_zoned(q))
721 		return BLK_STS_NOTSUPP;
722 
723 	/* The bio sector must point to the start of a sequential zone */
724 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
725 	    !blk_queue_zone_is_seq(q, pos))
726 		return BLK_STS_IOERR;
727 
728 	/*
729 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
730 	 * split and could result in non-contiguous sectors being written in
731 	 * different zones.
732 	 */
733 	if (nr_sectors > q->limits.chunk_sectors)
734 		return BLK_STS_IOERR;
735 
736 	/* Make sure the BIO is small enough and will not get split */
737 	if (nr_sectors > q->limits.max_zone_append_sectors)
738 		return BLK_STS_IOERR;
739 
740 	bio->bi_opf |= REQ_NOMERGE;
741 
742 	return BLK_STS_OK;
743 }
744 
745 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
746 {
747 	struct block_device *bdev = bio->bi_bdev;
748 	struct request_queue *q = bdev_get_queue(bdev);
749 	blk_status_t status = BLK_STS_IOERR;
750 	struct blk_plug *plug;
751 
752 	might_sleep();
753 
754 	plug = blk_mq_plug(q, bio);
755 	if (plug && plug->nowait)
756 		bio->bi_opf |= REQ_NOWAIT;
757 
758 	/*
759 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
760 	 * if queue does not support NOWAIT.
761 	 */
762 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
763 		goto not_supported;
764 
765 	if (should_fail_bio(bio))
766 		goto end_io;
767 	if (unlikely(bio_check_ro(bio)))
768 		goto end_io;
769 	if (!bio_flagged(bio, BIO_REMAPPED)) {
770 		if (unlikely(bio_check_eod(bio)))
771 			goto end_io;
772 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
773 			goto end_io;
774 	}
775 
776 	/*
777 	 * Filter flush bio's early so that bio based drivers without flush
778 	 * support don't have to worry about them.
779 	 */
780 	if (op_is_flush(bio->bi_opf) &&
781 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
782 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
783 		if (!bio_sectors(bio)) {
784 			status = BLK_STS_OK;
785 			goto end_io;
786 		}
787 	}
788 
789 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
790 		bio_clear_polled(bio);
791 
792 	switch (bio_op(bio)) {
793 	case REQ_OP_DISCARD:
794 		if (!blk_queue_discard(q))
795 			goto not_supported;
796 		break;
797 	case REQ_OP_SECURE_ERASE:
798 		if (!blk_queue_secure_erase(q))
799 			goto not_supported;
800 		break;
801 	case REQ_OP_WRITE_SAME:
802 		if (!q->limits.max_write_same_sectors)
803 			goto not_supported;
804 		break;
805 	case REQ_OP_ZONE_APPEND:
806 		status = blk_check_zone_append(q, bio);
807 		if (status != BLK_STS_OK)
808 			goto end_io;
809 		break;
810 	case REQ_OP_ZONE_RESET:
811 	case REQ_OP_ZONE_OPEN:
812 	case REQ_OP_ZONE_CLOSE:
813 	case REQ_OP_ZONE_FINISH:
814 		if (!blk_queue_is_zoned(q))
815 			goto not_supported;
816 		break;
817 	case REQ_OP_ZONE_RESET_ALL:
818 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
819 			goto not_supported;
820 		break;
821 	case REQ_OP_WRITE_ZEROES:
822 		if (!q->limits.max_write_zeroes_sectors)
823 			goto not_supported;
824 		break;
825 	default:
826 		break;
827 	}
828 
829 	/*
830 	 * Various block parts want %current->io_context, so allocate it up
831 	 * front rather than dealing with lots of pain to allocate it only
832 	 * where needed. This may fail and the block layer knows how to live
833 	 * with it.
834 	 */
835 	if (unlikely(!current->io_context))
836 		create_task_io_context(current, GFP_ATOMIC, q->node);
837 
838 	if (blk_throtl_bio(bio)) {
839 		blkcg_bio_issue_init(bio);
840 		return false;
841 	}
842 
843 	blk_cgroup_bio_start(bio);
844 	blkcg_bio_issue_init(bio);
845 
846 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
847 		trace_block_bio_queue(bio);
848 		/* Now that enqueuing has been traced, we need to trace
849 		 * completion as well.
850 		 */
851 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
852 	}
853 	return true;
854 
855 not_supported:
856 	status = BLK_STS_NOTSUPP;
857 end_io:
858 	bio->bi_status = status;
859 	bio_endio(bio);
860 	return false;
861 }
862 
863 static void __submit_bio(struct bio *bio)
864 {
865 	struct gendisk *disk = bio->bi_bdev->bd_disk;
866 
867 	if (unlikely(bio_queue_enter(bio) != 0))
868 		return;
869 
870 	if (!submit_bio_checks(bio) || !blk_crypto_bio_prep(&bio))
871 		goto queue_exit;
872 	if (!disk->fops->submit_bio) {
873 		blk_mq_submit_bio(bio);
874 		return;
875 	}
876 	disk->fops->submit_bio(bio);
877 queue_exit:
878 	blk_queue_exit(disk->queue);
879 }
880 
881 /*
882  * The loop in this function may be a bit non-obvious, and so deserves some
883  * explanation:
884  *
885  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
886  *    that), so we have a list with a single bio.
887  *  - We pretend that we have just taken it off a longer list, so we assign
888  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
889  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
890  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
891  *    non-NULL value in bio_list and re-enter the loop from the top.
892  *  - In this case we really did just take the bio of the top of the list (no
893  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
894  *    again.
895  *
896  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
897  * bio_list_on_stack[1] contains bios that were submitted before the current
898  *	->submit_bio_bio, but that haven't been processed yet.
899  */
900 static void __submit_bio_noacct(struct bio *bio)
901 {
902 	struct bio_list bio_list_on_stack[2];
903 
904 	BUG_ON(bio->bi_next);
905 
906 	bio_list_init(&bio_list_on_stack[0]);
907 	current->bio_list = bio_list_on_stack;
908 
909 	do {
910 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
911 		struct bio_list lower, same;
912 
913 		/*
914 		 * Create a fresh bio_list for all subordinate requests.
915 		 */
916 		bio_list_on_stack[1] = bio_list_on_stack[0];
917 		bio_list_init(&bio_list_on_stack[0]);
918 
919 		__submit_bio(bio);
920 
921 		/*
922 		 * Sort new bios into those for a lower level and those for the
923 		 * same level.
924 		 */
925 		bio_list_init(&lower);
926 		bio_list_init(&same);
927 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
928 			if (q == bdev_get_queue(bio->bi_bdev))
929 				bio_list_add(&same, bio);
930 			else
931 				bio_list_add(&lower, bio);
932 
933 		/*
934 		 * Now assemble so we handle the lowest level first.
935 		 */
936 		bio_list_merge(&bio_list_on_stack[0], &lower);
937 		bio_list_merge(&bio_list_on_stack[0], &same);
938 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
939 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
940 
941 	current->bio_list = NULL;
942 }
943 
944 static void __submit_bio_noacct_mq(struct bio *bio)
945 {
946 	struct bio_list bio_list[2] = { };
947 
948 	current->bio_list = bio_list;
949 
950 	do {
951 		__submit_bio(bio);
952 	} while ((bio = bio_list_pop(&bio_list[0])));
953 
954 	current->bio_list = NULL;
955 }
956 
957 /**
958  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
959  * @bio:  The bio describing the location in memory and on the device.
960  *
961  * This is a version of submit_bio() that shall only be used for I/O that is
962  * resubmitted to lower level drivers by stacking block drivers.  All file
963  * systems and other upper level users of the block layer should use
964  * submit_bio() instead.
965  */
966 void submit_bio_noacct(struct bio *bio)
967 {
968 	/*
969 	 * We only want one ->submit_bio to be active at a time, else stack
970 	 * usage with stacked devices could be a problem.  Use current->bio_list
971 	 * to collect a list of requests submited by a ->submit_bio method while
972 	 * it is active, and then process them after it returned.
973 	 */
974 	if (current->bio_list)
975 		bio_list_add(&current->bio_list[0], bio);
976 	else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
977 		__submit_bio_noacct_mq(bio);
978 	else
979 		__submit_bio_noacct(bio);
980 }
981 EXPORT_SYMBOL(submit_bio_noacct);
982 
983 /**
984  * submit_bio - submit a bio to the block device layer for I/O
985  * @bio: The &struct bio which describes the I/O
986  *
987  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
988  * fully set up &struct bio that describes the I/O that needs to be done.  The
989  * bio will be send to the device described by the bi_bdev field.
990  *
991  * The success/failure status of the request, along with notification of
992  * completion, is delivered asynchronously through the ->bi_end_io() callback
993  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
994  * been called.
995  */
996 void submit_bio(struct bio *bio)
997 {
998 	if (blkcg_punt_bio_submit(bio))
999 		return;
1000 
1001 	/*
1002 	 * If it's a regular read/write or a barrier with data attached,
1003 	 * go through the normal accounting stuff before submission.
1004 	 */
1005 	if (bio_has_data(bio)) {
1006 		unsigned int count;
1007 
1008 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1009 			count = queue_logical_block_size(
1010 					bdev_get_queue(bio->bi_bdev)) >> 9;
1011 		else
1012 			count = bio_sectors(bio);
1013 
1014 		if (op_is_write(bio_op(bio))) {
1015 			count_vm_events(PGPGOUT, count);
1016 		} else {
1017 			task_io_account_read(bio->bi_iter.bi_size);
1018 			count_vm_events(PGPGIN, count);
1019 		}
1020 	}
1021 
1022 	/*
1023 	 * If we're reading data that is part of the userspace workingset, count
1024 	 * submission time as memory stall.  When the device is congested, or
1025 	 * the submitting cgroup IO-throttled, submission can be a significant
1026 	 * part of overall IO time.
1027 	 */
1028 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1029 	    bio_flagged(bio, BIO_WORKINGSET))) {
1030 		unsigned long pflags;
1031 
1032 		psi_memstall_enter(&pflags);
1033 		submit_bio_noacct(bio);
1034 		psi_memstall_leave(&pflags);
1035 		return;
1036 	}
1037 
1038 	submit_bio_noacct(bio);
1039 }
1040 EXPORT_SYMBOL(submit_bio);
1041 
1042 /**
1043  * bio_poll - poll for BIO completions
1044  * @bio: bio to poll for
1045  * @flags: BLK_POLL_* flags that control the behavior
1046  *
1047  * Poll for completions on queue associated with the bio. Returns number of
1048  * completed entries found.
1049  *
1050  * Note: the caller must either be the context that submitted @bio, or
1051  * be in a RCU critical section to prevent freeing of @bio.
1052  */
1053 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
1054 {
1055 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1056 	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
1057 	int ret;
1058 
1059 	if (cookie == BLK_QC_T_NONE ||
1060 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1061 		return 0;
1062 
1063 	if (current->plug)
1064 		blk_flush_plug(current->plug, false);
1065 
1066 	if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
1067 		return 0;
1068 	if (WARN_ON_ONCE(!queue_is_mq(q)))
1069 		ret = 0;	/* not yet implemented, should not happen */
1070 	else
1071 		ret = blk_mq_poll(q, cookie, iob, flags);
1072 	blk_queue_exit(q);
1073 	return ret;
1074 }
1075 EXPORT_SYMBOL_GPL(bio_poll);
1076 
1077 /*
1078  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
1079  * in iocb->private, and cleared before freeing the bio.
1080  */
1081 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
1082 		    unsigned int flags)
1083 {
1084 	struct bio *bio;
1085 	int ret = 0;
1086 
1087 	/*
1088 	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
1089 	 * point to a freshly allocated bio at this point.  If that happens
1090 	 * we have a few cases to consider:
1091 	 *
1092 	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
1093 	 *     simply nothing in this case
1094 	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
1095 	 *     this and return 0
1096 	 *  3) the bio points to a poll capable device, including but not
1097 	 *     limited to the one that the original bio pointed to.  In this
1098 	 *     case we will call into the actual poll method and poll for I/O,
1099 	 *     even if we don't need to, but it won't cause harm either.
1100 	 *
1101 	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
1102 	 * is still allocated. Because partitions hold a reference to the whole
1103 	 * device bdev and thus disk, the disk is also still valid.  Grabbing
1104 	 * a reference to the queue in bio_poll() ensures the hctxs and requests
1105 	 * are still valid as well.
1106 	 */
1107 	rcu_read_lock();
1108 	bio = READ_ONCE(kiocb->private);
1109 	if (bio && bio->bi_bdev)
1110 		ret = bio_poll(bio, iob, flags);
1111 	rcu_read_unlock();
1112 
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1116 
1117 /**
1118  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1119  *                              for the new queue limits
1120  * @q:  the queue
1121  * @rq: the request being checked
1122  *
1123  * Description:
1124  *    @rq may have been made based on weaker limitations of upper-level queues
1125  *    in request stacking drivers, and it may violate the limitation of @q.
1126  *    Since the block layer and the underlying device driver trust @rq
1127  *    after it is inserted to @q, it should be checked against @q before
1128  *    the insertion using this generic function.
1129  *
1130  *    Request stacking drivers like request-based dm may change the queue
1131  *    limits when retrying requests on other queues. Those requests need
1132  *    to be checked against the new queue limits again during dispatch.
1133  */
1134 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1135 				      struct request *rq)
1136 {
1137 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1138 
1139 	if (blk_rq_sectors(rq) > max_sectors) {
1140 		/*
1141 		 * SCSI device does not have a good way to return if
1142 		 * Write Same/Zero is actually supported. If a device rejects
1143 		 * a non-read/write command (discard, write same,etc.) the
1144 		 * low-level device driver will set the relevant queue limit to
1145 		 * 0 to prevent blk-lib from issuing more of the offending
1146 		 * operations. Commands queued prior to the queue limit being
1147 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1148 		 * errors being propagated to upper layers.
1149 		 */
1150 		if (max_sectors == 0)
1151 			return BLK_STS_NOTSUPP;
1152 
1153 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1154 			__func__, blk_rq_sectors(rq), max_sectors);
1155 		return BLK_STS_IOERR;
1156 	}
1157 
1158 	/*
1159 	 * The queue settings related to segment counting may differ from the
1160 	 * original queue.
1161 	 */
1162 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1163 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1164 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1165 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1166 		return BLK_STS_IOERR;
1167 	}
1168 
1169 	return BLK_STS_OK;
1170 }
1171 
1172 /**
1173  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1174  * @q:  the queue to submit the request
1175  * @rq: the request being queued
1176  */
1177 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1178 {
1179 	blk_status_t ret;
1180 
1181 	ret = blk_cloned_rq_check_limits(q, rq);
1182 	if (ret != BLK_STS_OK)
1183 		return ret;
1184 
1185 	if (rq->rq_disk &&
1186 	    should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1187 		return BLK_STS_IOERR;
1188 
1189 	if (blk_crypto_insert_cloned_request(rq))
1190 		return BLK_STS_IOERR;
1191 
1192 	blk_account_io_start(rq);
1193 
1194 	/*
1195 	 * Since we have a scheduler attached on the top device,
1196 	 * bypass a potential scheduler on the bottom device for
1197 	 * insert.
1198 	 */
1199 	return blk_mq_request_issue_directly(rq, true);
1200 }
1201 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1202 
1203 /**
1204  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1205  * @rq: request to examine
1206  *
1207  * Description:
1208  *     A request could be merge of IOs which require different failure
1209  *     handling.  This function determines the number of bytes which
1210  *     can be failed from the beginning of the request without
1211  *     crossing into area which need to be retried further.
1212  *
1213  * Return:
1214  *     The number of bytes to fail.
1215  */
1216 unsigned int blk_rq_err_bytes(const struct request *rq)
1217 {
1218 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1219 	unsigned int bytes = 0;
1220 	struct bio *bio;
1221 
1222 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1223 		return blk_rq_bytes(rq);
1224 
1225 	/*
1226 	 * Currently the only 'mixing' which can happen is between
1227 	 * different fastfail types.  We can safely fail portions
1228 	 * which have all the failfast bits that the first one has -
1229 	 * the ones which are at least as eager to fail as the first
1230 	 * one.
1231 	 */
1232 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1233 		if ((bio->bi_opf & ff) != ff)
1234 			break;
1235 		bytes += bio->bi_iter.bi_size;
1236 	}
1237 
1238 	/* this could lead to infinite loop */
1239 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1240 	return bytes;
1241 }
1242 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1243 
1244 static void update_io_ticks(struct block_device *part, unsigned long now,
1245 		bool end)
1246 {
1247 	unsigned long stamp;
1248 again:
1249 	stamp = READ_ONCE(part->bd_stamp);
1250 	if (unlikely(time_after(now, stamp))) {
1251 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1252 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1253 	}
1254 	if (part->bd_partno) {
1255 		part = bdev_whole(part);
1256 		goto again;
1257 	}
1258 }
1259 
1260 void __blk_account_io_done(struct request *req, u64 now)
1261 {
1262 	const int sgrp = op_stat_group(req_op(req));
1263 
1264 	part_stat_lock();
1265 	update_io_ticks(req->part, jiffies, true);
1266 	part_stat_inc(req->part, ios[sgrp]);
1267 	part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1268 	part_stat_unlock();
1269 }
1270 
1271 void __blk_account_io_start(struct request *rq)
1272 {
1273 	/* passthrough requests can hold bios that do not have ->bi_bdev set */
1274 	if (rq->bio && rq->bio->bi_bdev)
1275 		rq->part = rq->bio->bi_bdev;
1276 	else
1277 		rq->part = rq->rq_disk->part0;
1278 
1279 	part_stat_lock();
1280 	update_io_ticks(rq->part, jiffies, false);
1281 	part_stat_unlock();
1282 }
1283 
1284 static unsigned long __part_start_io_acct(struct block_device *part,
1285 					  unsigned int sectors, unsigned int op)
1286 {
1287 	const int sgrp = op_stat_group(op);
1288 	unsigned long now = READ_ONCE(jiffies);
1289 
1290 	part_stat_lock();
1291 	update_io_ticks(part, now, false);
1292 	part_stat_inc(part, ios[sgrp]);
1293 	part_stat_add(part, sectors[sgrp], sectors);
1294 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1295 	part_stat_unlock();
1296 
1297 	return now;
1298 }
1299 
1300 /**
1301  * bio_start_io_acct - start I/O accounting for bio based drivers
1302  * @bio:	bio to start account for
1303  *
1304  * Returns the start time that should be passed back to bio_end_io_acct().
1305  */
1306 unsigned long bio_start_io_acct(struct bio *bio)
1307 {
1308 	return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1309 }
1310 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1311 
1312 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1313 				 unsigned int op)
1314 {
1315 	return __part_start_io_acct(disk->part0, sectors, op);
1316 }
1317 EXPORT_SYMBOL(disk_start_io_acct);
1318 
1319 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1320 			       unsigned long start_time)
1321 {
1322 	const int sgrp = op_stat_group(op);
1323 	unsigned long now = READ_ONCE(jiffies);
1324 	unsigned long duration = now - start_time;
1325 
1326 	part_stat_lock();
1327 	update_io_ticks(part, now, true);
1328 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1329 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1330 	part_stat_unlock();
1331 }
1332 
1333 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1334 		struct block_device *orig_bdev)
1335 {
1336 	__part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1337 }
1338 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1339 
1340 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1341 		      unsigned long start_time)
1342 {
1343 	__part_end_io_acct(disk->part0, op, start_time);
1344 }
1345 EXPORT_SYMBOL(disk_end_io_acct);
1346 
1347 /*
1348  * Steal bios from a request and add them to a bio list.
1349  * The request must not have been partially completed before.
1350  */
1351 void blk_steal_bios(struct bio_list *list, struct request *rq)
1352 {
1353 	if (rq->bio) {
1354 		if (list->tail)
1355 			list->tail->bi_next = rq->bio;
1356 		else
1357 			list->head = rq->bio;
1358 		list->tail = rq->biotail;
1359 
1360 		rq->bio = NULL;
1361 		rq->biotail = NULL;
1362 	}
1363 
1364 	rq->__data_len = 0;
1365 }
1366 EXPORT_SYMBOL_GPL(blk_steal_bios);
1367 
1368 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1369 /**
1370  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1371  * @rq: the request to be flushed
1372  *
1373  * Description:
1374  *     Flush all pages in @rq.
1375  */
1376 void rq_flush_dcache_pages(struct request *rq)
1377 {
1378 	struct req_iterator iter;
1379 	struct bio_vec bvec;
1380 
1381 	rq_for_each_segment(bvec, rq, iter)
1382 		flush_dcache_page(bvec.bv_page);
1383 }
1384 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1385 #endif
1386 
1387 /**
1388  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1389  * @q : the queue of the device being checked
1390  *
1391  * Description:
1392  *    Check if underlying low-level drivers of a device are busy.
1393  *    If the drivers want to export their busy state, they must set own
1394  *    exporting function using blk_queue_lld_busy() first.
1395  *
1396  *    Basically, this function is used only by request stacking drivers
1397  *    to stop dispatching requests to underlying devices when underlying
1398  *    devices are busy.  This behavior helps more I/O merging on the queue
1399  *    of the request stacking driver and prevents I/O throughput regression
1400  *    on burst I/O load.
1401  *
1402  * Return:
1403  *    0 - Not busy (The request stacking driver should dispatch request)
1404  *    1 - Busy (The request stacking driver should stop dispatching request)
1405  */
1406 int blk_lld_busy(struct request_queue *q)
1407 {
1408 	if (queue_is_mq(q) && q->mq_ops->busy)
1409 		return q->mq_ops->busy(q);
1410 
1411 	return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(blk_lld_busy);
1414 
1415 /**
1416  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1417  * @rq: the clone request to be cleaned up
1418  *
1419  * Description:
1420  *     Free all bios in @rq for a cloned request.
1421  */
1422 void blk_rq_unprep_clone(struct request *rq)
1423 {
1424 	struct bio *bio;
1425 
1426 	while ((bio = rq->bio) != NULL) {
1427 		rq->bio = bio->bi_next;
1428 
1429 		bio_put(bio);
1430 	}
1431 }
1432 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1433 
1434 /**
1435  * blk_rq_prep_clone - Helper function to setup clone request
1436  * @rq: the request to be setup
1437  * @rq_src: original request to be cloned
1438  * @bs: bio_set that bios for clone are allocated from
1439  * @gfp_mask: memory allocation mask for bio
1440  * @bio_ctr: setup function to be called for each clone bio.
1441  *           Returns %0 for success, non %0 for failure.
1442  * @data: private data to be passed to @bio_ctr
1443  *
1444  * Description:
1445  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1446  *     Also, pages which the original bios are pointing to are not copied
1447  *     and the cloned bios just point same pages.
1448  *     So cloned bios must be completed before original bios, which means
1449  *     the caller must complete @rq before @rq_src.
1450  */
1451 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1452 		      struct bio_set *bs, gfp_t gfp_mask,
1453 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1454 		      void *data)
1455 {
1456 	struct bio *bio, *bio_src;
1457 
1458 	if (!bs)
1459 		bs = &fs_bio_set;
1460 
1461 	__rq_for_each_bio(bio_src, rq_src) {
1462 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1463 		if (!bio)
1464 			goto free_and_out;
1465 
1466 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1467 			goto free_and_out;
1468 
1469 		if (rq->bio) {
1470 			rq->biotail->bi_next = bio;
1471 			rq->biotail = bio;
1472 		} else {
1473 			rq->bio = rq->biotail = bio;
1474 		}
1475 		bio = NULL;
1476 	}
1477 
1478 	/* Copy attributes of the original request to the clone request. */
1479 	rq->__sector = blk_rq_pos(rq_src);
1480 	rq->__data_len = blk_rq_bytes(rq_src);
1481 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1482 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1483 		rq->special_vec = rq_src->special_vec;
1484 	}
1485 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1486 	rq->ioprio = rq_src->ioprio;
1487 
1488 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1489 		goto free_and_out;
1490 
1491 	return 0;
1492 
1493 free_and_out:
1494 	if (bio)
1495 		bio_put(bio);
1496 	blk_rq_unprep_clone(rq);
1497 
1498 	return -ENOMEM;
1499 }
1500 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1501 
1502 int kblockd_schedule_work(struct work_struct *work)
1503 {
1504 	return queue_work(kblockd_workqueue, work);
1505 }
1506 EXPORT_SYMBOL(kblockd_schedule_work);
1507 
1508 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1509 				unsigned long delay)
1510 {
1511 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1512 }
1513 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1514 
1515 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1516 {
1517 	struct task_struct *tsk = current;
1518 
1519 	/*
1520 	 * If this is a nested plug, don't actually assign it.
1521 	 */
1522 	if (tsk->plug)
1523 		return;
1524 
1525 	plug->mq_list = NULL;
1526 	plug->cached_rq = NULL;
1527 	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1528 	plug->rq_count = 0;
1529 	plug->multiple_queues = false;
1530 	plug->has_elevator = false;
1531 	plug->nowait = false;
1532 	INIT_LIST_HEAD(&plug->cb_list);
1533 
1534 	/*
1535 	 * Store ordering should not be needed here, since a potential
1536 	 * preempt will imply a full memory barrier
1537 	 */
1538 	tsk->plug = plug;
1539 }
1540 
1541 /**
1542  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1543  * @plug:	The &struct blk_plug that needs to be initialized
1544  *
1545  * Description:
1546  *   blk_start_plug() indicates to the block layer an intent by the caller
1547  *   to submit multiple I/O requests in a batch.  The block layer may use
1548  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1549  *   is called.  However, the block layer may choose to submit requests
1550  *   before a call to blk_finish_plug() if the number of queued I/Os
1551  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1552  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1553  *   the task schedules (see below).
1554  *
1555  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1556  *   pending I/O should the task end up blocking between blk_start_plug() and
1557  *   blk_finish_plug(). This is important from a performance perspective, but
1558  *   also ensures that we don't deadlock. For instance, if the task is blocking
1559  *   for a memory allocation, memory reclaim could end up wanting to free a
1560  *   page belonging to that request that is currently residing in our private
1561  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1562  *   this kind of deadlock.
1563  */
1564 void blk_start_plug(struct blk_plug *plug)
1565 {
1566 	blk_start_plug_nr_ios(plug, 1);
1567 }
1568 EXPORT_SYMBOL(blk_start_plug);
1569 
1570 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1571 {
1572 	LIST_HEAD(callbacks);
1573 
1574 	while (!list_empty(&plug->cb_list)) {
1575 		list_splice_init(&plug->cb_list, &callbacks);
1576 
1577 		while (!list_empty(&callbacks)) {
1578 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1579 							  struct blk_plug_cb,
1580 							  list);
1581 			list_del(&cb->list);
1582 			cb->callback(cb, from_schedule);
1583 		}
1584 	}
1585 }
1586 
1587 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1588 				      int size)
1589 {
1590 	struct blk_plug *plug = current->plug;
1591 	struct blk_plug_cb *cb;
1592 
1593 	if (!plug)
1594 		return NULL;
1595 
1596 	list_for_each_entry(cb, &plug->cb_list, list)
1597 		if (cb->callback == unplug && cb->data == data)
1598 			return cb;
1599 
1600 	/* Not currently on the callback list */
1601 	BUG_ON(size < sizeof(*cb));
1602 	cb = kzalloc(size, GFP_ATOMIC);
1603 	if (cb) {
1604 		cb->data = data;
1605 		cb->callback = unplug;
1606 		list_add(&cb->list, &plug->cb_list);
1607 	}
1608 	return cb;
1609 }
1610 EXPORT_SYMBOL(blk_check_plugged);
1611 
1612 void blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1613 {
1614 	if (!list_empty(&plug->cb_list))
1615 		flush_plug_callbacks(plug, from_schedule);
1616 	if (!rq_list_empty(plug->mq_list))
1617 		blk_mq_flush_plug_list(plug, from_schedule);
1618 	if (unlikely(!from_schedule && plug->cached_rq))
1619 		blk_mq_free_plug_rqs(plug);
1620 }
1621 
1622 /**
1623  * blk_finish_plug - mark the end of a batch of submitted I/O
1624  * @plug:	The &struct blk_plug passed to blk_start_plug()
1625  *
1626  * Description:
1627  * Indicate that a batch of I/O submissions is complete.  This function
1628  * must be paired with an initial call to blk_start_plug().  The intent
1629  * is to allow the block layer to optimize I/O submission.  See the
1630  * documentation for blk_start_plug() for more information.
1631  */
1632 void blk_finish_plug(struct blk_plug *plug)
1633 {
1634 	if (plug == current->plug) {
1635 		blk_flush_plug(plug, false);
1636 		current->plug = NULL;
1637 	}
1638 }
1639 EXPORT_SYMBOL(blk_finish_plug);
1640 
1641 void blk_io_schedule(void)
1642 {
1643 	/* Prevent hang_check timer from firing at us during very long I/O */
1644 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1645 
1646 	if (timeout)
1647 		io_schedule_timeout(timeout);
1648 	else
1649 		io_schedule();
1650 }
1651 EXPORT_SYMBOL_GPL(blk_io_schedule);
1652 
1653 int __init blk_dev_init(void)
1654 {
1655 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1656 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1657 			sizeof_field(struct request, cmd_flags));
1658 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1659 			sizeof_field(struct bio, bi_opf));
1660 
1661 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1662 	kblockd_workqueue = alloc_workqueue("kblockd",
1663 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1664 	if (!kblockd_workqueue)
1665 		panic("Failed to create kblockd\n");
1666 
1667 	blk_requestq_cachep = kmem_cache_create("request_queue",
1668 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1669 
1670 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1671 
1672 	return 0;
1673 }
1674