1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 #include <linux/list_sort.h> 31 #include <linux/delay.h> 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/block.h> 35 36 #include "blk.h" 37 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 41 42 DEFINE_IDA(blk_queue_ida); 43 44 /* 45 * For the allocated request tables 46 */ 47 static struct kmem_cache *request_cachep; 48 49 /* 50 * For queue allocation 51 */ 52 struct kmem_cache *blk_requestq_cachep; 53 54 /* 55 * Controlling structure to kblockd 56 */ 57 static struct workqueue_struct *kblockd_workqueue; 58 59 static void drive_stat_acct(struct request *rq, int new_io) 60 { 61 struct hd_struct *part; 62 int rw = rq_data_dir(rq); 63 int cpu; 64 65 if (!blk_do_io_stat(rq)) 66 return; 67 68 cpu = part_stat_lock(); 69 70 if (!new_io) { 71 part = rq->part; 72 part_stat_inc(cpu, part, merges[rw]); 73 } else { 74 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 75 if (!hd_struct_try_get(part)) { 76 /* 77 * The partition is already being removed, 78 * the request will be accounted on the disk only 79 * 80 * We take a reference on disk->part0 although that 81 * partition will never be deleted, so we can treat 82 * it as any other partition. 83 */ 84 part = &rq->rq_disk->part0; 85 hd_struct_get(part); 86 } 87 part_round_stats(cpu, part); 88 part_inc_in_flight(part, rw); 89 rq->part = part; 90 } 91 92 part_stat_unlock(); 93 } 94 95 void blk_queue_congestion_threshold(struct request_queue *q) 96 { 97 int nr; 98 99 nr = q->nr_requests - (q->nr_requests / 8) + 1; 100 if (nr > q->nr_requests) 101 nr = q->nr_requests; 102 q->nr_congestion_on = nr; 103 104 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 105 if (nr < 1) 106 nr = 1; 107 q->nr_congestion_off = nr; 108 } 109 110 /** 111 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 112 * @bdev: device 113 * 114 * Locates the passed device's request queue and returns the address of its 115 * backing_dev_info 116 * 117 * Will return NULL if the request queue cannot be located. 118 */ 119 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 120 { 121 struct backing_dev_info *ret = NULL; 122 struct request_queue *q = bdev_get_queue(bdev); 123 124 if (q) 125 ret = &q->backing_dev_info; 126 return ret; 127 } 128 EXPORT_SYMBOL(blk_get_backing_dev_info); 129 130 void blk_rq_init(struct request_queue *q, struct request *rq) 131 { 132 memset(rq, 0, sizeof(*rq)); 133 134 INIT_LIST_HEAD(&rq->queuelist); 135 INIT_LIST_HEAD(&rq->timeout_list); 136 rq->cpu = -1; 137 rq->q = q; 138 rq->__sector = (sector_t) -1; 139 INIT_HLIST_NODE(&rq->hash); 140 RB_CLEAR_NODE(&rq->rb_node); 141 rq->cmd = rq->__cmd; 142 rq->cmd_len = BLK_MAX_CDB; 143 rq->tag = -1; 144 rq->ref_count = 1; 145 rq->start_time = jiffies; 146 set_start_time_ns(rq); 147 rq->part = NULL; 148 } 149 EXPORT_SYMBOL(blk_rq_init); 150 151 static void req_bio_endio(struct request *rq, struct bio *bio, 152 unsigned int nbytes, int error) 153 { 154 if (error) 155 clear_bit(BIO_UPTODATE, &bio->bi_flags); 156 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 157 error = -EIO; 158 159 if (unlikely(nbytes > bio->bi_size)) { 160 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 161 __func__, nbytes, bio->bi_size); 162 nbytes = bio->bi_size; 163 } 164 165 if (unlikely(rq->cmd_flags & REQ_QUIET)) 166 set_bit(BIO_QUIET, &bio->bi_flags); 167 168 bio->bi_size -= nbytes; 169 bio->bi_sector += (nbytes >> 9); 170 171 if (bio_integrity(bio)) 172 bio_integrity_advance(bio, nbytes); 173 174 /* don't actually finish bio if it's part of flush sequence */ 175 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 176 bio_endio(bio, error); 177 } 178 179 void blk_dump_rq_flags(struct request *rq, char *msg) 180 { 181 int bit; 182 183 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 184 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 185 rq->cmd_flags); 186 187 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 188 (unsigned long long)blk_rq_pos(rq), 189 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 190 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 191 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 192 193 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 194 printk(KERN_INFO " cdb: "); 195 for (bit = 0; bit < BLK_MAX_CDB; bit++) 196 printk("%02x ", rq->cmd[bit]); 197 printk("\n"); 198 } 199 } 200 EXPORT_SYMBOL(blk_dump_rq_flags); 201 202 static void blk_delay_work(struct work_struct *work) 203 { 204 struct request_queue *q; 205 206 q = container_of(work, struct request_queue, delay_work.work); 207 spin_lock_irq(q->queue_lock); 208 __blk_run_queue(q); 209 spin_unlock_irq(q->queue_lock); 210 } 211 212 /** 213 * blk_delay_queue - restart queueing after defined interval 214 * @q: The &struct request_queue in question 215 * @msecs: Delay in msecs 216 * 217 * Description: 218 * Sometimes queueing needs to be postponed for a little while, to allow 219 * resources to come back. This function will make sure that queueing is 220 * restarted around the specified time. 221 */ 222 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 223 { 224 queue_delayed_work(kblockd_workqueue, &q->delay_work, 225 msecs_to_jiffies(msecs)); 226 } 227 EXPORT_SYMBOL(blk_delay_queue); 228 229 /** 230 * blk_start_queue - restart a previously stopped queue 231 * @q: The &struct request_queue in question 232 * 233 * Description: 234 * blk_start_queue() will clear the stop flag on the queue, and call 235 * the request_fn for the queue if it was in a stopped state when 236 * entered. Also see blk_stop_queue(). Queue lock must be held. 237 **/ 238 void blk_start_queue(struct request_queue *q) 239 { 240 WARN_ON(!irqs_disabled()); 241 242 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 243 __blk_run_queue(q); 244 } 245 EXPORT_SYMBOL(blk_start_queue); 246 247 /** 248 * blk_stop_queue - stop a queue 249 * @q: The &struct request_queue in question 250 * 251 * Description: 252 * The Linux block layer assumes that a block driver will consume all 253 * entries on the request queue when the request_fn strategy is called. 254 * Often this will not happen, because of hardware limitations (queue 255 * depth settings). If a device driver gets a 'queue full' response, 256 * or if it simply chooses not to queue more I/O at one point, it can 257 * call this function to prevent the request_fn from being called until 258 * the driver has signalled it's ready to go again. This happens by calling 259 * blk_start_queue() to restart queue operations. Queue lock must be held. 260 **/ 261 void blk_stop_queue(struct request_queue *q) 262 { 263 __cancel_delayed_work(&q->delay_work); 264 queue_flag_set(QUEUE_FLAG_STOPPED, q); 265 } 266 EXPORT_SYMBOL(blk_stop_queue); 267 268 /** 269 * blk_sync_queue - cancel any pending callbacks on a queue 270 * @q: the queue 271 * 272 * Description: 273 * The block layer may perform asynchronous callback activity 274 * on a queue, such as calling the unplug function after a timeout. 275 * A block device may call blk_sync_queue to ensure that any 276 * such activity is cancelled, thus allowing it to release resources 277 * that the callbacks might use. The caller must already have made sure 278 * that its ->make_request_fn will not re-add plugging prior to calling 279 * this function. 280 * 281 * This function does not cancel any asynchronous activity arising 282 * out of elevator or throttling code. That would require elevaotor_exit() 283 * and blk_throtl_exit() to be called with queue lock initialized. 284 * 285 */ 286 void blk_sync_queue(struct request_queue *q) 287 { 288 del_timer_sync(&q->timeout); 289 cancel_delayed_work_sync(&q->delay_work); 290 } 291 EXPORT_SYMBOL(blk_sync_queue); 292 293 /** 294 * __blk_run_queue - run a single device queue 295 * @q: The queue to run 296 * 297 * Description: 298 * See @blk_run_queue. This variant must be called with the queue lock 299 * held and interrupts disabled. 300 */ 301 void __blk_run_queue(struct request_queue *q) 302 { 303 if (unlikely(blk_queue_stopped(q))) 304 return; 305 306 q->request_fn(q); 307 } 308 EXPORT_SYMBOL(__blk_run_queue); 309 310 /** 311 * blk_run_queue_async - run a single device queue in workqueue context 312 * @q: The queue to run 313 * 314 * Description: 315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 316 * of us. 317 */ 318 void blk_run_queue_async(struct request_queue *q) 319 { 320 if (likely(!blk_queue_stopped(q))) { 321 __cancel_delayed_work(&q->delay_work); 322 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0); 323 } 324 } 325 EXPORT_SYMBOL(blk_run_queue_async); 326 327 /** 328 * blk_run_queue - run a single device queue 329 * @q: The queue to run 330 * 331 * Description: 332 * Invoke request handling on this queue, if it has pending work to do. 333 * May be used to restart queueing when a request has completed. 334 */ 335 void blk_run_queue(struct request_queue *q) 336 { 337 unsigned long flags; 338 339 spin_lock_irqsave(q->queue_lock, flags); 340 __blk_run_queue(q); 341 spin_unlock_irqrestore(q->queue_lock, flags); 342 } 343 EXPORT_SYMBOL(blk_run_queue); 344 345 void blk_put_queue(struct request_queue *q) 346 { 347 kobject_put(&q->kobj); 348 } 349 EXPORT_SYMBOL(blk_put_queue); 350 351 /** 352 * blk_drain_queue - drain requests from request_queue 353 * @q: queue to drain 354 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 355 * 356 * Drain requests from @q. If @drain_all is set, all requests are drained. 357 * If not, only ELVPRIV requests are drained. The caller is responsible 358 * for ensuring that no new requests which need to be drained are queued. 359 */ 360 void blk_drain_queue(struct request_queue *q, bool drain_all) 361 { 362 while (true) { 363 bool drain = false; 364 int i; 365 366 spin_lock_irq(q->queue_lock); 367 368 elv_drain_elevator(q); 369 if (drain_all) 370 blk_throtl_drain(q); 371 372 /* 373 * This function might be called on a queue which failed 374 * driver init after queue creation. Some drivers 375 * (e.g. fd) get unhappy in such cases. Kick queue iff 376 * dispatch queue has something on it. 377 */ 378 if (!list_empty(&q->queue_head)) 379 __blk_run_queue(q); 380 381 drain |= q->rq.elvpriv; 382 383 /* 384 * Unfortunately, requests are queued at and tracked from 385 * multiple places and there's no single counter which can 386 * be drained. Check all the queues and counters. 387 */ 388 if (drain_all) { 389 drain |= !list_empty(&q->queue_head); 390 for (i = 0; i < 2; i++) { 391 drain |= q->rq.count[i]; 392 drain |= q->in_flight[i]; 393 drain |= !list_empty(&q->flush_queue[i]); 394 } 395 } 396 397 spin_unlock_irq(q->queue_lock); 398 399 if (!drain) 400 break; 401 msleep(10); 402 } 403 } 404 405 /** 406 * blk_cleanup_queue - shutdown a request queue 407 * @q: request queue to shutdown 408 * 409 * Mark @q DEAD, drain all pending requests, destroy and put it. All 410 * future requests will be failed immediately with -ENODEV. 411 */ 412 void blk_cleanup_queue(struct request_queue *q) 413 { 414 spinlock_t *lock = q->queue_lock; 415 416 /* mark @q DEAD, no new request or merges will be allowed afterwards */ 417 mutex_lock(&q->sysfs_lock); 418 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 419 420 spin_lock_irq(lock); 421 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 422 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 423 queue_flag_set(QUEUE_FLAG_DEAD, q); 424 425 if (q->queue_lock != &q->__queue_lock) 426 q->queue_lock = &q->__queue_lock; 427 428 spin_unlock_irq(lock); 429 mutex_unlock(&q->sysfs_lock); 430 431 /* 432 * Drain all requests queued before DEAD marking. The caller might 433 * be trying to tear down @q before its elevator is initialized, in 434 * which case we don't want to call into draining. 435 */ 436 if (q->elevator) 437 blk_drain_queue(q, true); 438 439 /* @q won't process any more request, flush async actions */ 440 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 441 blk_sync_queue(q); 442 443 /* @q is and will stay empty, shutdown and put */ 444 blk_put_queue(q); 445 } 446 EXPORT_SYMBOL(blk_cleanup_queue); 447 448 static int blk_init_free_list(struct request_queue *q) 449 { 450 struct request_list *rl = &q->rq; 451 452 if (unlikely(rl->rq_pool)) 453 return 0; 454 455 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 456 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 457 rl->elvpriv = 0; 458 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 459 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 460 461 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 462 mempool_free_slab, request_cachep, q->node); 463 464 if (!rl->rq_pool) 465 return -ENOMEM; 466 467 return 0; 468 } 469 470 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 471 { 472 return blk_alloc_queue_node(gfp_mask, -1); 473 } 474 EXPORT_SYMBOL(blk_alloc_queue); 475 476 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 477 { 478 struct request_queue *q; 479 int err; 480 481 q = kmem_cache_alloc_node(blk_requestq_cachep, 482 gfp_mask | __GFP_ZERO, node_id); 483 if (!q) 484 return NULL; 485 486 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 487 if (q->id < 0) 488 goto fail_q; 489 490 q->backing_dev_info.ra_pages = 491 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 492 q->backing_dev_info.state = 0; 493 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 494 q->backing_dev_info.name = "block"; 495 q->node = node_id; 496 497 err = bdi_init(&q->backing_dev_info); 498 if (err) 499 goto fail_id; 500 501 if (blk_throtl_init(q)) 502 goto fail_id; 503 504 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 505 laptop_mode_timer_fn, (unsigned long) q); 506 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 507 INIT_LIST_HEAD(&q->timeout_list); 508 INIT_LIST_HEAD(&q->icq_list); 509 INIT_LIST_HEAD(&q->flush_queue[0]); 510 INIT_LIST_HEAD(&q->flush_queue[1]); 511 INIT_LIST_HEAD(&q->flush_data_in_flight); 512 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 513 514 kobject_init(&q->kobj, &blk_queue_ktype); 515 516 mutex_init(&q->sysfs_lock); 517 spin_lock_init(&q->__queue_lock); 518 519 /* 520 * By default initialize queue_lock to internal lock and driver can 521 * override it later if need be. 522 */ 523 q->queue_lock = &q->__queue_lock; 524 525 return q; 526 527 fail_id: 528 ida_simple_remove(&blk_queue_ida, q->id); 529 fail_q: 530 kmem_cache_free(blk_requestq_cachep, q); 531 return NULL; 532 } 533 EXPORT_SYMBOL(blk_alloc_queue_node); 534 535 /** 536 * blk_init_queue - prepare a request queue for use with a block device 537 * @rfn: The function to be called to process requests that have been 538 * placed on the queue. 539 * @lock: Request queue spin lock 540 * 541 * Description: 542 * If a block device wishes to use the standard request handling procedures, 543 * which sorts requests and coalesces adjacent requests, then it must 544 * call blk_init_queue(). The function @rfn will be called when there 545 * are requests on the queue that need to be processed. If the device 546 * supports plugging, then @rfn may not be called immediately when requests 547 * are available on the queue, but may be called at some time later instead. 548 * Plugged queues are generally unplugged when a buffer belonging to one 549 * of the requests on the queue is needed, or due to memory pressure. 550 * 551 * @rfn is not required, or even expected, to remove all requests off the 552 * queue, but only as many as it can handle at a time. If it does leave 553 * requests on the queue, it is responsible for arranging that the requests 554 * get dealt with eventually. 555 * 556 * The queue spin lock must be held while manipulating the requests on the 557 * request queue; this lock will be taken also from interrupt context, so irq 558 * disabling is needed for it. 559 * 560 * Function returns a pointer to the initialized request queue, or %NULL if 561 * it didn't succeed. 562 * 563 * Note: 564 * blk_init_queue() must be paired with a blk_cleanup_queue() call 565 * when the block device is deactivated (such as at module unload). 566 **/ 567 568 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 569 { 570 return blk_init_queue_node(rfn, lock, -1); 571 } 572 EXPORT_SYMBOL(blk_init_queue); 573 574 struct request_queue * 575 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 576 { 577 struct request_queue *uninit_q, *q; 578 579 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 580 if (!uninit_q) 581 return NULL; 582 583 q = blk_init_allocated_queue(uninit_q, rfn, lock); 584 if (!q) 585 blk_cleanup_queue(uninit_q); 586 587 return q; 588 } 589 EXPORT_SYMBOL(blk_init_queue_node); 590 591 struct request_queue * 592 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 593 spinlock_t *lock) 594 { 595 if (!q) 596 return NULL; 597 598 if (blk_init_free_list(q)) 599 return NULL; 600 601 q->request_fn = rfn; 602 q->prep_rq_fn = NULL; 603 q->unprep_rq_fn = NULL; 604 q->queue_flags = QUEUE_FLAG_DEFAULT; 605 606 /* Override internal queue lock with supplied lock pointer */ 607 if (lock) 608 q->queue_lock = lock; 609 610 /* 611 * This also sets hw/phys segments, boundary and size 612 */ 613 blk_queue_make_request(q, blk_queue_bio); 614 615 q->sg_reserved_size = INT_MAX; 616 617 /* 618 * all done 619 */ 620 if (!elevator_init(q, NULL)) { 621 blk_queue_congestion_threshold(q); 622 return q; 623 } 624 625 return NULL; 626 } 627 EXPORT_SYMBOL(blk_init_allocated_queue); 628 629 bool blk_get_queue(struct request_queue *q) 630 { 631 if (likely(!blk_queue_dead(q))) { 632 __blk_get_queue(q); 633 return true; 634 } 635 636 return false; 637 } 638 EXPORT_SYMBOL(blk_get_queue); 639 640 static inline void blk_free_request(struct request_queue *q, struct request *rq) 641 { 642 if (rq->cmd_flags & REQ_ELVPRIV) { 643 elv_put_request(q, rq); 644 if (rq->elv.icq) 645 put_io_context(rq->elv.icq->ioc, q); 646 } 647 648 mempool_free(rq, q->rq.rq_pool); 649 } 650 651 static struct request * 652 blk_alloc_request(struct request_queue *q, struct io_cq *icq, 653 unsigned int flags, gfp_t gfp_mask) 654 { 655 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 656 657 if (!rq) 658 return NULL; 659 660 blk_rq_init(q, rq); 661 662 rq->cmd_flags = flags | REQ_ALLOCED; 663 664 if (flags & REQ_ELVPRIV) { 665 rq->elv.icq = icq; 666 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 667 mempool_free(rq, q->rq.rq_pool); 668 return NULL; 669 } 670 /* @rq->elv.icq holds on to io_context until @rq is freed */ 671 if (icq) 672 get_io_context(icq->ioc); 673 } 674 675 return rq; 676 } 677 678 /* 679 * ioc_batching returns true if the ioc is a valid batching request and 680 * should be given priority access to a request. 681 */ 682 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 683 { 684 if (!ioc) 685 return 0; 686 687 /* 688 * Make sure the process is able to allocate at least 1 request 689 * even if the batch times out, otherwise we could theoretically 690 * lose wakeups. 691 */ 692 return ioc->nr_batch_requests == q->nr_batching || 693 (ioc->nr_batch_requests > 0 694 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 695 } 696 697 /* 698 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 699 * will cause the process to be a "batcher" on all queues in the system. This 700 * is the behaviour we want though - once it gets a wakeup it should be given 701 * a nice run. 702 */ 703 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 704 { 705 if (!ioc || ioc_batching(q, ioc)) 706 return; 707 708 ioc->nr_batch_requests = q->nr_batching; 709 ioc->last_waited = jiffies; 710 } 711 712 static void __freed_request(struct request_queue *q, int sync) 713 { 714 struct request_list *rl = &q->rq; 715 716 if (rl->count[sync] < queue_congestion_off_threshold(q)) 717 blk_clear_queue_congested(q, sync); 718 719 if (rl->count[sync] + 1 <= q->nr_requests) { 720 if (waitqueue_active(&rl->wait[sync])) 721 wake_up(&rl->wait[sync]); 722 723 blk_clear_queue_full(q, sync); 724 } 725 } 726 727 /* 728 * A request has just been released. Account for it, update the full and 729 * congestion status, wake up any waiters. Called under q->queue_lock. 730 */ 731 static void freed_request(struct request_queue *q, unsigned int flags) 732 { 733 struct request_list *rl = &q->rq; 734 int sync = rw_is_sync(flags); 735 736 rl->count[sync]--; 737 if (flags & REQ_ELVPRIV) 738 rl->elvpriv--; 739 740 __freed_request(q, sync); 741 742 if (unlikely(rl->starved[sync ^ 1])) 743 __freed_request(q, sync ^ 1); 744 } 745 746 /* 747 * Determine if elevator data should be initialized when allocating the 748 * request associated with @bio. 749 */ 750 static bool blk_rq_should_init_elevator(struct bio *bio) 751 { 752 if (!bio) 753 return true; 754 755 /* 756 * Flush requests do not use the elevator so skip initialization. 757 * This allows a request to share the flush and elevator data. 758 */ 759 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 760 return false; 761 762 return true; 763 } 764 765 /** 766 * get_request - get a free request 767 * @q: request_queue to allocate request from 768 * @rw_flags: RW and SYNC flags 769 * @bio: bio to allocate request for (can be %NULL) 770 * @gfp_mask: allocation mask 771 * 772 * Get a free request from @q. This function may fail under memory 773 * pressure or if @q is dead. 774 * 775 * Must be callled with @q->queue_lock held and, 776 * Returns %NULL on failure, with @q->queue_lock held. 777 * Returns !%NULL on success, with @q->queue_lock *not held*. 778 */ 779 static struct request *get_request(struct request_queue *q, int rw_flags, 780 struct bio *bio, gfp_t gfp_mask) 781 { 782 struct request *rq = NULL; 783 struct request_list *rl = &q->rq; 784 struct elevator_type *et; 785 struct io_context *ioc; 786 struct io_cq *icq = NULL; 787 const bool is_sync = rw_is_sync(rw_flags) != 0; 788 bool retried = false; 789 int may_queue; 790 retry: 791 et = q->elevator->type; 792 ioc = current->io_context; 793 794 if (unlikely(blk_queue_dead(q))) 795 return NULL; 796 797 may_queue = elv_may_queue(q, rw_flags); 798 if (may_queue == ELV_MQUEUE_NO) 799 goto rq_starved; 800 801 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 802 if (rl->count[is_sync]+1 >= q->nr_requests) { 803 /* 804 * We want ioc to record batching state. If it's 805 * not already there, creating a new one requires 806 * dropping queue_lock, which in turn requires 807 * retesting conditions to avoid queue hang. 808 */ 809 if (!ioc && !retried) { 810 spin_unlock_irq(q->queue_lock); 811 create_io_context(current, gfp_mask, q->node); 812 spin_lock_irq(q->queue_lock); 813 retried = true; 814 goto retry; 815 } 816 817 /* 818 * The queue will fill after this allocation, so set 819 * it as full, and mark this process as "batching". 820 * This process will be allowed to complete a batch of 821 * requests, others will be blocked. 822 */ 823 if (!blk_queue_full(q, is_sync)) { 824 ioc_set_batching(q, ioc); 825 blk_set_queue_full(q, is_sync); 826 } else { 827 if (may_queue != ELV_MQUEUE_MUST 828 && !ioc_batching(q, ioc)) { 829 /* 830 * The queue is full and the allocating 831 * process is not a "batcher", and not 832 * exempted by the IO scheduler 833 */ 834 goto out; 835 } 836 } 837 } 838 blk_set_queue_congested(q, is_sync); 839 } 840 841 /* 842 * Only allow batching queuers to allocate up to 50% over the defined 843 * limit of requests, otherwise we could have thousands of requests 844 * allocated with any setting of ->nr_requests 845 */ 846 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 847 goto out; 848 849 rl->count[is_sync]++; 850 rl->starved[is_sync] = 0; 851 852 /* 853 * Decide whether the new request will be managed by elevator. If 854 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 855 * prevent the current elevator from being destroyed until the new 856 * request is freed. This guarantees icq's won't be destroyed and 857 * makes creating new ones safe. 858 * 859 * Also, lookup icq while holding queue_lock. If it doesn't exist, 860 * it will be created after releasing queue_lock. 861 */ 862 if (blk_rq_should_init_elevator(bio) && 863 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) { 864 rw_flags |= REQ_ELVPRIV; 865 rl->elvpriv++; 866 if (et->icq_cache && ioc) 867 icq = ioc_lookup_icq(ioc, q); 868 } 869 870 if (blk_queue_io_stat(q)) 871 rw_flags |= REQ_IO_STAT; 872 spin_unlock_irq(q->queue_lock); 873 874 /* create icq if missing */ 875 if (unlikely(et->icq_cache && !icq)) 876 icq = ioc_create_icq(q, gfp_mask); 877 878 /* rqs are guaranteed to have icq on elv_set_request() if requested */ 879 if (likely(!et->icq_cache || icq)) 880 rq = blk_alloc_request(q, icq, rw_flags, gfp_mask); 881 882 if (unlikely(!rq)) { 883 /* 884 * Allocation failed presumably due to memory. Undo anything 885 * we might have messed up. 886 * 887 * Allocating task should really be put onto the front of the 888 * wait queue, but this is pretty rare. 889 */ 890 spin_lock_irq(q->queue_lock); 891 freed_request(q, rw_flags); 892 893 /* 894 * in the very unlikely event that allocation failed and no 895 * requests for this direction was pending, mark us starved 896 * so that freeing of a request in the other direction will 897 * notice us. another possible fix would be to split the 898 * rq mempool into READ and WRITE 899 */ 900 rq_starved: 901 if (unlikely(rl->count[is_sync] == 0)) 902 rl->starved[is_sync] = 1; 903 904 goto out; 905 } 906 907 /* 908 * ioc may be NULL here, and ioc_batching will be false. That's 909 * OK, if the queue is under the request limit then requests need 910 * not count toward the nr_batch_requests limit. There will always 911 * be some limit enforced by BLK_BATCH_TIME. 912 */ 913 if (ioc_batching(q, ioc)) 914 ioc->nr_batch_requests--; 915 916 trace_block_getrq(q, bio, rw_flags & 1); 917 out: 918 return rq; 919 } 920 921 /** 922 * get_request_wait - get a free request with retry 923 * @q: request_queue to allocate request from 924 * @rw_flags: RW and SYNC flags 925 * @bio: bio to allocate request for (can be %NULL) 926 * 927 * Get a free request from @q. This function keeps retrying under memory 928 * pressure and fails iff @q is dead. 929 * 930 * Must be callled with @q->queue_lock held and, 931 * Returns %NULL on failure, with @q->queue_lock held. 932 * Returns !%NULL on success, with @q->queue_lock *not held*. 933 */ 934 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 935 struct bio *bio) 936 { 937 const bool is_sync = rw_is_sync(rw_flags) != 0; 938 struct request *rq; 939 940 rq = get_request(q, rw_flags, bio, GFP_NOIO); 941 while (!rq) { 942 DEFINE_WAIT(wait); 943 struct request_list *rl = &q->rq; 944 945 if (unlikely(blk_queue_dead(q))) 946 return NULL; 947 948 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 949 TASK_UNINTERRUPTIBLE); 950 951 trace_block_sleeprq(q, bio, rw_flags & 1); 952 953 spin_unlock_irq(q->queue_lock); 954 io_schedule(); 955 956 /* 957 * After sleeping, we become a "batching" process and 958 * will be able to allocate at least one request, and 959 * up to a big batch of them for a small period time. 960 * See ioc_batching, ioc_set_batching 961 */ 962 create_io_context(current, GFP_NOIO, q->node); 963 ioc_set_batching(q, current->io_context); 964 965 spin_lock_irq(q->queue_lock); 966 finish_wait(&rl->wait[is_sync], &wait); 967 968 rq = get_request(q, rw_flags, bio, GFP_NOIO); 969 }; 970 971 return rq; 972 } 973 974 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 975 { 976 struct request *rq; 977 978 BUG_ON(rw != READ && rw != WRITE); 979 980 spin_lock_irq(q->queue_lock); 981 if (gfp_mask & __GFP_WAIT) 982 rq = get_request_wait(q, rw, NULL); 983 else 984 rq = get_request(q, rw, NULL, gfp_mask); 985 if (!rq) 986 spin_unlock_irq(q->queue_lock); 987 /* q->queue_lock is unlocked at this point */ 988 989 return rq; 990 } 991 EXPORT_SYMBOL(blk_get_request); 992 993 /** 994 * blk_make_request - given a bio, allocate a corresponding struct request. 995 * @q: target request queue 996 * @bio: The bio describing the memory mappings that will be submitted for IO. 997 * It may be a chained-bio properly constructed by block/bio layer. 998 * @gfp_mask: gfp flags to be used for memory allocation 999 * 1000 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1001 * type commands. Where the struct request needs to be farther initialized by 1002 * the caller. It is passed a &struct bio, which describes the memory info of 1003 * the I/O transfer. 1004 * 1005 * The caller of blk_make_request must make sure that bi_io_vec 1006 * are set to describe the memory buffers. That bio_data_dir() will return 1007 * the needed direction of the request. (And all bio's in the passed bio-chain 1008 * are properly set accordingly) 1009 * 1010 * If called under none-sleepable conditions, mapped bio buffers must not 1011 * need bouncing, by calling the appropriate masked or flagged allocator, 1012 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1013 * BUG. 1014 * 1015 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1016 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1017 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1018 * completion of a bio that hasn't been submitted yet, thus resulting in a 1019 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1020 * of bio_alloc(), as that avoids the mempool deadlock. 1021 * If possible a big IO should be split into smaller parts when allocation 1022 * fails. Partial allocation should not be an error, or you risk a live-lock. 1023 */ 1024 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1025 gfp_t gfp_mask) 1026 { 1027 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1028 1029 if (unlikely(!rq)) 1030 return ERR_PTR(-ENOMEM); 1031 1032 for_each_bio(bio) { 1033 struct bio *bounce_bio = bio; 1034 int ret; 1035 1036 blk_queue_bounce(q, &bounce_bio); 1037 ret = blk_rq_append_bio(q, rq, bounce_bio); 1038 if (unlikely(ret)) { 1039 blk_put_request(rq); 1040 return ERR_PTR(ret); 1041 } 1042 } 1043 1044 return rq; 1045 } 1046 EXPORT_SYMBOL(blk_make_request); 1047 1048 /** 1049 * blk_requeue_request - put a request back on queue 1050 * @q: request queue where request should be inserted 1051 * @rq: request to be inserted 1052 * 1053 * Description: 1054 * Drivers often keep queueing requests until the hardware cannot accept 1055 * more, when that condition happens we need to put the request back 1056 * on the queue. Must be called with queue lock held. 1057 */ 1058 void blk_requeue_request(struct request_queue *q, struct request *rq) 1059 { 1060 blk_delete_timer(rq); 1061 blk_clear_rq_complete(rq); 1062 trace_block_rq_requeue(q, rq); 1063 1064 if (blk_rq_tagged(rq)) 1065 blk_queue_end_tag(q, rq); 1066 1067 BUG_ON(blk_queued_rq(rq)); 1068 1069 elv_requeue_request(q, rq); 1070 } 1071 EXPORT_SYMBOL(blk_requeue_request); 1072 1073 static void add_acct_request(struct request_queue *q, struct request *rq, 1074 int where) 1075 { 1076 drive_stat_acct(rq, 1); 1077 __elv_add_request(q, rq, where); 1078 } 1079 1080 static void part_round_stats_single(int cpu, struct hd_struct *part, 1081 unsigned long now) 1082 { 1083 if (now == part->stamp) 1084 return; 1085 1086 if (part_in_flight(part)) { 1087 __part_stat_add(cpu, part, time_in_queue, 1088 part_in_flight(part) * (now - part->stamp)); 1089 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1090 } 1091 part->stamp = now; 1092 } 1093 1094 /** 1095 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1096 * @cpu: cpu number for stats access 1097 * @part: target partition 1098 * 1099 * The average IO queue length and utilisation statistics are maintained 1100 * by observing the current state of the queue length and the amount of 1101 * time it has been in this state for. 1102 * 1103 * Normally, that accounting is done on IO completion, but that can result 1104 * in more than a second's worth of IO being accounted for within any one 1105 * second, leading to >100% utilisation. To deal with that, we call this 1106 * function to do a round-off before returning the results when reading 1107 * /proc/diskstats. This accounts immediately for all queue usage up to 1108 * the current jiffies and restarts the counters again. 1109 */ 1110 void part_round_stats(int cpu, struct hd_struct *part) 1111 { 1112 unsigned long now = jiffies; 1113 1114 if (part->partno) 1115 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1116 part_round_stats_single(cpu, part, now); 1117 } 1118 EXPORT_SYMBOL_GPL(part_round_stats); 1119 1120 /* 1121 * queue lock must be held 1122 */ 1123 void __blk_put_request(struct request_queue *q, struct request *req) 1124 { 1125 if (unlikely(!q)) 1126 return; 1127 if (unlikely(--req->ref_count)) 1128 return; 1129 1130 elv_completed_request(q, req); 1131 1132 /* this is a bio leak */ 1133 WARN_ON(req->bio != NULL); 1134 1135 /* 1136 * Request may not have originated from ll_rw_blk. if not, 1137 * it didn't come out of our reserved rq pools 1138 */ 1139 if (req->cmd_flags & REQ_ALLOCED) { 1140 unsigned int flags = req->cmd_flags; 1141 1142 BUG_ON(!list_empty(&req->queuelist)); 1143 BUG_ON(!hlist_unhashed(&req->hash)); 1144 1145 blk_free_request(q, req); 1146 freed_request(q, flags); 1147 } 1148 } 1149 EXPORT_SYMBOL_GPL(__blk_put_request); 1150 1151 void blk_put_request(struct request *req) 1152 { 1153 unsigned long flags; 1154 struct request_queue *q = req->q; 1155 1156 spin_lock_irqsave(q->queue_lock, flags); 1157 __blk_put_request(q, req); 1158 spin_unlock_irqrestore(q->queue_lock, flags); 1159 } 1160 EXPORT_SYMBOL(blk_put_request); 1161 1162 /** 1163 * blk_add_request_payload - add a payload to a request 1164 * @rq: request to update 1165 * @page: page backing the payload 1166 * @len: length of the payload. 1167 * 1168 * This allows to later add a payload to an already submitted request by 1169 * a block driver. The driver needs to take care of freeing the payload 1170 * itself. 1171 * 1172 * Note that this is a quite horrible hack and nothing but handling of 1173 * discard requests should ever use it. 1174 */ 1175 void blk_add_request_payload(struct request *rq, struct page *page, 1176 unsigned int len) 1177 { 1178 struct bio *bio = rq->bio; 1179 1180 bio->bi_io_vec->bv_page = page; 1181 bio->bi_io_vec->bv_offset = 0; 1182 bio->bi_io_vec->bv_len = len; 1183 1184 bio->bi_size = len; 1185 bio->bi_vcnt = 1; 1186 bio->bi_phys_segments = 1; 1187 1188 rq->__data_len = rq->resid_len = len; 1189 rq->nr_phys_segments = 1; 1190 rq->buffer = bio_data(bio); 1191 } 1192 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1193 1194 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1195 struct bio *bio) 1196 { 1197 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1198 1199 if (!ll_back_merge_fn(q, req, bio)) 1200 return false; 1201 1202 trace_block_bio_backmerge(q, bio); 1203 1204 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1205 blk_rq_set_mixed_merge(req); 1206 1207 req->biotail->bi_next = bio; 1208 req->biotail = bio; 1209 req->__data_len += bio->bi_size; 1210 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1211 1212 drive_stat_acct(req, 0); 1213 elv_bio_merged(q, req, bio); 1214 return true; 1215 } 1216 1217 static bool bio_attempt_front_merge(struct request_queue *q, 1218 struct request *req, struct bio *bio) 1219 { 1220 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1221 1222 if (!ll_front_merge_fn(q, req, bio)) 1223 return false; 1224 1225 trace_block_bio_frontmerge(q, bio); 1226 1227 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1228 blk_rq_set_mixed_merge(req); 1229 1230 bio->bi_next = req->bio; 1231 req->bio = bio; 1232 1233 /* 1234 * may not be valid. if the low level driver said 1235 * it didn't need a bounce buffer then it better 1236 * not touch req->buffer either... 1237 */ 1238 req->buffer = bio_data(bio); 1239 req->__sector = bio->bi_sector; 1240 req->__data_len += bio->bi_size; 1241 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1242 1243 drive_stat_acct(req, 0); 1244 elv_bio_merged(q, req, bio); 1245 return true; 1246 } 1247 1248 /** 1249 * attempt_plug_merge - try to merge with %current's plugged list 1250 * @q: request_queue new bio is being queued at 1251 * @bio: new bio being queued 1252 * @request_count: out parameter for number of traversed plugged requests 1253 * 1254 * Determine whether @bio being queued on @q can be merged with a request 1255 * on %current's plugged list. Returns %true if merge was successful, 1256 * otherwise %false. 1257 * 1258 * This function is called without @q->queue_lock; however, elevator is 1259 * accessed iff there already are requests on the plugged list which in 1260 * turn guarantees validity of the elevator. 1261 * 1262 * Note that, on successful merge, elevator operation 1263 * elevator_bio_merged_fn() will be called without queue lock. Elevator 1264 * must be ready for this. 1265 */ 1266 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio, 1267 unsigned int *request_count) 1268 { 1269 struct blk_plug *plug; 1270 struct request *rq; 1271 bool ret = false; 1272 1273 plug = current->plug; 1274 if (!plug) 1275 goto out; 1276 *request_count = 0; 1277 1278 list_for_each_entry_reverse(rq, &plug->list, queuelist) { 1279 int el_ret; 1280 1281 (*request_count)++; 1282 1283 if (rq->q != q) 1284 continue; 1285 1286 el_ret = elv_try_merge(rq, bio); 1287 if (el_ret == ELEVATOR_BACK_MERGE) { 1288 ret = bio_attempt_back_merge(q, rq, bio); 1289 if (ret) 1290 break; 1291 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1292 ret = bio_attempt_front_merge(q, rq, bio); 1293 if (ret) 1294 break; 1295 } 1296 } 1297 out: 1298 return ret; 1299 } 1300 1301 void init_request_from_bio(struct request *req, struct bio *bio) 1302 { 1303 req->cmd_type = REQ_TYPE_FS; 1304 1305 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1306 if (bio->bi_rw & REQ_RAHEAD) 1307 req->cmd_flags |= REQ_FAILFAST_MASK; 1308 1309 req->errors = 0; 1310 req->__sector = bio->bi_sector; 1311 req->ioprio = bio_prio(bio); 1312 blk_rq_bio_prep(req->q, req, bio); 1313 } 1314 1315 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1316 { 1317 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1318 struct blk_plug *plug; 1319 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1320 struct request *req; 1321 unsigned int request_count = 0; 1322 1323 /* 1324 * low level driver can indicate that it wants pages above a 1325 * certain limit bounced to low memory (ie for highmem, or even 1326 * ISA dma in theory) 1327 */ 1328 blk_queue_bounce(q, &bio); 1329 1330 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1331 spin_lock_irq(q->queue_lock); 1332 where = ELEVATOR_INSERT_FLUSH; 1333 goto get_rq; 1334 } 1335 1336 /* 1337 * Check if we can merge with the plugged list before grabbing 1338 * any locks. 1339 */ 1340 if (attempt_plug_merge(q, bio, &request_count)) 1341 return; 1342 1343 spin_lock_irq(q->queue_lock); 1344 1345 el_ret = elv_merge(q, &req, bio); 1346 if (el_ret == ELEVATOR_BACK_MERGE) { 1347 if (bio_attempt_back_merge(q, req, bio)) { 1348 if (!attempt_back_merge(q, req)) 1349 elv_merged_request(q, req, el_ret); 1350 goto out_unlock; 1351 } 1352 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1353 if (bio_attempt_front_merge(q, req, bio)) { 1354 if (!attempt_front_merge(q, req)) 1355 elv_merged_request(q, req, el_ret); 1356 goto out_unlock; 1357 } 1358 } 1359 1360 get_rq: 1361 /* 1362 * This sync check and mask will be re-done in init_request_from_bio(), 1363 * but we need to set it earlier to expose the sync flag to the 1364 * rq allocator and io schedulers. 1365 */ 1366 rw_flags = bio_data_dir(bio); 1367 if (sync) 1368 rw_flags |= REQ_SYNC; 1369 1370 /* 1371 * Grab a free request. This is might sleep but can not fail. 1372 * Returns with the queue unlocked. 1373 */ 1374 req = get_request_wait(q, rw_flags, bio); 1375 if (unlikely(!req)) { 1376 bio_endio(bio, -ENODEV); /* @q is dead */ 1377 goto out_unlock; 1378 } 1379 1380 /* 1381 * After dropping the lock and possibly sleeping here, our request 1382 * may now be mergeable after it had proven unmergeable (above). 1383 * We don't worry about that case for efficiency. It won't happen 1384 * often, and the elevators are able to handle it. 1385 */ 1386 init_request_from_bio(req, bio); 1387 1388 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1389 req->cpu = raw_smp_processor_id(); 1390 1391 plug = current->plug; 1392 if (plug) { 1393 /* 1394 * If this is the first request added after a plug, fire 1395 * of a plug trace. If others have been added before, check 1396 * if we have multiple devices in this plug. If so, make a 1397 * note to sort the list before dispatch. 1398 */ 1399 if (list_empty(&plug->list)) 1400 trace_block_plug(q); 1401 else { 1402 if (!plug->should_sort) { 1403 struct request *__rq; 1404 1405 __rq = list_entry_rq(plug->list.prev); 1406 if (__rq->q != q) 1407 plug->should_sort = 1; 1408 } 1409 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1410 blk_flush_plug_list(plug, false); 1411 trace_block_plug(q); 1412 } 1413 } 1414 list_add_tail(&req->queuelist, &plug->list); 1415 drive_stat_acct(req, 1); 1416 } else { 1417 spin_lock_irq(q->queue_lock); 1418 add_acct_request(q, req, where); 1419 __blk_run_queue(q); 1420 out_unlock: 1421 spin_unlock_irq(q->queue_lock); 1422 } 1423 } 1424 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1425 1426 /* 1427 * If bio->bi_dev is a partition, remap the location 1428 */ 1429 static inline void blk_partition_remap(struct bio *bio) 1430 { 1431 struct block_device *bdev = bio->bi_bdev; 1432 1433 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1434 struct hd_struct *p = bdev->bd_part; 1435 1436 bio->bi_sector += p->start_sect; 1437 bio->bi_bdev = bdev->bd_contains; 1438 1439 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1440 bdev->bd_dev, 1441 bio->bi_sector - p->start_sect); 1442 } 1443 } 1444 1445 static void handle_bad_sector(struct bio *bio) 1446 { 1447 char b[BDEVNAME_SIZE]; 1448 1449 printk(KERN_INFO "attempt to access beyond end of device\n"); 1450 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1451 bdevname(bio->bi_bdev, b), 1452 bio->bi_rw, 1453 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1454 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1455 1456 set_bit(BIO_EOF, &bio->bi_flags); 1457 } 1458 1459 #ifdef CONFIG_FAIL_MAKE_REQUEST 1460 1461 static DECLARE_FAULT_ATTR(fail_make_request); 1462 1463 static int __init setup_fail_make_request(char *str) 1464 { 1465 return setup_fault_attr(&fail_make_request, str); 1466 } 1467 __setup("fail_make_request=", setup_fail_make_request); 1468 1469 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1470 { 1471 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1472 } 1473 1474 static int __init fail_make_request_debugfs(void) 1475 { 1476 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1477 NULL, &fail_make_request); 1478 1479 return IS_ERR(dir) ? PTR_ERR(dir) : 0; 1480 } 1481 1482 late_initcall(fail_make_request_debugfs); 1483 1484 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1485 1486 static inline bool should_fail_request(struct hd_struct *part, 1487 unsigned int bytes) 1488 { 1489 return false; 1490 } 1491 1492 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1493 1494 /* 1495 * Check whether this bio extends beyond the end of the device. 1496 */ 1497 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1498 { 1499 sector_t maxsector; 1500 1501 if (!nr_sectors) 1502 return 0; 1503 1504 /* Test device or partition size, when known. */ 1505 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1506 if (maxsector) { 1507 sector_t sector = bio->bi_sector; 1508 1509 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1510 /* 1511 * This may well happen - the kernel calls bread() 1512 * without checking the size of the device, e.g., when 1513 * mounting a device. 1514 */ 1515 handle_bad_sector(bio); 1516 return 1; 1517 } 1518 } 1519 1520 return 0; 1521 } 1522 1523 static noinline_for_stack bool 1524 generic_make_request_checks(struct bio *bio) 1525 { 1526 struct request_queue *q; 1527 int nr_sectors = bio_sectors(bio); 1528 int err = -EIO; 1529 char b[BDEVNAME_SIZE]; 1530 struct hd_struct *part; 1531 1532 might_sleep(); 1533 1534 if (bio_check_eod(bio, nr_sectors)) 1535 goto end_io; 1536 1537 q = bdev_get_queue(bio->bi_bdev); 1538 if (unlikely(!q)) { 1539 printk(KERN_ERR 1540 "generic_make_request: Trying to access " 1541 "nonexistent block-device %s (%Lu)\n", 1542 bdevname(bio->bi_bdev, b), 1543 (long long) bio->bi_sector); 1544 goto end_io; 1545 } 1546 1547 if (unlikely(!(bio->bi_rw & REQ_DISCARD) && 1548 nr_sectors > queue_max_hw_sectors(q))) { 1549 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1550 bdevname(bio->bi_bdev, b), 1551 bio_sectors(bio), 1552 queue_max_hw_sectors(q)); 1553 goto end_io; 1554 } 1555 1556 part = bio->bi_bdev->bd_part; 1557 if (should_fail_request(part, bio->bi_size) || 1558 should_fail_request(&part_to_disk(part)->part0, 1559 bio->bi_size)) 1560 goto end_io; 1561 1562 /* 1563 * If this device has partitions, remap block n 1564 * of partition p to block n+start(p) of the disk. 1565 */ 1566 blk_partition_remap(bio); 1567 1568 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1569 goto end_io; 1570 1571 if (bio_check_eod(bio, nr_sectors)) 1572 goto end_io; 1573 1574 /* 1575 * Filter flush bio's early so that make_request based 1576 * drivers without flush support don't have to worry 1577 * about them. 1578 */ 1579 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1580 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1581 if (!nr_sectors) { 1582 err = 0; 1583 goto end_io; 1584 } 1585 } 1586 1587 if ((bio->bi_rw & REQ_DISCARD) && 1588 (!blk_queue_discard(q) || 1589 ((bio->bi_rw & REQ_SECURE) && 1590 !blk_queue_secdiscard(q)))) { 1591 err = -EOPNOTSUPP; 1592 goto end_io; 1593 } 1594 1595 if (blk_throtl_bio(q, bio)) 1596 return false; /* throttled, will be resubmitted later */ 1597 1598 trace_block_bio_queue(q, bio); 1599 return true; 1600 1601 end_io: 1602 bio_endio(bio, err); 1603 return false; 1604 } 1605 1606 /** 1607 * generic_make_request - hand a buffer to its device driver for I/O 1608 * @bio: The bio describing the location in memory and on the device. 1609 * 1610 * generic_make_request() is used to make I/O requests of block 1611 * devices. It is passed a &struct bio, which describes the I/O that needs 1612 * to be done. 1613 * 1614 * generic_make_request() does not return any status. The 1615 * success/failure status of the request, along with notification of 1616 * completion, is delivered asynchronously through the bio->bi_end_io 1617 * function described (one day) else where. 1618 * 1619 * The caller of generic_make_request must make sure that bi_io_vec 1620 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1621 * set to describe the device address, and the 1622 * bi_end_io and optionally bi_private are set to describe how 1623 * completion notification should be signaled. 1624 * 1625 * generic_make_request and the drivers it calls may use bi_next if this 1626 * bio happens to be merged with someone else, and may resubmit the bio to 1627 * a lower device by calling into generic_make_request recursively, which 1628 * means the bio should NOT be touched after the call to ->make_request_fn. 1629 */ 1630 void generic_make_request(struct bio *bio) 1631 { 1632 struct bio_list bio_list_on_stack; 1633 1634 if (!generic_make_request_checks(bio)) 1635 return; 1636 1637 /* 1638 * We only want one ->make_request_fn to be active at a time, else 1639 * stack usage with stacked devices could be a problem. So use 1640 * current->bio_list to keep a list of requests submited by a 1641 * make_request_fn function. current->bio_list is also used as a 1642 * flag to say if generic_make_request is currently active in this 1643 * task or not. If it is NULL, then no make_request is active. If 1644 * it is non-NULL, then a make_request is active, and new requests 1645 * should be added at the tail 1646 */ 1647 if (current->bio_list) { 1648 bio_list_add(current->bio_list, bio); 1649 return; 1650 } 1651 1652 /* following loop may be a bit non-obvious, and so deserves some 1653 * explanation. 1654 * Before entering the loop, bio->bi_next is NULL (as all callers 1655 * ensure that) so we have a list with a single bio. 1656 * We pretend that we have just taken it off a longer list, so 1657 * we assign bio_list to a pointer to the bio_list_on_stack, 1658 * thus initialising the bio_list of new bios to be 1659 * added. ->make_request() may indeed add some more bios 1660 * through a recursive call to generic_make_request. If it 1661 * did, we find a non-NULL value in bio_list and re-enter the loop 1662 * from the top. In this case we really did just take the bio 1663 * of the top of the list (no pretending) and so remove it from 1664 * bio_list, and call into ->make_request() again. 1665 */ 1666 BUG_ON(bio->bi_next); 1667 bio_list_init(&bio_list_on_stack); 1668 current->bio_list = &bio_list_on_stack; 1669 do { 1670 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1671 1672 q->make_request_fn(q, bio); 1673 1674 bio = bio_list_pop(current->bio_list); 1675 } while (bio); 1676 current->bio_list = NULL; /* deactivate */ 1677 } 1678 EXPORT_SYMBOL(generic_make_request); 1679 1680 /** 1681 * submit_bio - submit a bio to the block device layer for I/O 1682 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1683 * @bio: The &struct bio which describes the I/O 1684 * 1685 * submit_bio() is very similar in purpose to generic_make_request(), and 1686 * uses that function to do most of the work. Both are fairly rough 1687 * interfaces; @bio must be presetup and ready for I/O. 1688 * 1689 */ 1690 void submit_bio(int rw, struct bio *bio) 1691 { 1692 int count = bio_sectors(bio); 1693 1694 bio->bi_rw |= rw; 1695 1696 /* 1697 * If it's a regular read/write or a barrier with data attached, 1698 * go through the normal accounting stuff before submission. 1699 */ 1700 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) { 1701 if (rw & WRITE) { 1702 count_vm_events(PGPGOUT, count); 1703 } else { 1704 task_io_account_read(bio->bi_size); 1705 count_vm_events(PGPGIN, count); 1706 } 1707 1708 if (unlikely(block_dump)) { 1709 char b[BDEVNAME_SIZE]; 1710 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1711 current->comm, task_pid_nr(current), 1712 (rw & WRITE) ? "WRITE" : "READ", 1713 (unsigned long long)bio->bi_sector, 1714 bdevname(bio->bi_bdev, b), 1715 count); 1716 } 1717 } 1718 1719 generic_make_request(bio); 1720 } 1721 EXPORT_SYMBOL(submit_bio); 1722 1723 /** 1724 * blk_rq_check_limits - Helper function to check a request for the queue limit 1725 * @q: the queue 1726 * @rq: the request being checked 1727 * 1728 * Description: 1729 * @rq may have been made based on weaker limitations of upper-level queues 1730 * in request stacking drivers, and it may violate the limitation of @q. 1731 * Since the block layer and the underlying device driver trust @rq 1732 * after it is inserted to @q, it should be checked against @q before 1733 * the insertion using this generic function. 1734 * 1735 * This function should also be useful for request stacking drivers 1736 * in some cases below, so export this function. 1737 * Request stacking drivers like request-based dm may change the queue 1738 * limits while requests are in the queue (e.g. dm's table swapping). 1739 * Such request stacking drivers should check those requests agaist 1740 * the new queue limits again when they dispatch those requests, 1741 * although such checkings are also done against the old queue limits 1742 * when submitting requests. 1743 */ 1744 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1745 { 1746 if (rq->cmd_flags & REQ_DISCARD) 1747 return 0; 1748 1749 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1750 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1751 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1752 return -EIO; 1753 } 1754 1755 /* 1756 * queue's settings related to segment counting like q->bounce_pfn 1757 * may differ from that of other stacking queues. 1758 * Recalculate it to check the request correctly on this queue's 1759 * limitation. 1760 */ 1761 blk_recalc_rq_segments(rq); 1762 if (rq->nr_phys_segments > queue_max_segments(q)) { 1763 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1764 return -EIO; 1765 } 1766 1767 return 0; 1768 } 1769 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1770 1771 /** 1772 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1773 * @q: the queue to submit the request 1774 * @rq: the request being queued 1775 */ 1776 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1777 { 1778 unsigned long flags; 1779 int where = ELEVATOR_INSERT_BACK; 1780 1781 if (blk_rq_check_limits(q, rq)) 1782 return -EIO; 1783 1784 if (rq->rq_disk && 1785 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1786 return -EIO; 1787 1788 spin_lock_irqsave(q->queue_lock, flags); 1789 if (unlikely(blk_queue_dead(q))) { 1790 spin_unlock_irqrestore(q->queue_lock, flags); 1791 return -ENODEV; 1792 } 1793 1794 /* 1795 * Submitting request must be dequeued before calling this function 1796 * because it will be linked to another request_queue 1797 */ 1798 BUG_ON(blk_queued_rq(rq)); 1799 1800 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 1801 where = ELEVATOR_INSERT_FLUSH; 1802 1803 add_acct_request(q, rq, where); 1804 if (where == ELEVATOR_INSERT_FLUSH) 1805 __blk_run_queue(q); 1806 spin_unlock_irqrestore(q->queue_lock, flags); 1807 1808 return 0; 1809 } 1810 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1811 1812 /** 1813 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1814 * @rq: request to examine 1815 * 1816 * Description: 1817 * A request could be merge of IOs which require different failure 1818 * handling. This function determines the number of bytes which 1819 * can be failed from the beginning of the request without 1820 * crossing into area which need to be retried further. 1821 * 1822 * Return: 1823 * The number of bytes to fail. 1824 * 1825 * Context: 1826 * queue_lock must be held. 1827 */ 1828 unsigned int blk_rq_err_bytes(const struct request *rq) 1829 { 1830 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1831 unsigned int bytes = 0; 1832 struct bio *bio; 1833 1834 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1835 return blk_rq_bytes(rq); 1836 1837 /* 1838 * Currently the only 'mixing' which can happen is between 1839 * different fastfail types. We can safely fail portions 1840 * which have all the failfast bits that the first one has - 1841 * the ones which are at least as eager to fail as the first 1842 * one. 1843 */ 1844 for (bio = rq->bio; bio; bio = bio->bi_next) { 1845 if ((bio->bi_rw & ff) != ff) 1846 break; 1847 bytes += bio->bi_size; 1848 } 1849 1850 /* this could lead to infinite loop */ 1851 BUG_ON(blk_rq_bytes(rq) && !bytes); 1852 return bytes; 1853 } 1854 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1855 1856 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1857 { 1858 if (blk_do_io_stat(req)) { 1859 const int rw = rq_data_dir(req); 1860 struct hd_struct *part; 1861 int cpu; 1862 1863 cpu = part_stat_lock(); 1864 part = req->part; 1865 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1866 part_stat_unlock(); 1867 } 1868 } 1869 1870 static void blk_account_io_done(struct request *req) 1871 { 1872 /* 1873 * Account IO completion. flush_rq isn't accounted as a 1874 * normal IO on queueing nor completion. Accounting the 1875 * containing request is enough. 1876 */ 1877 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 1878 unsigned long duration = jiffies - req->start_time; 1879 const int rw = rq_data_dir(req); 1880 struct hd_struct *part; 1881 int cpu; 1882 1883 cpu = part_stat_lock(); 1884 part = req->part; 1885 1886 part_stat_inc(cpu, part, ios[rw]); 1887 part_stat_add(cpu, part, ticks[rw], duration); 1888 part_round_stats(cpu, part); 1889 part_dec_in_flight(part, rw); 1890 1891 hd_struct_put(part); 1892 part_stat_unlock(); 1893 } 1894 } 1895 1896 /** 1897 * blk_peek_request - peek at the top of a request queue 1898 * @q: request queue to peek at 1899 * 1900 * Description: 1901 * Return the request at the top of @q. The returned request 1902 * should be started using blk_start_request() before LLD starts 1903 * processing it. 1904 * 1905 * Return: 1906 * Pointer to the request at the top of @q if available. Null 1907 * otherwise. 1908 * 1909 * Context: 1910 * queue_lock must be held. 1911 */ 1912 struct request *blk_peek_request(struct request_queue *q) 1913 { 1914 struct request *rq; 1915 int ret; 1916 1917 while ((rq = __elv_next_request(q)) != NULL) { 1918 if (!(rq->cmd_flags & REQ_STARTED)) { 1919 /* 1920 * This is the first time the device driver 1921 * sees this request (possibly after 1922 * requeueing). Notify IO scheduler. 1923 */ 1924 if (rq->cmd_flags & REQ_SORTED) 1925 elv_activate_rq(q, rq); 1926 1927 /* 1928 * just mark as started even if we don't start 1929 * it, a request that has been delayed should 1930 * not be passed by new incoming requests 1931 */ 1932 rq->cmd_flags |= REQ_STARTED; 1933 trace_block_rq_issue(q, rq); 1934 } 1935 1936 if (!q->boundary_rq || q->boundary_rq == rq) { 1937 q->end_sector = rq_end_sector(rq); 1938 q->boundary_rq = NULL; 1939 } 1940 1941 if (rq->cmd_flags & REQ_DONTPREP) 1942 break; 1943 1944 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1945 /* 1946 * make sure space for the drain appears we 1947 * know we can do this because max_hw_segments 1948 * has been adjusted to be one fewer than the 1949 * device can handle 1950 */ 1951 rq->nr_phys_segments++; 1952 } 1953 1954 if (!q->prep_rq_fn) 1955 break; 1956 1957 ret = q->prep_rq_fn(q, rq); 1958 if (ret == BLKPREP_OK) { 1959 break; 1960 } else if (ret == BLKPREP_DEFER) { 1961 /* 1962 * the request may have been (partially) prepped. 1963 * we need to keep this request in the front to 1964 * avoid resource deadlock. REQ_STARTED will 1965 * prevent other fs requests from passing this one. 1966 */ 1967 if (q->dma_drain_size && blk_rq_bytes(rq) && 1968 !(rq->cmd_flags & REQ_DONTPREP)) { 1969 /* 1970 * remove the space for the drain we added 1971 * so that we don't add it again 1972 */ 1973 --rq->nr_phys_segments; 1974 } 1975 1976 rq = NULL; 1977 break; 1978 } else if (ret == BLKPREP_KILL) { 1979 rq->cmd_flags |= REQ_QUIET; 1980 /* 1981 * Mark this request as started so we don't trigger 1982 * any debug logic in the end I/O path. 1983 */ 1984 blk_start_request(rq); 1985 __blk_end_request_all(rq, -EIO); 1986 } else { 1987 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1988 break; 1989 } 1990 } 1991 1992 return rq; 1993 } 1994 EXPORT_SYMBOL(blk_peek_request); 1995 1996 void blk_dequeue_request(struct request *rq) 1997 { 1998 struct request_queue *q = rq->q; 1999 2000 BUG_ON(list_empty(&rq->queuelist)); 2001 BUG_ON(ELV_ON_HASH(rq)); 2002 2003 list_del_init(&rq->queuelist); 2004 2005 /* 2006 * the time frame between a request being removed from the lists 2007 * and to it is freed is accounted as io that is in progress at 2008 * the driver side. 2009 */ 2010 if (blk_account_rq(rq)) { 2011 q->in_flight[rq_is_sync(rq)]++; 2012 set_io_start_time_ns(rq); 2013 } 2014 } 2015 2016 /** 2017 * blk_start_request - start request processing on the driver 2018 * @req: request to dequeue 2019 * 2020 * Description: 2021 * Dequeue @req and start timeout timer on it. This hands off the 2022 * request to the driver. 2023 * 2024 * Block internal functions which don't want to start timer should 2025 * call blk_dequeue_request(). 2026 * 2027 * Context: 2028 * queue_lock must be held. 2029 */ 2030 void blk_start_request(struct request *req) 2031 { 2032 blk_dequeue_request(req); 2033 2034 /* 2035 * We are now handing the request to the hardware, initialize 2036 * resid_len to full count and add the timeout handler. 2037 */ 2038 req->resid_len = blk_rq_bytes(req); 2039 if (unlikely(blk_bidi_rq(req))) 2040 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2041 2042 blk_add_timer(req); 2043 } 2044 EXPORT_SYMBOL(blk_start_request); 2045 2046 /** 2047 * blk_fetch_request - fetch a request from a request queue 2048 * @q: request queue to fetch a request from 2049 * 2050 * Description: 2051 * Return the request at the top of @q. The request is started on 2052 * return and LLD can start processing it immediately. 2053 * 2054 * Return: 2055 * Pointer to the request at the top of @q if available. Null 2056 * otherwise. 2057 * 2058 * Context: 2059 * queue_lock must be held. 2060 */ 2061 struct request *blk_fetch_request(struct request_queue *q) 2062 { 2063 struct request *rq; 2064 2065 rq = blk_peek_request(q); 2066 if (rq) 2067 blk_start_request(rq); 2068 return rq; 2069 } 2070 EXPORT_SYMBOL(blk_fetch_request); 2071 2072 /** 2073 * blk_update_request - Special helper function for request stacking drivers 2074 * @req: the request being processed 2075 * @error: %0 for success, < %0 for error 2076 * @nr_bytes: number of bytes to complete @req 2077 * 2078 * Description: 2079 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2080 * the request structure even if @req doesn't have leftover. 2081 * If @req has leftover, sets it up for the next range of segments. 2082 * 2083 * This special helper function is only for request stacking drivers 2084 * (e.g. request-based dm) so that they can handle partial completion. 2085 * Actual device drivers should use blk_end_request instead. 2086 * 2087 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2088 * %false return from this function. 2089 * 2090 * Return: 2091 * %false - this request doesn't have any more data 2092 * %true - this request has more data 2093 **/ 2094 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2095 { 2096 int total_bytes, bio_nbytes, next_idx = 0; 2097 struct bio *bio; 2098 2099 if (!req->bio) 2100 return false; 2101 2102 trace_block_rq_complete(req->q, req); 2103 2104 /* 2105 * For fs requests, rq is just carrier of independent bio's 2106 * and each partial completion should be handled separately. 2107 * Reset per-request error on each partial completion. 2108 * 2109 * TODO: tj: This is too subtle. It would be better to let 2110 * low level drivers do what they see fit. 2111 */ 2112 if (req->cmd_type == REQ_TYPE_FS) 2113 req->errors = 0; 2114 2115 if (error && req->cmd_type == REQ_TYPE_FS && 2116 !(req->cmd_flags & REQ_QUIET)) { 2117 char *error_type; 2118 2119 switch (error) { 2120 case -ENOLINK: 2121 error_type = "recoverable transport"; 2122 break; 2123 case -EREMOTEIO: 2124 error_type = "critical target"; 2125 break; 2126 case -EBADE: 2127 error_type = "critical nexus"; 2128 break; 2129 case -EIO: 2130 default: 2131 error_type = "I/O"; 2132 break; 2133 } 2134 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2135 error_type, req->rq_disk ? req->rq_disk->disk_name : "?", 2136 (unsigned long long)blk_rq_pos(req)); 2137 } 2138 2139 blk_account_io_completion(req, nr_bytes); 2140 2141 total_bytes = bio_nbytes = 0; 2142 while ((bio = req->bio) != NULL) { 2143 int nbytes; 2144 2145 if (nr_bytes >= bio->bi_size) { 2146 req->bio = bio->bi_next; 2147 nbytes = bio->bi_size; 2148 req_bio_endio(req, bio, nbytes, error); 2149 next_idx = 0; 2150 bio_nbytes = 0; 2151 } else { 2152 int idx = bio->bi_idx + next_idx; 2153 2154 if (unlikely(idx >= bio->bi_vcnt)) { 2155 blk_dump_rq_flags(req, "__end_that"); 2156 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2157 __func__, idx, bio->bi_vcnt); 2158 break; 2159 } 2160 2161 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2162 BIO_BUG_ON(nbytes > bio->bi_size); 2163 2164 /* 2165 * not a complete bvec done 2166 */ 2167 if (unlikely(nbytes > nr_bytes)) { 2168 bio_nbytes += nr_bytes; 2169 total_bytes += nr_bytes; 2170 break; 2171 } 2172 2173 /* 2174 * advance to the next vector 2175 */ 2176 next_idx++; 2177 bio_nbytes += nbytes; 2178 } 2179 2180 total_bytes += nbytes; 2181 nr_bytes -= nbytes; 2182 2183 bio = req->bio; 2184 if (bio) { 2185 /* 2186 * end more in this run, or just return 'not-done' 2187 */ 2188 if (unlikely(nr_bytes <= 0)) 2189 break; 2190 } 2191 } 2192 2193 /* 2194 * completely done 2195 */ 2196 if (!req->bio) { 2197 /* 2198 * Reset counters so that the request stacking driver 2199 * can find how many bytes remain in the request 2200 * later. 2201 */ 2202 req->__data_len = 0; 2203 return false; 2204 } 2205 2206 /* 2207 * if the request wasn't completed, update state 2208 */ 2209 if (bio_nbytes) { 2210 req_bio_endio(req, bio, bio_nbytes, error); 2211 bio->bi_idx += next_idx; 2212 bio_iovec(bio)->bv_offset += nr_bytes; 2213 bio_iovec(bio)->bv_len -= nr_bytes; 2214 } 2215 2216 req->__data_len -= total_bytes; 2217 req->buffer = bio_data(req->bio); 2218 2219 /* update sector only for requests with clear definition of sector */ 2220 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD)) 2221 req->__sector += total_bytes >> 9; 2222 2223 /* mixed attributes always follow the first bio */ 2224 if (req->cmd_flags & REQ_MIXED_MERGE) { 2225 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2226 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2227 } 2228 2229 /* 2230 * If total number of sectors is less than the first segment 2231 * size, something has gone terribly wrong. 2232 */ 2233 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2234 blk_dump_rq_flags(req, "request botched"); 2235 req->__data_len = blk_rq_cur_bytes(req); 2236 } 2237 2238 /* recalculate the number of segments */ 2239 blk_recalc_rq_segments(req); 2240 2241 return true; 2242 } 2243 EXPORT_SYMBOL_GPL(blk_update_request); 2244 2245 static bool blk_update_bidi_request(struct request *rq, int error, 2246 unsigned int nr_bytes, 2247 unsigned int bidi_bytes) 2248 { 2249 if (blk_update_request(rq, error, nr_bytes)) 2250 return true; 2251 2252 /* Bidi request must be completed as a whole */ 2253 if (unlikely(blk_bidi_rq(rq)) && 2254 blk_update_request(rq->next_rq, error, bidi_bytes)) 2255 return true; 2256 2257 if (blk_queue_add_random(rq->q)) 2258 add_disk_randomness(rq->rq_disk); 2259 2260 return false; 2261 } 2262 2263 /** 2264 * blk_unprep_request - unprepare a request 2265 * @req: the request 2266 * 2267 * This function makes a request ready for complete resubmission (or 2268 * completion). It happens only after all error handling is complete, 2269 * so represents the appropriate moment to deallocate any resources 2270 * that were allocated to the request in the prep_rq_fn. The queue 2271 * lock is held when calling this. 2272 */ 2273 void blk_unprep_request(struct request *req) 2274 { 2275 struct request_queue *q = req->q; 2276 2277 req->cmd_flags &= ~REQ_DONTPREP; 2278 if (q->unprep_rq_fn) 2279 q->unprep_rq_fn(q, req); 2280 } 2281 EXPORT_SYMBOL_GPL(blk_unprep_request); 2282 2283 /* 2284 * queue lock must be held 2285 */ 2286 static void blk_finish_request(struct request *req, int error) 2287 { 2288 if (blk_rq_tagged(req)) 2289 blk_queue_end_tag(req->q, req); 2290 2291 BUG_ON(blk_queued_rq(req)); 2292 2293 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2294 laptop_io_completion(&req->q->backing_dev_info); 2295 2296 blk_delete_timer(req); 2297 2298 if (req->cmd_flags & REQ_DONTPREP) 2299 blk_unprep_request(req); 2300 2301 2302 blk_account_io_done(req); 2303 2304 if (req->end_io) 2305 req->end_io(req, error); 2306 else { 2307 if (blk_bidi_rq(req)) 2308 __blk_put_request(req->next_rq->q, req->next_rq); 2309 2310 __blk_put_request(req->q, req); 2311 } 2312 } 2313 2314 /** 2315 * blk_end_bidi_request - Complete a bidi request 2316 * @rq: the request to complete 2317 * @error: %0 for success, < %0 for error 2318 * @nr_bytes: number of bytes to complete @rq 2319 * @bidi_bytes: number of bytes to complete @rq->next_rq 2320 * 2321 * Description: 2322 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2323 * Drivers that supports bidi can safely call this member for any 2324 * type of request, bidi or uni. In the later case @bidi_bytes is 2325 * just ignored. 2326 * 2327 * Return: 2328 * %false - we are done with this request 2329 * %true - still buffers pending for this request 2330 **/ 2331 static bool blk_end_bidi_request(struct request *rq, int error, 2332 unsigned int nr_bytes, unsigned int bidi_bytes) 2333 { 2334 struct request_queue *q = rq->q; 2335 unsigned long flags; 2336 2337 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2338 return true; 2339 2340 spin_lock_irqsave(q->queue_lock, flags); 2341 blk_finish_request(rq, error); 2342 spin_unlock_irqrestore(q->queue_lock, flags); 2343 2344 return false; 2345 } 2346 2347 /** 2348 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2349 * @rq: the request to complete 2350 * @error: %0 for success, < %0 for error 2351 * @nr_bytes: number of bytes to complete @rq 2352 * @bidi_bytes: number of bytes to complete @rq->next_rq 2353 * 2354 * Description: 2355 * Identical to blk_end_bidi_request() except that queue lock is 2356 * assumed to be locked on entry and remains so on return. 2357 * 2358 * Return: 2359 * %false - we are done with this request 2360 * %true - still buffers pending for this request 2361 **/ 2362 bool __blk_end_bidi_request(struct request *rq, int error, 2363 unsigned int nr_bytes, unsigned int bidi_bytes) 2364 { 2365 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2366 return true; 2367 2368 blk_finish_request(rq, error); 2369 2370 return false; 2371 } 2372 2373 /** 2374 * blk_end_request - Helper function for drivers to complete the request. 2375 * @rq: the request being processed 2376 * @error: %0 for success, < %0 for error 2377 * @nr_bytes: number of bytes to complete 2378 * 2379 * Description: 2380 * Ends I/O on a number of bytes attached to @rq. 2381 * If @rq has leftover, sets it up for the next range of segments. 2382 * 2383 * Return: 2384 * %false - we are done with this request 2385 * %true - still buffers pending for this request 2386 **/ 2387 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2388 { 2389 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2390 } 2391 EXPORT_SYMBOL(blk_end_request); 2392 2393 /** 2394 * blk_end_request_all - Helper function for drives to finish the request. 2395 * @rq: the request to finish 2396 * @error: %0 for success, < %0 for error 2397 * 2398 * Description: 2399 * Completely finish @rq. 2400 */ 2401 void blk_end_request_all(struct request *rq, int error) 2402 { 2403 bool pending; 2404 unsigned int bidi_bytes = 0; 2405 2406 if (unlikely(blk_bidi_rq(rq))) 2407 bidi_bytes = blk_rq_bytes(rq->next_rq); 2408 2409 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2410 BUG_ON(pending); 2411 } 2412 EXPORT_SYMBOL(blk_end_request_all); 2413 2414 /** 2415 * blk_end_request_cur - Helper function to finish the current request chunk. 2416 * @rq: the request to finish the current chunk for 2417 * @error: %0 for success, < %0 for error 2418 * 2419 * Description: 2420 * Complete the current consecutively mapped chunk from @rq. 2421 * 2422 * Return: 2423 * %false - we are done with this request 2424 * %true - still buffers pending for this request 2425 */ 2426 bool blk_end_request_cur(struct request *rq, int error) 2427 { 2428 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2429 } 2430 EXPORT_SYMBOL(blk_end_request_cur); 2431 2432 /** 2433 * blk_end_request_err - Finish a request till the next failure boundary. 2434 * @rq: the request to finish till the next failure boundary for 2435 * @error: must be negative errno 2436 * 2437 * Description: 2438 * Complete @rq till the next failure boundary. 2439 * 2440 * Return: 2441 * %false - we are done with this request 2442 * %true - still buffers pending for this request 2443 */ 2444 bool blk_end_request_err(struct request *rq, int error) 2445 { 2446 WARN_ON(error >= 0); 2447 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2448 } 2449 EXPORT_SYMBOL_GPL(blk_end_request_err); 2450 2451 /** 2452 * __blk_end_request - Helper function for drivers to complete the request. 2453 * @rq: the request being processed 2454 * @error: %0 for success, < %0 for error 2455 * @nr_bytes: number of bytes to complete 2456 * 2457 * Description: 2458 * Must be called with queue lock held unlike blk_end_request(). 2459 * 2460 * Return: 2461 * %false - we are done with this request 2462 * %true - still buffers pending for this request 2463 **/ 2464 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2465 { 2466 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2467 } 2468 EXPORT_SYMBOL(__blk_end_request); 2469 2470 /** 2471 * __blk_end_request_all - Helper function for drives to finish the request. 2472 * @rq: the request to finish 2473 * @error: %0 for success, < %0 for error 2474 * 2475 * Description: 2476 * Completely finish @rq. Must be called with queue lock held. 2477 */ 2478 void __blk_end_request_all(struct request *rq, int error) 2479 { 2480 bool pending; 2481 unsigned int bidi_bytes = 0; 2482 2483 if (unlikely(blk_bidi_rq(rq))) 2484 bidi_bytes = blk_rq_bytes(rq->next_rq); 2485 2486 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2487 BUG_ON(pending); 2488 } 2489 EXPORT_SYMBOL(__blk_end_request_all); 2490 2491 /** 2492 * __blk_end_request_cur - Helper function to finish the current request chunk. 2493 * @rq: the request to finish the current chunk for 2494 * @error: %0 for success, < %0 for error 2495 * 2496 * Description: 2497 * Complete the current consecutively mapped chunk from @rq. Must 2498 * be called with queue lock held. 2499 * 2500 * Return: 2501 * %false - we are done with this request 2502 * %true - still buffers pending for this request 2503 */ 2504 bool __blk_end_request_cur(struct request *rq, int error) 2505 { 2506 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2507 } 2508 EXPORT_SYMBOL(__blk_end_request_cur); 2509 2510 /** 2511 * __blk_end_request_err - Finish a request till the next failure boundary. 2512 * @rq: the request to finish till the next failure boundary for 2513 * @error: must be negative errno 2514 * 2515 * Description: 2516 * Complete @rq till the next failure boundary. Must be called 2517 * with queue lock held. 2518 * 2519 * Return: 2520 * %false - we are done with this request 2521 * %true - still buffers pending for this request 2522 */ 2523 bool __blk_end_request_err(struct request *rq, int error) 2524 { 2525 WARN_ON(error >= 0); 2526 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2527 } 2528 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2529 2530 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2531 struct bio *bio) 2532 { 2533 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2534 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2535 2536 if (bio_has_data(bio)) { 2537 rq->nr_phys_segments = bio_phys_segments(q, bio); 2538 rq->buffer = bio_data(bio); 2539 } 2540 rq->__data_len = bio->bi_size; 2541 rq->bio = rq->biotail = bio; 2542 2543 if (bio->bi_bdev) 2544 rq->rq_disk = bio->bi_bdev->bd_disk; 2545 } 2546 2547 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2548 /** 2549 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2550 * @rq: the request to be flushed 2551 * 2552 * Description: 2553 * Flush all pages in @rq. 2554 */ 2555 void rq_flush_dcache_pages(struct request *rq) 2556 { 2557 struct req_iterator iter; 2558 struct bio_vec *bvec; 2559 2560 rq_for_each_segment(bvec, rq, iter) 2561 flush_dcache_page(bvec->bv_page); 2562 } 2563 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2564 #endif 2565 2566 /** 2567 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2568 * @q : the queue of the device being checked 2569 * 2570 * Description: 2571 * Check if underlying low-level drivers of a device are busy. 2572 * If the drivers want to export their busy state, they must set own 2573 * exporting function using blk_queue_lld_busy() first. 2574 * 2575 * Basically, this function is used only by request stacking drivers 2576 * to stop dispatching requests to underlying devices when underlying 2577 * devices are busy. This behavior helps more I/O merging on the queue 2578 * of the request stacking driver and prevents I/O throughput regression 2579 * on burst I/O load. 2580 * 2581 * Return: 2582 * 0 - Not busy (The request stacking driver should dispatch request) 2583 * 1 - Busy (The request stacking driver should stop dispatching request) 2584 */ 2585 int blk_lld_busy(struct request_queue *q) 2586 { 2587 if (q->lld_busy_fn) 2588 return q->lld_busy_fn(q); 2589 2590 return 0; 2591 } 2592 EXPORT_SYMBOL_GPL(blk_lld_busy); 2593 2594 /** 2595 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2596 * @rq: the clone request to be cleaned up 2597 * 2598 * Description: 2599 * Free all bios in @rq for a cloned request. 2600 */ 2601 void blk_rq_unprep_clone(struct request *rq) 2602 { 2603 struct bio *bio; 2604 2605 while ((bio = rq->bio) != NULL) { 2606 rq->bio = bio->bi_next; 2607 2608 bio_put(bio); 2609 } 2610 } 2611 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2612 2613 /* 2614 * Copy attributes of the original request to the clone request. 2615 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2616 */ 2617 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2618 { 2619 dst->cpu = src->cpu; 2620 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2621 dst->cmd_type = src->cmd_type; 2622 dst->__sector = blk_rq_pos(src); 2623 dst->__data_len = blk_rq_bytes(src); 2624 dst->nr_phys_segments = src->nr_phys_segments; 2625 dst->ioprio = src->ioprio; 2626 dst->extra_len = src->extra_len; 2627 } 2628 2629 /** 2630 * blk_rq_prep_clone - Helper function to setup clone request 2631 * @rq: the request to be setup 2632 * @rq_src: original request to be cloned 2633 * @bs: bio_set that bios for clone are allocated from 2634 * @gfp_mask: memory allocation mask for bio 2635 * @bio_ctr: setup function to be called for each clone bio. 2636 * Returns %0 for success, non %0 for failure. 2637 * @data: private data to be passed to @bio_ctr 2638 * 2639 * Description: 2640 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2641 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2642 * are not copied, and copying such parts is the caller's responsibility. 2643 * Also, pages which the original bios are pointing to are not copied 2644 * and the cloned bios just point same pages. 2645 * So cloned bios must be completed before original bios, which means 2646 * the caller must complete @rq before @rq_src. 2647 */ 2648 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2649 struct bio_set *bs, gfp_t gfp_mask, 2650 int (*bio_ctr)(struct bio *, struct bio *, void *), 2651 void *data) 2652 { 2653 struct bio *bio, *bio_src; 2654 2655 if (!bs) 2656 bs = fs_bio_set; 2657 2658 blk_rq_init(NULL, rq); 2659 2660 __rq_for_each_bio(bio_src, rq_src) { 2661 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2662 if (!bio) 2663 goto free_and_out; 2664 2665 __bio_clone(bio, bio_src); 2666 2667 if (bio_integrity(bio_src) && 2668 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2669 goto free_and_out; 2670 2671 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2672 goto free_and_out; 2673 2674 if (rq->bio) { 2675 rq->biotail->bi_next = bio; 2676 rq->biotail = bio; 2677 } else 2678 rq->bio = rq->biotail = bio; 2679 } 2680 2681 __blk_rq_prep_clone(rq, rq_src); 2682 2683 return 0; 2684 2685 free_and_out: 2686 if (bio) 2687 bio_free(bio, bs); 2688 blk_rq_unprep_clone(rq); 2689 2690 return -ENOMEM; 2691 } 2692 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2693 2694 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2695 { 2696 return queue_work(kblockd_workqueue, work); 2697 } 2698 EXPORT_SYMBOL(kblockd_schedule_work); 2699 2700 int kblockd_schedule_delayed_work(struct request_queue *q, 2701 struct delayed_work *dwork, unsigned long delay) 2702 { 2703 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2704 } 2705 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2706 2707 #define PLUG_MAGIC 0x91827364 2708 2709 /** 2710 * blk_start_plug - initialize blk_plug and track it inside the task_struct 2711 * @plug: The &struct blk_plug that needs to be initialized 2712 * 2713 * Description: 2714 * Tracking blk_plug inside the task_struct will help with auto-flushing the 2715 * pending I/O should the task end up blocking between blk_start_plug() and 2716 * blk_finish_plug(). This is important from a performance perspective, but 2717 * also ensures that we don't deadlock. For instance, if the task is blocking 2718 * for a memory allocation, memory reclaim could end up wanting to free a 2719 * page belonging to that request that is currently residing in our private 2720 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 2721 * this kind of deadlock. 2722 */ 2723 void blk_start_plug(struct blk_plug *plug) 2724 { 2725 struct task_struct *tsk = current; 2726 2727 plug->magic = PLUG_MAGIC; 2728 INIT_LIST_HEAD(&plug->list); 2729 INIT_LIST_HEAD(&plug->cb_list); 2730 plug->should_sort = 0; 2731 2732 /* 2733 * If this is a nested plug, don't actually assign it. It will be 2734 * flushed on its own. 2735 */ 2736 if (!tsk->plug) { 2737 /* 2738 * Store ordering should not be needed here, since a potential 2739 * preempt will imply a full memory barrier 2740 */ 2741 tsk->plug = plug; 2742 } 2743 } 2744 EXPORT_SYMBOL(blk_start_plug); 2745 2746 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2747 { 2748 struct request *rqa = container_of(a, struct request, queuelist); 2749 struct request *rqb = container_of(b, struct request, queuelist); 2750 2751 return !(rqa->q <= rqb->q); 2752 } 2753 2754 /* 2755 * If 'from_schedule' is true, then postpone the dispatch of requests 2756 * until a safe kblockd context. We due this to avoid accidental big 2757 * additional stack usage in driver dispatch, in places where the originally 2758 * plugger did not intend it. 2759 */ 2760 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2761 bool from_schedule) 2762 __releases(q->queue_lock) 2763 { 2764 trace_block_unplug(q, depth, !from_schedule); 2765 2766 /* 2767 * Don't mess with dead queue. 2768 */ 2769 if (unlikely(blk_queue_dead(q))) { 2770 spin_unlock(q->queue_lock); 2771 return; 2772 } 2773 2774 /* 2775 * If we are punting this to kblockd, then we can safely drop 2776 * the queue_lock before waking kblockd (which needs to take 2777 * this lock). 2778 */ 2779 if (from_schedule) { 2780 spin_unlock(q->queue_lock); 2781 blk_run_queue_async(q); 2782 } else { 2783 __blk_run_queue(q); 2784 spin_unlock(q->queue_lock); 2785 } 2786 2787 } 2788 2789 static void flush_plug_callbacks(struct blk_plug *plug) 2790 { 2791 LIST_HEAD(callbacks); 2792 2793 if (list_empty(&plug->cb_list)) 2794 return; 2795 2796 list_splice_init(&plug->cb_list, &callbacks); 2797 2798 while (!list_empty(&callbacks)) { 2799 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2800 struct blk_plug_cb, 2801 list); 2802 list_del(&cb->list); 2803 cb->callback(cb); 2804 } 2805 } 2806 2807 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2808 { 2809 struct request_queue *q; 2810 unsigned long flags; 2811 struct request *rq; 2812 LIST_HEAD(list); 2813 unsigned int depth; 2814 2815 BUG_ON(plug->magic != PLUG_MAGIC); 2816 2817 flush_plug_callbacks(plug); 2818 if (list_empty(&plug->list)) 2819 return; 2820 2821 list_splice_init(&plug->list, &list); 2822 2823 if (plug->should_sort) { 2824 list_sort(NULL, &list, plug_rq_cmp); 2825 plug->should_sort = 0; 2826 } 2827 2828 q = NULL; 2829 depth = 0; 2830 2831 /* 2832 * Save and disable interrupts here, to avoid doing it for every 2833 * queue lock we have to take. 2834 */ 2835 local_irq_save(flags); 2836 while (!list_empty(&list)) { 2837 rq = list_entry_rq(list.next); 2838 list_del_init(&rq->queuelist); 2839 BUG_ON(!rq->q); 2840 if (rq->q != q) { 2841 /* 2842 * This drops the queue lock 2843 */ 2844 if (q) 2845 queue_unplugged(q, depth, from_schedule); 2846 q = rq->q; 2847 depth = 0; 2848 spin_lock(q->queue_lock); 2849 } 2850 2851 /* 2852 * Short-circuit if @q is dead 2853 */ 2854 if (unlikely(blk_queue_dead(q))) { 2855 __blk_end_request_all(rq, -ENODEV); 2856 continue; 2857 } 2858 2859 /* 2860 * rq is already accounted, so use raw insert 2861 */ 2862 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 2863 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 2864 else 2865 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 2866 2867 depth++; 2868 } 2869 2870 /* 2871 * This drops the queue lock 2872 */ 2873 if (q) 2874 queue_unplugged(q, depth, from_schedule); 2875 2876 local_irq_restore(flags); 2877 } 2878 2879 void blk_finish_plug(struct blk_plug *plug) 2880 { 2881 blk_flush_plug_list(plug, false); 2882 2883 if (plug == current->plug) 2884 current->plug = NULL; 2885 } 2886 EXPORT_SYMBOL(blk_finish_plug); 2887 2888 int __init blk_dev_init(void) 2889 { 2890 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2891 sizeof(((struct request *)0)->cmd_flags)); 2892 2893 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 2894 kblockd_workqueue = alloc_workqueue("kblockd", 2895 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2896 if (!kblockd_workqueue) 2897 panic("Failed to create kblockd\n"); 2898 2899 request_cachep = kmem_cache_create("blkdev_requests", 2900 sizeof(struct request), 0, SLAB_PANIC, NULL); 2901 2902 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2903 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2904 2905 return 0; 2906 } 2907