xref: /linux/block/blk-core.c (revision dd220a00e8bd5ad7f98ecdc3eed699a7cfabdc27)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
35 
36 #include "blk.h"
37 
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
41 
42 DEFINE_IDA(blk_queue_ida);
43 
44 /*
45  * For the allocated request tables
46  */
47 static struct kmem_cache *request_cachep;
48 
49 /*
50  * For queue allocation
51  */
52 struct kmem_cache *blk_requestq_cachep;
53 
54 /*
55  * Controlling structure to kblockd
56  */
57 static struct workqueue_struct *kblockd_workqueue;
58 
59 static void drive_stat_acct(struct request *rq, int new_io)
60 {
61 	struct hd_struct *part;
62 	int rw = rq_data_dir(rq);
63 	int cpu;
64 
65 	if (!blk_do_io_stat(rq))
66 		return;
67 
68 	cpu = part_stat_lock();
69 
70 	if (!new_io) {
71 		part = rq->part;
72 		part_stat_inc(cpu, part, merges[rw]);
73 	} else {
74 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
75 		if (!hd_struct_try_get(part)) {
76 			/*
77 			 * The partition is already being removed,
78 			 * the request will be accounted on the disk only
79 			 *
80 			 * We take a reference on disk->part0 although that
81 			 * partition will never be deleted, so we can treat
82 			 * it as any other partition.
83 			 */
84 			part = &rq->rq_disk->part0;
85 			hd_struct_get(part);
86 		}
87 		part_round_stats(cpu, part);
88 		part_inc_in_flight(part, rw);
89 		rq->part = part;
90 	}
91 
92 	part_stat_unlock();
93 }
94 
95 void blk_queue_congestion_threshold(struct request_queue *q)
96 {
97 	int nr;
98 
99 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 	if (nr > q->nr_requests)
101 		nr = q->nr_requests;
102 	q->nr_congestion_on = nr;
103 
104 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 	if (nr < 1)
106 		nr = 1;
107 	q->nr_congestion_off = nr;
108 }
109 
110 /**
111  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
112  * @bdev:	device
113  *
114  * Locates the passed device's request queue and returns the address of its
115  * backing_dev_info
116  *
117  * Will return NULL if the request queue cannot be located.
118  */
119 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
120 {
121 	struct backing_dev_info *ret = NULL;
122 	struct request_queue *q = bdev_get_queue(bdev);
123 
124 	if (q)
125 		ret = &q->backing_dev_info;
126 	return ret;
127 }
128 EXPORT_SYMBOL(blk_get_backing_dev_info);
129 
130 void blk_rq_init(struct request_queue *q, struct request *rq)
131 {
132 	memset(rq, 0, sizeof(*rq));
133 
134 	INIT_LIST_HEAD(&rq->queuelist);
135 	INIT_LIST_HEAD(&rq->timeout_list);
136 	rq->cpu = -1;
137 	rq->q = q;
138 	rq->__sector = (sector_t) -1;
139 	INIT_HLIST_NODE(&rq->hash);
140 	RB_CLEAR_NODE(&rq->rb_node);
141 	rq->cmd = rq->__cmd;
142 	rq->cmd_len = BLK_MAX_CDB;
143 	rq->tag = -1;
144 	rq->ref_count = 1;
145 	rq->start_time = jiffies;
146 	set_start_time_ns(rq);
147 	rq->part = NULL;
148 }
149 EXPORT_SYMBOL(blk_rq_init);
150 
151 static void req_bio_endio(struct request *rq, struct bio *bio,
152 			  unsigned int nbytes, int error)
153 {
154 	if (error)
155 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
156 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
157 		error = -EIO;
158 
159 	if (unlikely(nbytes > bio->bi_size)) {
160 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
161 		       __func__, nbytes, bio->bi_size);
162 		nbytes = bio->bi_size;
163 	}
164 
165 	if (unlikely(rq->cmd_flags & REQ_QUIET))
166 		set_bit(BIO_QUIET, &bio->bi_flags);
167 
168 	bio->bi_size -= nbytes;
169 	bio->bi_sector += (nbytes >> 9);
170 
171 	if (bio_integrity(bio))
172 		bio_integrity_advance(bio, nbytes);
173 
174 	/* don't actually finish bio if it's part of flush sequence */
175 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
176 		bio_endio(bio, error);
177 }
178 
179 void blk_dump_rq_flags(struct request *rq, char *msg)
180 {
181 	int bit;
182 
183 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
184 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 		rq->cmd_flags);
186 
187 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
188 	       (unsigned long long)blk_rq_pos(rq),
189 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
190 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
191 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
192 
193 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
194 		printk(KERN_INFO "  cdb: ");
195 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
196 			printk("%02x ", rq->cmd[bit]);
197 		printk("\n");
198 	}
199 }
200 EXPORT_SYMBOL(blk_dump_rq_flags);
201 
202 static void blk_delay_work(struct work_struct *work)
203 {
204 	struct request_queue *q;
205 
206 	q = container_of(work, struct request_queue, delay_work.work);
207 	spin_lock_irq(q->queue_lock);
208 	__blk_run_queue(q);
209 	spin_unlock_irq(q->queue_lock);
210 }
211 
212 /**
213  * blk_delay_queue - restart queueing after defined interval
214  * @q:		The &struct request_queue in question
215  * @msecs:	Delay in msecs
216  *
217  * Description:
218  *   Sometimes queueing needs to be postponed for a little while, to allow
219  *   resources to come back. This function will make sure that queueing is
220  *   restarted around the specified time.
221  */
222 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
223 {
224 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
225 				msecs_to_jiffies(msecs));
226 }
227 EXPORT_SYMBOL(blk_delay_queue);
228 
229 /**
230  * blk_start_queue - restart a previously stopped queue
231  * @q:    The &struct request_queue in question
232  *
233  * Description:
234  *   blk_start_queue() will clear the stop flag on the queue, and call
235  *   the request_fn for the queue if it was in a stopped state when
236  *   entered. Also see blk_stop_queue(). Queue lock must be held.
237  **/
238 void blk_start_queue(struct request_queue *q)
239 {
240 	WARN_ON(!irqs_disabled());
241 
242 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
243 	__blk_run_queue(q);
244 }
245 EXPORT_SYMBOL(blk_start_queue);
246 
247 /**
248  * blk_stop_queue - stop a queue
249  * @q:    The &struct request_queue in question
250  *
251  * Description:
252  *   The Linux block layer assumes that a block driver will consume all
253  *   entries on the request queue when the request_fn strategy is called.
254  *   Often this will not happen, because of hardware limitations (queue
255  *   depth settings). If a device driver gets a 'queue full' response,
256  *   or if it simply chooses not to queue more I/O at one point, it can
257  *   call this function to prevent the request_fn from being called until
258  *   the driver has signalled it's ready to go again. This happens by calling
259  *   blk_start_queue() to restart queue operations. Queue lock must be held.
260  **/
261 void blk_stop_queue(struct request_queue *q)
262 {
263 	__cancel_delayed_work(&q->delay_work);
264 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
265 }
266 EXPORT_SYMBOL(blk_stop_queue);
267 
268 /**
269  * blk_sync_queue - cancel any pending callbacks on a queue
270  * @q: the queue
271  *
272  * Description:
273  *     The block layer may perform asynchronous callback activity
274  *     on a queue, such as calling the unplug function after a timeout.
275  *     A block device may call blk_sync_queue to ensure that any
276  *     such activity is cancelled, thus allowing it to release resources
277  *     that the callbacks might use. The caller must already have made sure
278  *     that its ->make_request_fn will not re-add plugging prior to calling
279  *     this function.
280  *
281  *     This function does not cancel any asynchronous activity arising
282  *     out of elevator or throttling code. That would require elevaotor_exit()
283  *     and blk_throtl_exit() to be called with queue lock initialized.
284  *
285  */
286 void blk_sync_queue(struct request_queue *q)
287 {
288 	del_timer_sync(&q->timeout);
289 	cancel_delayed_work_sync(&q->delay_work);
290 }
291 EXPORT_SYMBOL(blk_sync_queue);
292 
293 /**
294  * __blk_run_queue - run a single device queue
295  * @q:	The queue to run
296  *
297  * Description:
298  *    See @blk_run_queue. This variant must be called with the queue lock
299  *    held and interrupts disabled.
300  */
301 void __blk_run_queue(struct request_queue *q)
302 {
303 	if (unlikely(blk_queue_stopped(q)))
304 		return;
305 
306 	q->request_fn(q);
307 }
308 EXPORT_SYMBOL(__blk_run_queue);
309 
310 /**
311  * blk_run_queue_async - run a single device queue in workqueue context
312  * @q:	The queue to run
313  *
314  * Description:
315  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316  *    of us.
317  */
318 void blk_run_queue_async(struct request_queue *q)
319 {
320 	if (likely(!blk_queue_stopped(q))) {
321 		__cancel_delayed_work(&q->delay_work);
322 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
323 	}
324 }
325 EXPORT_SYMBOL(blk_run_queue_async);
326 
327 /**
328  * blk_run_queue - run a single device queue
329  * @q: The queue to run
330  *
331  * Description:
332  *    Invoke request handling on this queue, if it has pending work to do.
333  *    May be used to restart queueing when a request has completed.
334  */
335 void blk_run_queue(struct request_queue *q)
336 {
337 	unsigned long flags;
338 
339 	spin_lock_irqsave(q->queue_lock, flags);
340 	__blk_run_queue(q);
341 	spin_unlock_irqrestore(q->queue_lock, flags);
342 }
343 EXPORT_SYMBOL(blk_run_queue);
344 
345 void blk_put_queue(struct request_queue *q)
346 {
347 	kobject_put(&q->kobj);
348 }
349 EXPORT_SYMBOL(blk_put_queue);
350 
351 /**
352  * blk_drain_queue - drain requests from request_queue
353  * @q: queue to drain
354  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
355  *
356  * Drain requests from @q.  If @drain_all is set, all requests are drained.
357  * If not, only ELVPRIV requests are drained.  The caller is responsible
358  * for ensuring that no new requests which need to be drained are queued.
359  */
360 void blk_drain_queue(struct request_queue *q, bool drain_all)
361 {
362 	while (true) {
363 		bool drain = false;
364 		int i;
365 
366 		spin_lock_irq(q->queue_lock);
367 
368 		elv_drain_elevator(q);
369 		if (drain_all)
370 			blk_throtl_drain(q);
371 
372 		/*
373 		 * This function might be called on a queue which failed
374 		 * driver init after queue creation.  Some drivers
375 		 * (e.g. fd) get unhappy in such cases.  Kick queue iff
376 		 * dispatch queue has something on it.
377 		 */
378 		if (!list_empty(&q->queue_head))
379 			__blk_run_queue(q);
380 
381 		drain |= q->rq.elvpriv;
382 
383 		/*
384 		 * Unfortunately, requests are queued at and tracked from
385 		 * multiple places and there's no single counter which can
386 		 * be drained.  Check all the queues and counters.
387 		 */
388 		if (drain_all) {
389 			drain |= !list_empty(&q->queue_head);
390 			for (i = 0; i < 2; i++) {
391 				drain |= q->rq.count[i];
392 				drain |= q->in_flight[i];
393 				drain |= !list_empty(&q->flush_queue[i]);
394 			}
395 		}
396 
397 		spin_unlock_irq(q->queue_lock);
398 
399 		if (!drain)
400 			break;
401 		msleep(10);
402 	}
403 }
404 
405 /**
406  * blk_cleanup_queue - shutdown a request queue
407  * @q: request queue to shutdown
408  *
409  * Mark @q DEAD, drain all pending requests, destroy and put it.  All
410  * future requests will be failed immediately with -ENODEV.
411  */
412 void blk_cleanup_queue(struct request_queue *q)
413 {
414 	spinlock_t *lock = q->queue_lock;
415 
416 	/* mark @q DEAD, no new request or merges will be allowed afterwards */
417 	mutex_lock(&q->sysfs_lock);
418 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
419 
420 	spin_lock_irq(lock);
421 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
422 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
423 	queue_flag_set(QUEUE_FLAG_DEAD, q);
424 
425 	if (q->queue_lock != &q->__queue_lock)
426 		q->queue_lock = &q->__queue_lock;
427 
428 	spin_unlock_irq(lock);
429 	mutex_unlock(&q->sysfs_lock);
430 
431 	/*
432 	 * Drain all requests queued before DEAD marking.  The caller might
433 	 * be trying to tear down @q before its elevator is initialized, in
434 	 * which case we don't want to call into draining.
435 	 */
436 	if (q->elevator)
437 		blk_drain_queue(q, true);
438 
439 	/* @q won't process any more request, flush async actions */
440 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
441 	blk_sync_queue(q);
442 
443 	/* @q is and will stay empty, shutdown and put */
444 	blk_put_queue(q);
445 }
446 EXPORT_SYMBOL(blk_cleanup_queue);
447 
448 static int blk_init_free_list(struct request_queue *q)
449 {
450 	struct request_list *rl = &q->rq;
451 
452 	if (unlikely(rl->rq_pool))
453 		return 0;
454 
455 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
456 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
457 	rl->elvpriv = 0;
458 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
459 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
460 
461 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
462 				mempool_free_slab, request_cachep, q->node);
463 
464 	if (!rl->rq_pool)
465 		return -ENOMEM;
466 
467 	return 0;
468 }
469 
470 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
471 {
472 	return blk_alloc_queue_node(gfp_mask, -1);
473 }
474 EXPORT_SYMBOL(blk_alloc_queue);
475 
476 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
477 {
478 	struct request_queue *q;
479 	int err;
480 
481 	q = kmem_cache_alloc_node(blk_requestq_cachep,
482 				gfp_mask | __GFP_ZERO, node_id);
483 	if (!q)
484 		return NULL;
485 
486 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
487 	if (q->id < 0)
488 		goto fail_q;
489 
490 	q->backing_dev_info.ra_pages =
491 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
492 	q->backing_dev_info.state = 0;
493 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
494 	q->backing_dev_info.name = "block";
495 	q->node = node_id;
496 
497 	err = bdi_init(&q->backing_dev_info);
498 	if (err)
499 		goto fail_id;
500 
501 	if (blk_throtl_init(q))
502 		goto fail_id;
503 
504 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
505 		    laptop_mode_timer_fn, (unsigned long) q);
506 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
507 	INIT_LIST_HEAD(&q->timeout_list);
508 	INIT_LIST_HEAD(&q->icq_list);
509 	INIT_LIST_HEAD(&q->flush_queue[0]);
510 	INIT_LIST_HEAD(&q->flush_queue[1]);
511 	INIT_LIST_HEAD(&q->flush_data_in_flight);
512 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
513 
514 	kobject_init(&q->kobj, &blk_queue_ktype);
515 
516 	mutex_init(&q->sysfs_lock);
517 	spin_lock_init(&q->__queue_lock);
518 
519 	/*
520 	 * By default initialize queue_lock to internal lock and driver can
521 	 * override it later if need be.
522 	 */
523 	q->queue_lock = &q->__queue_lock;
524 
525 	return q;
526 
527 fail_id:
528 	ida_simple_remove(&blk_queue_ida, q->id);
529 fail_q:
530 	kmem_cache_free(blk_requestq_cachep, q);
531 	return NULL;
532 }
533 EXPORT_SYMBOL(blk_alloc_queue_node);
534 
535 /**
536  * blk_init_queue  - prepare a request queue for use with a block device
537  * @rfn:  The function to be called to process requests that have been
538  *        placed on the queue.
539  * @lock: Request queue spin lock
540  *
541  * Description:
542  *    If a block device wishes to use the standard request handling procedures,
543  *    which sorts requests and coalesces adjacent requests, then it must
544  *    call blk_init_queue().  The function @rfn will be called when there
545  *    are requests on the queue that need to be processed.  If the device
546  *    supports plugging, then @rfn may not be called immediately when requests
547  *    are available on the queue, but may be called at some time later instead.
548  *    Plugged queues are generally unplugged when a buffer belonging to one
549  *    of the requests on the queue is needed, or due to memory pressure.
550  *
551  *    @rfn is not required, or even expected, to remove all requests off the
552  *    queue, but only as many as it can handle at a time.  If it does leave
553  *    requests on the queue, it is responsible for arranging that the requests
554  *    get dealt with eventually.
555  *
556  *    The queue spin lock must be held while manipulating the requests on the
557  *    request queue; this lock will be taken also from interrupt context, so irq
558  *    disabling is needed for it.
559  *
560  *    Function returns a pointer to the initialized request queue, or %NULL if
561  *    it didn't succeed.
562  *
563  * Note:
564  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
565  *    when the block device is deactivated (such as at module unload).
566  **/
567 
568 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
569 {
570 	return blk_init_queue_node(rfn, lock, -1);
571 }
572 EXPORT_SYMBOL(blk_init_queue);
573 
574 struct request_queue *
575 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
576 {
577 	struct request_queue *uninit_q, *q;
578 
579 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
580 	if (!uninit_q)
581 		return NULL;
582 
583 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
584 	if (!q)
585 		blk_cleanup_queue(uninit_q);
586 
587 	return q;
588 }
589 EXPORT_SYMBOL(blk_init_queue_node);
590 
591 struct request_queue *
592 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
593 			 spinlock_t *lock)
594 {
595 	if (!q)
596 		return NULL;
597 
598 	if (blk_init_free_list(q))
599 		return NULL;
600 
601 	q->request_fn		= rfn;
602 	q->prep_rq_fn		= NULL;
603 	q->unprep_rq_fn		= NULL;
604 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
605 
606 	/* Override internal queue lock with supplied lock pointer */
607 	if (lock)
608 		q->queue_lock		= lock;
609 
610 	/*
611 	 * This also sets hw/phys segments, boundary and size
612 	 */
613 	blk_queue_make_request(q, blk_queue_bio);
614 
615 	q->sg_reserved_size = INT_MAX;
616 
617 	/*
618 	 * all done
619 	 */
620 	if (!elevator_init(q, NULL)) {
621 		blk_queue_congestion_threshold(q);
622 		return q;
623 	}
624 
625 	return NULL;
626 }
627 EXPORT_SYMBOL(blk_init_allocated_queue);
628 
629 bool blk_get_queue(struct request_queue *q)
630 {
631 	if (likely(!blk_queue_dead(q))) {
632 		__blk_get_queue(q);
633 		return true;
634 	}
635 
636 	return false;
637 }
638 EXPORT_SYMBOL(blk_get_queue);
639 
640 static inline void blk_free_request(struct request_queue *q, struct request *rq)
641 {
642 	if (rq->cmd_flags & REQ_ELVPRIV) {
643 		elv_put_request(q, rq);
644 		if (rq->elv.icq)
645 			put_io_context(rq->elv.icq->ioc, q);
646 	}
647 
648 	mempool_free(rq, q->rq.rq_pool);
649 }
650 
651 static struct request *
652 blk_alloc_request(struct request_queue *q, struct io_cq *icq,
653 		  unsigned int flags, gfp_t gfp_mask)
654 {
655 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
656 
657 	if (!rq)
658 		return NULL;
659 
660 	blk_rq_init(q, rq);
661 
662 	rq->cmd_flags = flags | REQ_ALLOCED;
663 
664 	if (flags & REQ_ELVPRIV) {
665 		rq->elv.icq = icq;
666 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
667 			mempool_free(rq, q->rq.rq_pool);
668 			return NULL;
669 		}
670 		/* @rq->elv.icq holds on to io_context until @rq is freed */
671 		if (icq)
672 			get_io_context(icq->ioc);
673 	}
674 
675 	return rq;
676 }
677 
678 /*
679  * ioc_batching returns true if the ioc is a valid batching request and
680  * should be given priority access to a request.
681  */
682 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
683 {
684 	if (!ioc)
685 		return 0;
686 
687 	/*
688 	 * Make sure the process is able to allocate at least 1 request
689 	 * even if the batch times out, otherwise we could theoretically
690 	 * lose wakeups.
691 	 */
692 	return ioc->nr_batch_requests == q->nr_batching ||
693 		(ioc->nr_batch_requests > 0
694 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
695 }
696 
697 /*
698  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
699  * will cause the process to be a "batcher" on all queues in the system. This
700  * is the behaviour we want though - once it gets a wakeup it should be given
701  * a nice run.
702  */
703 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
704 {
705 	if (!ioc || ioc_batching(q, ioc))
706 		return;
707 
708 	ioc->nr_batch_requests = q->nr_batching;
709 	ioc->last_waited = jiffies;
710 }
711 
712 static void __freed_request(struct request_queue *q, int sync)
713 {
714 	struct request_list *rl = &q->rq;
715 
716 	if (rl->count[sync] < queue_congestion_off_threshold(q))
717 		blk_clear_queue_congested(q, sync);
718 
719 	if (rl->count[sync] + 1 <= q->nr_requests) {
720 		if (waitqueue_active(&rl->wait[sync]))
721 			wake_up(&rl->wait[sync]);
722 
723 		blk_clear_queue_full(q, sync);
724 	}
725 }
726 
727 /*
728  * A request has just been released.  Account for it, update the full and
729  * congestion status, wake up any waiters.   Called under q->queue_lock.
730  */
731 static void freed_request(struct request_queue *q, unsigned int flags)
732 {
733 	struct request_list *rl = &q->rq;
734 	int sync = rw_is_sync(flags);
735 
736 	rl->count[sync]--;
737 	if (flags & REQ_ELVPRIV)
738 		rl->elvpriv--;
739 
740 	__freed_request(q, sync);
741 
742 	if (unlikely(rl->starved[sync ^ 1]))
743 		__freed_request(q, sync ^ 1);
744 }
745 
746 /*
747  * Determine if elevator data should be initialized when allocating the
748  * request associated with @bio.
749  */
750 static bool blk_rq_should_init_elevator(struct bio *bio)
751 {
752 	if (!bio)
753 		return true;
754 
755 	/*
756 	 * Flush requests do not use the elevator so skip initialization.
757 	 * This allows a request to share the flush and elevator data.
758 	 */
759 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
760 		return false;
761 
762 	return true;
763 }
764 
765 /**
766  * get_request - get a free request
767  * @q: request_queue to allocate request from
768  * @rw_flags: RW and SYNC flags
769  * @bio: bio to allocate request for (can be %NULL)
770  * @gfp_mask: allocation mask
771  *
772  * Get a free request from @q.  This function may fail under memory
773  * pressure or if @q is dead.
774  *
775  * Must be callled with @q->queue_lock held and,
776  * Returns %NULL on failure, with @q->queue_lock held.
777  * Returns !%NULL on success, with @q->queue_lock *not held*.
778  */
779 static struct request *get_request(struct request_queue *q, int rw_flags,
780 				   struct bio *bio, gfp_t gfp_mask)
781 {
782 	struct request *rq = NULL;
783 	struct request_list *rl = &q->rq;
784 	struct elevator_type *et;
785 	struct io_context *ioc;
786 	struct io_cq *icq = NULL;
787 	const bool is_sync = rw_is_sync(rw_flags) != 0;
788 	bool retried = false;
789 	int may_queue;
790 retry:
791 	et = q->elevator->type;
792 	ioc = current->io_context;
793 
794 	if (unlikely(blk_queue_dead(q)))
795 		return NULL;
796 
797 	may_queue = elv_may_queue(q, rw_flags);
798 	if (may_queue == ELV_MQUEUE_NO)
799 		goto rq_starved;
800 
801 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
802 		if (rl->count[is_sync]+1 >= q->nr_requests) {
803 			/*
804 			 * We want ioc to record batching state.  If it's
805 			 * not already there, creating a new one requires
806 			 * dropping queue_lock, which in turn requires
807 			 * retesting conditions to avoid queue hang.
808 			 */
809 			if (!ioc && !retried) {
810 				spin_unlock_irq(q->queue_lock);
811 				create_io_context(current, gfp_mask, q->node);
812 				spin_lock_irq(q->queue_lock);
813 				retried = true;
814 				goto retry;
815 			}
816 
817 			/*
818 			 * The queue will fill after this allocation, so set
819 			 * it as full, and mark this process as "batching".
820 			 * This process will be allowed to complete a batch of
821 			 * requests, others will be blocked.
822 			 */
823 			if (!blk_queue_full(q, is_sync)) {
824 				ioc_set_batching(q, ioc);
825 				blk_set_queue_full(q, is_sync);
826 			} else {
827 				if (may_queue != ELV_MQUEUE_MUST
828 						&& !ioc_batching(q, ioc)) {
829 					/*
830 					 * The queue is full and the allocating
831 					 * process is not a "batcher", and not
832 					 * exempted by the IO scheduler
833 					 */
834 					goto out;
835 				}
836 			}
837 		}
838 		blk_set_queue_congested(q, is_sync);
839 	}
840 
841 	/*
842 	 * Only allow batching queuers to allocate up to 50% over the defined
843 	 * limit of requests, otherwise we could have thousands of requests
844 	 * allocated with any setting of ->nr_requests
845 	 */
846 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
847 		goto out;
848 
849 	rl->count[is_sync]++;
850 	rl->starved[is_sync] = 0;
851 
852 	/*
853 	 * Decide whether the new request will be managed by elevator.  If
854 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
855 	 * prevent the current elevator from being destroyed until the new
856 	 * request is freed.  This guarantees icq's won't be destroyed and
857 	 * makes creating new ones safe.
858 	 *
859 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
860 	 * it will be created after releasing queue_lock.
861 	 */
862 	if (blk_rq_should_init_elevator(bio) &&
863 	    !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
864 		rw_flags |= REQ_ELVPRIV;
865 		rl->elvpriv++;
866 		if (et->icq_cache && ioc)
867 			icq = ioc_lookup_icq(ioc, q);
868 	}
869 
870 	if (blk_queue_io_stat(q))
871 		rw_flags |= REQ_IO_STAT;
872 	spin_unlock_irq(q->queue_lock);
873 
874 	/* create icq if missing */
875 	if (unlikely(et->icq_cache && !icq))
876 		icq = ioc_create_icq(q, gfp_mask);
877 
878 	/* rqs are guaranteed to have icq on elv_set_request() if requested */
879 	if (likely(!et->icq_cache || icq))
880 		rq = blk_alloc_request(q, icq, rw_flags, gfp_mask);
881 
882 	if (unlikely(!rq)) {
883 		/*
884 		 * Allocation failed presumably due to memory. Undo anything
885 		 * we might have messed up.
886 		 *
887 		 * Allocating task should really be put onto the front of the
888 		 * wait queue, but this is pretty rare.
889 		 */
890 		spin_lock_irq(q->queue_lock);
891 		freed_request(q, rw_flags);
892 
893 		/*
894 		 * in the very unlikely event that allocation failed and no
895 		 * requests for this direction was pending, mark us starved
896 		 * so that freeing of a request in the other direction will
897 		 * notice us. another possible fix would be to split the
898 		 * rq mempool into READ and WRITE
899 		 */
900 rq_starved:
901 		if (unlikely(rl->count[is_sync] == 0))
902 			rl->starved[is_sync] = 1;
903 
904 		goto out;
905 	}
906 
907 	/*
908 	 * ioc may be NULL here, and ioc_batching will be false. That's
909 	 * OK, if the queue is under the request limit then requests need
910 	 * not count toward the nr_batch_requests limit. There will always
911 	 * be some limit enforced by BLK_BATCH_TIME.
912 	 */
913 	if (ioc_batching(q, ioc))
914 		ioc->nr_batch_requests--;
915 
916 	trace_block_getrq(q, bio, rw_flags & 1);
917 out:
918 	return rq;
919 }
920 
921 /**
922  * get_request_wait - get a free request with retry
923  * @q: request_queue to allocate request from
924  * @rw_flags: RW and SYNC flags
925  * @bio: bio to allocate request for (can be %NULL)
926  *
927  * Get a free request from @q.  This function keeps retrying under memory
928  * pressure and fails iff @q is dead.
929  *
930  * Must be callled with @q->queue_lock held and,
931  * Returns %NULL on failure, with @q->queue_lock held.
932  * Returns !%NULL on success, with @q->queue_lock *not held*.
933  */
934 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
935 					struct bio *bio)
936 {
937 	const bool is_sync = rw_is_sync(rw_flags) != 0;
938 	struct request *rq;
939 
940 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
941 	while (!rq) {
942 		DEFINE_WAIT(wait);
943 		struct request_list *rl = &q->rq;
944 
945 		if (unlikely(blk_queue_dead(q)))
946 			return NULL;
947 
948 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
949 				TASK_UNINTERRUPTIBLE);
950 
951 		trace_block_sleeprq(q, bio, rw_flags & 1);
952 
953 		spin_unlock_irq(q->queue_lock);
954 		io_schedule();
955 
956 		/*
957 		 * After sleeping, we become a "batching" process and
958 		 * will be able to allocate at least one request, and
959 		 * up to a big batch of them for a small period time.
960 		 * See ioc_batching, ioc_set_batching
961 		 */
962 		create_io_context(current, GFP_NOIO, q->node);
963 		ioc_set_batching(q, current->io_context);
964 
965 		spin_lock_irq(q->queue_lock);
966 		finish_wait(&rl->wait[is_sync], &wait);
967 
968 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
969 	};
970 
971 	return rq;
972 }
973 
974 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
975 {
976 	struct request *rq;
977 
978 	BUG_ON(rw != READ && rw != WRITE);
979 
980 	spin_lock_irq(q->queue_lock);
981 	if (gfp_mask & __GFP_WAIT)
982 		rq = get_request_wait(q, rw, NULL);
983 	else
984 		rq = get_request(q, rw, NULL, gfp_mask);
985 	if (!rq)
986 		spin_unlock_irq(q->queue_lock);
987 	/* q->queue_lock is unlocked at this point */
988 
989 	return rq;
990 }
991 EXPORT_SYMBOL(blk_get_request);
992 
993 /**
994  * blk_make_request - given a bio, allocate a corresponding struct request.
995  * @q: target request queue
996  * @bio:  The bio describing the memory mappings that will be submitted for IO.
997  *        It may be a chained-bio properly constructed by block/bio layer.
998  * @gfp_mask: gfp flags to be used for memory allocation
999  *
1000  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1001  * type commands. Where the struct request needs to be farther initialized by
1002  * the caller. It is passed a &struct bio, which describes the memory info of
1003  * the I/O transfer.
1004  *
1005  * The caller of blk_make_request must make sure that bi_io_vec
1006  * are set to describe the memory buffers. That bio_data_dir() will return
1007  * the needed direction of the request. (And all bio's in the passed bio-chain
1008  * are properly set accordingly)
1009  *
1010  * If called under none-sleepable conditions, mapped bio buffers must not
1011  * need bouncing, by calling the appropriate masked or flagged allocator,
1012  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1013  * BUG.
1014  *
1015  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1016  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1017  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1018  * completion of a bio that hasn't been submitted yet, thus resulting in a
1019  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1020  * of bio_alloc(), as that avoids the mempool deadlock.
1021  * If possible a big IO should be split into smaller parts when allocation
1022  * fails. Partial allocation should not be an error, or you risk a live-lock.
1023  */
1024 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1025 				 gfp_t gfp_mask)
1026 {
1027 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1028 
1029 	if (unlikely(!rq))
1030 		return ERR_PTR(-ENOMEM);
1031 
1032 	for_each_bio(bio) {
1033 		struct bio *bounce_bio = bio;
1034 		int ret;
1035 
1036 		blk_queue_bounce(q, &bounce_bio);
1037 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1038 		if (unlikely(ret)) {
1039 			blk_put_request(rq);
1040 			return ERR_PTR(ret);
1041 		}
1042 	}
1043 
1044 	return rq;
1045 }
1046 EXPORT_SYMBOL(blk_make_request);
1047 
1048 /**
1049  * blk_requeue_request - put a request back on queue
1050  * @q:		request queue where request should be inserted
1051  * @rq:		request to be inserted
1052  *
1053  * Description:
1054  *    Drivers often keep queueing requests until the hardware cannot accept
1055  *    more, when that condition happens we need to put the request back
1056  *    on the queue. Must be called with queue lock held.
1057  */
1058 void blk_requeue_request(struct request_queue *q, struct request *rq)
1059 {
1060 	blk_delete_timer(rq);
1061 	blk_clear_rq_complete(rq);
1062 	trace_block_rq_requeue(q, rq);
1063 
1064 	if (blk_rq_tagged(rq))
1065 		blk_queue_end_tag(q, rq);
1066 
1067 	BUG_ON(blk_queued_rq(rq));
1068 
1069 	elv_requeue_request(q, rq);
1070 }
1071 EXPORT_SYMBOL(blk_requeue_request);
1072 
1073 static void add_acct_request(struct request_queue *q, struct request *rq,
1074 			     int where)
1075 {
1076 	drive_stat_acct(rq, 1);
1077 	__elv_add_request(q, rq, where);
1078 }
1079 
1080 static void part_round_stats_single(int cpu, struct hd_struct *part,
1081 				    unsigned long now)
1082 {
1083 	if (now == part->stamp)
1084 		return;
1085 
1086 	if (part_in_flight(part)) {
1087 		__part_stat_add(cpu, part, time_in_queue,
1088 				part_in_flight(part) * (now - part->stamp));
1089 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1090 	}
1091 	part->stamp = now;
1092 }
1093 
1094 /**
1095  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1096  * @cpu: cpu number for stats access
1097  * @part: target partition
1098  *
1099  * The average IO queue length and utilisation statistics are maintained
1100  * by observing the current state of the queue length and the amount of
1101  * time it has been in this state for.
1102  *
1103  * Normally, that accounting is done on IO completion, but that can result
1104  * in more than a second's worth of IO being accounted for within any one
1105  * second, leading to >100% utilisation.  To deal with that, we call this
1106  * function to do a round-off before returning the results when reading
1107  * /proc/diskstats.  This accounts immediately for all queue usage up to
1108  * the current jiffies and restarts the counters again.
1109  */
1110 void part_round_stats(int cpu, struct hd_struct *part)
1111 {
1112 	unsigned long now = jiffies;
1113 
1114 	if (part->partno)
1115 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1116 	part_round_stats_single(cpu, part, now);
1117 }
1118 EXPORT_SYMBOL_GPL(part_round_stats);
1119 
1120 /*
1121  * queue lock must be held
1122  */
1123 void __blk_put_request(struct request_queue *q, struct request *req)
1124 {
1125 	if (unlikely(!q))
1126 		return;
1127 	if (unlikely(--req->ref_count))
1128 		return;
1129 
1130 	elv_completed_request(q, req);
1131 
1132 	/* this is a bio leak */
1133 	WARN_ON(req->bio != NULL);
1134 
1135 	/*
1136 	 * Request may not have originated from ll_rw_blk. if not,
1137 	 * it didn't come out of our reserved rq pools
1138 	 */
1139 	if (req->cmd_flags & REQ_ALLOCED) {
1140 		unsigned int flags = req->cmd_flags;
1141 
1142 		BUG_ON(!list_empty(&req->queuelist));
1143 		BUG_ON(!hlist_unhashed(&req->hash));
1144 
1145 		blk_free_request(q, req);
1146 		freed_request(q, flags);
1147 	}
1148 }
1149 EXPORT_SYMBOL_GPL(__blk_put_request);
1150 
1151 void blk_put_request(struct request *req)
1152 {
1153 	unsigned long flags;
1154 	struct request_queue *q = req->q;
1155 
1156 	spin_lock_irqsave(q->queue_lock, flags);
1157 	__blk_put_request(q, req);
1158 	spin_unlock_irqrestore(q->queue_lock, flags);
1159 }
1160 EXPORT_SYMBOL(blk_put_request);
1161 
1162 /**
1163  * blk_add_request_payload - add a payload to a request
1164  * @rq: request to update
1165  * @page: page backing the payload
1166  * @len: length of the payload.
1167  *
1168  * This allows to later add a payload to an already submitted request by
1169  * a block driver.  The driver needs to take care of freeing the payload
1170  * itself.
1171  *
1172  * Note that this is a quite horrible hack and nothing but handling of
1173  * discard requests should ever use it.
1174  */
1175 void blk_add_request_payload(struct request *rq, struct page *page,
1176 		unsigned int len)
1177 {
1178 	struct bio *bio = rq->bio;
1179 
1180 	bio->bi_io_vec->bv_page = page;
1181 	bio->bi_io_vec->bv_offset = 0;
1182 	bio->bi_io_vec->bv_len = len;
1183 
1184 	bio->bi_size = len;
1185 	bio->bi_vcnt = 1;
1186 	bio->bi_phys_segments = 1;
1187 
1188 	rq->__data_len = rq->resid_len = len;
1189 	rq->nr_phys_segments = 1;
1190 	rq->buffer = bio_data(bio);
1191 }
1192 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1193 
1194 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1195 				   struct bio *bio)
1196 {
1197 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1198 
1199 	if (!ll_back_merge_fn(q, req, bio))
1200 		return false;
1201 
1202 	trace_block_bio_backmerge(q, bio);
1203 
1204 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1205 		blk_rq_set_mixed_merge(req);
1206 
1207 	req->biotail->bi_next = bio;
1208 	req->biotail = bio;
1209 	req->__data_len += bio->bi_size;
1210 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1211 
1212 	drive_stat_acct(req, 0);
1213 	elv_bio_merged(q, req, bio);
1214 	return true;
1215 }
1216 
1217 static bool bio_attempt_front_merge(struct request_queue *q,
1218 				    struct request *req, struct bio *bio)
1219 {
1220 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1221 
1222 	if (!ll_front_merge_fn(q, req, bio))
1223 		return false;
1224 
1225 	trace_block_bio_frontmerge(q, bio);
1226 
1227 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1228 		blk_rq_set_mixed_merge(req);
1229 
1230 	bio->bi_next = req->bio;
1231 	req->bio = bio;
1232 
1233 	/*
1234 	 * may not be valid. if the low level driver said
1235 	 * it didn't need a bounce buffer then it better
1236 	 * not touch req->buffer either...
1237 	 */
1238 	req->buffer = bio_data(bio);
1239 	req->__sector = bio->bi_sector;
1240 	req->__data_len += bio->bi_size;
1241 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1242 
1243 	drive_stat_acct(req, 0);
1244 	elv_bio_merged(q, req, bio);
1245 	return true;
1246 }
1247 
1248 /**
1249  * attempt_plug_merge - try to merge with %current's plugged list
1250  * @q: request_queue new bio is being queued at
1251  * @bio: new bio being queued
1252  * @request_count: out parameter for number of traversed plugged requests
1253  *
1254  * Determine whether @bio being queued on @q can be merged with a request
1255  * on %current's plugged list.  Returns %true if merge was successful,
1256  * otherwise %false.
1257  *
1258  * This function is called without @q->queue_lock; however, elevator is
1259  * accessed iff there already are requests on the plugged list which in
1260  * turn guarantees validity of the elevator.
1261  *
1262  * Note that, on successful merge, elevator operation
1263  * elevator_bio_merged_fn() will be called without queue lock.  Elevator
1264  * must be ready for this.
1265  */
1266 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1267 			       unsigned int *request_count)
1268 {
1269 	struct blk_plug *plug;
1270 	struct request *rq;
1271 	bool ret = false;
1272 
1273 	plug = current->plug;
1274 	if (!plug)
1275 		goto out;
1276 	*request_count = 0;
1277 
1278 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1279 		int el_ret;
1280 
1281 		(*request_count)++;
1282 
1283 		if (rq->q != q)
1284 			continue;
1285 
1286 		el_ret = elv_try_merge(rq, bio);
1287 		if (el_ret == ELEVATOR_BACK_MERGE) {
1288 			ret = bio_attempt_back_merge(q, rq, bio);
1289 			if (ret)
1290 				break;
1291 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1292 			ret = bio_attempt_front_merge(q, rq, bio);
1293 			if (ret)
1294 				break;
1295 		}
1296 	}
1297 out:
1298 	return ret;
1299 }
1300 
1301 void init_request_from_bio(struct request *req, struct bio *bio)
1302 {
1303 	req->cmd_type = REQ_TYPE_FS;
1304 
1305 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1306 	if (bio->bi_rw & REQ_RAHEAD)
1307 		req->cmd_flags |= REQ_FAILFAST_MASK;
1308 
1309 	req->errors = 0;
1310 	req->__sector = bio->bi_sector;
1311 	req->ioprio = bio_prio(bio);
1312 	blk_rq_bio_prep(req->q, req, bio);
1313 }
1314 
1315 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1316 {
1317 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1318 	struct blk_plug *plug;
1319 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1320 	struct request *req;
1321 	unsigned int request_count = 0;
1322 
1323 	/*
1324 	 * low level driver can indicate that it wants pages above a
1325 	 * certain limit bounced to low memory (ie for highmem, or even
1326 	 * ISA dma in theory)
1327 	 */
1328 	blk_queue_bounce(q, &bio);
1329 
1330 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1331 		spin_lock_irq(q->queue_lock);
1332 		where = ELEVATOR_INSERT_FLUSH;
1333 		goto get_rq;
1334 	}
1335 
1336 	/*
1337 	 * Check if we can merge with the plugged list before grabbing
1338 	 * any locks.
1339 	 */
1340 	if (attempt_plug_merge(q, bio, &request_count))
1341 		return;
1342 
1343 	spin_lock_irq(q->queue_lock);
1344 
1345 	el_ret = elv_merge(q, &req, bio);
1346 	if (el_ret == ELEVATOR_BACK_MERGE) {
1347 		if (bio_attempt_back_merge(q, req, bio)) {
1348 			if (!attempt_back_merge(q, req))
1349 				elv_merged_request(q, req, el_ret);
1350 			goto out_unlock;
1351 		}
1352 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1353 		if (bio_attempt_front_merge(q, req, bio)) {
1354 			if (!attempt_front_merge(q, req))
1355 				elv_merged_request(q, req, el_ret);
1356 			goto out_unlock;
1357 		}
1358 	}
1359 
1360 get_rq:
1361 	/*
1362 	 * This sync check and mask will be re-done in init_request_from_bio(),
1363 	 * but we need to set it earlier to expose the sync flag to the
1364 	 * rq allocator and io schedulers.
1365 	 */
1366 	rw_flags = bio_data_dir(bio);
1367 	if (sync)
1368 		rw_flags |= REQ_SYNC;
1369 
1370 	/*
1371 	 * Grab a free request. This is might sleep but can not fail.
1372 	 * Returns with the queue unlocked.
1373 	 */
1374 	req = get_request_wait(q, rw_flags, bio);
1375 	if (unlikely(!req)) {
1376 		bio_endio(bio, -ENODEV);	/* @q is dead */
1377 		goto out_unlock;
1378 	}
1379 
1380 	/*
1381 	 * After dropping the lock and possibly sleeping here, our request
1382 	 * may now be mergeable after it had proven unmergeable (above).
1383 	 * We don't worry about that case for efficiency. It won't happen
1384 	 * often, and the elevators are able to handle it.
1385 	 */
1386 	init_request_from_bio(req, bio);
1387 
1388 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1389 		req->cpu = raw_smp_processor_id();
1390 
1391 	plug = current->plug;
1392 	if (plug) {
1393 		/*
1394 		 * If this is the first request added after a plug, fire
1395 		 * of a plug trace. If others have been added before, check
1396 		 * if we have multiple devices in this plug. If so, make a
1397 		 * note to sort the list before dispatch.
1398 		 */
1399 		if (list_empty(&plug->list))
1400 			trace_block_plug(q);
1401 		else {
1402 			if (!plug->should_sort) {
1403 				struct request *__rq;
1404 
1405 				__rq = list_entry_rq(plug->list.prev);
1406 				if (__rq->q != q)
1407 					plug->should_sort = 1;
1408 			}
1409 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1410 				blk_flush_plug_list(plug, false);
1411 				trace_block_plug(q);
1412 			}
1413 		}
1414 		list_add_tail(&req->queuelist, &plug->list);
1415 		drive_stat_acct(req, 1);
1416 	} else {
1417 		spin_lock_irq(q->queue_lock);
1418 		add_acct_request(q, req, where);
1419 		__blk_run_queue(q);
1420 out_unlock:
1421 		spin_unlock_irq(q->queue_lock);
1422 	}
1423 }
1424 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1425 
1426 /*
1427  * If bio->bi_dev is a partition, remap the location
1428  */
1429 static inline void blk_partition_remap(struct bio *bio)
1430 {
1431 	struct block_device *bdev = bio->bi_bdev;
1432 
1433 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1434 		struct hd_struct *p = bdev->bd_part;
1435 
1436 		bio->bi_sector += p->start_sect;
1437 		bio->bi_bdev = bdev->bd_contains;
1438 
1439 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1440 				      bdev->bd_dev,
1441 				      bio->bi_sector - p->start_sect);
1442 	}
1443 }
1444 
1445 static void handle_bad_sector(struct bio *bio)
1446 {
1447 	char b[BDEVNAME_SIZE];
1448 
1449 	printk(KERN_INFO "attempt to access beyond end of device\n");
1450 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1451 			bdevname(bio->bi_bdev, b),
1452 			bio->bi_rw,
1453 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1454 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1455 
1456 	set_bit(BIO_EOF, &bio->bi_flags);
1457 }
1458 
1459 #ifdef CONFIG_FAIL_MAKE_REQUEST
1460 
1461 static DECLARE_FAULT_ATTR(fail_make_request);
1462 
1463 static int __init setup_fail_make_request(char *str)
1464 {
1465 	return setup_fault_attr(&fail_make_request, str);
1466 }
1467 __setup("fail_make_request=", setup_fail_make_request);
1468 
1469 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1470 {
1471 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1472 }
1473 
1474 static int __init fail_make_request_debugfs(void)
1475 {
1476 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1477 						NULL, &fail_make_request);
1478 
1479 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1480 }
1481 
1482 late_initcall(fail_make_request_debugfs);
1483 
1484 #else /* CONFIG_FAIL_MAKE_REQUEST */
1485 
1486 static inline bool should_fail_request(struct hd_struct *part,
1487 					unsigned int bytes)
1488 {
1489 	return false;
1490 }
1491 
1492 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1493 
1494 /*
1495  * Check whether this bio extends beyond the end of the device.
1496  */
1497 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1498 {
1499 	sector_t maxsector;
1500 
1501 	if (!nr_sectors)
1502 		return 0;
1503 
1504 	/* Test device or partition size, when known. */
1505 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1506 	if (maxsector) {
1507 		sector_t sector = bio->bi_sector;
1508 
1509 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1510 			/*
1511 			 * This may well happen - the kernel calls bread()
1512 			 * without checking the size of the device, e.g., when
1513 			 * mounting a device.
1514 			 */
1515 			handle_bad_sector(bio);
1516 			return 1;
1517 		}
1518 	}
1519 
1520 	return 0;
1521 }
1522 
1523 static noinline_for_stack bool
1524 generic_make_request_checks(struct bio *bio)
1525 {
1526 	struct request_queue *q;
1527 	int nr_sectors = bio_sectors(bio);
1528 	int err = -EIO;
1529 	char b[BDEVNAME_SIZE];
1530 	struct hd_struct *part;
1531 
1532 	might_sleep();
1533 
1534 	if (bio_check_eod(bio, nr_sectors))
1535 		goto end_io;
1536 
1537 	q = bdev_get_queue(bio->bi_bdev);
1538 	if (unlikely(!q)) {
1539 		printk(KERN_ERR
1540 		       "generic_make_request: Trying to access "
1541 			"nonexistent block-device %s (%Lu)\n",
1542 			bdevname(bio->bi_bdev, b),
1543 			(long long) bio->bi_sector);
1544 		goto end_io;
1545 	}
1546 
1547 	if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1548 		     nr_sectors > queue_max_hw_sectors(q))) {
1549 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1550 		       bdevname(bio->bi_bdev, b),
1551 		       bio_sectors(bio),
1552 		       queue_max_hw_sectors(q));
1553 		goto end_io;
1554 	}
1555 
1556 	part = bio->bi_bdev->bd_part;
1557 	if (should_fail_request(part, bio->bi_size) ||
1558 	    should_fail_request(&part_to_disk(part)->part0,
1559 				bio->bi_size))
1560 		goto end_io;
1561 
1562 	/*
1563 	 * If this device has partitions, remap block n
1564 	 * of partition p to block n+start(p) of the disk.
1565 	 */
1566 	blk_partition_remap(bio);
1567 
1568 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1569 		goto end_io;
1570 
1571 	if (bio_check_eod(bio, nr_sectors))
1572 		goto end_io;
1573 
1574 	/*
1575 	 * Filter flush bio's early so that make_request based
1576 	 * drivers without flush support don't have to worry
1577 	 * about them.
1578 	 */
1579 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1580 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1581 		if (!nr_sectors) {
1582 			err = 0;
1583 			goto end_io;
1584 		}
1585 	}
1586 
1587 	if ((bio->bi_rw & REQ_DISCARD) &&
1588 	    (!blk_queue_discard(q) ||
1589 	     ((bio->bi_rw & REQ_SECURE) &&
1590 	      !blk_queue_secdiscard(q)))) {
1591 		err = -EOPNOTSUPP;
1592 		goto end_io;
1593 	}
1594 
1595 	if (blk_throtl_bio(q, bio))
1596 		return false;	/* throttled, will be resubmitted later */
1597 
1598 	trace_block_bio_queue(q, bio);
1599 	return true;
1600 
1601 end_io:
1602 	bio_endio(bio, err);
1603 	return false;
1604 }
1605 
1606 /**
1607  * generic_make_request - hand a buffer to its device driver for I/O
1608  * @bio:  The bio describing the location in memory and on the device.
1609  *
1610  * generic_make_request() is used to make I/O requests of block
1611  * devices. It is passed a &struct bio, which describes the I/O that needs
1612  * to be done.
1613  *
1614  * generic_make_request() does not return any status.  The
1615  * success/failure status of the request, along with notification of
1616  * completion, is delivered asynchronously through the bio->bi_end_io
1617  * function described (one day) else where.
1618  *
1619  * The caller of generic_make_request must make sure that bi_io_vec
1620  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1621  * set to describe the device address, and the
1622  * bi_end_io and optionally bi_private are set to describe how
1623  * completion notification should be signaled.
1624  *
1625  * generic_make_request and the drivers it calls may use bi_next if this
1626  * bio happens to be merged with someone else, and may resubmit the bio to
1627  * a lower device by calling into generic_make_request recursively, which
1628  * means the bio should NOT be touched after the call to ->make_request_fn.
1629  */
1630 void generic_make_request(struct bio *bio)
1631 {
1632 	struct bio_list bio_list_on_stack;
1633 
1634 	if (!generic_make_request_checks(bio))
1635 		return;
1636 
1637 	/*
1638 	 * We only want one ->make_request_fn to be active at a time, else
1639 	 * stack usage with stacked devices could be a problem.  So use
1640 	 * current->bio_list to keep a list of requests submited by a
1641 	 * make_request_fn function.  current->bio_list is also used as a
1642 	 * flag to say if generic_make_request is currently active in this
1643 	 * task or not.  If it is NULL, then no make_request is active.  If
1644 	 * it is non-NULL, then a make_request is active, and new requests
1645 	 * should be added at the tail
1646 	 */
1647 	if (current->bio_list) {
1648 		bio_list_add(current->bio_list, bio);
1649 		return;
1650 	}
1651 
1652 	/* following loop may be a bit non-obvious, and so deserves some
1653 	 * explanation.
1654 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1655 	 * ensure that) so we have a list with a single bio.
1656 	 * We pretend that we have just taken it off a longer list, so
1657 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1658 	 * thus initialising the bio_list of new bios to be
1659 	 * added.  ->make_request() may indeed add some more bios
1660 	 * through a recursive call to generic_make_request.  If it
1661 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1662 	 * from the top.  In this case we really did just take the bio
1663 	 * of the top of the list (no pretending) and so remove it from
1664 	 * bio_list, and call into ->make_request() again.
1665 	 */
1666 	BUG_ON(bio->bi_next);
1667 	bio_list_init(&bio_list_on_stack);
1668 	current->bio_list = &bio_list_on_stack;
1669 	do {
1670 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1671 
1672 		q->make_request_fn(q, bio);
1673 
1674 		bio = bio_list_pop(current->bio_list);
1675 	} while (bio);
1676 	current->bio_list = NULL; /* deactivate */
1677 }
1678 EXPORT_SYMBOL(generic_make_request);
1679 
1680 /**
1681  * submit_bio - submit a bio to the block device layer for I/O
1682  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1683  * @bio: The &struct bio which describes the I/O
1684  *
1685  * submit_bio() is very similar in purpose to generic_make_request(), and
1686  * uses that function to do most of the work. Both are fairly rough
1687  * interfaces; @bio must be presetup and ready for I/O.
1688  *
1689  */
1690 void submit_bio(int rw, struct bio *bio)
1691 {
1692 	int count = bio_sectors(bio);
1693 
1694 	bio->bi_rw |= rw;
1695 
1696 	/*
1697 	 * If it's a regular read/write or a barrier with data attached,
1698 	 * go through the normal accounting stuff before submission.
1699 	 */
1700 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1701 		if (rw & WRITE) {
1702 			count_vm_events(PGPGOUT, count);
1703 		} else {
1704 			task_io_account_read(bio->bi_size);
1705 			count_vm_events(PGPGIN, count);
1706 		}
1707 
1708 		if (unlikely(block_dump)) {
1709 			char b[BDEVNAME_SIZE];
1710 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1711 			current->comm, task_pid_nr(current),
1712 				(rw & WRITE) ? "WRITE" : "READ",
1713 				(unsigned long long)bio->bi_sector,
1714 				bdevname(bio->bi_bdev, b),
1715 				count);
1716 		}
1717 	}
1718 
1719 	generic_make_request(bio);
1720 }
1721 EXPORT_SYMBOL(submit_bio);
1722 
1723 /**
1724  * blk_rq_check_limits - Helper function to check a request for the queue limit
1725  * @q:  the queue
1726  * @rq: the request being checked
1727  *
1728  * Description:
1729  *    @rq may have been made based on weaker limitations of upper-level queues
1730  *    in request stacking drivers, and it may violate the limitation of @q.
1731  *    Since the block layer and the underlying device driver trust @rq
1732  *    after it is inserted to @q, it should be checked against @q before
1733  *    the insertion using this generic function.
1734  *
1735  *    This function should also be useful for request stacking drivers
1736  *    in some cases below, so export this function.
1737  *    Request stacking drivers like request-based dm may change the queue
1738  *    limits while requests are in the queue (e.g. dm's table swapping).
1739  *    Such request stacking drivers should check those requests agaist
1740  *    the new queue limits again when they dispatch those requests,
1741  *    although such checkings are also done against the old queue limits
1742  *    when submitting requests.
1743  */
1744 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1745 {
1746 	if (rq->cmd_flags & REQ_DISCARD)
1747 		return 0;
1748 
1749 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1750 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1751 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1752 		return -EIO;
1753 	}
1754 
1755 	/*
1756 	 * queue's settings related to segment counting like q->bounce_pfn
1757 	 * may differ from that of other stacking queues.
1758 	 * Recalculate it to check the request correctly on this queue's
1759 	 * limitation.
1760 	 */
1761 	blk_recalc_rq_segments(rq);
1762 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1763 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1764 		return -EIO;
1765 	}
1766 
1767 	return 0;
1768 }
1769 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1770 
1771 /**
1772  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1773  * @q:  the queue to submit the request
1774  * @rq: the request being queued
1775  */
1776 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1777 {
1778 	unsigned long flags;
1779 	int where = ELEVATOR_INSERT_BACK;
1780 
1781 	if (blk_rq_check_limits(q, rq))
1782 		return -EIO;
1783 
1784 	if (rq->rq_disk &&
1785 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1786 		return -EIO;
1787 
1788 	spin_lock_irqsave(q->queue_lock, flags);
1789 	if (unlikely(blk_queue_dead(q))) {
1790 		spin_unlock_irqrestore(q->queue_lock, flags);
1791 		return -ENODEV;
1792 	}
1793 
1794 	/*
1795 	 * Submitting request must be dequeued before calling this function
1796 	 * because it will be linked to another request_queue
1797 	 */
1798 	BUG_ON(blk_queued_rq(rq));
1799 
1800 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1801 		where = ELEVATOR_INSERT_FLUSH;
1802 
1803 	add_acct_request(q, rq, where);
1804 	if (where == ELEVATOR_INSERT_FLUSH)
1805 		__blk_run_queue(q);
1806 	spin_unlock_irqrestore(q->queue_lock, flags);
1807 
1808 	return 0;
1809 }
1810 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1811 
1812 /**
1813  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1814  * @rq: request to examine
1815  *
1816  * Description:
1817  *     A request could be merge of IOs which require different failure
1818  *     handling.  This function determines the number of bytes which
1819  *     can be failed from the beginning of the request without
1820  *     crossing into area which need to be retried further.
1821  *
1822  * Return:
1823  *     The number of bytes to fail.
1824  *
1825  * Context:
1826  *     queue_lock must be held.
1827  */
1828 unsigned int blk_rq_err_bytes(const struct request *rq)
1829 {
1830 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1831 	unsigned int bytes = 0;
1832 	struct bio *bio;
1833 
1834 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1835 		return blk_rq_bytes(rq);
1836 
1837 	/*
1838 	 * Currently the only 'mixing' which can happen is between
1839 	 * different fastfail types.  We can safely fail portions
1840 	 * which have all the failfast bits that the first one has -
1841 	 * the ones which are at least as eager to fail as the first
1842 	 * one.
1843 	 */
1844 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1845 		if ((bio->bi_rw & ff) != ff)
1846 			break;
1847 		bytes += bio->bi_size;
1848 	}
1849 
1850 	/* this could lead to infinite loop */
1851 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1852 	return bytes;
1853 }
1854 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1855 
1856 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1857 {
1858 	if (blk_do_io_stat(req)) {
1859 		const int rw = rq_data_dir(req);
1860 		struct hd_struct *part;
1861 		int cpu;
1862 
1863 		cpu = part_stat_lock();
1864 		part = req->part;
1865 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1866 		part_stat_unlock();
1867 	}
1868 }
1869 
1870 static void blk_account_io_done(struct request *req)
1871 {
1872 	/*
1873 	 * Account IO completion.  flush_rq isn't accounted as a
1874 	 * normal IO on queueing nor completion.  Accounting the
1875 	 * containing request is enough.
1876 	 */
1877 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1878 		unsigned long duration = jiffies - req->start_time;
1879 		const int rw = rq_data_dir(req);
1880 		struct hd_struct *part;
1881 		int cpu;
1882 
1883 		cpu = part_stat_lock();
1884 		part = req->part;
1885 
1886 		part_stat_inc(cpu, part, ios[rw]);
1887 		part_stat_add(cpu, part, ticks[rw], duration);
1888 		part_round_stats(cpu, part);
1889 		part_dec_in_flight(part, rw);
1890 
1891 		hd_struct_put(part);
1892 		part_stat_unlock();
1893 	}
1894 }
1895 
1896 /**
1897  * blk_peek_request - peek at the top of a request queue
1898  * @q: request queue to peek at
1899  *
1900  * Description:
1901  *     Return the request at the top of @q.  The returned request
1902  *     should be started using blk_start_request() before LLD starts
1903  *     processing it.
1904  *
1905  * Return:
1906  *     Pointer to the request at the top of @q if available.  Null
1907  *     otherwise.
1908  *
1909  * Context:
1910  *     queue_lock must be held.
1911  */
1912 struct request *blk_peek_request(struct request_queue *q)
1913 {
1914 	struct request *rq;
1915 	int ret;
1916 
1917 	while ((rq = __elv_next_request(q)) != NULL) {
1918 		if (!(rq->cmd_flags & REQ_STARTED)) {
1919 			/*
1920 			 * This is the first time the device driver
1921 			 * sees this request (possibly after
1922 			 * requeueing).  Notify IO scheduler.
1923 			 */
1924 			if (rq->cmd_flags & REQ_SORTED)
1925 				elv_activate_rq(q, rq);
1926 
1927 			/*
1928 			 * just mark as started even if we don't start
1929 			 * it, a request that has been delayed should
1930 			 * not be passed by new incoming requests
1931 			 */
1932 			rq->cmd_flags |= REQ_STARTED;
1933 			trace_block_rq_issue(q, rq);
1934 		}
1935 
1936 		if (!q->boundary_rq || q->boundary_rq == rq) {
1937 			q->end_sector = rq_end_sector(rq);
1938 			q->boundary_rq = NULL;
1939 		}
1940 
1941 		if (rq->cmd_flags & REQ_DONTPREP)
1942 			break;
1943 
1944 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1945 			/*
1946 			 * make sure space for the drain appears we
1947 			 * know we can do this because max_hw_segments
1948 			 * has been adjusted to be one fewer than the
1949 			 * device can handle
1950 			 */
1951 			rq->nr_phys_segments++;
1952 		}
1953 
1954 		if (!q->prep_rq_fn)
1955 			break;
1956 
1957 		ret = q->prep_rq_fn(q, rq);
1958 		if (ret == BLKPREP_OK) {
1959 			break;
1960 		} else if (ret == BLKPREP_DEFER) {
1961 			/*
1962 			 * the request may have been (partially) prepped.
1963 			 * we need to keep this request in the front to
1964 			 * avoid resource deadlock.  REQ_STARTED will
1965 			 * prevent other fs requests from passing this one.
1966 			 */
1967 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1968 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1969 				/*
1970 				 * remove the space for the drain we added
1971 				 * so that we don't add it again
1972 				 */
1973 				--rq->nr_phys_segments;
1974 			}
1975 
1976 			rq = NULL;
1977 			break;
1978 		} else if (ret == BLKPREP_KILL) {
1979 			rq->cmd_flags |= REQ_QUIET;
1980 			/*
1981 			 * Mark this request as started so we don't trigger
1982 			 * any debug logic in the end I/O path.
1983 			 */
1984 			blk_start_request(rq);
1985 			__blk_end_request_all(rq, -EIO);
1986 		} else {
1987 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1988 			break;
1989 		}
1990 	}
1991 
1992 	return rq;
1993 }
1994 EXPORT_SYMBOL(blk_peek_request);
1995 
1996 void blk_dequeue_request(struct request *rq)
1997 {
1998 	struct request_queue *q = rq->q;
1999 
2000 	BUG_ON(list_empty(&rq->queuelist));
2001 	BUG_ON(ELV_ON_HASH(rq));
2002 
2003 	list_del_init(&rq->queuelist);
2004 
2005 	/*
2006 	 * the time frame between a request being removed from the lists
2007 	 * and to it is freed is accounted as io that is in progress at
2008 	 * the driver side.
2009 	 */
2010 	if (blk_account_rq(rq)) {
2011 		q->in_flight[rq_is_sync(rq)]++;
2012 		set_io_start_time_ns(rq);
2013 	}
2014 }
2015 
2016 /**
2017  * blk_start_request - start request processing on the driver
2018  * @req: request to dequeue
2019  *
2020  * Description:
2021  *     Dequeue @req and start timeout timer on it.  This hands off the
2022  *     request to the driver.
2023  *
2024  *     Block internal functions which don't want to start timer should
2025  *     call blk_dequeue_request().
2026  *
2027  * Context:
2028  *     queue_lock must be held.
2029  */
2030 void blk_start_request(struct request *req)
2031 {
2032 	blk_dequeue_request(req);
2033 
2034 	/*
2035 	 * We are now handing the request to the hardware, initialize
2036 	 * resid_len to full count and add the timeout handler.
2037 	 */
2038 	req->resid_len = blk_rq_bytes(req);
2039 	if (unlikely(blk_bidi_rq(req)))
2040 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2041 
2042 	blk_add_timer(req);
2043 }
2044 EXPORT_SYMBOL(blk_start_request);
2045 
2046 /**
2047  * blk_fetch_request - fetch a request from a request queue
2048  * @q: request queue to fetch a request from
2049  *
2050  * Description:
2051  *     Return the request at the top of @q.  The request is started on
2052  *     return and LLD can start processing it immediately.
2053  *
2054  * Return:
2055  *     Pointer to the request at the top of @q if available.  Null
2056  *     otherwise.
2057  *
2058  * Context:
2059  *     queue_lock must be held.
2060  */
2061 struct request *blk_fetch_request(struct request_queue *q)
2062 {
2063 	struct request *rq;
2064 
2065 	rq = blk_peek_request(q);
2066 	if (rq)
2067 		blk_start_request(rq);
2068 	return rq;
2069 }
2070 EXPORT_SYMBOL(blk_fetch_request);
2071 
2072 /**
2073  * blk_update_request - Special helper function for request stacking drivers
2074  * @req:      the request being processed
2075  * @error:    %0 for success, < %0 for error
2076  * @nr_bytes: number of bytes to complete @req
2077  *
2078  * Description:
2079  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2080  *     the request structure even if @req doesn't have leftover.
2081  *     If @req has leftover, sets it up for the next range of segments.
2082  *
2083  *     This special helper function is only for request stacking drivers
2084  *     (e.g. request-based dm) so that they can handle partial completion.
2085  *     Actual device drivers should use blk_end_request instead.
2086  *
2087  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2088  *     %false return from this function.
2089  *
2090  * Return:
2091  *     %false - this request doesn't have any more data
2092  *     %true  - this request has more data
2093  **/
2094 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2095 {
2096 	int total_bytes, bio_nbytes, next_idx = 0;
2097 	struct bio *bio;
2098 
2099 	if (!req->bio)
2100 		return false;
2101 
2102 	trace_block_rq_complete(req->q, req);
2103 
2104 	/*
2105 	 * For fs requests, rq is just carrier of independent bio's
2106 	 * and each partial completion should be handled separately.
2107 	 * Reset per-request error on each partial completion.
2108 	 *
2109 	 * TODO: tj: This is too subtle.  It would be better to let
2110 	 * low level drivers do what they see fit.
2111 	 */
2112 	if (req->cmd_type == REQ_TYPE_FS)
2113 		req->errors = 0;
2114 
2115 	if (error && req->cmd_type == REQ_TYPE_FS &&
2116 	    !(req->cmd_flags & REQ_QUIET)) {
2117 		char *error_type;
2118 
2119 		switch (error) {
2120 		case -ENOLINK:
2121 			error_type = "recoverable transport";
2122 			break;
2123 		case -EREMOTEIO:
2124 			error_type = "critical target";
2125 			break;
2126 		case -EBADE:
2127 			error_type = "critical nexus";
2128 			break;
2129 		case -EIO:
2130 		default:
2131 			error_type = "I/O";
2132 			break;
2133 		}
2134 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2135 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2136 		       (unsigned long long)blk_rq_pos(req));
2137 	}
2138 
2139 	blk_account_io_completion(req, nr_bytes);
2140 
2141 	total_bytes = bio_nbytes = 0;
2142 	while ((bio = req->bio) != NULL) {
2143 		int nbytes;
2144 
2145 		if (nr_bytes >= bio->bi_size) {
2146 			req->bio = bio->bi_next;
2147 			nbytes = bio->bi_size;
2148 			req_bio_endio(req, bio, nbytes, error);
2149 			next_idx = 0;
2150 			bio_nbytes = 0;
2151 		} else {
2152 			int idx = bio->bi_idx + next_idx;
2153 
2154 			if (unlikely(idx >= bio->bi_vcnt)) {
2155 				blk_dump_rq_flags(req, "__end_that");
2156 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2157 				       __func__, idx, bio->bi_vcnt);
2158 				break;
2159 			}
2160 
2161 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2162 			BIO_BUG_ON(nbytes > bio->bi_size);
2163 
2164 			/*
2165 			 * not a complete bvec done
2166 			 */
2167 			if (unlikely(nbytes > nr_bytes)) {
2168 				bio_nbytes += nr_bytes;
2169 				total_bytes += nr_bytes;
2170 				break;
2171 			}
2172 
2173 			/*
2174 			 * advance to the next vector
2175 			 */
2176 			next_idx++;
2177 			bio_nbytes += nbytes;
2178 		}
2179 
2180 		total_bytes += nbytes;
2181 		nr_bytes -= nbytes;
2182 
2183 		bio = req->bio;
2184 		if (bio) {
2185 			/*
2186 			 * end more in this run, or just return 'not-done'
2187 			 */
2188 			if (unlikely(nr_bytes <= 0))
2189 				break;
2190 		}
2191 	}
2192 
2193 	/*
2194 	 * completely done
2195 	 */
2196 	if (!req->bio) {
2197 		/*
2198 		 * Reset counters so that the request stacking driver
2199 		 * can find how many bytes remain in the request
2200 		 * later.
2201 		 */
2202 		req->__data_len = 0;
2203 		return false;
2204 	}
2205 
2206 	/*
2207 	 * if the request wasn't completed, update state
2208 	 */
2209 	if (bio_nbytes) {
2210 		req_bio_endio(req, bio, bio_nbytes, error);
2211 		bio->bi_idx += next_idx;
2212 		bio_iovec(bio)->bv_offset += nr_bytes;
2213 		bio_iovec(bio)->bv_len -= nr_bytes;
2214 	}
2215 
2216 	req->__data_len -= total_bytes;
2217 	req->buffer = bio_data(req->bio);
2218 
2219 	/* update sector only for requests with clear definition of sector */
2220 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2221 		req->__sector += total_bytes >> 9;
2222 
2223 	/* mixed attributes always follow the first bio */
2224 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2225 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2226 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2227 	}
2228 
2229 	/*
2230 	 * If total number of sectors is less than the first segment
2231 	 * size, something has gone terribly wrong.
2232 	 */
2233 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2234 		blk_dump_rq_flags(req, "request botched");
2235 		req->__data_len = blk_rq_cur_bytes(req);
2236 	}
2237 
2238 	/* recalculate the number of segments */
2239 	blk_recalc_rq_segments(req);
2240 
2241 	return true;
2242 }
2243 EXPORT_SYMBOL_GPL(blk_update_request);
2244 
2245 static bool blk_update_bidi_request(struct request *rq, int error,
2246 				    unsigned int nr_bytes,
2247 				    unsigned int bidi_bytes)
2248 {
2249 	if (blk_update_request(rq, error, nr_bytes))
2250 		return true;
2251 
2252 	/* Bidi request must be completed as a whole */
2253 	if (unlikely(blk_bidi_rq(rq)) &&
2254 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2255 		return true;
2256 
2257 	if (blk_queue_add_random(rq->q))
2258 		add_disk_randomness(rq->rq_disk);
2259 
2260 	return false;
2261 }
2262 
2263 /**
2264  * blk_unprep_request - unprepare a request
2265  * @req:	the request
2266  *
2267  * This function makes a request ready for complete resubmission (or
2268  * completion).  It happens only after all error handling is complete,
2269  * so represents the appropriate moment to deallocate any resources
2270  * that were allocated to the request in the prep_rq_fn.  The queue
2271  * lock is held when calling this.
2272  */
2273 void blk_unprep_request(struct request *req)
2274 {
2275 	struct request_queue *q = req->q;
2276 
2277 	req->cmd_flags &= ~REQ_DONTPREP;
2278 	if (q->unprep_rq_fn)
2279 		q->unprep_rq_fn(q, req);
2280 }
2281 EXPORT_SYMBOL_GPL(blk_unprep_request);
2282 
2283 /*
2284  * queue lock must be held
2285  */
2286 static void blk_finish_request(struct request *req, int error)
2287 {
2288 	if (blk_rq_tagged(req))
2289 		blk_queue_end_tag(req->q, req);
2290 
2291 	BUG_ON(blk_queued_rq(req));
2292 
2293 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2294 		laptop_io_completion(&req->q->backing_dev_info);
2295 
2296 	blk_delete_timer(req);
2297 
2298 	if (req->cmd_flags & REQ_DONTPREP)
2299 		blk_unprep_request(req);
2300 
2301 
2302 	blk_account_io_done(req);
2303 
2304 	if (req->end_io)
2305 		req->end_io(req, error);
2306 	else {
2307 		if (blk_bidi_rq(req))
2308 			__blk_put_request(req->next_rq->q, req->next_rq);
2309 
2310 		__blk_put_request(req->q, req);
2311 	}
2312 }
2313 
2314 /**
2315  * blk_end_bidi_request - Complete a bidi request
2316  * @rq:         the request to complete
2317  * @error:      %0 for success, < %0 for error
2318  * @nr_bytes:   number of bytes to complete @rq
2319  * @bidi_bytes: number of bytes to complete @rq->next_rq
2320  *
2321  * Description:
2322  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2323  *     Drivers that supports bidi can safely call this member for any
2324  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2325  *     just ignored.
2326  *
2327  * Return:
2328  *     %false - we are done with this request
2329  *     %true  - still buffers pending for this request
2330  **/
2331 static bool blk_end_bidi_request(struct request *rq, int error,
2332 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2333 {
2334 	struct request_queue *q = rq->q;
2335 	unsigned long flags;
2336 
2337 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2338 		return true;
2339 
2340 	spin_lock_irqsave(q->queue_lock, flags);
2341 	blk_finish_request(rq, error);
2342 	spin_unlock_irqrestore(q->queue_lock, flags);
2343 
2344 	return false;
2345 }
2346 
2347 /**
2348  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2349  * @rq:         the request to complete
2350  * @error:      %0 for success, < %0 for error
2351  * @nr_bytes:   number of bytes to complete @rq
2352  * @bidi_bytes: number of bytes to complete @rq->next_rq
2353  *
2354  * Description:
2355  *     Identical to blk_end_bidi_request() except that queue lock is
2356  *     assumed to be locked on entry and remains so on return.
2357  *
2358  * Return:
2359  *     %false - we are done with this request
2360  *     %true  - still buffers pending for this request
2361  **/
2362 bool __blk_end_bidi_request(struct request *rq, int error,
2363 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2364 {
2365 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2366 		return true;
2367 
2368 	blk_finish_request(rq, error);
2369 
2370 	return false;
2371 }
2372 
2373 /**
2374  * blk_end_request - Helper function for drivers to complete the request.
2375  * @rq:       the request being processed
2376  * @error:    %0 for success, < %0 for error
2377  * @nr_bytes: number of bytes to complete
2378  *
2379  * Description:
2380  *     Ends I/O on a number of bytes attached to @rq.
2381  *     If @rq has leftover, sets it up for the next range of segments.
2382  *
2383  * Return:
2384  *     %false - we are done with this request
2385  *     %true  - still buffers pending for this request
2386  **/
2387 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2388 {
2389 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2390 }
2391 EXPORT_SYMBOL(blk_end_request);
2392 
2393 /**
2394  * blk_end_request_all - Helper function for drives to finish the request.
2395  * @rq: the request to finish
2396  * @error: %0 for success, < %0 for error
2397  *
2398  * Description:
2399  *     Completely finish @rq.
2400  */
2401 void blk_end_request_all(struct request *rq, int error)
2402 {
2403 	bool pending;
2404 	unsigned int bidi_bytes = 0;
2405 
2406 	if (unlikely(blk_bidi_rq(rq)))
2407 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2408 
2409 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2410 	BUG_ON(pending);
2411 }
2412 EXPORT_SYMBOL(blk_end_request_all);
2413 
2414 /**
2415  * blk_end_request_cur - Helper function to finish the current request chunk.
2416  * @rq: the request to finish the current chunk for
2417  * @error: %0 for success, < %0 for error
2418  *
2419  * Description:
2420  *     Complete the current consecutively mapped chunk from @rq.
2421  *
2422  * Return:
2423  *     %false - we are done with this request
2424  *     %true  - still buffers pending for this request
2425  */
2426 bool blk_end_request_cur(struct request *rq, int error)
2427 {
2428 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2429 }
2430 EXPORT_SYMBOL(blk_end_request_cur);
2431 
2432 /**
2433  * blk_end_request_err - Finish a request till the next failure boundary.
2434  * @rq: the request to finish till the next failure boundary for
2435  * @error: must be negative errno
2436  *
2437  * Description:
2438  *     Complete @rq till the next failure boundary.
2439  *
2440  * Return:
2441  *     %false - we are done with this request
2442  *     %true  - still buffers pending for this request
2443  */
2444 bool blk_end_request_err(struct request *rq, int error)
2445 {
2446 	WARN_ON(error >= 0);
2447 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2448 }
2449 EXPORT_SYMBOL_GPL(blk_end_request_err);
2450 
2451 /**
2452  * __blk_end_request - Helper function for drivers to complete the request.
2453  * @rq:       the request being processed
2454  * @error:    %0 for success, < %0 for error
2455  * @nr_bytes: number of bytes to complete
2456  *
2457  * Description:
2458  *     Must be called with queue lock held unlike blk_end_request().
2459  *
2460  * Return:
2461  *     %false - we are done with this request
2462  *     %true  - still buffers pending for this request
2463  **/
2464 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2465 {
2466 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2467 }
2468 EXPORT_SYMBOL(__blk_end_request);
2469 
2470 /**
2471  * __blk_end_request_all - Helper function for drives to finish the request.
2472  * @rq: the request to finish
2473  * @error: %0 for success, < %0 for error
2474  *
2475  * Description:
2476  *     Completely finish @rq.  Must be called with queue lock held.
2477  */
2478 void __blk_end_request_all(struct request *rq, int error)
2479 {
2480 	bool pending;
2481 	unsigned int bidi_bytes = 0;
2482 
2483 	if (unlikely(blk_bidi_rq(rq)))
2484 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2485 
2486 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2487 	BUG_ON(pending);
2488 }
2489 EXPORT_SYMBOL(__blk_end_request_all);
2490 
2491 /**
2492  * __blk_end_request_cur - Helper function to finish the current request chunk.
2493  * @rq: the request to finish the current chunk for
2494  * @error: %0 for success, < %0 for error
2495  *
2496  * Description:
2497  *     Complete the current consecutively mapped chunk from @rq.  Must
2498  *     be called with queue lock held.
2499  *
2500  * Return:
2501  *     %false - we are done with this request
2502  *     %true  - still buffers pending for this request
2503  */
2504 bool __blk_end_request_cur(struct request *rq, int error)
2505 {
2506 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2507 }
2508 EXPORT_SYMBOL(__blk_end_request_cur);
2509 
2510 /**
2511  * __blk_end_request_err - Finish a request till the next failure boundary.
2512  * @rq: the request to finish till the next failure boundary for
2513  * @error: must be negative errno
2514  *
2515  * Description:
2516  *     Complete @rq till the next failure boundary.  Must be called
2517  *     with queue lock held.
2518  *
2519  * Return:
2520  *     %false - we are done with this request
2521  *     %true  - still buffers pending for this request
2522  */
2523 bool __blk_end_request_err(struct request *rq, int error)
2524 {
2525 	WARN_ON(error >= 0);
2526 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2527 }
2528 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2529 
2530 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2531 		     struct bio *bio)
2532 {
2533 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2534 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2535 
2536 	if (bio_has_data(bio)) {
2537 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2538 		rq->buffer = bio_data(bio);
2539 	}
2540 	rq->__data_len = bio->bi_size;
2541 	rq->bio = rq->biotail = bio;
2542 
2543 	if (bio->bi_bdev)
2544 		rq->rq_disk = bio->bi_bdev->bd_disk;
2545 }
2546 
2547 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2548 /**
2549  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2550  * @rq: the request to be flushed
2551  *
2552  * Description:
2553  *     Flush all pages in @rq.
2554  */
2555 void rq_flush_dcache_pages(struct request *rq)
2556 {
2557 	struct req_iterator iter;
2558 	struct bio_vec *bvec;
2559 
2560 	rq_for_each_segment(bvec, rq, iter)
2561 		flush_dcache_page(bvec->bv_page);
2562 }
2563 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2564 #endif
2565 
2566 /**
2567  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2568  * @q : the queue of the device being checked
2569  *
2570  * Description:
2571  *    Check if underlying low-level drivers of a device are busy.
2572  *    If the drivers want to export their busy state, they must set own
2573  *    exporting function using blk_queue_lld_busy() first.
2574  *
2575  *    Basically, this function is used only by request stacking drivers
2576  *    to stop dispatching requests to underlying devices when underlying
2577  *    devices are busy.  This behavior helps more I/O merging on the queue
2578  *    of the request stacking driver and prevents I/O throughput regression
2579  *    on burst I/O load.
2580  *
2581  * Return:
2582  *    0 - Not busy (The request stacking driver should dispatch request)
2583  *    1 - Busy (The request stacking driver should stop dispatching request)
2584  */
2585 int blk_lld_busy(struct request_queue *q)
2586 {
2587 	if (q->lld_busy_fn)
2588 		return q->lld_busy_fn(q);
2589 
2590 	return 0;
2591 }
2592 EXPORT_SYMBOL_GPL(blk_lld_busy);
2593 
2594 /**
2595  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2596  * @rq: the clone request to be cleaned up
2597  *
2598  * Description:
2599  *     Free all bios in @rq for a cloned request.
2600  */
2601 void blk_rq_unprep_clone(struct request *rq)
2602 {
2603 	struct bio *bio;
2604 
2605 	while ((bio = rq->bio) != NULL) {
2606 		rq->bio = bio->bi_next;
2607 
2608 		bio_put(bio);
2609 	}
2610 }
2611 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2612 
2613 /*
2614  * Copy attributes of the original request to the clone request.
2615  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2616  */
2617 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2618 {
2619 	dst->cpu = src->cpu;
2620 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2621 	dst->cmd_type = src->cmd_type;
2622 	dst->__sector = blk_rq_pos(src);
2623 	dst->__data_len = blk_rq_bytes(src);
2624 	dst->nr_phys_segments = src->nr_phys_segments;
2625 	dst->ioprio = src->ioprio;
2626 	dst->extra_len = src->extra_len;
2627 }
2628 
2629 /**
2630  * blk_rq_prep_clone - Helper function to setup clone request
2631  * @rq: the request to be setup
2632  * @rq_src: original request to be cloned
2633  * @bs: bio_set that bios for clone are allocated from
2634  * @gfp_mask: memory allocation mask for bio
2635  * @bio_ctr: setup function to be called for each clone bio.
2636  *           Returns %0 for success, non %0 for failure.
2637  * @data: private data to be passed to @bio_ctr
2638  *
2639  * Description:
2640  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2641  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2642  *     are not copied, and copying such parts is the caller's responsibility.
2643  *     Also, pages which the original bios are pointing to are not copied
2644  *     and the cloned bios just point same pages.
2645  *     So cloned bios must be completed before original bios, which means
2646  *     the caller must complete @rq before @rq_src.
2647  */
2648 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2649 		      struct bio_set *bs, gfp_t gfp_mask,
2650 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2651 		      void *data)
2652 {
2653 	struct bio *bio, *bio_src;
2654 
2655 	if (!bs)
2656 		bs = fs_bio_set;
2657 
2658 	blk_rq_init(NULL, rq);
2659 
2660 	__rq_for_each_bio(bio_src, rq_src) {
2661 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2662 		if (!bio)
2663 			goto free_and_out;
2664 
2665 		__bio_clone(bio, bio_src);
2666 
2667 		if (bio_integrity(bio_src) &&
2668 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2669 			goto free_and_out;
2670 
2671 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2672 			goto free_and_out;
2673 
2674 		if (rq->bio) {
2675 			rq->biotail->bi_next = bio;
2676 			rq->biotail = bio;
2677 		} else
2678 			rq->bio = rq->biotail = bio;
2679 	}
2680 
2681 	__blk_rq_prep_clone(rq, rq_src);
2682 
2683 	return 0;
2684 
2685 free_and_out:
2686 	if (bio)
2687 		bio_free(bio, bs);
2688 	blk_rq_unprep_clone(rq);
2689 
2690 	return -ENOMEM;
2691 }
2692 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2693 
2694 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2695 {
2696 	return queue_work(kblockd_workqueue, work);
2697 }
2698 EXPORT_SYMBOL(kblockd_schedule_work);
2699 
2700 int kblockd_schedule_delayed_work(struct request_queue *q,
2701 			struct delayed_work *dwork, unsigned long delay)
2702 {
2703 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2704 }
2705 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2706 
2707 #define PLUG_MAGIC	0x91827364
2708 
2709 /**
2710  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2711  * @plug:	The &struct blk_plug that needs to be initialized
2712  *
2713  * Description:
2714  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2715  *   pending I/O should the task end up blocking between blk_start_plug() and
2716  *   blk_finish_plug(). This is important from a performance perspective, but
2717  *   also ensures that we don't deadlock. For instance, if the task is blocking
2718  *   for a memory allocation, memory reclaim could end up wanting to free a
2719  *   page belonging to that request that is currently residing in our private
2720  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2721  *   this kind of deadlock.
2722  */
2723 void blk_start_plug(struct blk_plug *plug)
2724 {
2725 	struct task_struct *tsk = current;
2726 
2727 	plug->magic = PLUG_MAGIC;
2728 	INIT_LIST_HEAD(&plug->list);
2729 	INIT_LIST_HEAD(&plug->cb_list);
2730 	plug->should_sort = 0;
2731 
2732 	/*
2733 	 * If this is a nested plug, don't actually assign it. It will be
2734 	 * flushed on its own.
2735 	 */
2736 	if (!tsk->plug) {
2737 		/*
2738 		 * Store ordering should not be needed here, since a potential
2739 		 * preempt will imply a full memory barrier
2740 		 */
2741 		tsk->plug = plug;
2742 	}
2743 }
2744 EXPORT_SYMBOL(blk_start_plug);
2745 
2746 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2747 {
2748 	struct request *rqa = container_of(a, struct request, queuelist);
2749 	struct request *rqb = container_of(b, struct request, queuelist);
2750 
2751 	return !(rqa->q <= rqb->q);
2752 }
2753 
2754 /*
2755  * If 'from_schedule' is true, then postpone the dispatch of requests
2756  * until a safe kblockd context. We due this to avoid accidental big
2757  * additional stack usage in driver dispatch, in places where the originally
2758  * plugger did not intend it.
2759  */
2760 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2761 			    bool from_schedule)
2762 	__releases(q->queue_lock)
2763 {
2764 	trace_block_unplug(q, depth, !from_schedule);
2765 
2766 	/*
2767 	 * Don't mess with dead queue.
2768 	 */
2769 	if (unlikely(blk_queue_dead(q))) {
2770 		spin_unlock(q->queue_lock);
2771 		return;
2772 	}
2773 
2774 	/*
2775 	 * If we are punting this to kblockd, then we can safely drop
2776 	 * the queue_lock before waking kblockd (which needs to take
2777 	 * this lock).
2778 	 */
2779 	if (from_schedule) {
2780 		spin_unlock(q->queue_lock);
2781 		blk_run_queue_async(q);
2782 	} else {
2783 		__blk_run_queue(q);
2784 		spin_unlock(q->queue_lock);
2785 	}
2786 
2787 }
2788 
2789 static void flush_plug_callbacks(struct blk_plug *plug)
2790 {
2791 	LIST_HEAD(callbacks);
2792 
2793 	if (list_empty(&plug->cb_list))
2794 		return;
2795 
2796 	list_splice_init(&plug->cb_list, &callbacks);
2797 
2798 	while (!list_empty(&callbacks)) {
2799 		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2800 							  struct blk_plug_cb,
2801 							  list);
2802 		list_del(&cb->list);
2803 		cb->callback(cb);
2804 	}
2805 }
2806 
2807 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2808 {
2809 	struct request_queue *q;
2810 	unsigned long flags;
2811 	struct request *rq;
2812 	LIST_HEAD(list);
2813 	unsigned int depth;
2814 
2815 	BUG_ON(plug->magic != PLUG_MAGIC);
2816 
2817 	flush_plug_callbacks(plug);
2818 	if (list_empty(&plug->list))
2819 		return;
2820 
2821 	list_splice_init(&plug->list, &list);
2822 
2823 	if (plug->should_sort) {
2824 		list_sort(NULL, &list, plug_rq_cmp);
2825 		plug->should_sort = 0;
2826 	}
2827 
2828 	q = NULL;
2829 	depth = 0;
2830 
2831 	/*
2832 	 * Save and disable interrupts here, to avoid doing it for every
2833 	 * queue lock we have to take.
2834 	 */
2835 	local_irq_save(flags);
2836 	while (!list_empty(&list)) {
2837 		rq = list_entry_rq(list.next);
2838 		list_del_init(&rq->queuelist);
2839 		BUG_ON(!rq->q);
2840 		if (rq->q != q) {
2841 			/*
2842 			 * This drops the queue lock
2843 			 */
2844 			if (q)
2845 				queue_unplugged(q, depth, from_schedule);
2846 			q = rq->q;
2847 			depth = 0;
2848 			spin_lock(q->queue_lock);
2849 		}
2850 
2851 		/*
2852 		 * Short-circuit if @q is dead
2853 		 */
2854 		if (unlikely(blk_queue_dead(q))) {
2855 			__blk_end_request_all(rq, -ENODEV);
2856 			continue;
2857 		}
2858 
2859 		/*
2860 		 * rq is already accounted, so use raw insert
2861 		 */
2862 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2863 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2864 		else
2865 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2866 
2867 		depth++;
2868 	}
2869 
2870 	/*
2871 	 * This drops the queue lock
2872 	 */
2873 	if (q)
2874 		queue_unplugged(q, depth, from_schedule);
2875 
2876 	local_irq_restore(flags);
2877 }
2878 
2879 void blk_finish_plug(struct blk_plug *plug)
2880 {
2881 	blk_flush_plug_list(plug, false);
2882 
2883 	if (plug == current->plug)
2884 		current->plug = NULL;
2885 }
2886 EXPORT_SYMBOL(blk_finish_plug);
2887 
2888 int __init blk_dev_init(void)
2889 {
2890 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2891 			sizeof(((struct request *)0)->cmd_flags));
2892 
2893 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2894 	kblockd_workqueue = alloc_workqueue("kblockd",
2895 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2896 	if (!kblockd_workqueue)
2897 		panic("Failed to create kblockd\n");
2898 
2899 	request_cachep = kmem_cache_create("blkdev_requests",
2900 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2901 
2902 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2903 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2904 
2905 	return 0;
2906 }
2907