xref: /linux/block/blk-core.c (revision db624e82c55f227b84ac9ebfa3de2f6f5fad666b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46 
47 #include "blk.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52 #include "blk-ioprio.h"
53 
54 struct dentry *blk_debugfs_root;
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
62 
63 static DEFINE_IDA(blk_queue_ida);
64 
65 /*
66  * For queue allocation
67  */
68 static struct kmem_cache *blk_requestq_cachep;
69 
70 /*
71  * Controlling structure to kblockd
72  */
73 static struct workqueue_struct *kblockd_workqueue;
74 
75 /**
76  * blk_queue_flag_set - atomically set a queue flag
77  * @flag: flag to be set
78  * @q: request queue
79  */
80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 	set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85 
86 /**
87  * blk_queue_flag_clear - atomically clear a queue flag
88  * @flag: flag to be cleared
89  * @q: request queue
90  */
91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 	clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96 
97 /**
98  * blk_queue_flag_test_and_set - atomically test and set a queue flag
99  * @flag: flag to be set
100  * @q: request queue
101  *
102  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103  * the flag was already set.
104  */
105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106 {
107 	return test_and_set_bit(flag, &q->queue_flags);
108 }
109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110 
111 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
112 static const char *const blk_op_name[] = {
113 	REQ_OP_NAME(READ),
114 	REQ_OP_NAME(WRITE),
115 	REQ_OP_NAME(FLUSH),
116 	REQ_OP_NAME(DISCARD),
117 	REQ_OP_NAME(SECURE_ERASE),
118 	REQ_OP_NAME(ZONE_RESET),
119 	REQ_OP_NAME(ZONE_RESET_ALL),
120 	REQ_OP_NAME(ZONE_OPEN),
121 	REQ_OP_NAME(ZONE_CLOSE),
122 	REQ_OP_NAME(ZONE_FINISH),
123 	REQ_OP_NAME(ZONE_APPEND),
124 	REQ_OP_NAME(WRITE_ZEROES),
125 	REQ_OP_NAME(DRV_IN),
126 	REQ_OP_NAME(DRV_OUT),
127 };
128 #undef REQ_OP_NAME
129 
130 /**
131  * blk_op_str - Return string XXX in the REQ_OP_XXX.
132  * @op: REQ_OP_XXX.
133  *
134  * Description: Centralize block layer function to convert REQ_OP_XXX into
135  * string format. Useful in the debugging and tracing bio or request. For
136  * invalid REQ_OP_XXX it returns string "UNKNOWN".
137  */
138 inline const char *blk_op_str(enum req_op op)
139 {
140 	const char *op_str = "UNKNOWN";
141 
142 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
143 		op_str = blk_op_name[op];
144 
145 	return op_str;
146 }
147 EXPORT_SYMBOL_GPL(blk_op_str);
148 
149 static const struct {
150 	int		errno;
151 	const char	*name;
152 } blk_errors[] = {
153 	[BLK_STS_OK]		= { 0,		"" },
154 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
155 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
156 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
157 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
158 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
159 	[BLK_STS_RESV_CONFLICT]	= { -EBADE,	"reservation conflict" },
160 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
161 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
162 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
163 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
164 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
165 	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
166 
167 	/* device mapper special case, should not leak out: */
168 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
169 
170 	/* zone device specific errors */
171 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
172 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
173 
174 	/* Command duration limit device-side timeout */
175 	[BLK_STS_DURATION_LIMIT]	= { -ETIME, "duration limit exceeded" },
176 
177 	/* everything else not covered above: */
178 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
179 };
180 
181 blk_status_t errno_to_blk_status(int errno)
182 {
183 	int i;
184 
185 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
186 		if (blk_errors[i].errno == errno)
187 			return (__force blk_status_t)i;
188 	}
189 
190 	return BLK_STS_IOERR;
191 }
192 EXPORT_SYMBOL_GPL(errno_to_blk_status);
193 
194 int blk_status_to_errno(blk_status_t status)
195 {
196 	int idx = (__force int)status;
197 
198 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
199 		return -EIO;
200 	return blk_errors[idx].errno;
201 }
202 EXPORT_SYMBOL_GPL(blk_status_to_errno);
203 
204 const char *blk_status_to_str(blk_status_t status)
205 {
206 	int idx = (__force int)status;
207 
208 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
209 		return "<null>";
210 	return blk_errors[idx].name;
211 }
212 EXPORT_SYMBOL_GPL(blk_status_to_str);
213 
214 /**
215  * blk_sync_queue - cancel any pending callbacks on a queue
216  * @q: the queue
217  *
218  * Description:
219  *     The block layer may perform asynchronous callback activity
220  *     on a queue, such as calling the unplug function after a timeout.
221  *     A block device may call blk_sync_queue to ensure that any
222  *     such activity is cancelled, thus allowing it to release resources
223  *     that the callbacks might use. The caller must already have made sure
224  *     that its ->submit_bio will not re-add plugging prior to calling
225  *     this function.
226  *
227  *     This function does not cancel any asynchronous activity arising
228  *     out of elevator or throttling code. That would require elevator_exit()
229  *     and blkcg_exit_queue() to be called with queue lock initialized.
230  *
231  */
232 void blk_sync_queue(struct request_queue *q)
233 {
234 	del_timer_sync(&q->timeout);
235 	cancel_work_sync(&q->timeout_work);
236 }
237 EXPORT_SYMBOL(blk_sync_queue);
238 
239 /**
240  * blk_set_pm_only - increment pm_only counter
241  * @q: request queue pointer
242  */
243 void blk_set_pm_only(struct request_queue *q)
244 {
245 	atomic_inc(&q->pm_only);
246 }
247 EXPORT_SYMBOL_GPL(blk_set_pm_only);
248 
249 void blk_clear_pm_only(struct request_queue *q)
250 {
251 	int pm_only;
252 
253 	pm_only = atomic_dec_return(&q->pm_only);
254 	WARN_ON_ONCE(pm_only < 0);
255 	if (pm_only == 0)
256 		wake_up_all(&q->mq_freeze_wq);
257 }
258 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
259 
260 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
261 {
262 	struct request_queue *q = container_of(rcu_head,
263 			struct request_queue, rcu_head);
264 
265 	percpu_ref_exit(&q->q_usage_counter);
266 	kmem_cache_free(blk_requestq_cachep, q);
267 }
268 
269 static void blk_free_queue(struct request_queue *q)
270 {
271 	blk_free_queue_stats(q->stats);
272 	if (queue_is_mq(q))
273 		blk_mq_release(q);
274 
275 	ida_free(&blk_queue_ida, q->id);
276 	call_rcu(&q->rcu_head, blk_free_queue_rcu);
277 }
278 
279 /**
280  * blk_put_queue - decrement the request_queue refcount
281  * @q: the request_queue structure to decrement the refcount for
282  *
283  * Decrements the refcount of the request_queue and free it when the refcount
284  * reaches 0.
285  */
286 void blk_put_queue(struct request_queue *q)
287 {
288 	if (refcount_dec_and_test(&q->refs))
289 		blk_free_queue(q);
290 }
291 EXPORT_SYMBOL(blk_put_queue);
292 
293 void blk_queue_start_drain(struct request_queue *q)
294 {
295 	/*
296 	 * When queue DYING flag is set, we need to block new req
297 	 * entering queue, so we call blk_freeze_queue_start() to
298 	 * prevent I/O from crossing blk_queue_enter().
299 	 */
300 	blk_freeze_queue_start(q);
301 	if (queue_is_mq(q))
302 		blk_mq_wake_waiters(q);
303 	/* Make blk_queue_enter() reexamine the DYING flag. */
304 	wake_up_all(&q->mq_freeze_wq);
305 }
306 
307 /**
308  * blk_queue_enter() - try to increase q->q_usage_counter
309  * @q: request queue pointer
310  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
311  */
312 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
313 {
314 	const bool pm = flags & BLK_MQ_REQ_PM;
315 
316 	while (!blk_try_enter_queue(q, pm)) {
317 		if (flags & BLK_MQ_REQ_NOWAIT)
318 			return -EAGAIN;
319 
320 		/*
321 		 * read pair of barrier in blk_freeze_queue_start(), we need to
322 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
323 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
324 		 * following wait may never return if the two reads are
325 		 * reordered.
326 		 */
327 		smp_rmb();
328 		wait_event(q->mq_freeze_wq,
329 			   (!q->mq_freeze_depth &&
330 			    blk_pm_resume_queue(pm, q)) ||
331 			   blk_queue_dying(q));
332 		if (blk_queue_dying(q))
333 			return -ENODEV;
334 	}
335 
336 	return 0;
337 }
338 
339 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
340 {
341 	while (!blk_try_enter_queue(q, false)) {
342 		struct gendisk *disk = bio->bi_bdev->bd_disk;
343 
344 		if (bio->bi_opf & REQ_NOWAIT) {
345 			if (test_bit(GD_DEAD, &disk->state))
346 				goto dead;
347 			bio_wouldblock_error(bio);
348 			return -EAGAIN;
349 		}
350 
351 		/*
352 		 * read pair of barrier in blk_freeze_queue_start(), we need to
353 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
354 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
355 		 * following wait may never return if the two reads are
356 		 * reordered.
357 		 */
358 		smp_rmb();
359 		wait_event(q->mq_freeze_wq,
360 			   (!q->mq_freeze_depth &&
361 			    blk_pm_resume_queue(false, q)) ||
362 			   test_bit(GD_DEAD, &disk->state));
363 		if (test_bit(GD_DEAD, &disk->state))
364 			goto dead;
365 	}
366 
367 	return 0;
368 dead:
369 	bio_io_error(bio);
370 	return -ENODEV;
371 }
372 
373 void blk_queue_exit(struct request_queue *q)
374 {
375 	percpu_ref_put(&q->q_usage_counter);
376 }
377 
378 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
379 {
380 	struct request_queue *q =
381 		container_of(ref, struct request_queue, q_usage_counter);
382 
383 	wake_up_all(&q->mq_freeze_wq);
384 }
385 
386 static void blk_rq_timed_out_timer(struct timer_list *t)
387 {
388 	struct request_queue *q = from_timer(q, t, timeout);
389 
390 	kblockd_schedule_work(&q->timeout_work);
391 }
392 
393 static void blk_timeout_work(struct work_struct *work)
394 {
395 }
396 
397 struct request_queue *blk_alloc_queue(struct queue_limits *lim, int node_id)
398 {
399 	struct request_queue *q;
400 	int error;
401 
402 	q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
403 				  node_id);
404 	if (!q)
405 		return ERR_PTR(-ENOMEM);
406 
407 	q->last_merge = NULL;
408 
409 	q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
410 	if (q->id < 0) {
411 		error = q->id;
412 		goto fail_q;
413 	}
414 
415 	q->stats = blk_alloc_queue_stats();
416 	if (!q->stats) {
417 		error = -ENOMEM;
418 		goto fail_id;
419 	}
420 
421 	error = blk_set_default_limits(lim);
422 	if (error)
423 		goto fail_stats;
424 	q->limits = *lim;
425 
426 	q->node = node_id;
427 
428 	atomic_set(&q->nr_active_requests_shared_tags, 0);
429 
430 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
431 	INIT_WORK(&q->timeout_work, blk_timeout_work);
432 	INIT_LIST_HEAD(&q->icq_list);
433 
434 	refcount_set(&q->refs, 1);
435 	mutex_init(&q->debugfs_mutex);
436 	mutex_init(&q->sysfs_lock);
437 	mutex_init(&q->sysfs_dir_lock);
438 	mutex_init(&q->limits_lock);
439 	mutex_init(&q->rq_qos_mutex);
440 	spin_lock_init(&q->queue_lock);
441 
442 	init_waitqueue_head(&q->mq_freeze_wq);
443 	mutex_init(&q->mq_freeze_lock);
444 
445 	/*
446 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
447 	 * See blk_register_queue() for details.
448 	 */
449 	error = percpu_ref_init(&q->q_usage_counter,
450 				blk_queue_usage_counter_release,
451 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL);
452 	if (error)
453 		goto fail_stats;
454 
455 	q->nr_requests = BLKDEV_DEFAULT_RQ;
456 
457 	return q;
458 
459 fail_stats:
460 	blk_free_queue_stats(q->stats);
461 fail_id:
462 	ida_free(&blk_queue_ida, q->id);
463 fail_q:
464 	kmem_cache_free(blk_requestq_cachep, q);
465 	return ERR_PTR(error);
466 }
467 
468 /**
469  * blk_get_queue - increment the request_queue refcount
470  * @q: the request_queue structure to increment the refcount for
471  *
472  * Increment the refcount of the request_queue kobject.
473  *
474  * Context: Any context.
475  */
476 bool blk_get_queue(struct request_queue *q)
477 {
478 	if (unlikely(blk_queue_dying(q)))
479 		return false;
480 	refcount_inc(&q->refs);
481 	return true;
482 }
483 EXPORT_SYMBOL(blk_get_queue);
484 
485 #ifdef CONFIG_FAIL_MAKE_REQUEST
486 
487 static DECLARE_FAULT_ATTR(fail_make_request);
488 
489 static int __init setup_fail_make_request(char *str)
490 {
491 	return setup_fault_attr(&fail_make_request, str);
492 }
493 __setup("fail_make_request=", setup_fail_make_request);
494 
495 bool should_fail_request(struct block_device *part, unsigned int bytes)
496 {
497 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
498 }
499 
500 static int __init fail_make_request_debugfs(void)
501 {
502 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
503 						NULL, &fail_make_request);
504 
505 	return PTR_ERR_OR_ZERO(dir);
506 }
507 
508 late_initcall(fail_make_request_debugfs);
509 #endif /* CONFIG_FAIL_MAKE_REQUEST */
510 
511 static inline void bio_check_ro(struct bio *bio)
512 {
513 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
514 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
515 			return;
516 
517 		if (bio->bi_bdev->bd_ro_warned)
518 			return;
519 
520 		bio->bi_bdev->bd_ro_warned = true;
521 		/*
522 		 * Use ioctl to set underlying disk of raid/dm to read-only
523 		 * will trigger this.
524 		 */
525 		pr_warn("Trying to write to read-only block-device %pg\n",
526 			bio->bi_bdev);
527 	}
528 }
529 
530 static noinline int should_fail_bio(struct bio *bio)
531 {
532 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
533 		return -EIO;
534 	return 0;
535 }
536 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
537 
538 /*
539  * Check whether this bio extends beyond the end of the device or partition.
540  * This may well happen - the kernel calls bread() without checking the size of
541  * the device, e.g., when mounting a file system.
542  */
543 static inline int bio_check_eod(struct bio *bio)
544 {
545 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
546 	unsigned int nr_sectors = bio_sectors(bio);
547 
548 	if (nr_sectors &&
549 	    (nr_sectors > maxsector ||
550 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
551 		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
552 				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
553 				    current->comm, bio->bi_bdev, bio->bi_opf,
554 				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
555 		return -EIO;
556 	}
557 	return 0;
558 }
559 
560 /*
561  * Remap block n of partition p to block n+start(p) of the disk.
562  */
563 static int blk_partition_remap(struct bio *bio)
564 {
565 	struct block_device *p = bio->bi_bdev;
566 
567 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
568 		return -EIO;
569 	if (bio_sectors(bio)) {
570 		bio->bi_iter.bi_sector += p->bd_start_sect;
571 		trace_block_bio_remap(bio, p->bd_dev,
572 				      bio->bi_iter.bi_sector -
573 				      p->bd_start_sect);
574 	}
575 	bio_set_flag(bio, BIO_REMAPPED);
576 	return 0;
577 }
578 
579 /*
580  * Check write append to a zoned block device.
581  */
582 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
583 						 struct bio *bio)
584 {
585 	int nr_sectors = bio_sectors(bio);
586 
587 	/* Only applicable to zoned block devices */
588 	if (!bdev_is_zoned(bio->bi_bdev))
589 		return BLK_STS_NOTSUPP;
590 
591 	/* The bio sector must point to the start of a sequential zone */
592 	if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
593 	    !bio_zone_is_seq(bio))
594 		return BLK_STS_IOERR;
595 
596 	/*
597 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
598 	 * split and could result in non-contiguous sectors being written in
599 	 * different zones.
600 	 */
601 	if (nr_sectors > q->limits.chunk_sectors)
602 		return BLK_STS_IOERR;
603 
604 	/* Make sure the BIO is small enough and will not get split */
605 	if (nr_sectors > q->limits.max_zone_append_sectors)
606 		return BLK_STS_IOERR;
607 
608 	bio->bi_opf |= REQ_NOMERGE;
609 
610 	return BLK_STS_OK;
611 }
612 
613 static void __submit_bio(struct bio *bio)
614 {
615 	if (unlikely(!blk_crypto_bio_prep(&bio)))
616 		return;
617 
618 	if (!bio->bi_bdev->bd_has_submit_bio) {
619 		blk_mq_submit_bio(bio);
620 	} else if (likely(bio_queue_enter(bio) == 0)) {
621 		struct gendisk *disk = bio->bi_bdev->bd_disk;
622 
623 		disk->fops->submit_bio(bio);
624 		blk_queue_exit(disk->queue);
625 	}
626 }
627 
628 /*
629  * The loop in this function may be a bit non-obvious, and so deserves some
630  * explanation:
631  *
632  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
633  *    that), so we have a list with a single bio.
634  *  - We pretend that we have just taken it off a longer list, so we assign
635  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
636  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
637  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
638  *    non-NULL value in bio_list and re-enter the loop from the top.
639  *  - In this case we really did just take the bio of the top of the list (no
640  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
641  *    again.
642  *
643  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
644  * bio_list_on_stack[1] contains bios that were submitted before the current
645  *	->submit_bio, but that haven't been processed yet.
646  */
647 static void __submit_bio_noacct(struct bio *bio)
648 {
649 	struct bio_list bio_list_on_stack[2];
650 
651 	BUG_ON(bio->bi_next);
652 
653 	bio_list_init(&bio_list_on_stack[0]);
654 	current->bio_list = bio_list_on_stack;
655 
656 	do {
657 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
658 		struct bio_list lower, same;
659 
660 		/*
661 		 * Create a fresh bio_list for all subordinate requests.
662 		 */
663 		bio_list_on_stack[1] = bio_list_on_stack[0];
664 		bio_list_init(&bio_list_on_stack[0]);
665 
666 		__submit_bio(bio);
667 
668 		/*
669 		 * Sort new bios into those for a lower level and those for the
670 		 * same level.
671 		 */
672 		bio_list_init(&lower);
673 		bio_list_init(&same);
674 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
675 			if (q == bdev_get_queue(bio->bi_bdev))
676 				bio_list_add(&same, bio);
677 			else
678 				bio_list_add(&lower, bio);
679 
680 		/*
681 		 * Now assemble so we handle the lowest level first.
682 		 */
683 		bio_list_merge(&bio_list_on_stack[0], &lower);
684 		bio_list_merge(&bio_list_on_stack[0], &same);
685 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
686 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
687 
688 	current->bio_list = NULL;
689 }
690 
691 static void __submit_bio_noacct_mq(struct bio *bio)
692 {
693 	struct bio_list bio_list[2] = { };
694 
695 	current->bio_list = bio_list;
696 
697 	do {
698 		__submit_bio(bio);
699 	} while ((bio = bio_list_pop(&bio_list[0])));
700 
701 	current->bio_list = NULL;
702 }
703 
704 void submit_bio_noacct_nocheck(struct bio *bio)
705 {
706 	blk_cgroup_bio_start(bio);
707 	blkcg_bio_issue_init(bio);
708 
709 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
710 		trace_block_bio_queue(bio);
711 		/*
712 		 * Now that enqueuing has been traced, we need to trace
713 		 * completion as well.
714 		 */
715 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
716 	}
717 
718 	/*
719 	 * We only want one ->submit_bio to be active at a time, else stack
720 	 * usage with stacked devices could be a problem.  Use current->bio_list
721 	 * to collect a list of requests submited by a ->submit_bio method while
722 	 * it is active, and then process them after it returned.
723 	 */
724 	if (current->bio_list)
725 		bio_list_add(&current->bio_list[0], bio);
726 	else if (!bio->bi_bdev->bd_has_submit_bio)
727 		__submit_bio_noacct_mq(bio);
728 	else
729 		__submit_bio_noacct(bio);
730 }
731 
732 /**
733  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
734  * @bio:  The bio describing the location in memory and on the device.
735  *
736  * This is a version of submit_bio() that shall only be used for I/O that is
737  * resubmitted to lower level drivers by stacking block drivers.  All file
738  * systems and other upper level users of the block layer should use
739  * submit_bio() instead.
740  */
741 void submit_bio_noacct(struct bio *bio)
742 {
743 	struct block_device *bdev = bio->bi_bdev;
744 	struct request_queue *q = bdev_get_queue(bdev);
745 	blk_status_t status = BLK_STS_IOERR;
746 
747 	might_sleep();
748 
749 	/*
750 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
751 	 * if queue does not support NOWAIT.
752 	 */
753 	if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
754 		goto not_supported;
755 
756 	if (should_fail_bio(bio))
757 		goto end_io;
758 	bio_check_ro(bio);
759 	if (!bio_flagged(bio, BIO_REMAPPED)) {
760 		if (unlikely(bio_check_eod(bio)))
761 			goto end_io;
762 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
763 			goto end_io;
764 	}
765 
766 	/*
767 	 * Filter flush bio's early so that bio based drivers without flush
768 	 * support don't have to worry about them.
769 	 */
770 	if (op_is_flush(bio->bi_opf)) {
771 		if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
772 				 bio_op(bio) != REQ_OP_ZONE_APPEND))
773 			goto end_io;
774 		if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
775 			bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
776 			if (!bio_sectors(bio)) {
777 				status = BLK_STS_OK;
778 				goto end_io;
779 			}
780 		}
781 	}
782 
783 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
784 		bio_clear_polled(bio);
785 
786 	switch (bio_op(bio)) {
787 	case REQ_OP_READ:
788 	case REQ_OP_WRITE:
789 		break;
790 	case REQ_OP_FLUSH:
791 		/*
792 		 * REQ_OP_FLUSH can't be submitted through bios, it is only
793 		 * synthetized in struct request by the flush state machine.
794 		 */
795 		goto not_supported;
796 	case REQ_OP_DISCARD:
797 		if (!bdev_max_discard_sectors(bdev))
798 			goto not_supported;
799 		break;
800 	case REQ_OP_SECURE_ERASE:
801 		if (!bdev_max_secure_erase_sectors(bdev))
802 			goto not_supported;
803 		break;
804 	case REQ_OP_ZONE_APPEND:
805 		status = blk_check_zone_append(q, bio);
806 		if (status != BLK_STS_OK)
807 			goto end_io;
808 		break;
809 	case REQ_OP_WRITE_ZEROES:
810 		if (!q->limits.max_write_zeroes_sectors)
811 			goto not_supported;
812 		break;
813 	case REQ_OP_ZONE_RESET:
814 	case REQ_OP_ZONE_OPEN:
815 	case REQ_OP_ZONE_CLOSE:
816 	case REQ_OP_ZONE_FINISH:
817 		if (!bdev_is_zoned(bio->bi_bdev))
818 			goto not_supported;
819 		break;
820 	case REQ_OP_ZONE_RESET_ALL:
821 		if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
822 			goto not_supported;
823 		break;
824 	case REQ_OP_DRV_IN:
825 	case REQ_OP_DRV_OUT:
826 		/*
827 		 * Driver private operations are only used with passthrough
828 		 * requests.
829 		 */
830 		fallthrough;
831 	default:
832 		goto not_supported;
833 	}
834 
835 	if (blk_throtl_bio(bio))
836 		return;
837 	submit_bio_noacct_nocheck(bio);
838 	return;
839 
840 not_supported:
841 	status = BLK_STS_NOTSUPP;
842 end_io:
843 	bio->bi_status = status;
844 	bio_endio(bio);
845 }
846 EXPORT_SYMBOL(submit_bio_noacct);
847 
848 static void bio_set_ioprio(struct bio *bio)
849 {
850 	/* Nobody set ioprio so far? Initialize it based on task's nice value */
851 	if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
852 		bio->bi_ioprio = get_current_ioprio();
853 	blkcg_set_ioprio(bio);
854 }
855 
856 /**
857  * submit_bio - submit a bio to the block device layer for I/O
858  * @bio: The &struct bio which describes the I/O
859  *
860  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
861  * fully set up &struct bio that describes the I/O that needs to be done.  The
862  * bio will be send to the device described by the bi_bdev field.
863  *
864  * The success/failure status of the request, along with notification of
865  * completion, is delivered asynchronously through the ->bi_end_io() callback
866  * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
867  * been called.
868  */
869 void submit_bio(struct bio *bio)
870 {
871 	if (bio_op(bio) == REQ_OP_READ) {
872 		task_io_account_read(bio->bi_iter.bi_size);
873 		count_vm_events(PGPGIN, bio_sectors(bio));
874 	} else if (bio_op(bio) == REQ_OP_WRITE) {
875 		count_vm_events(PGPGOUT, bio_sectors(bio));
876 	}
877 
878 	bio_set_ioprio(bio);
879 	submit_bio_noacct(bio);
880 }
881 EXPORT_SYMBOL(submit_bio);
882 
883 /**
884  * bio_poll - poll for BIO completions
885  * @bio: bio to poll for
886  * @iob: batches of IO
887  * @flags: BLK_POLL_* flags that control the behavior
888  *
889  * Poll for completions on queue associated with the bio. Returns number of
890  * completed entries found.
891  *
892  * Note: the caller must either be the context that submitted @bio, or
893  * be in a RCU critical section to prevent freeing of @bio.
894  */
895 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
896 {
897 	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
898 	struct block_device *bdev;
899 	struct request_queue *q;
900 	int ret = 0;
901 
902 	bdev = READ_ONCE(bio->bi_bdev);
903 	if (!bdev)
904 		return 0;
905 
906 	q = bdev_get_queue(bdev);
907 	if (cookie == BLK_QC_T_NONE ||
908 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
909 		return 0;
910 
911 	/*
912 	 * As the requests that require a zone lock are not plugged in the
913 	 * first place, directly accessing the plug instead of using
914 	 * blk_mq_plug() should not have any consequences during flushing for
915 	 * zoned devices.
916 	 */
917 	blk_flush_plug(current->plug, false);
918 
919 	/*
920 	 * We need to be able to enter a frozen queue, similar to how
921 	 * timeouts also need to do that. If that is blocked, then we can
922 	 * have pending IO when a queue freeze is started, and then the
923 	 * wait for the freeze to finish will wait for polled requests to
924 	 * timeout as the poller is preventer from entering the queue and
925 	 * completing them. As long as we prevent new IO from being queued,
926 	 * that should be all that matters.
927 	 */
928 	if (!percpu_ref_tryget(&q->q_usage_counter))
929 		return 0;
930 	if (queue_is_mq(q)) {
931 		ret = blk_mq_poll(q, cookie, iob, flags);
932 	} else {
933 		struct gendisk *disk = q->disk;
934 
935 		if (disk && disk->fops->poll_bio)
936 			ret = disk->fops->poll_bio(bio, iob, flags);
937 	}
938 	blk_queue_exit(q);
939 	return ret;
940 }
941 EXPORT_SYMBOL_GPL(bio_poll);
942 
943 /*
944  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
945  * in iocb->private, and cleared before freeing the bio.
946  */
947 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
948 		    unsigned int flags)
949 {
950 	struct bio *bio;
951 	int ret = 0;
952 
953 	/*
954 	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
955 	 * point to a freshly allocated bio at this point.  If that happens
956 	 * we have a few cases to consider:
957 	 *
958 	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
959 	 *     simply nothing in this case
960 	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
961 	 *     this and return 0
962 	 *  3) the bio points to a poll capable device, including but not
963 	 *     limited to the one that the original bio pointed to.  In this
964 	 *     case we will call into the actual poll method and poll for I/O,
965 	 *     even if we don't need to, but it won't cause harm either.
966 	 *
967 	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
968 	 * is still allocated. Because partitions hold a reference to the whole
969 	 * device bdev and thus disk, the disk is also still valid.  Grabbing
970 	 * a reference to the queue in bio_poll() ensures the hctxs and requests
971 	 * are still valid as well.
972 	 */
973 	rcu_read_lock();
974 	bio = READ_ONCE(kiocb->private);
975 	if (bio)
976 		ret = bio_poll(bio, iob, flags);
977 	rcu_read_unlock();
978 
979 	return ret;
980 }
981 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
982 
983 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
984 {
985 	unsigned long stamp;
986 again:
987 	stamp = READ_ONCE(part->bd_stamp);
988 	if (unlikely(time_after(now, stamp))) {
989 		if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
990 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
991 	}
992 	if (part->bd_partno) {
993 		part = bdev_whole(part);
994 		goto again;
995 	}
996 }
997 
998 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
999 				 unsigned long start_time)
1000 {
1001 	part_stat_lock();
1002 	update_io_ticks(bdev, start_time, false);
1003 	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
1004 	part_stat_unlock();
1005 
1006 	return start_time;
1007 }
1008 EXPORT_SYMBOL(bdev_start_io_acct);
1009 
1010 /**
1011  * bio_start_io_acct - start I/O accounting for bio based drivers
1012  * @bio:	bio to start account for
1013  *
1014  * Returns the start time that should be passed back to bio_end_io_acct().
1015  */
1016 unsigned long bio_start_io_acct(struct bio *bio)
1017 {
1018 	return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
1019 }
1020 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1021 
1022 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1023 		      unsigned int sectors, unsigned long start_time)
1024 {
1025 	const int sgrp = op_stat_group(op);
1026 	unsigned long now = READ_ONCE(jiffies);
1027 	unsigned long duration = now - start_time;
1028 
1029 	part_stat_lock();
1030 	update_io_ticks(bdev, now, true);
1031 	part_stat_inc(bdev, ios[sgrp]);
1032 	part_stat_add(bdev, sectors[sgrp], sectors);
1033 	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
1034 	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
1035 	part_stat_unlock();
1036 }
1037 EXPORT_SYMBOL(bdev_end_io_acct);
1038 
1039 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1040 			      struct block_device *orig_bdev)
1041 {
1042 	bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1043 }
1044 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1045 
1046 /**
1047  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1048  * @q : the queue of the device being checked
1049  *
1050  * Description:
1051  *    Check if underlying low-level drivers of a device are busy.
1052  *    If the drivers want to export their busy state, they must set own
1053  *    exporting function using blk_queue_lld_busy() first.
1054  *
1055  *    Basically, this function is used only by request stacking drivers
1056  *    to stop dispatching requests to underlying devices when underlying
1057  *    devices are busy.  This behavior helps more I/O merging on the queue
1058  *    of the request stacking driver and prevents I/O throughput regression
1059  *    on burst I/O load.
1060  *
1061  * Return:
1062  *    0 - Not busy (The request stacking driver should dispatch request)
1063  *    1 - Busy (The request stacking driver should stop dispatching request)
1064  */
1065 int blk_lld_busy(struct request_queue *q)
1066 {
1067 	if (queue_is_mq(q) && q->mq_ops->busy)
1068 		return q->mq_ops->busy(q);
1069 
1070 	return 0;
1071 }
1072 EXPORT_SYMBOL_GPL(blk_lld_busy);
1073 
1074 int kblockd_schedule_work(struct work_struct *work)
1075 {
1076 	return queue_work(kblockd_workqueue, work);
1077 }
1078 EXPORT_SYMBOL(kblockd_schedule_work);
1079 
1080 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1081 				unsigned long delay)
1082 {
1083 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1084 }
1085 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1086 
1087 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1088 {
1089 	struct task_struct *tsk = current;
1090 
1091 	/*
1092 	 * If this is a nested plug, don't actually assign it.
1093 	 */
1094 	if (tsk->plug)
1095 		return;
1096 
1097 	plug->cur_ktime = 0;
1098 	plug->mq_list = NULL;
1099 	plug->cached_rq = NULL;
1100 	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1101 	plug->rq_count = 0;
1102 	plug->multiple_queues = false;
1103 	plug->has_elevator = false;
1104 	INIT_LIST_HEAD(&plug->cb_list);
1105 
1106 	/*
1107 	 * Store ordering should not be needed here, since a potential
1108 	 * preempt will imply a full memory barrier
1109 	 */
1110 	tsk->plug = plug;
1111 }
1112 
1113 /**
1114  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1115  * @plug:	The &struct blk_plug that needs to be initialized
1116  *
1117  * Description:
1118  *   blk_start_plug() indicates to the block layer an intent by the caller
1119  *   to submit multiple I/O requests in a batch.  The block layer may use
1120  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1121  *   is called.  However, the block layer may choose to submit requests
1122  *   before a call to blk_finish_plug() if the number of queued I/Os
1123  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1124  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1125  *   the task schedules (see below).
1126  *
1127  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1128  *   pending I/O should the task end up blocking between blk_start_plug() and
1129  *   blk_finish_plug(). This is important from a performance perspective, but
1130  *   also ensures that we don't deadlock. For instance, if the task is blocking
1131  *   for a memory allocation, memory reclaim could end up wanting to free a
1132  *   page belonging to that request that is currently residing in our private
1133  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1134  *   this kind of deadlock.
1135  */
1136 void blk_start_plug(struct blk_plug *plug)
1137 {
1138 	blk_start_plug_nr_ios(plug, 1);
1139 }
1140 EXPORT_SYMBOL(blk_start_plug);
1141 
1142 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1143 {
1144 	LIST_HEAD(callbacks);
1145 
1146 	while (!list_empty(&plug->cb_list)) {
1147 		list_splice_init(&plug->cb_list, &callbacks);
1148 
1149 		while (!list_empty(&callbacks)) {
1150 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1151 							  struct blk_plug_cb,
1152 							  list);
1153 			list_del(&cb->list);
1154 			cb->callback(cb, from_schedule);
1155 		}
1156 	}
1157 }
1158 
1159 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1160 				      int size)
1161 {
1162 	struct blk_plug *plug = current->plug;
1163 	struct blk_plug_cb *cb;
1164 
1165 	if (!plug)
1166 		return NULL;
1167 
1168 	list_for_each_entry(cb, &plug->cb_list, list)
1169 		if (cb->callback == unplug && cb->data == data)
1170 			return cb;
1171 
1172 	/* Not currently on the callback list */
1173 	BUG_ON(size < sizeof(*cb));
1174 	cb = kzalloc(size, GFP_ATOMIC);
1175 	if (cb) {
1176 		cb->data = data;
1177 		cb->callback = unplug;
1178 		list_add(&cb->list, &plug->cb_list);
1179 	}
1180 	return cb;
1181 }
1182 EXPORT_SYMBOL(blk_check_plugged);
1183 
1184 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1185 {
1186 	if (!list_empty(&plug->cb_list))
1187 		flush_plug_callbacks(plug, from_schedule);
1188 	blk_mq_flush_plug_list(plug, from_schedule);
1189 	/*
1190 	 * Unconditionally flush out cached requests, even if the unplug
1191 	 * event came from schedule. Since we know hold references to the
1192 	 * queue for cached requests, we don't want a blocked task holding
1193 	 * up a queue freeze/quiesce event.
1194 	 */
1195 	if (unlikely(!rq_list_empty(plug->cached_rq)))
1196 		blk_mq_free_plug_rqs(plug);
1197 
1198 	current->flags &= ~PF_BLOCK_TS;
1199 }
1200 
1201 /**
1202  * blk_finish_plug - mark the end of a batch of submitted I/O
1203  * @plug:	The &struct blk_plug passed to blk_start_plug()
1204  *
1205  * Description:
1206  * Indicate that a batch of I/O submissions is complete.  This function
1207  * must be paired with an initial call to blk_start_plug().  The intent
1208  * is to allow the block layer to optimize I/O submission.  See the
1209  * documentation for blk_start_plug() for more information.
1210  */
1211 void blk_finish_plug(struct blk_plug *plug)
1212 {
1213 	if (plug == current->plug) {
1214 		__blk_flush_plug(plug, false);
1215 		current->plug = NULL;
1216 	}
1217 }
1218 EXPORT_SYMBOL(blk_finish_plug);
1219 
1220 void blk_io_schedule(void)
1221 {
1222 	/* Prevent hang_check timer from firing at us during very long I/O */
1223 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1224 
1225 	if (timeout)
1226 		io_schedule_timeout(timeout);
1227 	else
1228 		io_schedule();
1229 }
1230 EXPORT_SYMBOL_GPL(blk_io_schedule);
1231 
1232 int __init blk_dev_init(void)
1233 {
1234 	BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1235 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1236 			sizeof_field(struct request, cmd_flags));
1237 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1238 			sizeof_field(struct bio, bi_opf));
1239 
1240 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1241 	kblockd_workqueue = alloc_workqueue("kblockd",
1242 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1243 	if (!kblockd_workqueue)
1244 		panic("Failed to create kblockd\n");
1245 
1246 	blk_requestq_cachep = KMEM_CACHE(request_queue, SLAB_PANIC);
1247 
1248 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1249 
1250 	return 0;
1251 }
1252