1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 #include "blk-mq.h" 43 #include "blk-mq-sched.h" 44 #include "blk-wbt.h" 45 46 #ifdef CONFIG_DEBUG_FS 47 struct dentry *blk_debugfs_root; 48 #endif 49 50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 55 56 DEFINE_IDA(blk_queue_ida); 57 58 /* 59 * For the allocated request tables 60 */ 61 struct kmem_cache *request_cachep; 62 63 /* 64 * For queue allocation 65 */ 66 struct kmem_cache *blk_requestq_cachep; 67 68 /* 69 * Controlling structure to kblockd 70 */ 71 static struct workqueue_struct *kblockd_workqueue; 72 73 static void blk_clear_congested(struct request_list *rl, int sync) 74 { 75 #ifdef CONFIG_CGROUP_WRITEBACK 76 clear_wb_congested(rl->blkg->wb_congested, sync); 77 #else 78 /* 79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 80 * flip its congestion state for events on other blkcgs. 81 */ 82 if (rl == &rl->q->root_rl) 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 84 #endif 85 } 86 87 static void blk_set_congested(struct request_list *rl, int sync) 88 { 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 set_wb_congested(rl->blkg->wb_congested, sync); 91 #else 92 /* see blk_clear_congested() */ 93 if (rl == &rl->q->root_rl) 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 95 #endif 96 } 97 98 void blk_queue_congestion_threshold(struct request_queue *q) 99 { 100 int nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) + 1; 103 if (nr > q->nr_requests) 104 nr = q->nr_requests; 105 q->nr_congestion_on = nr; 106 107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 108 if (nr < 1) 109 nr = 1; 110 q->nr_congestion_off = nr; 111 } 112 113 void blk_rq_init(struct request_queue *q, struct request *rq) 114 { 115 memset(rq, 0, sizeof(*rq)); 116 117 INIT_LIST_HEAD(&rq->queuelist); 118 INIT_LIST_HEAD(&rq->timeout_list); 119 rq->cpu = -1; 120 rq->q = q; 121 rq->__sector = (sector_t) -1; 122 INIT_HLIST_NODE(&rq->hash); 123 RB_CLEAR_NODE(&rq->rb_node); 124 rq->tag = -1; 125 rq->internal_tag = -1; 126 rq->start_time = jiffies; 127 set_start_time_ns(rq); 128 rq->part = NULL; 129 } 130 EXPORT_SYMBOL(blk_rq_init); 131 132 static const struct { 133 int errno; 134 const char *name; 135 } blk_errors[] = { 136 [BLK_STS_OK] = { 0, "" }, 137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 147 148 /* device mapper special case, should not leak out: */ 149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 150 151 /* everything else not covered above: */ 152 [BLK_STS_IOERR] = { -EIO, "I/O" }, 153 }; 154 155 blk_status_t errno_to_blk_status(int errno) 156 { 157 int i; 158 159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 160 if (blk_errors[i].errno == errno) 161 return (__force blk_status_t)i; 162 } 163 164 return BLK_STS_IOERR; 165 } 166 EXPORT_SYMBOL_GPL(errno_to_blk_status); 167 168 int blk_status_to_errno(blk_status_t status) 169 { 170 int idx = (__force int)status; 171 172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 173 return -EIO; 174 return blk_errors[idx].errno; 175 } 176 EXPORT_SYMBOL_GPL(blk_status_to_errno); 177 178 static void print_req_error(struct request *req, blk_status_t status) 179 { 180 int idx = (__force int)status; 181 182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 183 return; 184 185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 186 __func__, blk_errors[idx].name, req->rq_disk ? 187 req->rq_disk->disk_name : "?", 188 (unsigned long long)blk_rq_pos(req)); 189 } 190 191 static void req_bio_endio(struct request *rq, struct bio *bio, 192 unsigned int nbytes, blk_status_t error) 193 { 194 if (error) 195 bio->bi_status = error; 196 197 if (unlikely(rq->rq_flags & RQF_QUIET)) 198 bio_set_flag(bio, BIO_QUIET); 199 200 bio_advance(bio, nbytes); 201 202 /* don't actually finish bio if it's part of flush sequence */ 203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 204 bio_endio(bio); 205 } 206 207 void blk_dump_rq_flags(struct request *rq, char *msg) 208 { 209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 210 rq->rq_disk ? rq->rq_disk->disk_name : "?", 211 (unsigned long long) rq->cmd_flags); 212 213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 214 (unsigned long long)blk_rq_pos(rq), 215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 216 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 217 rq->bio, rq->biotail, blk_rq_bytes(rq)); 218 } 219 EXPORT_SYMBOL(blk_dump_rq_flags); 220 221 static void blk_delay_work(struct work_struct *work) 222 { 223 struct request_queue *q; 224 225 q = container_of(work, struct request_queue, delay_work.work); 226 spin_lock_irq(q->queue_lock); 227 __blk_run_queue(q); 228 spin_unlock_irq(q->queue_lock); 229 } 230 231 /** 232 * blk_delay_queue - restart queueing after defined interval 233 * @q: The &struct request_queue in question 234 * @msecs: Delay in msecs 235 * 236 * Description: 237 * Sometimes queueing needs to be postponed for a little while, to allow 238 * resources to come back. This function will make sure that queueing is 239 * restarted around the specified time. 240 */ 241 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 242 { 243 lockdep_assert_held(q->queue_lock); 244 WARN_ON_ONCE(q->mq_ops); 245 246 if (likely(!blk_queue_dead(q))) 247 queue_delayed_work(kblockd_workqueue, &q->delay_work, 248 msecs_to_jiffies(msecs)); 249 } 250 EXPORT_SYMBOL(blk_delay_queue); 251 252 /** 253 * blk_start_queue_async - asynchronously restart a previously stopped queue 254 * @q: The &struct request_queue in question 255 * 256 * Description: 257 * blk_start_queue_async() will clear the stop flag on the queue, and 258 * ensure that the request_fn for the queue is run from an async 259 * context. 260 **/ 261 void blk_start_queue_async(struct request_queue *q) 262 { 263 lockdep_assert_held(q->queue_lock); 264 WARN_ON_ONCE(q->mq_ops); 265 266 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 267 blk_run_queue_async(q); 268 } 269 EXPORT_SYMBOL(blk_start_queue_async); 270 271 /** 272 * blk_start_queue - restart a previously stopped queue 273 * @q: The &struct request_queue in question 274 * 275 * Description: 276 * blk_start_queue() will clear the stop flag on the queue, and call 277 * the request_fn for the queue if it was in a stopped state when 278 * entered. Also see blk_stop_queue(). 279 **/ 280 void blk_start_queue(struct request_queue *q) 281 { 282 lockdep_assert_held(q->queue_lock); 283 WARN_ON(!in_interrupt() && !irqs_disabled()); 284 WARN_ON_ONCE(q->mq_ops); 285 286 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 287 __blk_run_queue(q); 288 } 289 EXPORT_SYMBOL(blk_start_queue); 290 291 /** 292 * blk_stop_queue - stop a queue 293 * @q: The &struct request_queue in question 294 * 295 * Description: 296 * The Linux block layer assumes that a block driver will consume all 297 * entries on the request queue when the request_fn strategy is called. 298 * Often this will not happen, because of hardware limitations (queue 299 * depth settings). If a device driver gets a 'queue full' response, 300 * or if it simply chooses not to queue more I/O at one point, it can 301 * call this function to prevent the request_fn from being called until 302 * the driver has signalled it's ready to go again. This happens by calling 303 * blk_start_queue() to restart queue operations. 304 **/ 305 void blk_stop_queue(struct request_queue *q) 306 { 307 lockdep_assert_held(q->queue_lock); 308 WARN_ON_ONCE(q->mq_ops); 309 310 cancel_delayed_work(&q->delay_work); 311 queue_flag_set(QUEUE_FLAG_STOPPED, q); 312 } 313 EXPORT_SYMBOL(blk_stop_queue); 314 315 /** 316 * blk_sync_queue - cancel any pending callbacks on a queue 317 * @q: the queue 318 * 319 * Description: 320 * The block layer may perform asynchronous callback activity 321 * on a queue, such as calling the unplug function after a timeout. 322 * A block device may call blk_sync_queue to ensure that any 323 * such activity is cancelled, thus allowing it to release resources 324 * that the callbacks might use. The caller must already have made sure 325 * that its ->make_request_fn will not re-add plugging prior to calling 326 * this function. 327 * 328 * This function does not cancel any asynchronous activity arising 329 * out of elevator or throttling code. That would require elevator_exit() 330 * and blkcg_exit_queue() to be called with queue lock initialized. 331 * 332 */ 333 void blk_sync_queue(struct request_queue *q) 334 { 335 del_timer_sync(&q->timeout); 336 cancel_work_sync(&q->timeout_work); 337 338 if (q->mq_ops) { 339 struct blk_mq_hw_ctx *hctx; 340 int i; 341 342 cancel_delayed_work_sync(&q->requeue_work); 343 queue_for_each_hw_ctx(q, hctx, i) 344 cancel_delayed_work_sync(&hctx->run_work); 345 } else { 346 cancel_delayed_work_sync(&q->delay_work); 347 } 348 } 349 EXPORT_SYMBOL(blk_sync_queue); 350 351 /** 352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY 353 * @q: request queue pointer 354 * 355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not 356 * set and 1 if the flag was already set. 357 */ 358 int blk_set_preempt_only(struct request_queue *q) 359 { 360 unsigned long flags; 361 int res; 362 363 spin_lock_irqsave(q->queue_lock, flags); 364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q); 365 spin_unlock_irqrestore(q->queue_lock, flags); 366 367 return res; 368 } 369 EXPORT_SYMBOL_GPL(blk_set_preempt_only); 370 371 void blk_clear_preempt_only(struct request_queue *q) 372 { 373 unsigned long flags; 374 375 spin_lock_irqsave(q->queue_lock, flags); 376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q); 377 wake_up_all(&q->mq_freeze_wq); 378 spin_unlock_irqrestore(q->queue_lock, flags); 379 } 380 EXPORT_SYMBOL_GPL(blk_clear_preempt_only); 381 382 /** 383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 384 * @q: The queue to run 385 * 386 * Description: 387 * Invoke request handling on a queue if there are any pending requests. 388 * May be used to restart request handling after a request has completed. 389 * This variant runs the queue whether or not the queue has been 390 * stopped. Must be called with the queue lock held and interrupts 391 * disabled. See also @blk_run_queue. 392 */ 393 inline void __blk_run_queue_uncond(struct request_queue *q) 394 { 395 lockdep_assert_held(q->queue_lock); 396 WARN_ON_ONCE(q->mq_ops); 397 398 if (unlikely(blk_queue_dead(q))) 399 return; 400 401 /* 402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 403 * the queue lock internally. As a result multiple threads may be 404 * running such a request function concurrently. Keep track of the 405 * number of active request_fn invocations such that blk_drain_queue() 406 * can wait until all these request_fn calls have finished. 407 */ 408 q->request_fn_active++; 409 q->request_fn(q); 410 q->request_fn_active--; 411 } 412 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 413 414 /** 415 * __blk_run_queue - run a single device queue 416 * @q: The queue to run 417 * 418 * Description: 419 * See @blk_run_queue. 420 */ 421 void __blk_run_queue(struct request_queue *q) 422 { 423 lockdep_assert_held(q->queue_lock); 424 WARN_ON_ONCE(q->mq_ops); 425 426 if (unlikely(blk_queue_stopped(q))) 427 return; 428 429 __blk_run_queue_uncond(q); 430 } 431 EXPORT_SYMBOL(__blk_run_queue); 432 433 /** 434 * blk_run_queue_async - run a single device queue in workqueue context 435 * @q: The queue to run 436 * 437 * Description: 438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 439 * of us. 440 * 441 * Note: 442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 443 * has canceled q->delay_work, callers must hold the queue lock to avoid 444 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 445 */ 446 void blk_run_queue_async(struct request_queue *q) 447 { 448 lockdep_assert_held(q->queue_lock); 449 WARN_ON_ONCE(q->mq_ops); 450 451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 453 } 454 EXPORT_SYMBOL(blk_run_queue_async); 455 456 /** 457 * blk_run_queue - run a single device queue 458 * @q: The queue to run 459 * 460 * Description: 461 * Invoke request handling on this queue, if it has pending work to do. 462 * May be used to restart queueing when a request has completed. 463 */ 464 void blk_run_queue(struct request_queue *q) 465 { 466 unsigned long flags; 467 468 WARN_ON_ONCE(q->mq_ops); 469 470 spin_lock_irqsave(q->queue_lock, flags); 471 __blk_run_queue(q); 472 spin_unlock_irqrestore(q->queue_lock, flags); 473 } 474 EXPORT_SYMBOL(blk_run_queue); 475 476 void blk_put_queue(struct request_queue *q) 477 { 478 kobject_put(&q->kobj); 479 } 480 EXPORT_SYMBOL(blk_put_queue); 481 482 /** 483 * __blk_drain_queue - drain requests from request_queue 484 * @q: queue to drain 485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 486 * 487 * Drain requests from @q. If @drain_all is set, all requests are drained. 488 * If not, only ELVPRIV requests are drained. The caller is responsible 489 * for ensuring that no new requests which need to be drained are queued. 490 */ 491 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 492 __releases(q->queue_lock) 493 __acquires(q->queue_lock) 494 { 495 int i; 496 497 lockdep_assert_held(q->queue_lock); 498 WARN_ON_ONCE(q->mq_ops); 499 500 while (true) { 501 bool drain = false; 502 503 /* 504 * The caller might be trying to drain @q before its 505 * elevator is initialized. 506 */ 507 if (q->elevator) 508 elv_drain_elevator(q); 509 510 blkcg_drain_queue(q); 511 512 /* 513 * This function might be called on a queue which failed 514 * driver init after queue creation or is not yet fully 515 * active yet. Some drivers (e.g. fd and loop) get unhappy 516 * in such cases. Kick queue iff dispatch queue has 517 * something on it and @q has request_fn set. 518 */ 519 if (!list_empty(&q->queue_head) && q->request_fn) 520 __blk_run_queue(q); 521 522 drain |= q->nr_rqs_elvpriv; 523 drain |= q->request_fn_active; 524 525 /* 526 * Unfortunately, requests are queued at and tracked from 527 * multiple places and there's no single counter which can 528 * be drained. Check all the queues and counters. 529 */ 530 if (drain_all) { 531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 532 drain |= !list_empty(&q->queue_head); 533 for (i = 0; i < 2; i++) { 534 drain |= q->nr_rqs[i]; 535 drain |= q->in_flight[i]; 536 if (fq) 537 drain |= !list_empty(&fq->flush_queue[i]); 538 } 539 } 540 541 if (!drain) 542 break; 543 544 spin_unlock_irq(q->queue_lock); 545 546 msleep(10); 547 548 spin_lock_irq(q->queue_lock); 549 } 550 551 /* 552 * With queue marked dead, any woken up waiter will fail the 553 * allocation path, so the wakeup chaining is lost and we're 554 * left with hung waiters. We need to wake up those waiters. 555 */ 556 if (q->request_fn) { 557 struct request_list *rl; 558 559 blk_queue_for_each_rl(rl, q) 560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 561 wake_up_all(&rl->wait[i]); 562 } 563 } 564 565 void blk_drain_queue(struct request_queue *q) 566 { 567 spin_lock_irq(q->queue_lock); 568 __blk_drain_queue(q, true); 569 spin_unlock_irq(q->queue_lock); 570 } 571 572 /** 573 * blk_queue_bypass_start - enter queue bypass mode 574 * @q: queue of interest 575 * 576 * In bypass mode, only the dispatch FIFO queue of @q is used. This 577 * function makes @q enter bypass mode and drains all requests which were 578 * throttled or issued before. On return, it's guaranteed that no request 579 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 580 * inside queue or RCU read lock. 581 */ 582 void blk_queue_bypass_start(struct request_queue *q) 583 { 584 WARN_ON_ONCE(q->mq_ops); 585 586 spin_lock_irq(q->queue_lock); 587 q->bypass_depth++; 588 queue_flag_set(QUEUE_FLAG_BYPASS, q); 589 spin_unlock_irq(q->queue_lock); 590 591 /* 592 * Queues start drained. Skip actual draining till init is 593 * complete. This avoids lenghty delays during queue init which 594 * can happen many times during boot. 595 */ 596 if (blk_queue_init_done(q)) { 597 spin_lock_irq(q->queue_lock); 598 __blk_drain_queue(q, false); 599 spin_unlock_irq(q->queue_lock); 600 601 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 602 synchronize_rcu(); 603 } 604 } 605 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 606 607 /** 608 * blk_queue_bypass_end - leave queue bypass mode 609 * @q: queue of interest 610 * 611 * Leave bypass mode and restore the normal queueing behavior. 612 * 613 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 614 * this function is called for both blk-sq and blk-mq queues. 615 */ 616 void blk_queue_bypass_end(struct request_queue *q) 617 { 618 spin_lock_irq(q->queue_lock); 619 if (!--q->bypass_depth) 620 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 621 WARN_ON_ONCE(q->bypass_depth < 0); 622 spin_unlock_irq(q->queue_lock); 623 } 624 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 625 626 void blk_set_queue_dying(struct request_queue *q) 627 { 628 spin_lock_irq(q->queue_lock); 629 queue_flag_set(QUEUE_FLAG_DYING, q); 630 spin_unlock_irq(q->queue_lock); 631 632 /* 633 * When queue DYING flag is set, we need to block new req 634 * entering queue, so we call blk_freeze_queue_start() to 635 * prevent I/O from crossing blk_queue_enter(). 636 */ 637 blk_freeze_queue_start(q); 638 639 if (q->mq_ops) 640 blk_mq_wake_waiters(q); 641 else { 642 struct request_list *rl; 643 644 spin_lock_irq(q->queue_lock); 645 blk_queue_for_each_rl(rl, q) { 646 if (rl->rq_pool) { 647 wake_up_all(&rl->wait[BLK_RW_SYNC]); 648 wake_up_all(&rl->wait[BLK_RW_ASYNC]); 649 } 650 } 651 spin_unlock_irq(q->queue_lock); 652 } 653 654 /* Make blk_queue_enter() reexamine the DYING flag. */ 655 wake_up_all(&q->mq_freeze_wq); 656 } 657 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 658 659 /** 660 * blk_cleanup_queue - shutdown a request queue 661 * @q: request queue to shutdown 662 * 663 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 664 * put it. All future requests will be failed immediately with -ENODEV. 665 */ 666 void blk_cleanup_queue(struct request_queue *q) 667 { 668 spinlock_t *lock = q->queue_lock; 669 670 /* mark @q DYING, no new request or merges will be allowed afterwards */ 671 mutex_lock(&q->sysfs_lock); 672 blk_set_queue_dying(q); 673 spin_lock_irq(lock); 674 675 /* 676 * A dying queue is permanently in bypass mode till released. Note 677 * that, unlike blk_queue_bypass_start(), we aren't performing 678 * synchronize_rcu() after entering bypass mode to avoid the delay 679 * as some drivers create and destroy a lot of queues while 680 * probing. This is still safe because blk_release_queue() will be 681 * called only after the queue refcnt drops to zero and nothing, 682 * RCU or not, would be traversing the queue by then. 683 */ 684 q->bypass_depth++; 685 queue_flag_set(QUEUE_FLAG_BYPASS, q); 686 687 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 688 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 689 queue_flag_set(QUEUE_FLAG_DYING, q); 690 spin_unlock_irq(lock); 691 mutex_unlock(&q->sysfs_lock); 692 693 /* 694 * Drain all requests queued before DYING marking. Set DEAD flag to 695 * prevent that q->request_fn() gets invoked after draining finished. 696 */ 697 blk_freeze_queue(q); 698 spin_lock_irq(lock); 699 queue_flag_set(QUEUE_FLAG_DEAD, q); 700 spin_unlock_irq(lock); 701 702 /* for synchronous bio-based driver finish in-flight integrity i/o */ 703 blk_flush_integrity(); 704 705 /* @q won't process any more request, flush async actions */ 706 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 707 blk_sync_queue(q); 708 709 if (q->mq_ops) 710 blk_mq_free_queue(q); 711 percpu_ref_exit(&q->q_usage_counter); 712 713 spin_lock_irq(lock); 714 if (q->queue_lock != &q->__queue_lock) 715 q->queue_lock = &q->__queue_lock; 716 spin_unlock_irq(lock); 717 718 /* @q is and will stay empty, shutdown and put */ 719 blk_put_queue(q); 720 } 721 EXPORT_SYMBOL(blk_cleanup_queue); 722 723 /* Allocate memory local to the request queue */ 724 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 725 { 726 struct request_queue *q = data; 727 728 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 729 } 730 731 static void free_request_simple(void *element, void *data) 732 { 733 kmem_cache_free(request_cachep, element); 734 } 735 736 static void *alloc_request_size(gfp_t gfp_mask, void *data) 737 { 738 struct request_queue *q = data; 739 struct request *rq; 740 741 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 742 q->node); 743 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 744 kfree(rq); 745 rq = NULL; 746 } 747 return rq; 748 } 749 750 static void free_request_size(void *element, void *data) 751 { 752 struct request_queue *q = data; 753 754 if (q->exit_rq_fn) 755 q->exit_rq_fn(q, element); 756 kfree(element); 757 } 758 759 int blk_init_rl(struct request_list *rl, struct request_queue *q, 760 gfp_t gfp_mask) 761 { 762 if (unlikely(rl->rq_pool) || q->mq_ops) 763 return 0; 764 765 rl->q = q; 766 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 767 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 768 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 769 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 770 771 if (q->cmd_size) { 772 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 773 alloc_request_size, free_request_size, 774 q, gfp_mask, q->node); 775 } else { 776 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 777 alloc_request_simple, free_request_simple, 778 q, gfp_mask, q->node); 779 } 780 if (!rl->rq_pool) 781 return -ENOMEM; 782 783 if (rl != &q->root_rl) 784 WARN_ON_ONCE(!blk_get_queue(q)); 785 786 return 0; 787 } 788 789 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 790 { 791 if (rl->rq_pool) { 792 mempool_destroy(rl->rq_pool); 793 if (rl != &q->root_rl) 794 blk_put_queue(q); 795 } 796 } 797 798 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 799 { 800 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 801 } 802 EXPORT_SYMBOL(blk_alloc_queue); 803 804 /** 805 * blk_queue_enter() - try to increase q->q_usage_counter 806 * @q: request queue pointer 807 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 808 */ 809 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 810 { 811 const bool preempt = flags & BLK_MQ_REQ_PREEMPT; 812 813 while (true) { 814 bool success = false; 815 int ret; 816 817 rcu_read_lock_sched(); 818 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 819 /* 820 * The code that sets the PREEMPT_ONLY flag is 821 * responsible for ensuring that that flag is globally 822 * visible before the queue is unfrozen. 823 */ 824 if (preempt || !blk_queue_preempt_only(q)) { 825 success = true; 826 } else { 827 percpu_ref_put(&q->q_usage_counter); 828 } 829 } 830 rcu_read_unlock_sched(); 831 832 if (success) 833 return 0; 834 835 if (flags & BLK_MQ_REQ_NOWAIT) 836 return -EBUSY; 837 838 /* 839 * read pair of barrier in blk_freeze_queue_start(), 840 * we need to order reading __PERCPU_REF_DEAD flag of 841 * .q_usage_counter and reading .mq_freeze_depth or 842 * queue dying flag, otherwise the following wait may 843 * never return if the two reads are reordered. 844 */ 845 smp_rmb(); 846 847 ret = wait_event_interruptible(q->mq_freeze_wq, 848 (atomic_read(&q->mq_freeze_depth) == 0 && 849 (preempt || !blk_queue_preempt_only(q))) || 850 blk_queue_dying(q)); 851 if (blk_queue_dying(q)) 852 return -ENODEV; 853 if (ret) 854 return ret; 855 } 856 } 857 858 void blk_queue_exit(struct request_queue *q) 859 { 860 percpu_ref_put(&q->q_usage_counter); 861 } 862 863 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 864 { 865 struct request_queue *q = 866 container_of(ref, struct request_queue, q_usage_counter); 867 868 wake_up_all(&q->mq_freeze_wq); 869 } 870 871 static void blk_rq_timed_out_timer(struct timer_list *t) 872 { 873 struct request_queue *q = from_timer(q, t, timeout); 874 875 kblockd_schedule_work(&q->timeout_work); 876 } 877 878 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 879 { 880 struct request_queue *q; 881 882 q = kmem_cache_alloc_node(blk_requestq_cachep, 883 gfp_mask | __GFP_ZERO, node_id); 884 if (!q) 885 return NULL; 886 887 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 888 if (q->id < 0) 889 goto fail_q; 890 891 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 892 if (!q->bio_split) 893 goto fail_id; 894 895 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 896 if (!q->backing_dev_info) 897 goto fail_split; 898 899 q->stats = blk_alloc_queue_stats(); 900 if (!q->stats) 901 goto fail_stats; 902 903 q->backing_dev_info->ra_pages = 904 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 905 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 906 q->backing_dev_info->name = "block"; 907 q->node = node_id; 908 909 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 910 laptop_mode_timer_fn, 0); 911 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 912 INIT_WORK(&q->timeout_work, NULL); 913 INIT_LIST_HEAD(&q->queue_head); 914 INIT_LIST_HEAD(&q->timeout_list); 915 INIT_LIST_HEAD(&q->icq_list); 916 #ifdef CONFIG_BLK_CGROUP 917 INIT_LIST_HEAD(&q->blkg_list); 918 #endif 919 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 920 921 kobject_init(&q->kobj, &blk_queue_ktype); 922 923 #ifdef CONFIG_BLK_DEV_IO_TRACE 924 mutex_init(&q->blk_trace_mutex); 925 #endif 926 mutex_init(&q->sysfs_lock); 927 spin_lock_init(&q->__queue_lock); 928 929 /* 930 * By default initialize queue_lock to internal lock and driver can 931 * override it later if need be. 932 */ 933 q->queue_lock = &q->__queue_lock; 934 935 /* 936 * A queue starts its life with bypass turned on to avoid 937 * unnecessary bypass on/off overhead and nasty surprises during 938 * init. The initial bypass will be finished when the queue is 939 * registered by blk_register_queue(). 940 */ 941 q->bypass_depth = 1; 942 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 943 944 init_waitqueue_head(&q->mq_freeze_wq); 945 946 /* 947 * Init percpu_ref in atomic mode so that it's faster to shutdown. 948 * See blk_register_queue() for details. 949 */ 950 if (percpu_ref_init(&q->q_usage_counter, 951 blk_queue_usage_counter_release, 952 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 953 goto fail_bdi; 954 955 if (blkcg_init_queue(q)) 956 goto fail_ref; 957 958 return q; 959 960 fail_ref: 961 percpu_ref_exit(&q->q_usage_counter); 962 fail_bdi: 963 blk_free_queue_stats(q->stats); 964 fail_stats: 965 bdi_put(q->backing_dev_info); 966 fail_split: 967 bioset_free(q->bio_split); 968 fail_id: 969 ida_simple_remove(&blk_queue_ida, q->id); 970 fail_q: 971 kmem_cache_free(blk_requestq_cachep, q); 972 return NULL; 973 } 974 EXPORT_SYMBOL(blk_alloc_queue_node); 975 976 /** 977 * blk_init_queue - prepare a request queue for use with a block device 978 * @rfn: The function to be called to process requests that have been 979 * placed on the queue. 980 * @lock: Request queue spin lock 981 * 982 * Description: 983 * If a block device wishes to use the standard request handling procedures, 984 * which sorts requests and coalesces adjacent requests, then it must 985 * call blk_init_queue(). The function @rfn will be called when there 986 * are requests on the queue that need to be processed. If the device 987 * supports plugging, then @rfn may not be called immediately when requests 988 * are available on the queue, but may be called at some time later instead. 989 * Plugged queues are generally unplugged when a buffer belonging to one 990 * of the requests on the queue is needed, or due to memory pressure. 991 * 992 * @rfn is not required, or even expected, to remove all requests off the 993 * queue, but only as many as it can handle at a time. If it does leave 994 * requests on the queue, it is responsible for arranging that the requests 995 * get dealt with eventually. 996 * 997 * The queue spin lock must be held while manipulating the requests on the 998 * request queue; this lock will be taken also from interrupt context, so irq 999 * disabling is needed for it. 1000 * 1001 * Function returns a pointer to the initialized request queue, or %NULL if 1002 * it didn't succeed. 1003 * 1004 * Note: 1005 * blk_init_queue() must be paired with a blk_cleanup_queue() call 1006 * when the block device is deactivated (such as at module unload). 1007 **/ 1008 1009 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 1010 { 1011 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 1012 } 1013 EXPORT_SYMBOL(blk_init_queue); 1014 1015 struct request_queue * 1016 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 1017 { 1018 struct request_queue *q; 1019 1020 q = blk_alloc_queue_node(GFP_KERNEL, node_id); 1021 if (!q) 1022 return NULL; 1023 1024 q->request_fn = rfn; 1025 if (lock) 1026 q->queue_lock = lock; 1027 if (blk_init_allocated_queue(q) < 0) { 1028 blk_cleanup_queue(q); 1029 return NULL; 1030 } 1031 1032 return q; 1033 } 1034 EXPORT_SYMBOL(blk_init_queue_node); 1035 1036 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 1037 1038 1039 int blk_init_allocated_queue(struct request_queue *q) 1040 { 1041 WARN_ON_ONCE(q->mq_ops); 1042 1043 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 1044 if (!q->fq) 1045 return -ENOMEM; 1046 1047 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 1048 goto out_free_flush_queue; 1049 1050 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 1051 goto out_exit_flush_rq; 1052 1053 INIT_WORK(&q->timeout_work, blk_timeout_work); 1054 q->queue_flags |= QUEUE_FLAG_DEFAULT; 1055 1056 /* 1057 * This also sets hw/phys segments, boundary and size 1058 */ 1059 blk_queue_make_request(q, blk_queue_bio); 1060 1061 q->sg_reserved_size = INT_MAX; 1062 1063 /* Protect q->elevator from elevator_change */ 1064 mutex_lock(&q->sysfs_lock); 1065 1066 /* init elevator */ 1067 if (elevator_init(q, NULL)) { 1068 mutex_unlock(&q->sysfs_lock); 1069 goto out_exit_flush_rq; 1070 } 1071 1072 mutex_unlock(&q->sysfs_lock); 1073 return 0; 1074 1075 out_exit_flush_rq: 1076 if (q->exit_rq_fn) 1077 q->exit_rq_fn(q, q->fq->flush_rq); 1078 out_free_flush_queue: 1079 blk_free_flush_queue(q->fq); 1080 return -ENOMEM; 1081 } 1082 EXPORT_SYMBOL(blk_init_allocated_queue); 1083 1084 bool blk_get_queue(struct request_queue *q) 1085 { 1086 if (likely(!blk_queue_dying(q))) { 1087 __blk_get_queue(q); 1088 return true; 1089 } 1090 1091 return false; 1092 } 1093 EXPORT_SYMBOL(blk_get_queue); 1094 1095 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1096 { 1097 if (rq->rq_flags & RQF_ELVPRIV) { 1098 elv_put_request(rl->q, rq); 1099 if (rq->elv.icq) 1100 put_io_context(rq->elv.icq->ioc); 1101 } 1102 1103 mempool_free(rq, rl->rq_pool); 1104 } 1105 1106 /* 1107 * ioc_batching returns true if the ioc is a valid batching request and 1108 * should be given priority access to a request. 1109 */ 1110 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1111 { 1112 if (!ioc) 1113 return 0; 1114 1115 /* 1116 * Make sure the process is able to allocate at least 1 request 1117 * even if the batch times out, otherwise we could theoretically 1118 * lose wakeups. 1119 */ 1120 return ioc->nr_batch_requests == q->nr_batching || 1121 (ioc->nr_batch_requests > 0 1122 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1123 } 1124 1125 /* 1126 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1127 * will cause the process to be a "batcher" on all queues in the system. This 1128 * is the behaviour we want though - once it gets a wakeup it should be given 1129 * a nice run. 1130 */ 1131 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1132 { 1133 if (!ioc || ioc_batching(q, ioc)) 1134 return; 1135 1136 ioc->nr_batch_requests = q->nr_batching; 1137 ioc->last_waited = jiffies; 1138 } 1139 1140 static void __freed_request(struct request_list *rl, int sync) 1141 { 1142 struct request_queue *q = rl->q; 1143 1144 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1145 blk_clear_congested(rl, sync); 1146 1147 if (rl->count[sync] + 1 <= q->nr_requests) { 1148 if (waitqueue_active(&rl->wait[sync])) 1149 wake_up(&rl->wait[sync]); 1150 1151 blk_clear_rl_full(rl, sync); 1152 } 1153 } 1154 1155 /* 1156 * A request has just been released. Account for it, update the full and 1157 * congestion status, wake up any waiters. Called under q->queue_lock. 1158 */ 1159 static void freed_request(struct request_list *rl, bool sync, 1160 req_flags_t rq_flags) 1161 { 1162 struct request_queue *q = rl->q; 1163 1164 q->nr_rqs[sync]--; 1165 rl->count[sync]--; 1166 if (rq_flags & RQF_ELVPRIV) 1167 q->nr_rqs_elvpriv--; 1168 1169 __freed_request(rl, sync); 1170 1171 if (unlikely(rl->starved[sync ^ 1])) 1172 __freed_request(rl, sync ^ 1); 1173 } 1174 1175 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1176 { 1177 struct request_list *rl; 1178 int on_thresh, off_thresh; 1179 1180 WARN_ON_ONCE(q->mq_ops); 1181 1182 spin_lock_irq(q->queue_lock); 1183 q->nr_requests = nr; 1184 blk_queue_congestion_threshold(q); 1185 on_thresh = queue_congestion_on_threshold(q); 1186 off_thresh = queue_congestion_off_threshold(q); 1187 1188 blk_queue_for_each_rl(rl, q) { 1189 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1190 blk_set_congested(rl, BLK_RW_SYNC); 1191 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1192 blk_clear_congested(rl, BLK_RW_SYNC); 1193 1194 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1195 blk_set_congested(rl, BLK_RW_ASYNC); 1196 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1197 blk_clear_congested(rl, BLK_RW_ASYNC); 1198 1199 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1200 blk_set_rl_full(rl, BLK_RW_SYNC); 1201 } else { 1202 blk_clear_rl_full(rl, BLK_RW_SYNC); 1203 wake_up(&rl->wait[BLK_RW_SYNC]); 1204 } 1205 1206 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1207 blk_set_rl_full(rl, BLK_RW_ASYNC); 1208 } else { 1209 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1210 wake_up(&rl->wait[BLK_RW_ASYNC]); 1211 } 1212 } 1213 1214 spin_unlock_irq(q->queue_lock); 1215 return 0; 1216 } 1217 1218 /** 1219 * __get_request - get a free request 1220 * @rl: request list to allocate from 1221 * @op: operation and flags 1222 * @bio: bio to allocate request for (can be %NULL) 1223 * @flags: BLQ_MQ_REQ_* flags 1224 * 1225 * Get a free request from @q. This function may fail under memory 1226 * pressure or if @q is dead. 1227 * 1228 * Must be called with @q->queue_lock held and, 1229 * Returns ERR_PTR on failure, with @q->queue_lock held. 1230 * Returns request pointer on success, with @q->queue_lock *not held*. 1231 */ 1232 static struct request *__get_request(struct request_list *rl, unsigned int op, 1233 struct bio *bio, blk_mq_req_flags_t flags) 1234 { 1235 struct request_queue *q = rl->q; 1236 struct request *rq; 1237 struct elevator_type *et = q->elevator->type; 1238 struct io_context *ioc = rq_ioc(bio); 1239 struct io_cq *icq = NULL; 1240 const bool is_sync = op_is_sync(op); 1241 int may_queue; 1242 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : 1243 __GFP_DIRECT_RECLAIM; 1244 req_flags_t rq_flags = RQF_ALLOCED; 1245 1246 lockdep_assert_held(q->queue_lock); 1247 1248 if (unlikely(blk_queue_dying(q))) 1249 return ERR_PTR(-ENODEV); 1250 1251 may_queue = elv_may_queue(q, op); 1252 if (may_queue == ELV_MQUEUE_NO) 1253 goto rq_starved; 1254 1255 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1256 if (rl->count[is_sync]+1 >= q->nr_requests) { 1257 /* 1258 * The queue will fill after this allocation, so set 1259 * it as full, and mark this process as "batching". 1260 * This process will be allowed to complete a batch of 1261 * requests, others will be blocked. 1262 */ 1263 if (!blk_rl_full(rl, is_sync)) { 1264 ioc_set_batching(q, ioc); 1265 blk_set_rl_full(rl, is_sync); 1266 } else { 1267 if (may_queue != ELV_MQUEUE_MUST 1268 && !ioc_batching(q, ioc)) { 1269 /* 1270 * The queue is full and the allocating 1271 * process is not a "batcher", and not 1272 * exempted by the IO scheduler 1273 */ 1274 return ERR_PTR(-ENOMEM); 1275 } 1276 } 1277 } 1278 blk_set_congested(rl, is_sync); 1279 } 1280 1281 /* 1282 * Only allow batching queuers to allocate up to 50% over the defined 1283 * limit of requests, otherwise we could have thousands of requests 1284 * allocated with any setting of ->nr_requests 1285 */ 1286 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1287 return ERR_PTR(-ENOMEM); 1288 1289 q->nr_rqs[is_sync]++; 1290 rl->count[is_sync]++; 1291 rl->starved[is_sync] = 0; 1292 1293 /* 1294 * Decide whether the new request will be managed by elevator. If 1295 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1296 * prevent the current elevator from being destroyed until the new 1297 * request is freed. This guarantees icq's won't be destroyed and 1298 * makes creating new ones safe. 1299 * 1300 * Flush requests do not use the elevator so skip initialization. 1301 * This allows a request to share the flush and elevator data. 1302 * 1303 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1304 * it will be created after releasing queue_lock. 1305 */ 1306 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1307 rq_flags |= RQF_ELVPRIV; 1308 q->nr_rqs_elvpriv++; 1309 if (et->icq_cache && ioc) 1310 icq = ioc_lookup_icq(ioc, q); 1311 } 1312 1313 if (blk_queue_io_stat(q)) 1314 rq_flags |= RQF_IO_STAT; 1315 spin_unlock_irq(q->queue_lock); 1316 1317 /* allocate and init request */ 1318 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1319 if (!rq) 1320 goto fail_alloc; 1321 1322 blk_rq_init(q, rq); 1323 blk_rq_set_rl(rq, rl); 1324 rq->cmd_flags = op; 1325 rq->rq_flags = rq_flags; 1326 if (flags & BLK_MQ_REQ_PREEMPT) 1327 rq->rq_flags |= RQF_PREEMPT; 1328 1329 /* init elvpriv */ 1330 if (rq_flags & RQF_ELVPRIV) { 1331 if (unlikely(et->icq_cache && !icq)) { 1332 if (ioc) 1333 icq = ioc_create_icq(ioc, q, gfp_mask); 1334 if (!icq) 1335 goto fail_elvpriv; 1336 } 1337 1338 rq->elv.icq = icq; 1339 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1340 goto fail_elvpriv; 1341 1342 /* @rq->elv.icq holds io_context until @rq is freed */ 1343 if (icq) 1344 get_io_context(icq->ioc); 1345 } 1346 out: 1347 /* 1348 * ioc may be NULL here, and ioc_batching will be false. That's 1349 * OK, if the queue is under the request limit then requests need 1350 * not count toward the nr_batch_requests limit. There will always 1351 * be some limit enforced by BLK_BATCH_TIME. 1352 */ 1353 if (ioc_batching(q, ioc)) 1354 ioc->nr_batch_requests--; 1355 1356 trace_block_getrq(q, bio, op); 1357 return rq; 1358 1359 fail_elvpriv: 1360 /* 1361 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1362 * and may fail indefinitely under memory pressure and thus 1363 * shouldn't stall IO. Treat this request as !elvpriv. This will 1364 * disturb iosched and blkcg but weird is bettern than dead. 1365 */ 1366 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1367 __func__, dev_name(q->backing_dev_info->dev)); 1368 1369 rq->rq_flags &= ~RQF_ELVPRIV; 1370 rq->elv.icq = NULL; 1371 1372 spin_lock_irq(q->queue_lock); 1373 q->nr_rqs_elvpriv--; 1374 spin_unlock_irq(q->queue_lock); 1375 goto out; 1376 1377 fail_alloc: 1378 /* 1379 * Allocation failed presumably due to memory. Undo anything we 1380 * might have messed up. 1381 * 1382 * Allocating task should really be put onto the front of the wait 1383 * queue, but this is pretty rare. 1384 */ 1385 spin_lock_irq(q->queue_lock); 1386 freed_request(rl, is_sync, rq_flags); 1387 1388 /* 1389 * in the very unlikely event that allocation failed and no 1390 * requests for this direction was pending, mark us starved so that 1391 * freeing of a request in the other direction will notice 1392 * us. another possible fix would be to split the rq mempool into 1393 * READ and WRITE 1394 */ 1395 rq_starved: 1396 if (unlikely(rl->count[is_sync] == 0)) 1397 rl->starved[is_sync] = 1; 1398 return ERR_PTR(-ENOMEM); 1399 } 1400 1401 /** 1402 * get_request - get a free request 1403 * @q: request_queue to allocate request from 1404 * @op: operation and flags 1405 * @bio: bio to allocate request for (can be %NULL) 1406 * @flags: BLK_MQ_REQ_* flags. 1407 * 1408 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1409 * this function keeps retrying under memory pressure and fails iff @q is dead. 1410 * 1411 * Must be called with @q->queue_lock held and, 1412 * Returns ERR_PTR on failure, with @q->queue_lock held. 1413 * Returns request pointer on success, with @q->queue_lock *not held*. 1414 */ 1415 static struct request *get_request(struct request_queue *q, unsigned int op, 1416 struct bio *bio, blk_mq_req_flags_t flags) 1417 { 1418 const bool is_sync = op_is_sync(op); 1419 DEFINE_WAIT(wait); 1420 struct request_list *rl; 1421 struct request *rq; 1422 1423 lockdep_assert_held(q->queue_lock); 1424 WARN_ON_ONCE(q->mq_ops); 1425 1426 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1427 retry: 1428 rq = __get_request(rl, op, bio, flags); 1429 if (!IS_ERR(rq)) 1430 return rq; 1431 1432 if (op & REQ_NOWAIT) { 1433 blk_put_rl(rl); 1434 return ERR_PTR(-EAGAIN); 1435 } 1436 1437 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) { 1438 blk_put_rl(rl); 1439 return rq; 1440 } 1441 1442 /* wait on @rl and retry */ 1443 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1444 TASK_UNINTERRUPTIBLE); 1445 1446 trace_block_sleeprq(q, bio, op); 1447 1448 spin_unlock_irq(q->queue_lock); 1449 io_schedule(); 1450 1451 /* 1452 * After sleeping, we become a "batching" process and will be able 1453 * to allocate at least one request, and up to a big batch of them 1454 * for a small period time. See ioc_batching, ioc_set_batching 1455 */ 1456 ioc_set_batching(q, current->io_context); 1457 1458 spin_lock_irq(q->queue_lock); 1459 finish_wait(&rl->wait[is_sync], &wait); 1460 1461 goto retry; 1462 } 1463 1464 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */ 1465 static struct request *blk_old_get_request(struct request_queue *q, 1466 unsigned int op, blk_mq_req_flags_t flags) 1467 { 1468 struct request *rq; 1469 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : 1470 __GFP_DIRECT_RECLAIM; 1471 int ret = 0; 1472 1473 WARN_ON_ONCE(q->mq_ops); 1474 1475 /* create ioc upfront */ 1476 create_io_context(gfp_mask, q->node); 1477 1478 ret = blk_queue_enter(q, flags); 1479 if (ret) 1480 return ERR_PTR(ret); 1481 spin_lock_irq(q->queue_lock); 1482 rq = get_request(q, op, NULL, flags); 1483 if (IS_ERR(rq)) { 1484 spin_unlock_irq(q->queue_lock); 1485 blk_queue_exit(q); 1486 return rq; 1487 } 1488 1489 /* q->queue_lock is unlocked at this point */ 1490 rq->__data_len = 0; 1491 rq->__sector = (sector_t) -1; 1492 rq->bio = rq->biotail = NULL; 1493 return rq; 1494 } 1495 1496 /** 1497 * blk_get_request_flags - allocate a request 1498 * @q: request queue to allocate a request for 1499 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 1500 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 1501 */ 1502 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op, 1503 blk_mq_req_flags_t flags) 1504 { 1505 struct request *req; 1506 1507 WARN_ON_ONCE(op & REQ_NOWAIT); 1508 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 1509 1510 if (q->mq_ops) { 1511 req = blk_mq_alloc_request(q, op, flags); 1512 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1513 q->mq_ops->initialize_rq_fn(req); 1514 } else { 1515 req = blk_old_get_request(q, op, flags); 1516 if (!IS_ERR(req) && q->initialize_rq_fn) 1517 q->initialize_rq_fn(req); 1518 } 1519 1520 return req; 1521 } 1522 EXPORT_SYMBOL(blk_get_request_flags); 1523 1524 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1525 gfp_t gfp_mask) 1526 { 1527 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ? 1528 0 : BLK_MQ_REQ_NOWAIT); 1529 } 1530 EXPORT_SYMBOL(blk_get_request); 1531 1532 /** 1533 * blk_requeue_request - put a request back on queue 1534 * @q: request queue where request should be inserted 1535 * @rq: request to be inserted 1536 * 1537 * Description: 1538 * Drivers often keep queueing requests until the hardware cannot accept 1539 * more, when that condition happens we need to put the request back 1540 * on the queue. Must be called with queue lock held. 1541 */ 1542 void blk_requeue_request(struct request_queue *q, struct request *rq) 1543 { 1544 lockdep_assert_held(q->queue_lock); 1545 WARN_ON_ONCE(q->mq_ops); 1546 1547 blk_delete_timer(rq); 1548 blk_clear_rq_complete(rq); 1549 trace_block_rq_requeue(q, rq); 1550 wbt_requeue(q->rq_wb, &rq->issue_stat); 1551 1552 if (rq->rq_flags & RQF_QUEUED) 1553 blk_queue_end_tag(q, rq); 1554 1555 BUG_ON(blk_queued_rq(rq)); 1556 1557 elv_requeue_request(q, rq); 1558 } 1559 EXPORT_SYMBOL(blk_requeue_request); 1560 1561 static void add_acct_request(struct request_queue *q, struct request *rq, 1562 int where) 1563 { 1564 blk_account_io_start(rq, true); 1565 __elv_add_request(q, rq, where); 1566 } 1567 1568 static void part_round_stats_single(struct request_queue *q, int cpu, 1569 struct hd_struct *part, unsigned long now, 1570 unsigned int inflight) 1571 { 1572 if (inflight) { 1573 __part_stat_add(cpu, part, time_in_queue, 1574 inflight * (now - part->stamp)); 1575 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1576 } 1577 part->stamp = now; 1578 } 1579 1580 /** 1581 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1582 * @q: target block queue 1583 * @cpu: cpu number for stats access 1584 * @part: target partition 1585 * 1586 * The average IO queue length and utilisation statistics are maintained 1587 * by observing the current state of the queue length and the amount of 1588 * time it has been in this state for. 1589 * 1590 * Normally, that accounting is done on IO completion, but that can result 1591 * in more than a second's worth of IO being accounted for within any one 1592 * second, leading to >100% utilisation. To deal with that, we call this 1593 * function to do a round-off before returning the results when reading 1594 * /proc/diskstats. This accounts immediately for all queue usage up to 1595 * the current jiffies and restarts the counters again. 1596 */ 1597 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) 1598 { 1599 struct hd_struct *part2 = NULL; 1600 unsigned long now = jiffies; 1601 unsigned int inflight[2]; 1602 int stats = 0; 1603 1604 if (part->stamp != now) 1605 stats |= 1; 1606 1607 if (part->partno) { 1608 part2 = &part_to_disk(part)->part0; 1609 if (part2->stamp != now) 1610 stats |= 2; 1611 } 1612 1613 if (!stats) 1614 return; 1615 1616 part_in_flight(q, part, inflight); 1617 1618 if (stats & 2) 1619 part_round_stats_single(q, cpu, part2, now, inflight[1]); 1620 if (stats & 1) 1621 part_round_stats_single(q, cpu, part, now, inflight[0]); 1622 } 1623 EXPORT_SYMBOL_GPL(part_round_stats); 1624 1625 #ifdef CONFIG_PM 1626 static void blk_pm_put_request(struct request *rq) 1627 { 1628 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1629 pm_runtime_mark_last_busy(rq->q->dev); 1630 } 1631 #else 1632 static inline void blk_pm_put_request(struct request *rq) {} 1633 #endif 1634 1635 void __blk_put_request(struct request_queue *q, struct request *req) 1636 { 1637 req_flags_t rq_flags = req->rq_flags; 1638 1639 if (unlikely(!q)) 1640 return; 1641 1642 if (q->mq_ops) { 1643 blk_mq_free_request(req); 1644 return; 1645 } 1646 1647 lockdep_assert_held(q->queue_lock); 1648 1649 blk_pm_put_request(req); 1650 1651 elv_completed_request(q, req); 1652 1653 /* this is a bio leak */ 1654 WARN_ON(req->bio != NULL); 1655 1656 wbt_done(q->rq_wb, &req->issue_stat); 1657 1658 /* 1659 * Request may not have originated from ll_rw_blk. if not, 1660 * it didn't come out of our reserved rq pools 1661 */ 1662 if (rq_flags & RQF_ALLOCED) { 1663 struct request_list *rl = blk_rq_rl(req); 1664 bool sync = op_is_sync(req->cmd_flags); 1665 1666 BUG_ON(!list_empty(&req->queuelist)); 1667 BUG_ON(ELV_ON_HASH(req)); 1668 1669 blk_free_request(rl, req); 1670 freed_request(rl, sync, rq_flags); 1671 blk_put_rl(rl); 1672 blk_queue_exit(q); 1673 } 1674 } 1675 EXPORT_SYMBOL_GPL(__blk_put_request); 1676 1677 void blk_put_request(struct request *req) 1678 { 1679 struct request_queue *q = req->q; 1680 1681 if (q->mq_ops) 1682 blk_mq_free_request(req); 1683 else { 1684 unsigned long flags; 1685 1686 spin_lock_irqsave(q->queue_lock, flags); 1687 __blk_put_request(q, req); 1688 spin_unlock_irqrestore(q->queue_lock, flags); 1689 } 1690 } 1691 EXPORT_SYMBOL(blk_put_request); 1692 1693 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1694 struct bio *bio) 1695 { 1696 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1697 1698 if (!ll_back_merge_fn(q, req, bio)) 1699 return false; 1700 1701 trace_block_bio_backmerge(q, req, bio); 1702 1703 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1704 blk_rq_set_mixed_merge(req); 1705 1706 req->biotail->bi_next = bio; 1707 req->biotail = bio; 1708 req->__data_len += bio->bi_iter.bi_size; 1709 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1710 1711 blk_account_io_start(req, false); 1712 return true; 1713 } 1714 1715 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1716 struct bio *bio) 1717 { 1718 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1719 1720 if (!ll_front_merge_fn(q, req, bio)) 1721 return false; 1722 1723 trace_block_bio_frontmerge(q, req, bio); 1724 1725 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1726 blk_rq_set_mixed_merge(req); 1727 1728 bio->bi_next = req->bio; 1729 req->bio = bio; 1730 1731 req->__sector = bio->bi_iter.bi_sector; 1732 req->__data_len += bio->bi_iter.bi_size; 1733 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1734 1735 blk_account_io_start(req, false); 1736 return true; 1737 } 1738 1739 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1740 struct bio *bio) 1741 { 1742 unsigned short segments = blk_rq_nr_discard_segments(req); 1743 1744 if (segments >= queue_max_discard_segments(q)) 1745 goto no_merge; 1746 if (blk_rq_sectors(req) + bio_sectors(bio) > 1747 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1748 goto no_merge; 1749 1750 req->biotail->bi_next = bio; 1751 req->biotail = bio; 1752 req->__data_len += bio->bi_iter.bi_size; 1753 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1754 req->nr_phys_segments = segments + 1; 1755 1756 blk_account_io_start(req, false); 1757 return true; 1758 no_merge: 1759 req_set_nomerge(q, req); 1760 return false; 1761 } 1762 1763 /** 1764 * blk_attempt_plug_merge - try to merge with %current's plugged list 1765 * @q: request_queue new bio is being queued at 1766 * @bio: new bio being queued 1767 * @request_count: out parameter for number of traversed plugged requests 1768 * @same_queue_rq: pointer to &struct request that gets filled in when 1769 * another request associated with @q is found on the plug list 1770 * (optional, may be %NULL) 1771 * 1772 * Determine whether @bio being queued on @q can be merged with a request 1773 * on %current's plugged list. Returns %true if merge was successful, 1774 * otherwise %false. 1775 * 1776 * Plugging coalesces IOs from the same issuer for the same purpose without 1777 * going through @q->queue_lock. As such it's more of an issuing mechanism 1778 * than scheduling, and the request, while may have elvpriv data, is not 1779 * added on the elevator at this point. In addition, we don't have 1780 * reliable access to the elevator outside queue lock. Only check basic 1781 * merging parameters without querying the elevator. 1782 * 1783 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1784 */ 1785 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1786 unsigned int *request_count, 1787 struct request **same_queue_rq) 1788 { 1789 struct blk_plug *plug; 1790 struct request *rq; 1791 struct list_head *plug_list; 1792 1793 plug = current->plug; 1794 if (!plug) 1795 return false; 1796 *request_count = 0; 1797 1798 if (q->mq_ops) 1799 plug_list = &plug->mq_list; 1800 else 1801 plug_list = &plug->list; 1802 1803 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1804 bool merged = false; 1805 1806 if (rq->q == q) { 1807 (*request_count)++; 1808 /* 1809 * Only blk-mq multiple hardware queues case checks the 1810 * rq in the same queue, there should be only one such 1811 * rq in a queue 1812 **/ 1813 if (same_queue_rq) 1814 *same_queue_rq = rq; 1815 } 1816 1817 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1818 continue; 1819 1820 switch (blk_try_merge(rq, bio)) { 1821 case ELEVATOR_BACK_MERGE: 1822 merged = bio_attempt_back_merge(q, rq, bio); 1823 break; 1824 case ELEVATOR_FRONT_MERGE: 1825 merged = bio_attempt_front_merge(q, rq, bio); 1826 break; 1827 case ELEVATOR_DISCARD_MERGE: 1828 merged = bio_attempt_discard_merge(q, rq, bio); 1829 break; 1830 default: 1831 break; 1832 } 1833 1834 if (merged) 1835 return true; 1836 } 1837 1838 return false; 1839 } 1840 1841 unsigned int blk_plug_queued_count(struct request_queue *q) 1842 { 1843 struct blk_plug *plug; 1844 struct request *rq; 1845 struct list_head *plug_list; 1846 unsigned int ret = 0; 1847 1848 plug = current->plug; 1849 if (!plug) 1850 goto out; 1851 1852 if (q->mq_ops) 1853 plug_list = &plug->mq_list; 1854 else 1855 plug_list = &plug->list; 1856 1857 list_for_each_entry(rq, plug_list, queuelist) { 1858 if (rq->q == q) 1859 ret++; 1860 } 1861 out: 1862 return ret; 1863 } 1864 1865 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1866 { 1867 struct io_context *ioc = rq_ioc(bio); 1868 1869 if (bio->bi_opf & REQ_RAHEAD) 1870 req->cmd_flags |= REQ_FAILFAST_MASK; 1871 1872 req->__sector = bio->bi_iter.bi_sector; 1873 if (ioprio_valid(bio_prio(bio))) 1874 req->ioprio = bio_prio(bio); 1875 else if (ioc) 1876 req->ioprio = ioc->ioprio; 1877 else 1878 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1879 req->write_hint = bio->bi_write_hint; 1880 blk_rq_bio_prep(req->q, req, bio); 1881 } 1882 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1883 1884 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1885 { 1886 struct blk_plug *plug; 1887 int where = ELEVATOR_INSERT_SORT; 1888 struct request *req, *free; 1889 unsigned int request_count = 0; 1890 unsigned int wb_acct; 1891 1892 /* 1893 * low level driver can indicate that it wants pages above a 1894 * certain limit bounced to low memory (ie for highmem, or even 1895 * ISA dma in theory) 1896 */ 1897 blk_queue_bounce(q, &bio); 1898 1899 blk_queue_split(q, &bio); 1900 1901 if (!bio_integrity_prep(bio)) 1902 return BLK_QC_T_NONE; 1903 1904 if (op_is_flush(bio->bi_opf)) { 1905 spin_lock_irq(q->queue_lock); 1906 where = ELEVATOR_INSERT_FLUSH; 1907 goto get_rq; 1908 } 1909 1910 /* 1911 * Check if we can merge with the plugged list before grabbing 1912 * any locks. 1913 */ 1914 if (!blk_queue_nomerges(q)) { 1915 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1916 return BLK_QC_T_NONE; 1917 } else 1918 request_count = blk_plug_queued_count(q); 1919 1920 spin_lock_irq(q->queue_lock); 1921 1922 switch (elv_merge(q, &req, bio)) { 1923 case ELEVATOR_BACK_MERGE: 1924 if (!bio_attempt_back_merge(q, req, bio)) 1925 break; 1926 elv_bio_merged(q, req, bio); 1927 free = attempt_back_merge(q, req); 1928 if (free) 1929 __blk_put_request(q, free); 1930 else 1931 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 1932 goto out_unlock; 1933 case ELEVATOR_FRONT_MERGE: 1934 if (!bio_attempt_front_merge(q, req, bio)) 1935 break; 1936 elv_bio_merged(q, req, bio); 1937 free = attempt_front_merge(q, req); 1938 if (free) 1939 __blk_put_request(q, free); 1940 else 1941 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 1942 goto out_unlock; 1943 default: 1944 break; 1945 } 1946 1947 get_rq: 1948 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1949 1950 /* 1951 * Grab a free request. This is might sleep but can not fail. 1952 * Returns with the queue unlocked. 1953 */ 1954 blk_queue_enter_live(q); 1955 req = get_request(q, bio->bi_opf, bio, 0); 1956 if (IS_ERR(req)) { 1957 blk_queue_exit(q); 1958 __wbt_done(q->rq_wb, wb_acct); 1959 if (PTR_ERR(req) == -ENOMEM) 1960 bio->bi_status = BLK_STS_RESOURCE; 1961 else 1962 bio->bi_status = BLK_STS_IOERR; 1963 bio_endio(bio); 1964 goto out_unlock; 1965 } 1966 1967 wbt_track(&req->issue_stat, wb_acct); 1968 1969 /* 1970 * After dropping the lock and possibly sleeping here, our request 1971 * may now be mergeable after it had proven unmergeable (above). 1972 * We don't worry about that case for efficiency. It won't happen 1973 * often, and the elevators are able to handle it. 1974 */ 1975 blk_init_request_from_bio(req, bio); 1976 1977 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1978 req->cpu = raw_smp_processor_id(); 1979 1980 plug = current->plug; 1981 if (plug) { 1982 /* 1983 * If this is the first request added after a plug, fire 1984 * of a plug trace. 1985 * 1986 * @request_count may become stale because of schedule 1987 * out, so check plug list again. 1988 */ 1989 if (!request_count || list_empty(&plug->list)) 1990 trace_block_plug(q); 1991 else { 1992 struct request *last = list_entry_rq(plug->list.prev); 1993 if (request_count >= BLK_MAX_REQUEST_COUNT || 1994 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 1995 blk_flush_plug_list(plug, false); 1996 trace_block_plug(q); 1997 } 1998 } 1999 list_add_tail(&req->queuelist, &plug->list); 2000 blk_account_io_start(req, true); 2001 } else { 2002 spin_lock_irq(q->queue_lock); 2003 add_acct_request(q, req, where); 2004 __blk_run_queue(q); 2005 out_unlock: 2006 spin_unlock_irq(q->queue_lock); 2007 } 2008 2009 return BLK_QC_T_NONE; 2010 } 2011 2012 static void handle_bad_sector(struct bio *bio) 2013 { 2014 char b[BDEVNAME_SIZE]; 2015 2016 printk(KERN_INFO "attempt to access beyond end of device\n"); 2017 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 2018 bio_devname(bio, b), bio->bi_opf, 2019 (unsigned long long)bio_end_sector(bio), 2020 (long long)get_capacity(bio->bi_disk)); 2021 } 2022 2023 #ifdef CONFIG_FAIL_MAKE_REQUEST 2024 2025 static DECLARE_FAULT_ATTR(fail_make_request); 2026 2027 static int __init setup_fail_make_request(char *str) 2028 { 2029 return setup_fault_attr(&fail_make_request, str); 2030 } 2031 __setup("fail_make_request=", setup_fail_make_request); 2032 2033 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 2034 { 2035 return part->make_it_fail && should_fail(&fail_make_request, bytes); 2036 } 2037 2038 static int __init fail_make_request_debugfs(void) 2039 { 2040 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 2041 NULL, &fail_make_request); 2042 2043 return PTR_ERR_OR_ZERO(dir); 2044 } 2045 2046 late_initcall(fail_make_request_debugfs); 2047 2048 #else /* CONFIG_FAIL_MAKE_REQUEST */ 2049 2050 static inline bool should_fail_request(struct hd_struct *part, 2051 unsigned int bytes) 2052 { 2053 return false; 2054 } 2055 2056 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 2057 2058 /* 2059 * Remap block n of partition p to block n+start(p) of the disk. 2060 */ 2061 static inline int blk_partition_remap(struct bio *bio) 2062 { 2063 struct hd_struct *p; 2064 int ret = 0; 2065 2066 /* 2067 * Zone reset does not include bi_size so bio_sectors() is always 0. 2068 * Include a test for the reset op code and perform the remap if needed. 2069 */ 2070 if (!bio->bi_partno || 2071 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET)) 2072 return 0; 2073 2074 rcu_read_lock(); 2075 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 2076 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) { 2077 bio->bi_iter.bi_sector += p->start_sect; 2078 bio->bi_partno = 0; 2079 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 2080 bio->bi_iter.bi_sector - p->start_sect); 2081 } else { 2082 printk("%s: fail for partition %d\n", __func__, bio->bi_partno); 2083 ret = -EIO; 2084 } 2085 rcu_read_unlock(); 2086 2087 return ret; 2088 } 2089 2090 /* 2091 * Check whether this bio extends beyond the end of the device. 2092 */ 2093 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 2094 { 2095 sector_t maxsector; 2096 2097 if (!nr_sectors) 2098 return 0; 2099 2100 /* Test device or partition size, when known. */ 2101 maxsector = get_capacity(bio->bi_disk); 2102 if (maxsector) { 2103 sector_t sector = bio->bi_iter.bi_sector; 2104 2105 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 2106 /* 2107 * This may well happen - the kernel calls bread() 2108 * without checking the size of the device, e.g., when 2109 * mounting a device. 2110 */ 2111 handle_bad_sector(bio); 2112 return 1; 2113 } 2114 } 2115 2116 return 0; 2117 } 2118 2119 static noinline_for_stack bool 2120 generic_make_request_checks(struct bio *bio) 2121 { 2122 struct request_queue *q; 2123 int nr_sectors = bio_sectors(bio); 2124 blk_status_t status = BLK_STS_IOERR; 2125 char b[BDEVNAME_SIZE]; 2126 2127 might_sleep(); 2128 2129 if (bio_check_eod(bio, nr_sectors)) 2130 goto end_io; 2131 2132 q = bio->bi_disk->queue; 2133 if (unlikely(!q)) { 2134 printk(KERN_ERR 2135 "generic_make_request: Trying to access " 2136 "nonexistent block-device %s (%Lu)\n", 2137 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 2138 goto end_io; 2139 } 2140 2141 /* 2142 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2143 * if queue is not a request based queue. 2144 */ 2145 2146 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2147 goto not_supported; 2148 2149 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 2150 goto end_io; 2151 2152 if (blk_partition_remap(bio)) 2153 goto end_io; 2154 2155 if (bio_check_eod(bio, nr_sectors)) 2156 goto end_io; 2157 2158 /* 2159 * Filter flush bio's early so that make_request based 2160 * drivers without flush support don't have to worry 2161 * about them. 2162 */ 2163 if (op_is_flush(bio->bi_opf) && 2164 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2165 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2166 if (!nr_sectors) { 2167 status = BLK_STS_OK; 2168 goto end_io; 2169 } 2170 } 2171 2172 switch (bio_op(bio)) { 2173 case REQ_OP_DISCARD: 2174 if (!blk_queue_discard(q)) 2175 goto not_supported; 2176 break; 2177 case REQ_OP_SECURE_ERASE: 2178 if (!blk_queue_secure_erase(q)) 2179 goto not_supported; 2180 break; 2181 case REQ_OP_WRITE_SAME: 2182 if (!q->limits.max_write_same_sectors) 2183 goto not_supported; 2184 break; 2185 case REQ_OP_ZONE_REPORT: 2186 case REQ_OP_ZONE_RESET: 2187 if (!blk_queue_is_zoned(q)) 2188 goto not_supported; 2189 break; 2190 case REQ_OP_WRITE_ZEROES: 2191 if (!q->limits.max_write_zeroes_sectors) 2192 goto not_supported; 2193 break; 2194 default: 2195 break; 2196 } 2197 2198 /* 2199 * Various block parts want %current->io_context and lazy ioc 2200 * allocation ends up trading a lot of pain for a small amount of 2201 * memory. Just allocate it upfront. This may fail and block 2202 * layer knows how to live with it. 2203 */ 2204 create_io_context(GFP_ATOMIC, q->node); 2205 2206 if (!blkcg_bio_issue_check(q, bio)) 2207 return false; 2208 2209 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2210 trace_block_bio_queue(q, bio); 2211 /* Now that enqueuing has been traced, we need to trace 2212 * completion as well. 2213 */ 2214 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2215 } 2216 return true; 2217 2218 not_supported: 2219 status = BLK_STS_NOTSUPP; 2220 end_io: 2221 bio->bi_status = status; 2222 bio_endio(bio); 2223 return false; 2224 } 2225 2226 /** 2227 * generic_make_request - hand a buffer to its device driver for I/O 2228 * @bio: The bio describing the location in memory and on the device. 2229 * 2230 * generic_make_request() is used to make I/O requests of block 2231 * devices. It is passed a &struct bio, which describes the I/O that needs 2232 * to be done. 2233 * 2234 * generic_make_request() does not return any status. The 2235 * success/failure status of the request, along with notification of 2236 * completion, is delivered asynchronously through the bio->bi_end_io 2237 * function described (one day) else where. 2238 * 2239 * The caller of generic_make_request must make sure that bi_io_vec 2240 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2241 * set to describe the device address, and the 2242 * bi_end_io and optionally bi_private are set to describe how 2243 * completion notification should be signaled. 2244 * 2245 * generic_make_request and the drivers it calls may use bi_next if this 2246 * bio happens to be merged with someone else, and may resubmit the bio to 2247 * a lower device by calling into generic_make_request recursively, which 2248 * means the bio should NOT be touched after the call to ->make_request_fn. 2249 */ 2250 blk_qc_t generic_make_request(struct bio *bio) 2251 { 2252 /* 2253 * bio_list_on_stack[0] contains bios submitted by the current 2254 * make_request_fn. 2255 * bio_list_on_stack[1] contains bios that were submitted before 2256 * the current make_request_fn, but that haven't been processed 2257 * yet. 2258 */ 2259 struct bio_list bio_list_on_stack[2]; 2260 blk_qc_t ret = BLK_QC_T_NONE; 2261 2262 if (!generic_make_request_checks(bio)) 2263 goto out; 2264 2265 /* 2266 * We only want one ->make_request_fn to be active at a time, else 2267 * stack usage with stacked devices could be a problem. So use 2268 * current->bio_list to keep a list of requests submited by a 2269 * make_request_fn function. current->bio_list is also used as a 2270 * flag to say if generic_make_request is currently active in this 2271 * task or not. If it is NULL, then no make_request is active. If 2272 * it is non-NULL, then a make_request is active, and new requests 2273 * should be added at the tail 2274 */ 2275 if (current->bio_list) { 2276 bio_list_add(¤t->bio_list[0], bio); 2277 goto out; 2278 } 2279 2280 /* following loop may be a bit non-obvious, and so deserves some 2281 * explanation. 2282 * Before entering the loop, bio->bi_next is NULL (as all callers 2283 * ensure that) so we have a list with a single bio. 2284 * We pretend that we have just taken it off a longer list, so 2285 * we assign bio_list to a pointer to the bio_list_on_stack, 2286 * thus initialising the bio_list of new bios to be 2287 * added. ->make_request() may indeed add some more bios 2288 * through a recursive call to generic_make_request. If it 2289 * did, we find a non-NULL value in bio_list and re-enter the loop 2290 * from the top. In this case we really did just take the bio 2291 * of the top of the list (no pretending) and so remove it from 2292 * bio_list, and call into ->make_request() again. 2293 */ 2294 BUG_ON(bio->bi_next); 2295 bio_list_init(&bio_list_on_stack[0]); 2296 current->bio_list = bio_list_on_stack; 2297 do { 2298 struct request_queue *q = bio->bi_disk->queue; 2299 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ? 2300 BLK_MQ_REQ_NOWAIT : 0; 2301 2302 if (likely(blk_queue_enter(q, flags) == 0)) { 2303 struct bio_list lower, same; 2304 2305 /* Create a fresh bio_list for all subordinate requests */ 2306 bio_list_on_stack[1] = bio_list_on_stack[0]; 2307 bio_list_init(&bio_list_on_stack[0]); 2308 ret = q->make_request_fn(q, bio); 2309 2310 blk_queue_exit(q); 2311 2312 /* sort new bios into those for a lower level 2313 * and those for the same level 2314 */ 2315 bio_list_init(&lower); 2316 bio_list_init(&same); 2317 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2318 if (q == bio->bi_disk->queue) 2319 bio_list_add(&same, bio); 2320 else 2321 bio_list_add(&lower, bio); 2322 /* now assemble so we handle the lowest level first */ 2323 bio_list_merge(&bio_list_on_stack[0], &lower); 2324 bio_list_merge(&bio_list_on_stack[0], &same); 2325 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2326 } else { 2327 if (unlikely(!blk_queue_dying(q) && 2328 (bio->bi_opf & REQ_NOWAIT))) 2329 bio_wouldblock_error(bio); 2330 else 2331 bio_io_error(bio); 2332 } 2333 bio = bio_list_pop(&bio_list_on_stack[0]); 2334 } while (bio); 2335 current->bio_list = NULL; /* deactivate */ 2336 2337 out: 2338 return ret; 2339 } 2340 EXPORT_SYMBOL(generic_make_request); 2341 2342 /** 2343 * direct_make_request - hand a buffer directly to its device driver for I/O 2344 * @bio: The bio describing the location in memory and on the device. 2345 * 2346 * This function behaves like generic_make_request(), but does not protect 2347 * against recursion. Must only be used if the called driver is known 2348 * to not call generic_make_request (or direct_make_request) again from 2349 * its make_request function. (Calling direct_make_request again from 2350 * a workqueue is perfectly fine as that doesn't recurse). 2351 */ 2352 blk_qc_t direct_make_request(struct bio *bio) 2353 { 2354 struct request_queue *q = bio->bi_disk->queue; 2355 bool nowait = bio->bi_opf & REQ_NOWAIT; 2356 blk_qc_t ret; 2357 2358 if (!generic_make_request_checks(bio)) 2359 return BLK_QC_T_NONE; 2360 2361 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 2362 if (nowait && !blk_queue_dying(q)) 2363 bio->bi_status = BLK_STS_AGAIN; 2364 else 2365 bio->bi_status = BLK_STS_IOERR; 2366 bio_endio(bio); 2367 return BLK_QC_T_NONE; 2368 } 2369 2370 ret = q->make_request_fn(q, bio); 2371 blk_queue_exit(q); 2372 return ret; 2373 } 2374 EXPORT_SYMBOL_GPL(direct_make_request); 2375 2376 /** 2377 * submit_bio - submit a bio to the block device layer for I/O 2378 * @bio: The &struct bio which describes the I/O 2379 * 2380 * submit_bio() is very similar in purpose to generic_make_request(), and 2381 * uses that function to do most of the work. Both are fairly rough 2382 * interfaces; @bio must be presetup and ready for I/O. 2383 * 2384 */ 2385 blk_qc_t submit_bio(struct bio *bio) 2386 { 2387 /* 2388 * If it's a regular read/write or a barrier with data attached, 2389 * go through the normal accounting stuff before submission. 2390 */ 2391 if (bio_has_data(bio)) { 2392 unsigned int count; 2393 2394 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2395 count = queue_logical_block_size(bio->bi_disk->queue); 2396 else 2397 count = bio_sectors(bio); 2398 2399 if (op_is_write(bio_op(bio))) { 2400 count_vm_events(PGPGOUT, count); 2401 } else { 2402 task_io_account_read(bio->bi_iter.bi_size); 2403 count_vm_events(PGPGIN, count); 2404 } 2405 2406 if (unlikely(block_dump)) { 2407 char b[BDEVNAME_SIZE]; 2408 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2409 current->comm, task_pid_nr(current), 2410 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2411 (unsigned long long)bio->bi_iter.bi_sector, 2412 bio_devname(bio, b), count); 2413 } 2414 } 2415 2416 return generic_make_request(bio); 2417 } 2418 EXPORT_SYMBOL(submit_bio); 2419 2420 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 2421 { 2422 if (!q->poll_fn || !blk_qc_t_valid(cookie)) 2423 return false; 2424 2425 if (current->plug) 2426 blk_flush_plug_list(current->plug, false); 2427 return q->poll_fn(q, cookie); 2428 } 2429 EXPORT_SYMBOL_GPL(blk_poll); 2430 2431 /** 2432 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2433 * for new the queue limits 2434 * @q: the queue 2435 * @rq: the request being checked 2436 * 2437 * Description: 2438 * @rq may have been made based on weaker limitations of upper-level queues 2439 * in request stacking drivers, and it may violate the limitation of @q. 2440 * Since the block layer and the underlying device driver trust @rq 2441 * after it is inserted to @q, it should be checked against @q before 2442 * the insertion using this generic function. 2443 * 2444 * Request stacking drivers like request-based dm may change the queue 2445 * limits when retrying requests on other queues. Those requests need 2446 * to be checked against the new queue limits again during dispatch. 2447 */ 2448 static int blk_cloned_rq_check_limits(struct request_queue *q, 2449 struct request *rq) 2450 { 2451 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2452 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2453 return -EIO; 2454 } 2455 2456 /* 2457 * queue's settings related to segment counting like q->bounce_pfn 2458 * may differ from that of other stacking queues. 2459 * Recalculate it to check the request correctly on this queue's 2460 * limitation. 2461 */ 2462 blk_recalc_rq_segments(rq); 2463 if (rq->nr_phys_segments > queue_max_segments(q)) { 2464 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2465 return -EIO; 2466 } 2467 2468 return 0; 2469 } 2470 2471 /** 2472 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2473 * @q: the queue to submit the request 2474 * @rq: the request being queued 2475 */ 2476 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2477 { 2478 unsigned long flags; 2479 int where = ELEVATOR_INSERT_BACK; 2480 2481 if (blk_cloned_rq_check_limits(q, rq)) 2482 return BLK_STS_IOERR; 2483 2484 if (rq->rq_disk && 2485 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2486 return BLK_STS_IOERR; 2487 2488 if (q->mq_ops) { 2489 if (blk_queue_io_stat(q)) 2490 blk_account_io_start(rq, true); 2491 /* 2492 * Since we have a scheduler attached on the top device, 2493 * bypass a potential scheduler on the bottom device for 2494 * insert. 2495 */ 2496 blk_mq_request_bypass_insert(rq, true); 2497 return BLK_STS_OK; 2498 } 2499 2500 spin_lock_irqsave(q->queue_lock, flags); 2501 if (unlikely(blk_queue_dying(q))) { 2502 spin_unlock_irqrestore(q->queue_lock, flags); 2503 return BLK_STS_IOERR; 2504 } 2505 2506 /* 2507 * Submitting request must be dequeued before calling this function 2508 * because it will be linked to another request_queue 2509 */ 2510 BUG_ON(blk_queued_rq(rq)); 2511 2512 if (op_is_flush(rq->cmd_flags)) 2513 where = ELEVATOR_INSERT_FLUSH; 2514 2515 add_acct_request(q, rq, where); 2516 if (where == ELEVATOR_INSERT_FLUSH) 2517 __blk_run_queue(q); 2518 spin_unlock_irqrestore(q->queue_lock, flags); 2519 2520 return BLK_STS_OK; 2521 } 2522 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2523 2524 /** 2525 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2526 * @rq: request to examine 2527 * 2528 * Description: 2529 * A request could be merge of IOs which require different failure 2530 * handling. This function determines the number of bytes which 2531 * can be failed from the beginning of the request without 2532 * crossing into area which need to be retried further. 2533 * 2534 * Return: 2535 * The number of bytes to fail. 2536 */ 2537 unsigned int blk_rq_err_bytes(const struct request *rq) 2538 { 2539 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2540 unsigned int bytes = 0; 2541 struct bio *bio; 2542 2543 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2544 return blk_rq_bytes(rq); 2545 2546 /* 2547 * Currently the only 'mixing' which can happen is between 2548 * different fastfail types. We can safely fail portions 2549 * which have all the failfast bits that the first one has - 2550 * the ones which are at least as eager to fail as the first 2551 * one. 2552 */ 2553 for (bio = rq->bio; bio; bio = bio->bi_next) { 2554 if ((bio->bi_opf & ff) != ff) 2555 break; 2556 bytes += bio->bi_iter.bi_size; 2557 } 2558 2559 /* this could lead to infinite loop */ 2560 BUG_ON(blk_rq_bytes(rq) && !bytes); 2561 return bytes; 2562 } 2563 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2564 2565 void blk_account_io_completion(struct request *req, unsigned int bytes) 2566 { 2567 if (blk_do_io_stat(req)) { 2568 const int rw = rq_data_dir(req); 2569 struct hd_struct *part; 2570 int cpu; 2571 2572 cpu = part_stat_lock(); 2573 part = req->part; 2574 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2575 part_stat_unlock(); 2576 } 2577 } 2578 2579 void blk_account_io_done(struct request *req) 2580 { 2581 /* 2582 * Account IO completion. flush_rq isn't accounted as a 2583 * normal IO on queueing nor completion. Accounting the 2584 * containing request is enough. 2585 */ 2586 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2587 unsigned long duration = jiffies - req->start_time; 2588 const int rw = rq_data_dir(req); 2589 struct hd_struct *part; 2590 int cpu; 2591 2592 cpu = part_stat_lock(); 2593 part = req->part; 2594 2595 part_stat_inc(cpu, part, ios[rw]); 2596 part_stat_add(cpu, part, ticks[rw], duration); 2597 part_round_stats(req->q, cpu, part); 2598 part_dec_in_flight(req->q, part, rw); 2599 2600 hd_struct_put(part); 2601 part_stat_unlock(); 2602 } 2603 } 2604 2605 #ifdef CONFIG_PM 2606 /* 2607 * Don't process normal requests when queue is suspended 2608 * or in the process of suspending/resuming 2609 */ 2610 static bool blk_pm_allow_request(struct request *rq) 2611 { 2612 switch (rq->q->rpm_status) { 2613 case RPM_RESUMING: 2614 case RPM_SUSPENDING: 2615 return rq->rq_flags & RQF_PM; 2616 case RPM_SUSPENDED: 2617 return false; 2618 } 2619 2620 return true; 2621 } 2622 #else 2623 static bool blk_pm_allow_request(struct request *rq) 2624 { 2625 return true; 2626 } 2627 #endif 2628 2629 void blk_account_io_start(struct request *rq, bool new_io) 2630 { 2631 struct hd_struct *part; 2632 int rw = rq_data_dir(rq); 2633 int cpu; 2634 2635 if (!blk_do_io_stat(rq)) 2636 return; 2637 2638 cpu = part_stat_lock(); 2639 2640 if (!new_io) { 2641 part = rq->part; 2642 part_stat_inc(cpu, part, merges[rw]); 2643 } else { 2644 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2645 if (!hd_struct_try_get(part)) { 2646 /* 2647 * The partition is already being removed, 2648 * the request will be accounted on the disk only 2649 * 2650 * We take a reference on disk->part0 although that 2651 * partition will never be deleted, so we can treat 2652 * it as any other partition. 2653 */ 2654 part = &rq->rq_disk->part0; 2655 hd_struct_get(part); 2656 } 2657 part_round_stats(rq->q, cpu, part); 2658 part_inc_in_flight(rq->q, part, rw); 2659 rq->part = part; 2660 } 2661 2662 part_stat_unlock(); 2663 } 2664 2665 static struct request *elv_next_request(struct request_queue *q) 2666 { 2667 struct request *rq; 2668 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 2669 2670 WARN_ON_ONCE(q->mq_ops); 2671 2672 while (1) { 2673 list_for_each_entry(rq, &q->queue_head, queuelist) { 2674 if (blk_pm_allow_request(rq)) 2675 return rq; 2676 2677 if (rq->rq_flags & RQF_SOFTBARRIER) 2678 break; 2679 } 2680 2681 /* 2682 * Flush request is running and flush request isn't queueable 2683 * in the drive, we can hold the queue till flush request is 2684 * finished. Even we don't do this, driver can't dispatch next 2685 * requests and will requeue them. And this can improve 2686 * throughput too. For example, we have request flush1, write1, 2687 * flush 2. flush1 is dispatched, then queue is hold, write1 2688 * isn't inserted to queue. After flush1 is finished, flush2 2689 * will be dispatched. Since disk cache is already clean, 2690 * flush2 will be finished very soon, so looks like flush2 is 2691 * folded to flush1. 2692 * Since the queue is hold, a flag is set to indicate the queue 2693 * should be restarted later. Please see flush_end_io() for 2694 * details. 2695 */ 2696 if (fq->flush_pending_idx != fq->flush_running_idx && 2697 !queue_flush_queueable(q)) { 2698 fq->flush_queue_delayed = 1; 2699 return NULL; 2700 } 2701 if (unlikely(blk_queue_bypass(q)) || 2702 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0)) 2703 return NULL; 2704 } 2705 } 2706 2707 /** 2708 * blk_peek_request - peek at the top of a request queue 2709 * @q: request queue to peek at 2710 * 2711 * Description: 2712 * Return the request at the top of @q. The returned request 2713 * should be started using blk_start_request() before LLD starts 2714 * processing it. 2715 * 2716 * Return: 2717 * Pointer to the request at the top of @q if available. Null 2718 * otherwise. 2719 */ 2720 struct request *blk_peek_request(struct request_queue *q) 2721 { 2722 struct request *rq; 2723 int ret; 2724 2725 lockdep_assert_held(q->queue_lock); 2726 WARN_ON_ONCE(q->mq_ops); 2727 2728 while ((rq = elv_next_request(q)) != NULL) { 2729 if (!(rq->rq_flags & RQF_STARTED)) { 2730 /* 2731 * This is the first time the device driver 2732 * sees this request (possibly after 2733 * requeueing). Notify IO scheduler. 2734 */ 2735 if (rq->rq_flags & RQF_SORTED) 2736 elv_activate_rq(q, rq); 2737 2738 /* 2739 * just mark as started even if we don't start 2740 * it, a request that has been delayed should 2741 * not be passed by new incoming requests 2742 */ 2743 rq->rq_flags |= RQF_STARTED; 2744 trace_block_rq_issue(q, rq); 2745 } 2746 2747 if (!q->boundary_rq || q->boundary_rq == rq) { 2748 q->end_sector = rq_end_sector(rq); 2749 q->boundary_rq = NULL; 2750 } 2751 2752 if (rq->rq_flags & RQF_DONTPREP) 2753 break; 2754 2755 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2756 /* 2757 * make sure space for the drain appears we 2758 * know we can do this because max_hw_segments 2759 * has been adjusted to be one fewer than the 2760 * device can handle 2761 */ 2762 rq->nr_phys_segments++; 2763 } 2764 2765 if (!q->prep_rq_fn) 2766 break; 2767 2768 ret = q->prep_rq_fn(q, rq); 2769 if (ret == BLKPREP_OK) { 2770 break; 2771 } else if (ret == BLKPREP_DEFER) { 2772 /* 2773 * the request may have been (partially) prepped. 2774 * we need to keep this request in the front to 2775 * avoid resource deadlock. RQF_STARTED will 2776 * prevent other fs requests from passing this one. 2777 */ 2778 if (q->dma_drain_size && blk_rq_bytes(rq) && 2779 !(rq->rq_flags & RQF_DONTPREP)) { 2780 /* 2781 * remove the space for the drain we added 2782 * so that we don't add it again 2783 */ 2784 --rq->nr_phys_segments; 2785 } 2786 2787 rq = NULL; 2788 break; 2789 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2790 rq->rq_flags |= RQF_QUIET; 2791 /* 2792 * Mark this request as started so we don't trigger 2793 * any debug logic in the end I/O path. 2794 */ 2795 blk_start_request(rq); 2796 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2797 BLK_STS_TARGET : BLK_STS_IOERR); 2798 } else { 2799 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2800 break; 2801 } 2802 } 2803 2804 return rq; 2805 } 2806 EXPORT_SYMBOL(blk_peek_request); 2807 2808 static void blk_dequeue_request(struct request *rq) 2809 { 2810 struct request_queue *q = rq->q; 2811 2812 BUG_ON(list_empty(&rq->queuelist)); 2813 BUG_ON(ELV_ON_HASH(rq)); 2814 2815 list_del_init(&rq->queuelist); 2816 2817 /* 2818 * the time frame between a request being removed from the lists 2819 * and to it is freed is accounted as io that is in progress at 2820 * the driver side. 2821 */ 2822 if (blk_account_rq(rq)) { 2823 q->in_flight[rq_is_sync(rq)]++; 2824 set_io_start_time_ns(rq); 2825 } 2826 } 2827 2828 /** 2829 * blk_start_request - start request processing on the driver 2830 * @req: request to dequeue 2831 * 2832 * Description: 2833 * Dequeue @req and start timeout timer on it. This hands off the 2834 * request to the driver. 2835 */ 2836 void blk_start_request(struct request *req) 2837 { 2838 lockdep_assert_held(req->q->queue_lock); 2839 WARN_ON_ONCE(req->q->mq_ops); 2840 2841 blk_dequeue_request(req); 2842 2843 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2844 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req)); 2845 req->rq_flags |= RQF_STATS; 2846 wbt_issue(req->q->rq_wb, &req->issue_stat); 2847 } 2848 2849 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2850 blk_add_timer(req); 2851 } 2852 EXPORT_SYMBOL(blk_start_request); 2853 2854 /** 2855 * blk_fetch_request - fetch a request from a request queue 2856 * @q: request queue to fetch a request from 2857 * 2858 * Description: 2859 * Return the request at the top of @q. The request is started on 2860 * return and LLD can start processing it immediately. 2861 * 2862 * Return: 2863 * Pointer to the request at the top of @q if available. Null 2864 * otherwise. 2865 */ 2866 struct request *blk_fetch_request(struct request_queue *q) 2867 { 2868 struct request *rq; 2869 2870 lockdep_assert_held(q->queue_lock); 2871 WARN_ON_ONCE(q->mq_ops); 2872 2873 rq = blk_peek_request(q); 2874 if (rq) 2875 blk_start_request(rq); 2876 return rq; 2877 } 2878 EXPORT_SYMBOL(blk_fetch_request); 2879 2880 /* 2881 * Steal bios from a request and add them to a bio list. 2882 * The request must not have been partially completed before. 2883 */ 2884 void blk_steal_bios(struct bio_list *list, struct request *rq) 2885 { 2886 if (rq->bio) { 2887 if (list->tail) 2888 list->tail->bi_next = rq->bio; 2889 else 2890 list->head = rq->bio; 2891 list->tail = rq->biotail; 2892 2893 rq->bio = NULL; 2894 rq->biotail = NULL; 2895 } 2896 2897 rq->__data_len = 0; 2898 } 2899 EXPORT_SYMBOL_GPL(blk_steal_bios); 2900 2901 /** 2902 * blk_update_request - Special helper function for request stacking drivers 2903 * @req: the request being processed 2904 * @error: block status code 2905 * @nr_bytes: number of bytes to complete @req 2906 * 2907 * Description: 2908 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2909 * the request structure even if @req doesn't have leftover. 2910 * If @req has leftover, sets it up for the next range of segments. 2911 * 2912 * This special helper function is only for request stacking drivers 2913 * (e.g. request-based dm) so that they can handle partial completion. 2914 * Actual device drivers should use blk_end_request instead. 2915 * 2916 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2917 * %false return from this function. 2918 * 2919 * Return: 2920 * %false - this request doesn't have any more data 2921 * %true - this request has more data 2922 **/ 2923 bool blk_update_request(struct request *req, blk_status_t error, 2924 unsigned int nr_bytes) 2925 { 2926 int total_bytes; 2927 2928 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 2929 2930 if (!req->bio) 2931 return false; 2932 2933 if (unlikely(error && !blk_rq_is_passthrough(req) && 2934 !(req->rq_flags & RQF_QUIET))) 2935 print_req_error(req, error); 2936 2937 blk_account_io_completion(req, nr_bytes); 2938 2939 total_bytes = 0; 2940 while (req->bio) { 2941 struct bio *bio = req->bio; 2942 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2943 2944 if (bio_bytes == bio->bi_iter.bi_size) 2945 req->bio = bio->bi_next; 2946 2947 /* Completion has already been traced */ 2948 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 2949 req_bio_endio(req, bio, bio_bytes, error); 2950 2951 total_bytes += bio_bytes; 2952 nr_bytes -= bio_bytes; 2953 2954 if (!nr_bytes) 2955 break; 2956 } 2957 2958 /* 2959 * completely done 2960 */ 2961 if (!req->bio) { 2962 /* 2963 * Reset counters so that the request stacking driver 2964 * can find how many bytes remain in the request 2965 * later. 2966 */ 2967 req->__data_len = 0; 2968 return false; 2969 } 2970 2971 req->__data_len -= total_bytes; 2972 2973 /* update sector only for requests with clear definition of sector */ 2974 if (!blk_rq_is_passthrough(req)) 2975 req->__sector += total_bytes >> 9; 2976 2977 /* mixed attributes always follow the first bio */ 2978 if (req->rq_flags & RQF_MIXED_MERGE) { 2979 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2980 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 2981 } 2982 2983 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 2984 /* 2985 * If total number of sectors is less than the first segment 2986 * size, something has gone terribly wrong. 2987 */ 2988 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2989 blk_dump_rq_flags(req, "request botched"); 2990 req->__data_len = blk_rq_cur_bytes(req); 2991 } 2992 2993 /* recalculate the number of segments */ 2994 blk_recalc_rq_segments(req); 2995 } 2996 2997 return true; 2998 } 2999 EXPORT_SYMBOL_GPL(blk_update_request); 3000 3001 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 3002 unsigned int nr_bytes, 3003 unsigned int bidi_bytes) 3004 { 3005 if (blk_update_request(rq, error, nr_bytes)) 3006 return true; 3007 3008 /* Bidi request must be completed as a whole */ 3009 if (unlikely(blk_bidi_rq(rq)) && 3010 blk_update_request(rq->next_rq, error, bidi_bytes)) 3011 return true; 3012 3013 if (blk_queue_add_random(rq->q)) 3014 add_disk_randomness(rq->rq_disk); 3015 3016 return false; 3017 } 3018 3019 /** 3020 * blk_unprep_request - unprepare a request 3021 * @req: the request 3022 * 3023 * This function makes a request ready for complete resubmission (or 3024 * completion). It happens only after all error handling is complete, 3025 * so represents the appropriate moment to deallocate any resources 3026 * that were allocated to the request in the prep_rq_fn. The queue 3027 * lock is held when calling this. 3028 */ 3029 void blk_unprep_request(struct request *req) 3030 { 3031 struct request_queue *q = req->q; 3032 3033 req->rq_flags &= ~RQF_DONTPREP; 3034 if (q->unprep_rq_fn) 3035 q->unprep_rq_fn(q, req); 3036 } 3037 EXPORT_SYMBOL_GPL(blk_unprep_request); 3038 3039 void blk_finish_request(struct request *req, blk_status_t error) 3040 { 3041 struct request_queue *q = req->q; 3042 3043 lockdep_assert_held(req->q->queue_lock); 3044 WARN_ON_ONCE(q->mq_ops); 3045 3046 if (req->rq_flags & RQF_STATS) 3047 blk_stat_add(req); 3048 3049 if (req->rq_flags & RQF_QUEUED) 3050 blk_queue_end_tag(q, req); 3051 3052 BUG_ON(blk_queued_rq(req)); 3053 3054 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 3055 laptop_io_completion(req->q->backing_dev_info); 3056 3057 blk_delete_timer(req); 3058 3059 if (req->rq_flags & RQF_DONTPREP) 3060 blk_unprep_request(req); 3061 3062 blk_account_io_done(req); 3063 3064 if (req->end_io) { 3065 wbt_done(req->q->rq_wb, &req->issue_stat); 3066 req->end_io(req, error); 3067 } else { 3068 if (blk_bidi_rq(req)) 3069 __blk_put_request(req->next_rq->q, req->next_rq); 3070 3071 __blk_put_request(q, req); 3072 } 3073 } 3074 EXPORT_SYMBOL(blk_finish_request); 3075 3076 /** 3077 * blk_end_bidi_request - Complete a bidi request 3078 * @rq: the request to complete 3079 * @error: block status code 3080 * @nr_bytes: number of bytes to complete @rq 3081 * @bidi_bytes: number of bytes to complete @rq->next_rq 3082 * 3083 * Description: 3084 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 3085 * Drivers that supports bidi can safely call this member for any 3086 * type of request, bidi or uni. In the later case @bidi_bytes is 3087 * just ignored. 3088 * 3089 * Return: 3090 * %false - we are done with this request 3091 * %true - still buffers pending for this request 3092 **/ 3093 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 3094 unsigned int nr_bytes, unsigned int bidi_bytes) 3095 { 3096 struct request_queue *q = rq->q; 3097 unsigned long flags; 3098 3099 WARN_ON_ONCE(q->mq_ops); 3100 3101 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3102 return true; 3103 3104 spin_lock_irqsave(q->queue_lock, flags); 3105 blk_finish_request(rq, error); 3106 spin_unlock_irqrestore(q->queue_lock, flags); 3107 3108 return false; 3109 } 3110 3111 /** 3112 * __blk_end_bidi_request - Complete a bidi request with queue lock held 3113 * @rq: the request to complete 3114 * @error: block status code 3115 * @nr_bytes: number of bytes to complete @rq 3116 * @bidi_bytes: number of bytes to complete @rq->next_rq 3117 * 3118 * Description: 3119 * Identical to blk_end_bidi_request() except that queue lock is 3120 * assumed to be locked on entry and remains so on return. 3121 * 3122 * Return: 3123 * %false - we are done with this request 3124 * %true - still buffers pending for this request 3125 **/ 3126 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 3127 unsigned int nr_bytes, unsigned int bidi_bytes) 3128 { 3129 lockdep_assert_held(rq->q->queue_lock); 3130 WARN_ON_ONCE(rq->q->mq_ops); 3131 3132 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3133 return true; 3134 3135 blk_finish_request(rq, error); 3136 3137 return false; 3138 } 3139 3140 /** 3141 * blk_end_request - Helper function for drivers to complete the request. 3142 * @rq: the request being processed 3143 * @error: block status code 3144 * @nr_bytes: number of bytes to complete 3145 * 3146 * Description: 3147 * Ends I/O on a number of bytes attached to @rq. 3148 * If @rq has leftover, sets it up for the next range of segments. 3149 * 3150 * Return: 3151 * %false - we are done with this request 3152 * %true - still buffers pending for this request 3153 **/ 3154 bool blk_end_request(struct request *rq, blk_status_t error, 3155 unsigned int nr_bytes) 3156 { 3157 WARN_ON_ONCE(rq->q->mq_ops); 3158 return blk_end_bidi_request(rq, error, nr_bytes, 0); 3159 } 3160 EXPORT_SYMBOL(blk_end_request); 3161 3162 /** 3163 * blk_end_request_all - Helper function for drives to finish the request. 3164 * @rq: the request to finish 3165 * @error: block status code 3166 * 3167 * Description: 3168 * Completely finish @rq. 3169 */ 3170 void blk_end_request_all(struct request *rq, blk_status_t error) 3171 { 3172 bool pending; 3173 unsigned int bidi_bytes = 0; 3174 3175 if (unlikely(blk_bidi_rq(rq))) 3176 bidi_bytes = blk_rq_bytes(rq->next_rq); 3177 3178 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3179 BUG_ON(pending); 3180 } 3181 EXPORT_SYMBOL(blk_end_request_all); 3182 3183 /** 3184 * __blk_end_request - Helper function for drivers to complete the request. 3185 * @rq: the request being processed 3186 * @error: block status code 3187 * @nr_bytes: number of bytes to complete 3188 * 3189 * Description: 3190 * Must be called with queue lock held unlike blk_end_request(). 3191 * 3192 * Return: 3193 * %false - we are done with this request 3194 * %true - still buffers pending for this request 3195 **/ 3196 bool __blk_end_request(struct request *rq, blk_status_t error, 3197 unsigned int nr_bytes) 3198 { 3199 lockdep_assert_held(rq->q->queue_lock); 3200 WARN_ON_ONCE(rq->q->mq_ops); 3201 3202 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 3203 } 3204 EXPORT_SYMBOL(__blk_end_request); 3205 3206 /** 3207 * __blk_end_request_all - Helper function for drives to finish the request. 3208 * @rq: the request to finish 3209 * @error: block status code 3210 * 3211 * Description: 3212 * Completely finish @rq. Must be called with queue lock held. 3213 */ 3214 void __blk_end_request_all(struct request *rq, blk_status_t error) 3215 { 3216 bool pending; 3217 unsigned int bidi_bytes = 0; 3218 3219 lockdep_assert_held(rq->q->queue_lock); 3220 WARN_ON_ONCE(rq->q->mq_ops); 3221 3222 if (unlikely(blk_bidi_rq(rq))) 3223 bidi_bytes = blk_rq_bytes(rq->next_rq); 3224 3225 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3226 BUG_ON(pending); 3227 } 3228 EXPORT_SYMBOL(__blk_end_request_all); 3229 3230 /** 3231 * __blk_end_request_cur - Helper function to finish the current request chunk. 3232 * @rq: the request to finish the current chunk for 3233 * @error: block status code 3234 * 3235 * Description: 3236 * Complete the current consecutively mapped chunk from @rq. Must 3237 * be called with queue lock held. 3238 * 3239 * Return: 3240 * %false - we are done with this request 3241 * %true - still buffers pending for this request 3242 */ 3243 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3244 { 3245 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3246 } 3247 EXPORT_SYMBOL(__blk_end_request_cur); 3248 3249 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3250 struct bio *bio) 3251 { 3252 if (bio_has_data(bio)) 3253 rq->nr_phys_segments = bio_phys_segments(q, bio); 3254 3255 rq->__data_len = bio->bi_iter.bi_size; 3256 rq->bio = rq->biotail = bio; 3257 3258 if (bio->bi_disk) 3259 rq->rq_disk = bio->bi_disk; 3260 } 3261 3262 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3263 /** 3264 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3265 * @rq: the request to be flushed 3266 * 3267 * Description: 3268 * Flush all pages in @rq. 3269 */ 3270 void rq_flush_dcache_pages(struct request *rq) 3271 { 3272 struct req_iterator iter; 3273 struct bio_vec bvec; 3274 3275 rq_for_each_segment(bvec, rq, iter) 3276 flush_dcache_page(bvec.bv_page); 3277 } 3278 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3279 #endif 3280 3281 /** 3282 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3283 * @q : the queue of the device being checked 3284 * 3285 * Description: 3286 * Check if underlying low-level drivers of a device are busy. 3287 * If the drivers want to export their busy state, they must set own 3288 * exporting function using blk_queue_lld_busy() first. 3289 * 3290 * Basically, this function is used only by request stacking drivers 3291 * to stop dispatching requests to underlying devices when underlying 3292 * devices are busy. This behavior helps more I/O merging on the queue 3293 * of the request stacking driver and prevents I/O throughput regression 3294 * on burst I/O load. 3295 * 3296 * Return: 3297 * 0 - Not busy (The request stacking driver should dispatch request) 3298 * 1 - Busy (The request stacking driver should stop dispatching request) 3299 */ 3300 int blk_lld_busy(struct request_queue *q) 3301 { 3302 if (q->lld_busy_fn) 3303 return q->lld_busy_fn(q); 3304 3305 return 0; 3306 } 3307 EXPORT_SYMBOL_GPL(blk_lld_busy); 3308 3309 /** 3310 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3311 * @rq: the clone request to be cleaned up 3312 * 3313 * Description: 3314 * Free all bios in @rq for a cloned request. 3315 */ 3316 void blk_rq_unprep_clone(struct request *rq) 3317 { 3318 struct bio *bio; 3319 3320 while ((bio = rq->bio) != NULL) { 3321 rq->bio = bio->bi_next; 3322 3323 bio_put(bio); 3324 } 3325 } 3326 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3327 3328 /* 3329 * Copy attributes of the original request to the clone request. 3330 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3331 */ 3332 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3333 { 3334 dst->cpu = src->cpu; 3335 dst->__sector = blk_rq_pos(src); 3336 dst->__data_len = blk_rq_bytes(src); 3337 dst->nr_phys_segments = src->nr_phys_segments; 3338 dst->ioprio = src->ioprio; 3339 dst->extra_len = src->extra_len; 3340 } 3341 3342 /** 3343 * blk_rq_prep_clone - Helper function to setup clone request 3344 * @rq: the request to be setup 3345 * @rq_src: original request to be cloned 3346 * @bs: bio_set that bios for clone are allocated from 3347 * @gfp_mask: memory allocation mask for bio 3348 * @bio_ctr: setup function to be called for each clone bio. 3349 * Returns %0 for success, non %0 for failure. 3350 * @data: private data to be passed to @bio_ctr 3351 * 3352 * Description: 3353 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3354 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3355 * are not copied, and copying such parts is the caller's responsibility. 3356 * Also, pages which the original bios are pointing to are not copied 3357 * and the cloned bios just point same pages. 3358 * So cloned bios must be completed before original bios, which means 3359 * the caller must complete @rq before @rq_src. 3360 */ 3361 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3362 struct bio_set *bs, gfp_t gfp_mask, 3363 int (*bio_ctr)(struct bio *, struct bio *, void *), 3364 void *data) 3365 { 3366 struct bio *bio, *bio_src; 3367 3368 if (!bs) 3369 bs = fs_bio_set; 3370 3371 __rq_for_each_bio(bio_src, rq_src) { 3372 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3373 if (!bio) 3374 goto free_and_out; 3375 3376 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3377 goto free_and_out; 3378 3379 if (rq->bio) { 3380 rq->biotail->bi_next = bio; 3381 rq->biotail = bio; 3382 } else 3383 rq->bio = rq->biotail = bio; 3384 } 3385 3386 __blk_rq_prep_clone(rq, rq_src); 3387 3388 return 0; 3389 3390 free_and_out: 3391 if (bio) 3392 bio_put(bio); 3393 blk_rq_unprep_clone(rq); 3394 3395 return -ENOMEM; 3396 } 3397 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3398 3399 int kblockd_schedule_work(struct work_struct *work) 3400 { 3401 return queue_work(kblockd_workqueue, work); 3402 } 3403 EXPORT_SYMBOL(kblockd_schedule_work); 3404 3405 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3406 { 3407 return queue_work_on(cpu, kblockd_workqueue, work); 3408 } 3409 EXPORT_SYMBOL(kblockd_schedule_work_on); 3410 3411 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3412 unsigned long delay) 3413 { 3414 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3415 } 3416 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3417 3418 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3419 unsigned long delay) 3420 { 3421 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3422 } 3423 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3424 3425 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3426 unsigned long delay) 3427 { 3428 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3429 } 3430 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3431 3432 /** 3433 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3434 * @plug: The &struct blk_plug that needs to be initialized 3435 * 3436 * Description: 3437 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3438 * pending I/O should the task end up blocking between blk_start_plug() and 3439 * blk_finish_plug(). This is important from a performance perspective, but 3440 * also ensures that we don't deadlock. For instance, if the task is blocking 3441 * for a memory allocation, memory reclaim could end up wanting to free a 3442 * page belonging to that request that is currently residing in our private 3443 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3444 * this kind of deadlock. 3445 */ 3446 void blk_start_plug(struct blk_plug *plug) 3447 { 3448 struct task_struct *tsk = current; 3449 3450 /* 3451 * If this is a nested plug, don't actually assign it. 3452 */ 3453 if (tsk->plug) 3454 return; 3455 3456 INIT_LIST_HEAD(&plug->list); 3457 INIT_LIST_HEAD(&plug->mq_list); 3458 INIT_LIST_HEAD(&plug->cb_list); 3459 /* 3460 * Store ordering should not be needed here, since a potential 3461 * preempt will imply a full memory barrier 3462 */ 3463 tsk->plug = plug; 3464 } 3465 EXPORT_SYMBOL(blk_start_plug); 3466 3467 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3468 { 3469 struct request *rqa = container_of(a, struct request, queuelist); 3470 struct request *rqb = container_of(b, struct request, queuelist); 3471 3472 return !(rqa->q < rqb->q || 3473 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3474 } 3475 3476 /* 3477 * If 'from_schedule' is true, then postpone the dispatch of requests 3478 * until a safe kblockd context. We due this to avoid accidental big 3479 * additional stack usage in driver dispatch, in places where the originally 3480 * plugger did not intend it. 3481 */ 3482 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3483 bool from_schedule) 3484 __releases(q->queue_lock) 3485 { 3486 lockdep_assert_held(q->queue_lock); 3487 3488 trace_block_unplug(q, depth, !from_schedule); 3489 3490 if (from_schedule) 3491 blk_run_queue_async(q); 3492 else 3493 __blk_run_queue(q); 3494 spin_unlock(q->queue_lock); 3495 } 3496 3497 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3498 { 3499 LIST_HEAD(callbacks); 3500 3501 while (!list_empty(&plug->cb_list)) { 3502 list_splice_init(&plug->cb_list, &callbacks); 3503 3504 while (!list_empty(&callbacks)) { 3505 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3506 struct blk_plug_cb, 3507 list); 3508 list_del(&cb->list); 3509 cb->callback(cb, from_schedule); 3510 } 3511 } 3512 } 3513 3514 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3515 int size) 3516 { 3517 struct blk_plug *plug = current->plug; 3518 struct blk_plug_cb *cb; 3519 3520 if (!plug) 3521 return NULL; 3522 3523 list_for_each_entry(cb, &plug->cb_list, list) 3524 if (cb->callback == unplug && cb->data == data) 3525 return cb; 3526 3527 /* Not currently on the callback list */ 3528 BUG_ON(size < sizeof(*cb)); 3529 cb = kzalloc(size, GFP_ATOMIC); 3530 if (cb) { 3531 cb->data = data; 3532 cb->callback = unplug; 3533 list_add(&cb->list, &plug->cb_list); 3534 } 3535 return cb; 3536 } 3537 EXPORT_SYMBOL(blk_check_plugged); 3538 3539 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3540 { 3541 struct request_queue *q; 3542 unsigned long flags; 3543 struct request *rq; 3544 LIST_HEAD(list); 3545 unsigned int depth; 3546 3547 flush_plug_callbacks(plug, from_schedule); 3548 3549 if (!list_empty(&plug->mq_list)) 3550 blk_mq_flush_plug_list(plug, from_schedule); 3551 3552 if (list_empty(&plug->list)) 3553 return; 3554 3555 list_splice_init(&plug->list, &list); 3556 3557 list_sort(NULL, &list, plug_rq_cmp); 3558 3559 q = NULL; 3560 depth = 0; 3561 3562 /* 3563 * Save and disable interrupts here, to avoid doing it for every 3564 * queue lock we have to take. 3565 */ 3566 local_irq_save(flags); 3567 while (!list_empty(&list)) { 3568 rq = list_entry_rq(list.next); 3569 list_del_init(&rq->queuelist); 3570 BUG_ON(!rq->q); 3571 if (rq->q != q) { 3572 /* 3573 * This drops the queue lock 3574 */ 3575 if (q) 3576 queue_unplugged(q, depth, from_schedule); 3577 q = rq->q; 3578 depth = 0; 3579 spin_lock(q->queue_lock); 3580 } 3581 3582 /* 3583 * Short-circuit if @q is dead 3584 */ 3585 if (unlikely(blk_queue_dying(q))) { 3586 __blk_end_request_all(rq, BLK_STS_IOERR); 3587 continue; 3588 } 3589 3590 /* 3591 * rq is already accounted, so use raw insert 3592 */ 3593 if (op_is_flush(rq->cmd_flags)) 3594 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3595 else 3596 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3597 3598 depth++; 3599 } 3600 3601 /* 3602 * This drops the queue lock 3603 */ 3604 if (q) 3605 queue_unplugged(q, depth, from_schedule); 3606 3607 local_irq_restore(flags); 3608 } 3609 3610 void blk_finish_plug(struct blk_plug *plug) 3611 { 3612 if (plug != current->plug) 3613 return; 3614 blk_flush_plug_list(plug, false); 3615 3616 current->plug = NULL; 3617 } 3618 EXPORT_SYMBOL(blk_finish_plug); 3619 3620 #ifdef CONFIG_PM 3621 /** 3622 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3623 * @q: the queue of the device 3624 * @dev: the device the queue belongs to 3625 * 3626 * Description: 3627 * Initialize runtime-PM-related fields for @q and start auto suspend for 3628 * @dev. Drivers that want to take advantage of request-based runtime PM 3629 * should call this function after @dev has been initialized, and its 3630 * request queue @q has been allocated, and runtime PM for it can not happen 3631 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3632 * cases, driver should call this function before any I/O has taken place. 3633 * 3634 * This function takes care of setting up using auto suspend for the device, 3635 * the autosuspend delay is set to -1 to make runtime suspend impossible 3636 * until an updated value is either set by user or by driver. Drivers do 3637 * not need to touch other autosuspend settings. 3638 * 3639 * The block layer runtime PM is request based, so only works for drivers 3640 * that use request as their IO unit instead of those directly use bio's. 3641 */ 3642 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3643 { 3644 /* not support for RQF_PM and ->rpm_status in blk-mq yet */ 3645 if (q->mq_ops) 3646 return; 3647 3648 q->dev = dev; 3649 q->rpm_status = RPM_ACTIVE; 3650 pm_runtime_set_autosuspend_delay(q->dev, -1); 3651 pm_runtime_use_autosuspend(q->dev); 3652 } 3653 EXPORT_SYMBOL(blk_pm_runtime_init); 3654 3655 /** 3656 * blk_pre_runtime_suspend - Pre runtime suspend check 3657 * @q: the queue of the device 3658 * 3659 * Description: 3660 * This function will check if runtime suspend is allowed for the device 3661 * by examining if there are any requests pending in the queue. If there 3662 * are requests pending, the device can not be runtime suspended; otherwise, 3663 * the queue's status will be updated to SUSPENDING and the driver can 3664 * proceed to suspend the device. 3665 * 3666 * For the not allowed case, we mark last busy for the device so that 3667 * runtime PM core will try to autosuspend it some time later. 3668 * 3669 * This function should be called near the start of the device's 3670 * runtime_suspend callback. 3671 * 3672 * Return: 3673 * 0 - OK to runtime suspend the device 3674 * -EBUSY - Device should not be runtime suspended 3675 */ 3676 int blk_pre_runtime_suspend(struct request_queue *q) 3677 { 3678 int ret = 0; 3679 3680 if (!q->dev) 3681 return ret; 3682 3683 spin_lock_irq(q->queue_lock); 3684 if (q->nr_pending) { 3685 ret = -EBUSY; 3686 pm_runtime_mark_last_busy(q->dev); 3687 } else { 3688 q->rpm_status = RPM_SUSPENDING; 3689 } 3690 spin_unlock_irq(q->queue_lock); 3691 return ret; 3692 } 3693 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3694 3695 /** 3696 * blk_post_runtime_suspend - Post runtime suspend processing 3697 * @q: the queue of the device 3698 * @err: return value of the device's runtime_suspend function 3699 * 3700 * Description: 3701 * Update the queue's runtime status according to the return value of the 3702 * device's runtime suspend function and mark last busy for the device so 3703 * that PM core will try to auto suspend the device at a later time. 3704 * 3705 * This function should be called near the end of the device's 3706 * runtime_suspend callback. 3707 */ 3708 void blk_post_runtime_suspend(struct request_queue *q, int err) 3709 { 3710 if (!q->dev) 3711 return; 3712 3713 spin_lock_irq(q->queue_lock); 3714 if (!err) { 3715 q->rpm_status = RPM_SUSPENDED; 3716 } else { 3717 q->rpm_status = RPM_ACTIVE; 3718 pm_runtime_mark_last_busy(q->dev); 3719 } 3720 spin_unlock_irq(q->queue_lock); 3721 } 3722 EXPORT_SYMBOL(blk_post_runtime_suspend); 3723 3724 /** 3725 * blk_pre_runtime_resume - Pre runtime resume processing 3726 * @q: the queue of the device 3727 * 3728 * Description: 3729 * Update the queue's runtime status to RESUMING in preparation for the 3730 * runtime resume of the device. 3731 * 3732 * This function should be called near the start of the device's 3733 * runtime_resume callback. 3734 */ 3735 void blk_pre_runtime_resume(struct request_queue *q) 3736 { 3737 if (!q->dev) 3738 return; 3739 3740 spin_lock_irq(q->queue_lock); 3741 q->rpm_status = RPM_RESUMING; 3742 spin_unlock_irq(q->queue_lock); 3743 } 3744 EXPORT_SYMBOL(blk_pre_runtime_resume); 3745 3746 /** 3747 * blk_post_runtime_resume - Post runtime resume processing 3748 * @q: the queue of the device 3749 * @err: return value of the device's runtime_resume function 3750 * 3751 * Description: 3752 * Update the queue's runtime status according to the return value of the 3753 * device's runtime_resume function. If it is successfully resumed, process 3754 * the requests that are queued into the device's queue when it is resuming 3755 * and then mark last busy and initiate autosuspend for it. 3756 * 3757 * This function should be called near the end of the device's 3758 * runtime_resume callback. 3759 */ 3760 void blk_post_runtime_resume(struct request_queue *q, int err) 3761 { 3762 if (!q->dev) 3763 return; 3764 3765 spin_lock_irq(q->queue_lock); 3766 if (!err) { 3767 q->rpm_status = RPM_ACTIVE; 3768 __blk_run_queue(q); 3769 pm_runtime_mark_last_busy(q->dev); 3770 pm_request_autosuspend(q->dev); 3771 } else { 3772 q->rpm_status = RPM_SUSPENDED; 3773 } 3774 spin_unlock_irq(q->queue_lock); 3775 } 3776 EXPORT_SYMBOL(blk_post_runtime_resume); 3777 3778 /** 3779 * blk_set_runtime_active - Force runtime status of the queue to be active 3780 * @q: the queue of the device 3781 * 3782 * If the device is left runtime suspended during system suspend the resume 3783 * hook typically resumes the device and corrects runtime status 3784 * accordingly. However, that does not affect the queue runtime PM status 3785 * which is still "suspended". This prevents processing requests from the 3786 * queue. 3787 * 3788 * This function can be used in driver's resume hook to correct queue 3789 * runtime PM status and re-enable peeking requests from the queue. It 3790 * should be called before first request is added to the queue. 3791 */ 3792 void blk_set_runtime_active(struct request_queue *q) 3793 { 3794 spin_lock_irq(q->queue_lock); 3795 q->rpm_status = RPM_ACTIVE; 3796 pm_runtime_mark_last_busy(q->dev); 3797 pm_request_autosuspend(q->dev); 3798 spin_unlock_irq(q->queue_lock); 3799 } 3800 EXPORT_SYMBOL(blk_set_runtime_active); 3801 #endif 3802 3803 int __init blk_dev_init(void) 3804 { 3805 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3806 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3807 FIELD_SIZEOF(struct request, cmd_flags)); 3808 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3809 FIELD_SIZEOF(struct bio, bi_opf)); 3810 3811 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3812 kblockd_workqueue = alloc_workqueue("kblockd", 3813 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3814 if (!kblockd_workqueue) 3815 panic("Failed to create kblockd\n"); 3816 3817 request_cachep = kmem_cache_create("blkdev_requests", 3818 sizeof(struct request), 0, SLAB_PANIC, NULL); 3819 3820 blk_requestq_cachep = kmem_cache_create("request_queue", 3821 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3822 3823 #ifdef CONFIG_DEBUG_FS 3824 blk_debugfs_root = debugfs_create_dir("block", NULL); 3825 #endif 3826 3827 return 0; 3828 } 3829