xref: /linux/block/blk-core.c (revision da6f8320d58623eae9b6fa2f09b1b4f60a772ce9)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45 
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49 
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55 
56 DEFINE_IDA(blk_queue_ida);
57 
58 /*
59  * For the allocated request tables
60  */
61 struct kmem_cache *request_cachep;
62 
63 /*
64  * For queue allocation
65  */
66 struct kmem_cache *blk_requestq_cachep;
67 
68 /*
69  * Controlling structure to kblockd
70  */
71 static struct workqueue_struct *kblockd_workqueue;
72 
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 	clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 	/*
79 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 	 * flip its congestion state for events on other blkcgs.
81 	 */
82 	if (rl == &rl->q->root_rl)
83 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86 
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 	set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 	/* see blk_clear_congested() */
93 	if (rl == &rl->q->root_rl)
94 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97 
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 	int nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 	if (nr > q->nr_requests)
104 		nr = q->nr_requests;
105 	q->nr_congestion_on = nr;
106 
107 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 	if (nr < 1)
109 		nr = 1;
110 	q->nr_congestion_off = nr;
111 }
112 
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 	memset(rq, 0, sizeof(*rq));
116 
117 	INIT_LIST_HEAD(&rq->queuelist);
118 	INIT_LIST_HEAD(&rq->timeout_list);
119 	rq->cpu = -1;
120 	rq->q = q;
121 	rq->__sector = (sector_t) -1;
122 	INIT_HLIST_NODE(&rq->hash);
123 	RB_CLEAR_NODE(&rq->rb_node);
124 	rq->tag = -1;
125 	rq->internal_tag = -1;
126 	rq->start_time = jiffies;
127 	set_start_time_ns(rq);
128 	rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131 
132 static const struct {
133 	int		errno;
134 	const char	*name;
135 } blk_errors[] = {
136 	[BLK_STS_OK]		= { 0,		"" },
137 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
138 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
139 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
140 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
141 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
142 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
143 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
144 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
145 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
146 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
147 
148 	/* device mapper special case, should not leak out: */
149 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
150 
151 	/* everything else not covered above: */
152 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
153 };
154 
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 	int i;
158 
159 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 		if (blk_errors[i].errno == errno)
161 			return (__force blk_status_t)i;
162 	}
163 
164 	return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167 
168 int blk_status_to_errno(blk_status_t status)
169 {
170 	int idx = (__force int)status;
171 
172 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 		return -EIO;
174 	return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177 
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 	int idx = (__force int)status;
181 
182 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 		return;
184 
185 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 			   __func__, blk_errors[idx].name, req->rq_disk ?
187 			   req->rq_disk->disk_name : "?",
188 			   (unsigned long long)blk_rq_pos(req));
189 }
190 
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 			  unsigned int nbytes, blk_status_t error)
193 {
194 	if (error)
195 		bio->bi_status = error;
196 
197 	if (unlikely(rq->rq_flags & RQF_QUIET))
198 		bio_set_flag(bio, BIO_QUIET);
199 
200 	bio_advance(bio, nbytes);
201 
202 	/* don't actually finish bio if it's part of flush sequence */
203 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 		bio_endio(bio);
205 }
206 
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 		(unsigned long long) rq->cmd_flags);
212 
213 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
214 	       (unsigned long long)blk_rq_pos(rq),
215 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
217 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220 
221 static void blk_delay_work(struct work_struct *work)
222 {
223 	struct request_queue *q;
224 
225 	q = container_of(work, struct request_queue, delay_work.work);
226 	spin_lock_irq(q->queue_lock);
227 	__blk_run_queue(q);
228 	spin_unlock_irq(q->queue_lock);
229 }
230 
231 /**
232  * blk_delay_queue - restart queueing after defined interval
233  * @q:		The &struct request_queue in question
234  * @msecs:	Delay in msecs
235  *
236  * Description:
237  *   Sometimes queueing needs to be postponed for a little while, to allow
238  *   resources to come back. This function will make sure that queueing is
239  *   restarted around the specified time.
240  */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 	lockdep_assert_held(q->queue_lock);
244 	WARN_ON_ONCE(q->mq_ops);
245 
246 	if (likely(!blk_queue_dead(q)))
247 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 				   msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251 
252 /**
253  * blk_start_queue_async - asynchronously restart a previously stopped queue
254  * @q:    The &struct request_queue in question
255  *
256  * Description:
257  *   blk_start_queue_async() will clear the stop flag on the queue, and
258  *   ensure that the request_fn for the queue is run from an async
259  *   context.
260  **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 	lockdep_assert_held(q->queue_lock);
264 	WARN_ON_ONCE(q->mq_ops);
265 
266 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 	blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270 
271 /**
272  * blk_start_queue - restart a previously stopped queue
273  * @q:    The &struct request_queue in question
274  *
275  * Description:
276  *   blk_start_queue() will clear the stop flag on the queue, and call
277  *   the request_fn for the queue if it was in a stopped state when
278  *   entered. Also see blk_stop_queue().
279  **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 	lockdep_assert_held(q->queue_lock);
283 	WARN_ON(!in_interrupt() && !irqs_disabled());
284 	WARN_ON_ONCE(q->mq_ops);
285 
286 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 	__blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290 
291 /**
292  * blk_stop_queue - stop a queue
293  * @q:    The &struct request_queue in question
294  *
295  * Description:
296  *   The Linux block layer assumes that a block driver will consume all
297  *   entries on the request queue when the request_fn strategy is called.
298  *   Often this will not happen, because of hardware limitations (queue
299  *   depth settings). If a device driver gets a 'queue full' response,
300  *   or if it simply chooses not to queue more I/O at one point, it can
301  *   call this function to prevent the request_fn from being called until
302  *   the driver has signalled it's ready to go again. This happens by calling
303  *   blk_start_queue() to restart queue operations.
304  **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 	lockdep_assert_held(q->queue_lock);
308 	WARN_ON_ONCE(q->mq_ops);
309 
310 	cancel_delayed_work(&q->delay_work);
311 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314 
315 /**
316  * blk_sync_queue - cancel any pending callbacks on a queue
317  * @q: the queue
318  *
319  * Description:
320  *     The block layer may perform asynchronous callback activity
321  *     on a queue, such as calling the unplug function after a timeout.
322  *     A block device may call blk_sync_queue to ensure that any
323  *     such activity is cancelled, thus allowing it to release resources
324  *     that the callbacks might use. The caller must already have made sure
325  *     that its ->make_request_fn will not re-add plugging prior to calling
326  *     this function.
327  *
328  *     This function does not cancel any asynchronous activity arising
329  *     out of elevator or throttling code. That would require elevator_exit()
330  *     and blkcg_exit_queue() to be called with queue lock initialized.
331  *
332  */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 	del_timer_sync(&q->timeout);
336 	cancel_work_sync(&q->timeout_work);
337 
338 	if (q->mq_ops) {
339 		struct blk_mq_hw_ctx *hctx;
340 		int i;
341 
342 		cancel_delayed_work_sync(&q->requeue_work);
343 		queue_for_each_hw_ctx(q, hctx, i)
344 			cancel_delayed_work_sync(&hctx->run_work);
345 	} else {
346 		cancel_delayed_work_sync(&q->delay_work);
347 	}
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350 
351 /**
352  * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353  * @q: request queue pointer
354  *
355  * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356  * set and 1 if the flag was already set.
357  */
358 int blk_set_preempt_only(struct request_queue *q)
359 {
360 	unsigned long flags;
361 	int res;
362 
363 	spin_lock_irqsave(q->queue_lock, flags);
364 	res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 	spin_unlock_irqrestore(q->queue_lock, flags);
366 
367 	return res;
368 }
369 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370 
371 void blk_clear_preempt_only(struct request_queue *q)
372 {
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(q->queue_lock, flags);
376 	queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
377 	wake_up_all(&q->mq_freeze_wq);
378 	spin_unlock_irqrestore(q->queue_lock, flags);
379 }
380 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381 
382 /**
383  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384  * @q:	The queue to run
385  *
386  * Description:
387  *    Invoke request handling on a queue if there are any pending requests.
388  *    May be used to restart request handling after a request has completed.
389  *    This variant runs the queue whether or not the queue has been
390  *    stopped. Must be called with the queue lock held and interrupts
391  *    disabled. See also @blk_run_queue.
392  */
393 inline void __blk_run_queue_uncond(struct request_queue *q)
394 {
395 	lockdep_assert_held(q->queue_lock);
396 	WARN_ON_ONCE(q->mq_ops);
397 
398 	if (unlikely(blk_queue_dead(q)))
399 		return;
400 
401 	/*
402 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 	 * the queue lock internally. As a result multiple threads may be
404 	 * running such a request function concurrently. Keep track of the
405 	 * number of active request_fn invocations such that blk_drain_queue()
406 	 * can wait until all these request_fn calls have finished.
407 	 */
408 	q->request_fn_active++;
409 	q->request_fn(q);
410 	q->request_fn_active--;
411 }
412 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
413 
414 /**
415  * __blk_run_queue - run a single device queue
416  * @q:	The queue to run
417  *
418  * Description:
419  *    See @blk_run_queue.
420  */
421 void __blk_run_queue(struct request_queue *q)
422 {
423 	lockdep_assert_held(q->queue_lock);
424 	WARN_ON_ONCE(q->mq_ops);
425 
426 	if (unlikely(blk_queue_stopped(q)))
427 		return;
428 
429 	__blk_run_queue_uncond(q);
430 }
431 EXPORT_SYMBOL(__blk_run_queue);
432 
433 /**
434  * blk_run_queue_async - run a single device queue in workqueue context
435  * @q:	The queue to run
436  *
437  * Description:
438  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
439  *    of us.
440  *
441  * Note:
442  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443  *    has canceled q->delay_work, callers must hold the queue lock to avoid
444  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
445  */
446 void blk_run_queue_async(struct request_queue *q)
447 {
448 	lockdep_assert_held(q->queue_lock);
449 	WARN_ON_ONCE(q->mq_ops);
450 
451 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
452 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
453 }
454 EXPORT_SYMBOL(blk_run_queue_async);
455 
456 /**
457  * blk_run_queue - run a single device queue
458  * @q: The queue to run
459  *
460  * Description:
461  *    Invoke request handling on this queue, if it has pending work to do.
462  *    May be used to restart queueing when a request has completed.
463  */
464 void blk_run_queue(struct request_queue *q)
465 {
466 	unsigned long flags;
467 
468 	WARN_ON_ONCE(q->mq_ops);
469 
470 	spin_lock_irqsave(q->queue_lock, flags);
471 	__blk_run_queue(q);
472 	spin_unlock_irqrestore(q->queue_lock, flags);
473 }
474 EXPORT_SYMBOL(blk_run_queue);
475 
476 void blk_put_queue(struct request_queue *q)
477 {
478 	kobject_put(&q->kobj);
479 }
480 EXPORT_SYMBOL(blk_put_queue);
481 
482 /**
483  * __blk_drain_queue - drain requests from request_queue
484  * @q: queue to drain
485  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
486  *
487  * Drain requests from @q.  If @drain_all is set, all requests are drained.
488  * If not, only ELVPRIV requests are drained.  The caller is responsible
489  * for ensuring that no new requests which need to be drained are queued.
490  */
491 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 	__releases(q->queue_lock)
493 	__acquires(q->queue_lock)
494 {
495 	int i;
496 
497 	lockdep_assert_held(q->queue_lock);
498 	WARN_ON_ONCE(q->mq_ops);
499 
500 	while (true) {
501 		bool drain = false;
502 
503 		/*
504 		 * The caller might be trying to drain @q before its
505 		 * elevator is initialized.
506 		 */
507 		if (q->elevator)
508 			elv_drain_elevator(q);
509 
510 		blkcg_drain_queue(q);
511 
512 		/*
513 		 * This function might be called on a queue which failed
514 		 * driver init after queue creation or is not yet fully
515 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
516 		 * in such cases.  Kick queue iff dispatch queue has
517 		 * something on it and @q has request_fn set.
518 		 */
519 		if (!list_empty(&q->queue_head) && q->request_fn)
520 			__blk_run_queue(q);
521 
522 		drain |= q->nr_rqs_elvpriv;
523 		drain |= q->request_fn_active;
524 
525 		/*
526 		 * Unfortunately, requests are queued at and tracked from
527 		 * multiple places and there's no single counter which can
528 		 * be drained.  Check all the queues and counters.
529 		 */
530 		if (drain_all) {
531 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
532 			drain |= !list_empty(&q->queue_head);
533 			for (i = 0; i < 2; i++) {
534 				drain |= q->nr_rqs[i];
535 				drain |= q->in_flight[i];
536 				if (fq)
537 				    drain |= !list_empty(&fq->flush_queue[i]);
538 			}
539 		}
540 
541 		if (!drain)
542 			break;
543 
544 		spin_unlock_irq(q->queue_lock);
545 
546 		msleep(10);
547 
548 		spin_lock_irq(q->queue_lock);
549 	}
550 
551 	/*
552 	 * With queue marked dead, any woken up waiter will fail the
553 	 * allocation path, so the wakeup chaining is lost and we're
554 	 * left with hung waiters. We need to wake up those waiters.
555 	 */
556 	if (q->request_fn) {
557 		struct request_list *rl;
558 
559 		blk_queue_for_each_rl(rl, q)
560 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 				wake_up_all(&rl->wait[i]);
562 	}
563 }
564 
565 void blk_drain_queue(struct request_queue *q)
566 {
567 	spin_lock_irq(q->queue_lock);
568 	__blk_drain_queue(q, true);
569 	spin_unlock_irq(q->queue_lock);
570 }
571 
572 /**
573  * blk_queue_bypass_start - enter queue bypass mode
574  * @q: queue of interest
575  *
576  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
577  * function makes @q enter bypass mode and drains all requests which were
578  * throttled or issued before.  On return, it's guaranteed that no request
579  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
580  * inside queue or RCU read lock.
581  */
582 void blk_queue_bypass_start(struct request_queue *q)
583 {
584 	WARN_ON_ONCE(q->mq_ops);
585 
586 	spin_lock_irq(q->queue_lock);
587 	q->bypass_depth++;
588 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
589 	spin_unlock_irq(q->queue_lock);
590 
591 	/*
592 	 * Queues start drained.  Skip actual draining till init is
593 	 * complete.  This avoids lenghty delays during queue init which
594 	 * can happen many times during boot.
595 	 */
596 	if (blk_queue_init_done(q)) {
597 		spin_lock_irq(q->queue_lock);
598 		__blk_drain_queue(q, false);
599 		spin_unlock_irq(q->queue_lock);
600 
601 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
602 		synchronize_rcu();
603 	}
604 }
605 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
606 
607 /**
608  * blk_queue_bypass_end - leave queue bypass mode
609  * @q: queue of interest
610  *
611  * Leave bypass mode and restore the normal queueing behavior.
612  *
613  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
614  * this function is called for both blk-sq and blk-mq queues.
615  */
616 void blk_queue_bypass_end(struct request_queue *q)
617 {
618 	spin_lock_irq(q->queue_lock);
619 	if (!--q->bypass_depth)
620 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
621 	WARN_ON_ONCE(q->bypass_depth < 0);
622 	spin_unlock_irq(q->queue_lock);
623 }
624 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
625 
626 void blk_set_queue_dying(struct request_queue *q)
627 {
628 	spin_lock_irq(q->queue_lock);
629 	queue_flag_set(QUEUE_FLAG_DYING, q);
630 	spin_unlock_irq(q->queue_lock);
631 
632 	/*
633 	 * When queue DYING flag is set, we need to block new req
634 	 * entering queue, so we call blk_freeze_queue_start() to
635 	 * prevent I/O from crossing blk_queue_enter().
636 	 */
637 	blk_freeze_queue_start(q);
638 
639 	if (q->mq_ops)
640 		blk_mq_wake_waiters(q);
641 	else {
642 		struct request_list *rl;
643 
644 		spin_lock_irq(q->queue_lock);
645 		blk_queue_for_each_rl(rl, q) {
646 			if (rl->rq_pool) {
647 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
648 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
649 			}
650 		}
651 		spin_unlock_irq(q->queue_lock);
652 	}
653 
654 	/* Make blk_queue_enter() reexamine the DYING flag. */
655 	wake_up_all(&q->mq_freeze_wq);
656 }
657 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
658 
659 /**
660  * blk_cleanup_queue - shutdown a request queue
661  * @q: request queue to shutdown
662  *
663  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
664  * put it.  All future requests will be failed immediately with -ENODEV.
665  */
666 void blk_cleanup_queue(struct request_queue *q)
667 {
668 	spinlock_t *lock = q->queue_lock;
669 
670 	/* mark @q DYING, no new request or merges will be allowed afterwards */
671 	mutex_lock(&q->sysfs_lock);
672 	blk_set_queue_dying(q);
673 	spin_lock_irq(lock);
674 
675 	/*
676 	 * A dying queue is permanently in bypass mode till released.  Note
677 	 * that, unlike blk_queue_bypass_start(), we aren't performing
678 	 * synchronize_rcu() after entering bypass mode to avoid the delay
679 	 * as some drivers create and destroy a lot of queues while
680 	 * probing.  This is still safe because blk_release_queue() will be
681 	 * called only after the queue refcnt drops to zero and nothing,
682 	 * RCU or not, would be traversing the queue by then.
683 	 */
684 	q->bypass_depth++;
685 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
686 
687 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
688 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
689 	queue_flag_set(QUEUE_FLAG_DYING, q);
690 	spin_unlock_irq(lock);
691 	mutex_unlock(&q->sysfs_lock);
692 
693 	/*
694 	 * Drain all requests queued before DYING marking. Set DEAD flag to
695 	 * prevent that q->request_fn() gets invoked after draining finished.
696 	 */
697 	blk_freeze_queue(q);
698 	spin_lock_irq(lock);
699 	queue_flag_set(QUEUE_FLAG_DEAD, q);
700 	spin_unlock_irq(lock);
701 
702 	/* for synchronous bio-based driver finish in-flight integrity i/o */
703 	blk_flush_integrity();
704 
705 	/* @q won't process any more request, flush async actions */
706 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
707 	blk_sync_queue(q);
708 
709 	if (q->mq_ops)
710 		blk_mq_free_queue(q);
711 	percpu_ref_exit(&q->q_usage_counter);
712 
713 	spin_lock_irq(lock);
714 	if (q->queue_lock != &q->__queue_lock)
715 		q->queue_lock = &q->__queue_lock;
716 	spin_unlock_irq(lock);
717 
718 	/* @q is and will stay empty, shutdown and put */
719 	blk_put_queue(q);
720 }
721 EXPORT_SYMBOL(blk_cleanup_queue);
722 
723 /* Allocate memory local to the request queue */
724 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
725 {
726 	struct request_queue *q = data;
727 
728 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
729 }
730 
731 static void free_request_simple(void *element, void *data)
732 {
733 	kmem_cache_free(request_cachep, element);
734 }
735 
736 static void *alloc_request_size(gfp_t gfp_mask, void *data)
737 {
738 	struct request_queue *q = data;
739 	struct request *rq;
740 
741 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
742 			q->node);
743 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
744 		kfree(rq);
745 		rq = NULL;
746 	}
747 	return rq;
748 }
749 
750 static void free_request_size(void *element, void *data)
751 {
752 	struct request_queue *q = data;
753 
754 	if (q->exit_rq_fn)
755 		q->exit_rq_fn(q, element);
756 	kfree(element);
757 }
758 
759 int blk_init_rl(struct request_list *rl, struct request_queue *q,
760 		gfp_t gfp_mask)
761 {
762 	if (unlikely(rl->rq_pool) || q->mq_ops)
763 		return 0;
764 
765 	rl->q = q;
766 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
767 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
768 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
769 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
770 
771 	if (q->cmd_size) {
772 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
773 				alloc_request_size, free_request_size,
774 				q, gfp_mask, q->node);
775 	} else {
776 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
777 				alloc_request_simple, free_request_simple,
778 				q, gfp_mask, q->node);
779 	}
780 	if (!rl->rq_pool)
781 		return -ENOMEM;
782 
783 	if (rl != &q->root_rl)
784 		WARN_ON_ONCE(!blk_get_queue(q));
785 
786 	return 0;
787 }
788 
789 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
790 {
791 	if (rl->rq_pool) {
792 		mempool_destroy(rl->rq_pool);
793 		if (rl != &q->root_rl)
794 			blk_put_queue(q);
795 	}
796 }
797 
798 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
799 {
800 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
801 }
802 EXPORT_SYMBOL(blk_alloc_queue);
803 
804 /**
805  * blk_queue_enter() - try to increase q->q_usage_counter
806  * @q: request queue pointer
807  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
808  */
809 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
810 {
811 	const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
812 
813 	while (true) {
814 		bool success = false;
815 		int ret;
816 
817 		rcu_read_lock_sched();
818 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
819 			/*
820 			 * The code that sets the PREEMPT_ONLY flag is
821 			 * responsible for ensuring that that flag is globally
822 			 * visible before the queue is unfrozen.
823 			 */
824 			if (preempt || !blk_queue_preempt_only(q)) {
825 				success = true;
826 			} else {
827 				percpu_ref_put(&q->q_usage_counter);
828 			}
829 		}
830 		rcu_read_unlock_sched();
831 
832 		if (success)
833 			return 0;
834 
835 		if (flags & BLK_MQ_REQ_NOWAIT)
836 			return -EBUSY;
837 
838 		/*
839 		 * read pair of barrier in blk_freeze_queue_start(),
840 		 * we need to order reading __PERCPU_REF_DEAD flag of
841 		 * .q_usage_counter and reading .mq_freeze_depth or
842 		 * queue dying flag, otherwise the following wait may
843 		 * never return if the two reads are reordered.
844 		 */
845 		smp_rmb();
846 
847 		ret = wait_event_interruptible(q->mq_freeze_wq,
848 				(atomic_read(&q->mq_freeze_depth) == 0 &&
849 				 (preempt || !blk_queue_preempt_only(q))) ||
850 				blk_queue_dying(q));
851 		if (blk_queue_dying(q))
852 			return -ENODEV;
853 		if (ret)
854 			return ret;
855 	}
856 }
857 
858 void blk_queue_exit(struct request_queue *q)
859 {
860 	percpu_ref_put(&q->q_usage_counter);
861 }
862 
863 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
864 {
865 	struct request_queue *q =
866 		container_of(ref, struct request_queue, q_usage_counter);
867 
868 	wake_up_all(&q->mq_freeze_wq);
869 }
870 
871 static void blk_rq_timed_out_timer(struct timer_list *t)
872 {
873 	struct request_queue *q = from_timer(q, t, timeout);
874 
875 	kblockd_schedule_work(&q->timeout_work);
876 }
877 
878 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
879 {
880 	struct request_queue *q;
881 
882 	q = kmem_cache_alloc_node(blk_requestq_cachep,
883 				gfp_mask | __GFP_ZERO, node_id);
884 	if (!q)
885 		return NULL;
886 
887 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
888 	if (q->id < 0)
889 		goto fail_q;
890 
891 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
892 	if (!q->bio_split)
893 		goto fail_id;
894 
895 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
896 	if (!q->backing_dev_info)
897 		goto fail_split;
898 
899 	q->stats = blk_alloc_queue_stats();
900 	if (!q->stats)
901 		goto fail_stats;
902 
903 	q->backing_dev_info->ra_pages =
904 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
905 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
906 	q->backing_dev_info->name = "block";
907 	q->node = node_id;
908 
909 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
910 		    laptop_mode_timer_fn, 0);
911 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
912 	INIT_WORK(&q->timeout_work, NULL);
913 	INIT_LIST_HEAD(&q->queue_head);
914 	INIT_LIST_HEAD(&q->timeout_list);
915 	INIT_LIST_HEAD(&q->icq_list);
916 #ifdef CONFIG_BLK_CGROUP
917 	INIT_LIST_HEAD(&q->blkg_list);
918 #endif
919 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
920 
921 	kobject_init(&q->kobj, &blk_queue_ktype);
922 
923 #ifdef CONFIG_BLK_DEV_IO_TRACE
924 	mutex_init(&q->blk_trace_mutex);
925 #endif
926 	mutex_init(&q->sysfs_lock);
927 	spin_lock_init(&q->__queue_lock);
928 
929 	/*
930 	 * By default initialize queue_lock to internal lock and driver can
931 	 * override it later if need be.
932 	 */
933 	q->queue_lock = &q->__queue_lock;
934 
935 	/*
936 	 * A queue starts its life with bypass turned on to avoid
937 	 * unnecessary bypass on/off overhead and nasty surprises during
938 	 * init.  The initial bypass will be finished when the queue is
939 	 * registered by blk_register_queue().
940 	 */
941 	q->bypass_depth = 1;
942 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
943 
944 	init_waitqueue_head(&q->mq_freeze_wq);
945 
946 	/*
947 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
948 	 * See blk_register_queue() for details.
949 	 */
950 	if (percpu_ref_init(&q->q_usage_counter,
951 				blk_queue_usage_counter_release,
952 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
953 		goto fail_bdi;
954 
955 	if (blkcg_init_queue(q))
956 		goto fail_ref;
957 
958 	return q;
959 
960 fail_ref:
961 	percpu_ref_exit(&q->q_usage_counter);
962 fail_bdi:
963 	blk_free_queue_stats(q->stats);
964 fail_stats:
965 	bdi_put(q->backing_dev_info);
966 fail_split:
967 	bioset_free(q->bio_split);
968 fail_id:
969 	ida_simple_remove(&blk_queue_ida, q->id);
970 fail_q:
971 	kmem_cache_free(blk_requestq_cachep, q);
972 	return NULL;
973 }
974 EXPORT_SYMBOL(blk_alloc_queue_node);
975 
976 /**
977  * blk_init_queue  - prepare a request queue for use with a block device
978  * @rfn:  The function to be called to process requests that have been
979  *        placed on the queue.
980  * @lock: Request queue spin lock
981  *
982  * Description:
983  *    If a block device wishes to use the standard request handling procedures,
984  *    which sorts requests and coalesces adjacent requests, then it must
985  *    call blk_init_queue().  The function @rfn will be called when there
986  *    are requests on the queue that need to be processed.  If the device
987  *    supports plugging, then @rfn may not be called immediately when requests
988  *    are available on the queue, but may be called at some time later instead.
989  *    Plugged queues are generally unplugged when a buffer belonging to one
990  *    of the requests on the queue is needed, or due to memory pressure.
991  *
992  *    @rfn is not required, or even expected, to remove all requests off the
993  *    queue, but only as many as it can handle at a time.  If it does leave
994  *    requests on the queue, it is responsible for arranging that the requests
995  *    get dealt with eventually.
996  *
997  *    The queue spin lock must be held while manipulating the requests on the
998  *    request queue; this lock will be taken also from interrupt context, so irq
999  *    disabling is needed for it.
1000  *
1001  *    Function returns a pointer to the initialized request queue, or %NULL if
1002  *    it didn't succeed.
1003  *
1004  * Note:
1005  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1006  *    when the block device is deactivated (such as at module unload).
1007  **/
1008 
1009 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1010 {
1011 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1012 }
1013 EXPORT_SYMBOL(blk_init_queue);
1014 
1015 struct request_queue *
1016 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1017 {
1018 	struct request_queue *q;
1019 
1020 	q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1021 	if (!q)
1022 		return NULL;
1023 
1024 	q->request_fn = rfn;
1025 	if (lock)
1026 		q->queue_lock = lock;
1027 	if (blk_init_allocated_queue(q) < 0) {
1028 		blk_cleanup_queue(q);
1029 		return NULL;
1030 	}
1031 
1032 	return q;
1033 }
1034 EXPORT_SYMBOL(blk_init_queue_node);
1035 
1036 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1037 
1038 
1039 int blk_init_allocated_queue(struct request_queue *q)
1040 {
1041 	WARN_ON_ONCE(q->mq_ops);
1042 
1043 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1044 	if (!q->fq)
1045 		return -ENOMEM;
1046 
1047 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1048 		goto out_free_flush_queue;
1049 
1050 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1051 		goto out_exit_flush_rq;
1052 
1053 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1054 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1055 
1056 	/*
1057 	 * This also sets hw/phys segments, boundary and size
1058 	 */
1059 	blk_queue_make_request(q, blk_queue_bio);
1060 
1061 	q->sg_reserved_size = INT_MAX;
1062 
1063 	/* Protect q->elevator from elevator_change */
1064 	mutex_lock(&q->sysfs_lock);
1065 
1066 	/* init elevator */
1067 	if (elevator_init(q, NULL)) {
1068 		mutex_unlock(&q->sysfs_lock);
1069 		goto out_exit_flush_rq;
1070 	}
1071 
1072 	mutex_unlock(&q->sysfs_lock);
1073 	return 0;
1074 
1075 out_exit_flush_rq:
1076 	if (q->exit_rq_fn)
1077 		q->exit_rq_fn(q, q->fq->flush_rq);
1078 out_free_flush_queue:
1079 	blk_free_flush_queue(q->fq);
1080 	return -ENOMEM;
1081 }
1082 EXPORT_SYMBOL(blk_init_allocated_queue);
1083 
1084 bool blk_get_queue(struct request_queue *q)
1085 {
1086 	if (likely(!blk_queue_dying(q))) {
1087 		__blk_get_queue(q);
1088 		return true;
1089 	}
1090 
1091 	return false;
1092 }
1093 EXPORT_SYMBOL(blk_get_queue);
1094 
1095 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1096 {
1097 	if (rq->rq_flags & RQF_ELVPRIV) {
1098 		elv_put_request(rl->q, rq);
1099 		if (rq->elv.icq)
1100 			put_io_context(rq->elv.icq->ioc);
1101 	}
1102 
1103 	mempool_free(rq, rl->rq_pool);
1104 }
1105 
1106 /*
1107  * ioc_batching returns true if the ioc is a valid batching request and
1108  * should be given priority access to a request.
1109  */
1110 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1111 {
1112 	if (!ioc)
1113 		return 0;
1114 
1115 	/*
1116 	 * Make sure the process is able to allocate at least 1 request
1117 	 * even if the batch times out, otherwise we could theoretically
1118 	 * lose wakeups.
1119 	 */
1120 	return ioc->nr_batch_requests == q->nr_batching ||
1121 		(ioc->nr_batch_requests > 0
1122 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1123 }
1124 
1125 /*
1126  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1127  * will cause the process to be a "batcher" on all queues in the system. This
1128  * is the behaviour we want though - once it gets a wakeup it should be given
1129  * a nice run.
1130  */
1131 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1132 {
1133 	if (!ioc || ioc_batching(q, ioc))
1134 		return;
1135 
1136 	ioc->nr_batch_requests = q->nr_batching;
1137 	ioc->last_waited = jiffies;
1138 }
1139 
1140 static void __freed_request(struct request_list *rl, int sync)
1141 {
1142 	struct request_queue *q = rl->q;
1143 
1144 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1145 		blk_clear_congested(rl, sync);
1146 
1147 	if (rl->count[sync] + 1 <= q->nr_requests) {
1148 		if (waitqueue_active(&rl->wait[sync]))
1149 			wake_up(&rl->wait[sync]);
1150 
1151 		blk_clear_rl_full(rl, sync);
1152 	}
1153 }
1154 
1155 /*
1156  * A request has just been released.  Account for it, update the full and
1157  * congestion status, wake up any waiters.   Called under q->queue_lock.
1158  */
1159 static void freed_request(struct request_list *rl, bool sync,
1160 		req_flags_t rq_flags)
1161 {
1162 	struct request_queue *q = rl->q;
1163 
1164 	q->nr_rqs[sync]--;
1165 	rl->count[sync]--;
1166 	if (rq_flags & RQF_ELVPRIV)
1167 		q->nr_rqs_elvpriv--;
1168 
1169 	__freed_request(rl, sync);
1170 
1171 	if (unlikely(rl->starved[sync ^ 1]))
1172 		__freed_request(rl, sync ^ 1);
1173 }
1174 
1175 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1176 {
1177 	struct request_list *rl;
1178 	int on_thresh, off_thresh;
1179 
1180 	WARN_ON_ONCE(q->mq_ops);
1181 
1182 	spin_lock_irq(q->queue_lock);
1183 	q->nr_requests = nr;
1184 	blk_queue_congestion_threshold(q);
1185 	on_thresh = queue_congestion_on_threshold(q);
1186 	off_thresh = queue_congestion_off_threshold(q);
1187 
1188 	blk_queue_for_each_rl(rl, q) {
1189 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1190 			blk_set_congested(rl, BLK_RW_SYNC);
1191 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1192 			blk_clear_congested(rl, BLK_RW_SYNC);
1193 
1194 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1195 			blk_set_congested(rl, BLK_RW_ASYNC);
1196 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1197 			blk_clear_congested(rl, BLK_RW_ASYNC);
1198 
1199 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1200 			blk_set_rl_full(rl, BLK_RW_SYNC);
1201 		} else {
1202 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1203 			wake_up(&rl->wait[BLK_RW_SYNC]);
1204 		}
1205 
1206 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1207 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1208 		} else {
1209 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1210 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1211 		}
1212 	}
1213 
1214 	spin_unlock_irq(q->queue_lock);
1215 	return 0;
1216 }
1217 
1218 /**
1219  * __get_request - get a free request
1220  * @rl: request list to allocate from
1221  * @op: operation and flags
1222  * @bio: bio to allocate request for (can be %NULL)
1223  * @flags: BLQ_MQ_REQ_* flags
1224  *
1225  * Get a free request from @q.  This function may fail under memory
1226  * pressure or if @q is dead.
1227  *
1228  * Must be called with @q->queue_lock held and,
1229  * Returns ERR_PTR on failure, with @q->queue_lock held.
1230  * Returns request pointer on success, with @q->queue_lock *not held*.
1231  */
1232 static struct request *__get_request(struct request_list *rl, unsigned int op,
1233 				     struct bio *bio, blk_mq_req_flags_t flags)
1234 {
1235 	struct request_queue *q = rl->q;
1236 	struct request *rq;
1237 	struct elevator_type *et = q->elevator->type;
1238 	struct io_context *ioc = rq_ioc(bio);
1239 	struct io_cq *icq = NULL;
1240 	const bool is_sync = op_is_sync(op);
1241 	int may_queue;
1242 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1243 			 __GFP_DIRECT_RECLAIM;
1244 	req_flags_t rq_flags = RQF_ALLOCED;
1245 
1246 	lockdep_assert_held(q->queue_lock);
1247 
1248 	if (unlikely(blk_queue_dying(q)))
1249 		return ERR_PTR(-ENODEV);
1250 
1251 	may_queue = elv_may_queue(q, op);
1252 	if (may_queue == ELV_MQUEUE_NO)
1253 		goto rq_starved;
1254 
1255 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1256 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1257 			/*
1258 			 * The queue will fill after this allocation, so set
1259 			 * it as full, and mark this process as "batching".
1260 			 * This process will be allowed to complete a batch of
1261 			 * requests, others will be blocked.
1262 			 */
1263 			if (!blk_rl_full(rl, is_sync)) {
1264 				ioc_set_batching(q, ioc);
1265 				blk_set_rl_full(rl, is_sync);
1266 			} else {
1267 				if (may_queue != ELV_MQUEUE_MUST
1268 						&& !ioc_batching(q, ioc)) {
1269 					/*
1270 					 * The queue is full and the allocating
1271 					 * process is not a "batcher", and not
1272 					 * exempted by the IO scheduler
1273 					 */
1274 					return ERR_PTR(-ENOMEM);
1275 				}
1276 			}
1277 		}
1278 		blk_set_congested(rl, is_sync);
1279 	}
1280 
1281 	/*
1282 	 * Only allow batching queuers to allocate up to 50% over the defined
1283 	 * limit of requests, otherwise we could have thousands of requests
1284 	 * allocated with any setting of ->nr_requests
1285 	 */
1286 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1287 		return ERR_PTR(-ENOMEM);
1288 
1289 	q->nr_rqs[is_sync]++;
1290 	rl->count[is_sync]++;
1291 	rl->starved[is_sync] = 0;
1292 
1293 	/*
1294 	 * Decide whether the new request will be managed by elevator.  If
1295 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1296 	 * prevent the current elevator from being destroyed until the new
1297 	 * request is freed.  This guarantees icq's won't be destroyed and
1298 	 * makes creating new ones safe.
1299 	 *
1300 	 * Flush requests do not use the elevator so skip initialization.
1301 	 * This allows a request to share the flush and elevator data.
1302 	 *
1303 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1304 	 * it will be created after releasing queue_lock.
1305 	 */
1306 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1307 		rq_flags |= RQF_ELVPRIV;
1308 		q->nr_rqs_elvpriv++;
1309 		if (et->icq_cache && ioc)
1310 			icq = ioc_lookup_icq(ioc, q);
1311 	}
1312 
1313 	if (blk_queue_io_stat(q))
1314 		rq_flags |= RQF_IO_STAT;
1315 	spin_unlock_irq(q->queue_lock);
1316 
1317 	/* allocate and init request */
1318 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1319 	if (!rq)
1320 		goto fail_alloc;
1321 
1322 	blk_rq_init(q, rq);
1323 	blk_rq_set_rl(rq, rl);
1324 	rq->cmd_flags = op;
1325 	rq->rq_flags = rq_flags;
1326 	if (flags & BLK_MQ_REQ_PREEMPT)
1327 		rq->rq_flags |= RQF_PREEMPT;
1328 
1329 	/* init elvpriv */
1330 	if (rq_flags & RQF_ELVPRIV) {
1331 		if (unlikely(et->icq_cache && !icq)) {
1332 			if (ioc)
1333 				icq = ioc_create_icq(ioc, q, gfp_mask);
1334 			if (!icq)
1335 				goto fail_elvpriv;
1336 		}
1337 
1338 		rq->elv.icq = icq;
1339 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1340 			goto fail_elvpriv;
1341 
1342 		/* @rq->elv.icq holds io_context until @rq is freed */
1343 		if (icq)
1344 			get_io_context(icq->ioc);
1345 	}
1346 out:
1347 	/*
1348 	 * ioc may be NULL here, and ioc_batching will be false. That's
1349 	 * OK, if the queue is under the request limit then requests need
1350 	 * not count toward the nr_batch_requests limit. There will always
1351 	 * be some limit enforced by BLK_BATCH_TIME.
1352 	 */
1353 	if (ioc_batching(q, ioc))
1354 		ioc->nr_batch_requests--;
1355 
1356 	trace_block_getrq(q, bio, op);
1357 	return rq;
1358 
1359 fail_elvpriv:
1360 	/*
1361 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1362 	 * and may fail indefinitely under memory pressure and thus
1363 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1364 	 * disturb iosched and blkcg but weird is bettern than dead.
1365 	 */
1366 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1367 			   __func__, dev_name(q->backing_dev_info->dev));
1368 
1369 	rq->rq_flags &= ~RQF_ELVPRIV;
1370 	rq->elv.icq = NULL;
1371 
1372 	spin_lock_irq(q->queue_lock);
1373 	q->nr_rqs_elvpriv--;
1374 	spin_unlock_irq(q->queue_lock);
1375 	goto out;
1376 
1377 fail_alloc:
1378 	/*
1379 	 * Allocation failed presumably due to memory. Undo anything we
1380 	 * might have messed up.
1381 	 *
1382 	 * Allocating task should really be put onto the front of the wait
1383 	 * queue, but this is pretty rare.
1384 	 */
1385 	spin_lock_irq(q->queue_lock);
1386 	freed_request(rl, is_sync, rq_flags);
1387 
1388 	/*
1389 	 * in the very unlikely event that allocation failed and no
1390 	 * requests for this direction was pending, mark us starved so that
1391 	 * freeing of a request in the other direction will notice
1392 	 * us. another possible fix would be to split the rq mempool into
1393 	 * READ and WRITE
1394 	 */
1395 rq_starved:
1396 	if (unlikely(rl->count[is_sync] == 0))
1397 		rl->starved[is_sync] = 1;
1398 	return ERR_PTR(-ENOMEM);
1399 }
1400 
1401 /**
1402  * get_request - get a free request
1403  * @q: request_queue to allocate request from
1404  * @op: operation and flags
1405  * @bio: bio to allocate request for (can be %NULL)
1406  * @flags: BLK_MQ_REQ_* flags.
1407  *
1408  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1409  * this function keeps retrying under memory pressure and fails iff @q is dead.
1410  *
1411  * Must be called with @q->queue_lock held and,
1412  * Returns ERR_PTR on failure, with @q->queue_lock held.
1413  * Returns request pointer on success, with @q->queue_lock *not held*.
1414  */
1415 static struct request *get_request(struct request_queue *q, unsigned int op,
1416 				   struct bio *bio, blk_mq_req_flags_t flags)
1417 {
1418 	const bool is_sync = op_is_sync(op);
1419 	DEFINE_WAIT(wait);
1420 	struct request_list *rl;
1421 	struct request *rq;
1422 
1423 	lockdep_assert_held(q->queue_lock);
1424 	WARN_ON_ONCE(q->mq_ops);
1425 
1426 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1427 retry:
1428 	rq = __get_request(rl, op, bio, flags);
1429 	if (!IS_ERR(rq))
1430 		return rq;
1431 
1432 	if (op & REQ_NOWAIT) {
1433 		blk_put_rl(rl);
1434 		return ERR_PTR(-EAGAIN);
1435 	}
1436 
1437 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1438 		blk_put_rl(rl);
1439 		return rq;
1440 	}
1441 
1442 	/* wait on @rl and retry */
1443 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1444 				  TASK_UNINTERRUPTIBLE);
1445 
1446 	trace_block_sleeprq(q, bio, op);
1447 
1448 	spin_unlock_irq(q->queue_lock);
1449 	io_schedule();
1450 
1451 	/*
1452 	 * After sleeping, we become a "batching" process and will be able
1453 	 * to allocate at least one request, and up to a big batch of them
1454 	 * for a small period time.  See ioc_batching, ioc_set_batching
1455 	 */
1456 	ioc_set_batching(q, current->io_context);
1457 
1458 	spin_lock_irq(q->queue_lock);
1459 	finish_wait(&rl->wait[is_sync], &wait);
1460 
1461 	goto retry;
1462 }
1463 
1464 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1465 static struct request *blk_old_get_request(struct request_queue *q,
1466 				unsigned int op, blk_mq_req_flags_t flags)
1467 {
1468 	struct request *rq;
1469 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1470 			 __GFP_DIRECT_RECLAIM;
1471 	int ret = 0;
1472 
1473 	WARN_ON_ONCE(q->mq_ops);
1474 
1475 	/* create ioc upfront */
1476 	create_io_context(gfp_mask, q->node);
1477 
1478 	ret = blk_queue_enter(q, flags);
1479 	if (ret)
1480 		return ERR_PTR(ret);
1481 	spin_lock_irq(q->queue_lock);
1482 	rq = get_request(q, op, NULL, flags);
1483 	if (IS_ERR(rq)) {
1484 		spin_unlock_irq(q->queue_lock);
1485 		blk_queue_exit(q);
1486 		return rq;
1487 	}
1488 
1489 	/* q->queue_lock is unlocked at this point */
1490 	rq->__data_len = 0;
1491 	rq->__sector = (sector_t) -1;
1492 	rq->bio = rq->biotail = NULL;
1493 	return rq;
1494 }
1495 
1496 /**
1497  * blk_get_request_flags - allocate a request
1498  * @q: request queue to allocate a request for
1499  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1500  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1501  */
1502 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1503 				      blk_mq_req_flags_t flags)
1504 {
1505 	struct request *req;
1506 
1507 	WARN_ON_ONCE(op & REQ_NOWAIT);
1508 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1509 
1510 	if (q->mq_ops) {
1511 		req = blk_mq_alloc_request(q, op, flags);
1512 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1513 			q->mq_ops->initialize_rq_fn(req);
1514 	} else {
1515 		req = blk_old_get_request(q, op, flags);
1516 		if (!IS_ERR(req) && q->initialize_rq_fn)
1517 			q->initialize_rq_fn(req);
1518 	}
1519 
1520 	return req;
1521 }
1522 EXPORT_SYMBOL(blk_get_request_flags);
1523 
1524 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1525 				gfp_t gfp_mask)
1526 {
1527 	return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1528 				     0 : BLK_MQ_REQ_NOWAIT);
1529 }
1530 EXPORT_SYMBOL(blk_get_request);
1531 
1532 /**
1533  * blk_requeue_request - put a request back on queue
1534  * @q:		request queue where request should be inserted
1535  * @rq:		request to be inserted
1536  *
1537  * Description:
1538  *    Drivers often keep queueing requests until the hardware cannot accept
1539  *    more, when that condition happens we need to put the request back
1540  *    on the queue. Must be called with queue lock held.
1541  */
1542 void blk_requeue_request(struct request_queue *q, struct request *rq)
1543 {
1544 	lockdep_assert_held(q->queue_lock);
1545 	WARN_ON_ONCE(q->mq_ops);
1546 
1547 	blk_delete_timer(rq);
1548 	blk_clear_rq_complete(rq);
1549 	trace_block_rq_requeue(q, rq);
1550 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1551 
1552 	if (rq->rq_flags & RQF_QUEUED)
1553 		blk_queue_end_tag(q, rq);
1554 
1555 	BUG_ON(blk_queued_rq(rq));
1556 
1557 	elv_requeue_request(q, rq);
1558 }
1559 EXPORT_SYMBOL(blk_requeue_request);
1560 
1561 static void add_acct_request(struct request_queue *q, struct request *rq,
1562 			     int where)
1563 {
1564 	blk_account_io_start(rq, true);
1565 	__elv_add_request(q, rq, where);
1566 }
1567 
1568 static void part_round_stats_single(struct request_queue *q, int cpu,
1569 				    struct hd_struct *part, unsigned long now,
1570 				    unsigned int inflight)
1571 {
1572 	if (inflight) {
1573 		__part_stat_add(cpu, part, time_in_queue,
1574 				inflight * (now - part->stamp));
1575 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1576 	}
1577 	part->stamp = now;
1578 }
1579 
1580 /**
1581  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1582  * @q: target block queue
1583  * @cpu: cpu number for stats access
1584  * @part: target partition
1585  *
1586  * The average IO queue length and utilisation statistics are maintained
1587  * by observing the current state of the queue length and the amount of
1588  * time it has been in this state for.
1589  *
1590  * Normally, that accounting is done on IO completion, but that can result
1591  * in more than a second's worth of IO being accounted for within any one
1592  * second, leading to >100% utilisation.  To deal with that, we call this
1593  * function to do a round-off before returning the results when reading
1594  * /proc/diskstats.  This accounts immediately for all queue usage up to
1595  * the current jiffies and restarts the counters again.
1596  */
1597 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1598 {
1599 	struct hd_struct *part2 = NULL;
1600 	unsigned long now = jiffies;
1601 	unsigned int inflight[2];
1602 	int stats = 0;
1603 
1604 	if (part->stamp != now)
1605 		stats |= 1;
1606 
1607 	if (part->partno) {
1608 		part2 = &part_to_disk(part)->part0;
1609 		if (part2->stamp != now)
1610 			stats |= 2;
1611 	}
1612 
1613 	if (!stats)
1614 		return;
1615 
1616 	part_in_flight(q, part, inflight);
1617 
1618 	if (stats & 2)
1619 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1620 	if (stats & 1)
1621 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1622 }
1623 EXPORT_SYMBOL_GPL(part_round_stats);
1624 
1625 #ifdef CONFIG_PM
1626 static void blk_pm_put_request(struct request *rq)
1627 {
1628 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1629 		pm_runtime_mark_last_busy(rq->q->dev);
1630 }
1631 #else
1632 static inline void blk_pm_put_request(struct request *rq) {}
1633 #endif
1634 
1635 void __blk_put_request(struct request_queue *q, struct request *req)
1636 {
1637 	req_flags_t rq_flags = req->rq_flags;
1638 
1639 	if (unlikely(!q))
1640 		return;
1641 
1642 	if (q->mq_ops) {
1643 		blk_mq_free_request(req);
1644 		return;
1645 	}
1646 
1647 	lockdep_assert_held(q->queue_lock);
1648 
1649 	blk_pm_put_request(req);
1650 
1651 	elv_completed_request(q, req);
1652 
1653 	/* this is a bio leak */
1654 	WARN_ON(req->bio != NULL);
1655 
1656 	wbt_done(q->rq_wb, &req->issue_stat);
1657 
1658 	/*
1659 	 * Request may not have originated from ll_rw_blk. if not,
1660 	 * it didn't come out of our reserved rq pools
1661 	 */
1662 	if (rq_flags & RQF_ALLOCED) {
1663 		struct request_list *rl = blk_rq_rl(req);
1664 		bool sync = op_is_sync(req->cmd_flags);
1665 
1666 		BUG_ON(!list_empty(&req->queuelist));
1667 		BUG_ON(ELV_ON_HASH(req));
1668 
1669 		blk_free_request(rl, req);
1670 		freed_request(rl, sync, rq_flags);
1671 		blk_put_rl(rl);
1672 		blk_queue_exit(q);
1673 	}
1674 }
1675 EXPORT_SYMBOL_GPL(__blk_put_request);
1676 
1677 void blk_put_request(struct request *req)
1678 {
1679 	struct request_queue *q = req->q;
1680 
1681 	if (q->mq_ops)
1682 		blk_mq_free_request(req);
1683 	else {
1684 		unsigned long flags;
1685 
1686 		spin_lock_irqsave(q->queue_lock, flags);
1687 		__blk_put_request(q, req);
1688 		spin_unlock_irqrestore(q->queue_lock, flags);
1689 	}
1690 }
1691 EXPORT_SYMBOL(blk_put_request);
1692 
1693 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1694 			    struct bio *bio)
1695 {
1696 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1697 
1698 	if (!ll_back_merge_fn(q, req, bio))
1699 		return false;
1700 
1701 	trace_block_bio_backmerge(q, req, bio);
1702 
1703 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1704 		blk_rq_set_mixed_merge(req);
1705 
1706 	req->biotail->bi_next = bio;
1707 	req->biotail = bio;
1708 	req->__data_len += bio->bi_iter.bi_size;
1709 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1710 
1711 	blk_account_io_start(req, false);
1712 	return true;
1713 }
1714 
1715 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1716 			     struct bio *bio)
1717 {
1718 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1719 
1720 	if (!ll_front_merge_fn(q, req, bio))
1721 		return false;
1722 
1723 	trace_block_bio_frontmerge(q, req, bio);
1724 
1725 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1726 		blk_rq_set_mixed_merge(req);
1727 
1728 	bio->bi_next = req->bio;
1729 	req->bio = bio;
1730 
1731 	req->__sector = bio->bi_iter.bi_sector;
1732 	req->__data_len += bio->bi_iter.bi_size;
1733 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1734 
1735 	blk_account_io_start(req, false);
1736 	return true;
1737 }
1738 
1739 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1740 		struct bio *bio)
1741 {
1742 	unsigned short segments = blk_rq_nr_discard_segments(req);
1743 
1744 	if (segments >= queue_max_discard_segments(q))
1745 		goto no_merge;
1746 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1747 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1748 		goto no_merge;
1749 
1750 	req->biotail->bi_next = bio;
1751 	req->biotail = bio;
1752 	req->__data_len += bio->bi_iter.bi_size;
1753 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1754 	req->nr_phys_segments = segments + 1;
1755 
1756 	blk_account_io_start(req, false);
1757 	return true;
1758 no_merge:
1759 	req_set_nomerge(q, req);
1760 	return false;
1761 }
1762 
1763 /**
1764  * blk_attempt_plug_merge - try to merge with %current's plugged list
1765  * @q: request_queue new bio is being queued at
1766  * @bio: new bio being queued
1767  * @request_count: out parameter for number of traversed plugged requests
1768  * @same_queue_rq: pointer to &struct request that gets filled in when
1769  * another request associated with @q is found on the plug list
1770  * (optional, may be %NULL)
1771  *
1772  * Determine whether @bio being queued on @q can be merged with a request
1773  * on %current's plugged list.  Returns %true if merge was successful,
1774  * otherwise %false.
1775  *
1776  * Plugging coalesces IOs from the same issuer for the same purpose without
1777  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1778  * than scheduling, and the request, while may have elvpriv data, is not
1779  * added on the elevator at this point.  In addition, we don't have
1780  * reliable access to the elevator outside queue lock.  Only check basic
1781  * merging parameters without querying the elevator.
1782  *
1783  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1784  */
1785 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1786 			    unsigned int *request_count,
1787 			    struct request **same_queue_rq)
1788 {
1789 	struct blk_plug *plug;
1790 	struct request *rq;
1791 	struct list_head *plug_list;
1792 
1793 	plug = current->plug;
1794 	if (!plug)
1795 		return false;
1796 	*request_count = 0;
1797 
1798 	if (q->mq_ops)
1799 		plug_list = &plug->mq_list;
1800 	else
1801 		plug_list = &plug->list;
1802 
1803 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1804 		bool merged = false;
1805 
1806 		if (rq->q == q) {
1807 			(*request_count)++;
1808 			/*
1809 			 * Only blk-mq multiple hardware queues case checks the
1810 			 * rq in the same queue, there should be only one such
1811 			 * rq in a queue
1812 			 **/
1813 			if (same_queue_rq)
1814 				*same_queue_rq = rq;
1815 		}
1816 
1817 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1818 			continue;
1819 
1820 		switch (blk_try_merge(rq, bio)) {
1821 		case ELEVATOR_BACK_MERGE:
1822 			merged = bio_attempt_back_merge(q, rq, bio);
1823 			break;
1824 		case ELEVATOR_FRONT_MERGE:
1825 			merged = bio_attempt_front_merge(q, rq, bio);
1826 			break;
1827 		case ELEVATOR_DISCARD_MERGE:
1828 			merged = bio_attempt_discard_merge(q, rq, bio);
1829 			break;
1830 		default:
1831 			break;
1832 		}
1833 
1834 		if (merged)
1835 			return true;
1836 	}
1837 
1838 	return false;
1839 }
1840 
1841 unsigned int blk_plug_queued_count(struct request_queue *q)
1842 {
1843 	struct blk_plug *plug;
1844 	struct request *rq;
1845 	struct list_head *plug_list;
1846 	unsigned int ret = 0;
1847 
1848 	plug = current->plug;
1849 	if (!plug)
1850 		goto out;
1851 
1852 	if (q->mq_ops)
1853 		plug_list = &plug->mq_list;
1854 	else
1855 		plug_list = &plug->list;
1856 
1857 	list_for_each_entry(rq, plug_list, queuelist) {
1858 		if (rq->q == q)
1859 			ret++;
1860 	}
1861 out:
1862 	return ret;
1863 }
1864 
1865 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1866 {
1867 	struct io_context *ioc = rq_ioc(bio);
1868 
1869 	if (bio->bi_opf & REQ_RAHEAD)
1870 		req->cmd_flags |= REQ_FAILFAST_MASK;
1871 
1872 	req->__sector = bio->bi_iter.bi_sector;
1873 	if (ioprio_valid(bio_prio(bio)))
1874 		req->ioprio = bio_prio(bio);
1875 	else if (ioc)
1876 		req->ioprio = ioc->ioprio;
1877 	else
1878 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1879 	req->write_hint = bio->bi_write_hint;
1880 	blk_rq_bio_prep(req->q, req, bio);
1881 }
1882 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1883 
1884 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1885 {
1886 	struct blk_plug *plug;
1887 	int where = ELEVATOR_INSERT_SORT;
1888 	struct request *req, *free;
1889 	unsigned int request_count = 0;
1890 	unsigned int wb_acct;
1891 
1892 	/*
1893 	 * low level driver can indicate that it wants pages above a
1894 	 * certain limit bounced to low memory (ie for highmem, or even
1895 	 * ISA dma in theory)
1896 	 */
1897 	blk_queue_bounce(q, &bio);
1898 
1899 	blk_queue_split(q, &bio);
1900 
1901 	if (!bio_integrity_prep(bio))
1902 		return BLK_QC_T_NONE;
1903 
1904 	if (op_is_flush(bio->bi_opf)) {
1905 		spin_lock_irq(q->queue_lock);
1906 		where = ELEVATOR_INSERT_FLUSH;
1907 		goto get_rq;
1908 	}
1909 
1910 	/*
1911 	 * Check if we can merge with the plugged list before grabbing
1912 	 * any locks.
1913 	 */
1914 	if (!blk_queue_nomerges(q)) {
1915 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1916 			return BLK_QC_T_NONE;
1917 	} else
1918 		request_count = blk_plug_queued_count(q);
1919 
1920 	spin_lock_irq(q->queue_lock);
1921 
1922 	switch (elv_merge(q, &req, bio)) {
1923 	case ELEVATOR_BACK_MERGE:
1924 		if (!bio_attempt_back_merge(q, req, bio))
1925 			break;
1926 		elv_bio_merged(q, req, bio);
1927 		free = attempt_back_merge(q, req);
1928 		if (free)
1929 			__blk_put_request(q, free);
1930 		else
1931 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1932 		goto out_unlock;
1933 	case ELEVATOR_FRONT_MERGE:
1934 		if (!bio_attempt_front_merge(q, req, bio))
1935 			break;
1936 		elv_bio_merged(q, req, bio);
1937 		free = attempt_front_merge(q, req);
1938 		if (free)
1939 			__blk_put_request(q, free);
1940 		else
1941 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1942 		goto out_unlock;
1943 	default:
1944 		break;
1945 	}
1946 
1947 get_rq:
1948 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1949 
1950 	/*
1951 	 * Grab a free request. This is might sleep but can not fail.
1952 	 * Returns with the queue unlocked.
1953 	 */
1954 	blk_queue_enter_live(q);
1955 	req = get_request(q, bio->bi_opf, bio, 0);
1956 	if (IS_ERR(req)) {
1957 		blk_queue_exit(q);
1958 		__wbt_done(q->rq_wb, wb_acct);
1959 		if (PTR_ERR(req) == -ENOMEM)
1960 			bio->bi_status = BLK_STS_RESOURCE;
1961 		else
1962 			bio->bi_status = BLK_STS_IOERR;
1963 		bio_endio(bio);
1964 		goto out_unlock;
1965 	}
1966 
1967 	wbt_track(&req->issue_stat, wb_acct);
1968 
1969 	/*
1970 	 * After dropping the lock and possibly sleeping here, our request
1971 	 * may now be mergeable after it had proven unmergeable (above).
1972 	 * We don't worry about that case for efficiency. It won't happen
1973 	 * often, and the elevators are able to handle it.
1974 	 */
1975 	blk_init_request_from_bio(req, bio);
1976 
1977 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1978 		req->cpu = raw_smp_processor_id();
1979 
1980 	plug = current->plug;
1981 	if (plug) {
1982 		/*
1983 		 * If this is the first request added after a plug, fire
1984 		 * of a plug trace.
1985 		 *
1986 		 * @request_count may become stale because of schedule
1987 		 * out, so check plug list again.
1988 		 */
1989 		if (!request_count || list_empty(&plug->list))
1990 			trace_block_plug(q);
1991 		else {
1992 			struct request *last = list_entry_rq(plug->list.prev);
1993 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
1994 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1995 				blk_flush_plug_list(plug, false);
1996 				trace_block_plug(q);
1997 			}
1998 		}
1999 		list_add_tail(&req->queuelist, &plug->list);
2000 		blk_account_io_start(req, true);
2001 	} else {
2002 		spin_lock_irq(q->queue_lock);
2003 		add_acct_request(q, req, where);
2004 		__blk_run_queue(q);
2005 out_unlock:
2006 		spin_unlock_irq(q->queue_lock);
2007 	}
2008 
2009 	return BLK_QC_T_NONE;
2010 }
2011 
2012 static void handle_bad_sector(struct bio *bio)
2013 {
2014 	char b[BDEVNAME_SIZE];
2015 
2016 	printk(KERN_INFO "attempt to access beyond end of device\n");
2017 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2018 			bio_devname(bio, b), bio->bi_opf,
2019 			(unsigned long long)bio_end_sector(bio),
2020 			(long long)get_capacity(bio->bi_disk));
2021 }
2022 
2023 #ifdef CONFIG_FAIL_MAKE_REQUEST
2024 
2025 static DECLARE_FAULT_ATTR(fail_make_request);
2026 
2027 static int __init setup_fail_make_request(char *str)
2028 {
2029 	return setup_fault_attr(&fail_make_request, str);
2030 }
2031 __setup("fail_make_request=", setup_fail_make_request);
2032 
2033 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2034 {
2035 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2036 }
2037 
2038 static int __init fail_make_request_debugfs(void)
2039 {
2040 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2041 						NULL, &fail_make_request);
2042 
2043 	return PTR_ERR_OR_ZERO(dir);
2044 }
2045 
2046 late_initcall(fail_make_request_debugfs);
2047 
2048 #else /* CONFIG_FAIL_MAKE_REQUEST */
2049 
2050 static inline bool should_fail_request(struct hd_struct *part,
2051 					unsigned int bytes)
2052 {
2053 	return false;
2054 }
2055 
2056 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2057 
2058 /*
2059  * Remap block n of partition p to block n+start(p) of the disk.
2060  */
2061 static inline int blk_partition_remap(struct bio *bio)
2062 {
2063 	struct hd_struct *p;
2064 	int ret = 0;
2065 
2066 	/*
2067 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2068 	 * Include a test for the reset op code and perform the remap if needed.
2069 	 */
2070 	if (!bio->bi_partno ||
2071 	    (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2072 		return 0;
2073 
2074 	rcu_read_lock();
2075 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2076 	if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2077 		bio->bi_iter.bi_sector += p->start_sect;
2078 		bio->bi_partno = 0;
2079 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2080 				bio->bi_iter.bi_sector - p->start_sect);
2081 	} else {
2082 		printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2083 		ret = -EIO;
2084 	}
2085 	rcu_read_unlock();
2086 
2087 	return ret;
2088 }
2089 
2090 /*
2091  * Check whether this bio extends beyond the end of the device.
2092  */
2093 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2094 {
2095 	sector_t maxsector;
2096 
2097 	if (!nr_sectors)
2098 		return 0;
2099 
2100 	/* Test device or partition size, when known. */
2101 	maxsector = get_capacity(bio->bi_disk);
2102 	if (maxsector) {
2103 		sector_t sector = bio->bi_iter.bi_sector;
2104 
2105 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2106 			/*
2107 			 * This may well happen - the kernel calls bread()
2108 			 * without checking the size of the device, e.g., when
2109 			 * mounting a device.
2110 			 */
2111 			handle_bad_sector(bio);
2112 			return 1;
2113 		}
2114 	}
2115 
2116 	return 0;
2117 }
2118 
2119 static noinline_for_stack bool
2120 generic_make_request_checks(struct bio *bio)
2121 {
2122 	struct request_queue *q;
2123 	int nr_sectors = bio_sectors(bio);
2124 	blk_status_t status = BLK_STS_IOERR;
2125 	char b[BDEVNAME_SIZE];
2126 
2127 	might_sleep();
2128 
2129 	if (bio_check_eod(bio, nr_sectors))
2130 		goto end_io;
2131 
2132 	q = bio->bi_disk->queue;
2133 	if (unlikely(!q)) {
2134 		printk(KERN_ERR
2135 		       "generic_make_request: Trying to access "
2136 			"nonexistent block-device %s (%Lu)\n",
2137 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2138 		goto end_io;
2139 	}
2140 
2141 	/*
2142 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2143 	 * if queue is not a request based queue.
2144 	 */
2145 
2146 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2147 		goto not_supported;
2148 
2149 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2150 		goto end_io;
2151 
2152 	if (blk_partition_remap(bio))
2153 		goto end_io;
2154 
2155 	if (bio_check_eod(bio, nr_sectors))
2156 		goto end_io;
2157 
2158 	/*
2159 	 * Filter flush bio's early so that make_request based
2160 	 * drivers without flush support don't have to worry
2161 	 * about them.
2162 	 */
2163 	if (op_is_flush(bio->bi_opf) &&
2164 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2165 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2166 		if (!nr_sectors) {
2167 			status = BLK_STS_OK;
2168 			goto end_io;
2169 		}
2170 	}
2171 
2172 	switch (bio_op(bio)) {
2173 	case REQ_OP_DISCARD:
2174 		if (!blk_queue_discard(q))
2175 			goto not_supported;
2176 		break;
2177 	case REQ_OP_SECURE_ERASE:
2178 		if (!blk_queue_secure_erase(q))
2179 			goto not_supported;
2180 		break;
2181 	case REQ_OP_WRITE_SAME:
2182 		if (!q->limits.max_write_same_sectors)
2183 			goto not_supported;
2184 		break;
2185 	case REQ_OP_ZONE_REPORT:
2186 	case REQ_OP_ZONE_RESET:
2187 		if (!blk_queue_is_zoned(q))
2188 			goto not_supported;
2189 		break;
2190 	case REQ_OP_WRITE_ZEROES:
2191 		if (!q->limits.max_write_zeroes_sectors)
2192 			goto not_supported;
2193 		break;
2194 	default:
2195 		break;
2196 	}
2197 
2198 	/*
2199 	 * Various block parts want %current->io_context and lazy ioc
2200 	 * allocation ends up trading a lot of pain for a small amount of
2201 	 * memory.  Just allocate it upfront.  This may fail and block
2202 	 * layer knows how to live with it.
2203 	 */
2204 	create_io_context(GFP_ATOMIC, q->node);
2205 
2206 	if (!blkcg_bio_issue_check(q, bio))
2207 		return false;
2208 
2209 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2210 		trace_block_bio_queue(q, bio);
2211 		/* Now that enqueuing has been traced, we need to trace
2212 		 * completion as well.
2213 		 */
2214 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2215 	}
2216 	return true;
2217 
2218 not_supported:
2219 	status = BLK_STS_NOTSUPP;
2220 end_io:
2221 	bio->bi_status = status;
2222 	bio_endio(bio);
2223 	return false;
2224 }
2225 
2226 /**
2227  * generic_make_request - hand a buffer to its device driver for I/O
2228  * @bio:  The bio describing the location in memory and on the device.
2229  *
2230  * generic_make_request() is used to make I/O requests of block
2231  * devices. It is passed a &struct bio, which describes the I/O that needs
2232  * to be done.
2233  *
2234  * generic_make_request() does not return any status.  The
2235  * success/failure status of the request, along with notification of
2236  * completion, is delivered asynchronously through the bio->bi_end_io
2237  * function described (one day) else where.
2238  *
2239  * The caller of generic_make_request must make sure that bi_io_vec
2240  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2241  * set to describe the device address, and the
2242  * bi_end_io and optionally bi_private are set to describe how
2243  * completion notification should be signaled.
2244  *
2245  * generic_make_request and the drivers it calls may use bi_next if this
2246  * bio happens to be merged with someone else, and may resubmit the bio to
2247  * a lower device by calling into generic_make_request recursively, which
2248  * means the bio should NOT be touched after the call to ->make_request_fn.
2249  */
2250 blk_qc_t generic_make_request(struct bio *bio)
2251 {
2252 	/*
2253 	 * bio_list_on_stack[0] contains bios submitted by the current
2254 	 * make_request_fn.
2255 	 * bio_list_on_stack[1] contains bios that were submitted before
2256 	 * the current make_request_fn, but that haven't been processed
2257 	 * yet.
2258 	 */
2259 	struct bio_list bio_list_on_stack[2];
2260 	blk_qc_t ret = BLK_QC_T_NONE;
2261 
2262 	if (!generic_make_request_checks(bio))
2263 		goto out;
2264 
2265 	/*
2266 	 * We only want one ->make_request_fn to be active at a time, else
2267 	 * stack usage with stacked devices could be a problem.  So use
2268 	 * current->bio_list to keep a list of requests submited by a
2269 	 * make_request_fn function.  current->bio_list is also used as a
2270 	 * flag to say if generic_make_request is currently active in this
2271 	 * task or not.  If it is NULL, then no make_request is active.  If
2272 	 * it is non-NULL, then a make_request is active, and new requests
2273 	 * should be added at the tail
2274 	 */
2275 	if (current->bio_list) {
2276 		bio_list_add(&current->bio_list[0], bio);
2277 		goto out;
2278 	}
2279 
2280 	/* following loop may be a bit non-obvious, and so deserves some
2281 	 * explanation.
2282 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2283 	 * ensure that) so we have a list with a single bio.
2284 	 * We pretend that we have just taken it off a longer list, so
2285 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2286 	 * thus initialising the bio_list of new bios to be
2287 	 * added.  ->make_request() may indeed add some more bios
2288 	 * through a recursive call to generic_make_request.  If it
2289 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2290 	 * from the top.  In this case we really did just take the bio
2291 	 * of the top of the list (no pretending) and so remove it from
2292 	 * bio_list, and call into ->make_request() again.
2293 	 */
2294 	BUG_ON(bio->bi_next);
2295 	bio_list_init(&bio_list_on_stack[0]);
2296 	current->bio_list = bio_list_on_stack;
2297 	do {
2298 		struct request_queue *q = bio->bi_disk->queue;
2299 		blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2300 			BLK_MQ_REQ_NOWAIT : 0;
2301 
2302 		if (likely(blk_queue_enter(q, flags) == 0)) {
2303 			struct bio_list lower, same;
2304 
2305 			/* Create a fresh bio_list for all subordinate requests */
2306 			bio_list_on_stack[1] = bio_list_on_stack[0];
2307 			bio_list_init(&bio_list_on_stack[0]);
2308 			ret = q->make_request_fn(q, bio);
2309 
2310 			blk_queue_exit(q);
2311 
2312 			/* sort new bios into those for a lower level
2313 			 * and those for the same level
2314 			 */
2315 			bio_list_init(&lower);
2316 			bio_list_init(&same);
2317 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2318 				if (q == bio->bi_disk->queue)
2319 					bio_list_add(&same, bio);
2320 				else
2321 					bio_list_add(&lower, bio);
2322 			/* now assemble so we handle the lowest level first */
2323 			bio_list_merge(&bio_list_on_stack[0], &lower);
2324 			bio_list_merge(&bio_list_on_stack[0], &same);
2325 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2326 		} else {
2327 			if (unlikely(!blk_queue_dying(q) &&
2328 					(bio->bi_opf & REQ_NOWAIT)))
2329 				bio_wouldblock_error(bio);
2330 			else
2331 				bio_io_error(bio);
2332 		}
2333 		bio = bio_list_pop(&bio_list_on_stack[0]);
2334 	} while (bio);
2335 	current->bio_list = NULL; /* deactivate */
2336 
2337 out:
2338 	return ret;
2339 }
2340 EXPORT_SYMBOL(generic_make_request);
2341 
2342 /**
2343  * direct_make_request - hand a buffer directly to its device driver for I/O
2344  * @bio:  The bio describing the location in memory and on the device.
2345  *
2346  * This function behaves like generic_make_request(), but does not protect
2347  * against recursion.  Must only be used if the called driver is known
2348  * to not call generic_make_request (or direct_make_request) again from
2349  * its make_request function.  (Calling direct_make_request again from
2350  * a workqueue is perfectly fine as that doesn't recurse).
2351  */
2352 blk_qc_t direct_make_request(struct bio *bio)
2353 {
2354 	struct request_queue *q = bio->bi_disk->queue;
2355 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2356 	blk_qc_t ret;
2357 
2358 	if (!generic_make_request_checks(bio))
2359 		return BLK_QC_T_NONE;
2360 
2361 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2362 		if (nowait && !blk_queue_dying(q))
2363 			bio->bi_status = BLK_STS_AGAIN;
2364 		else
2365 			bio->bi_status = BLK_STS_IOERR;
2366 		bio_endio(bio);
2367 		return BLK_QC_T_NONE;
2368 	}
2369 
2370 	ret = q->make_request_fn(q, bio);
2371 	blk_queue_exit(q);
2372 	return ret;
2373 }
2374 EXPORT_SYMBOL_GPL(direct_make_request);
2375 
2376 /**
2377  * submit_bio - submit a bio to the block device layer for I/O
2378  * @bio: The &struct bio which describes the I/O
2379  *
2380  * submit_bio() is very similar in purpose to generic_make_request(), and
2381  * uses that function to do most of the work. Both are fairly rough
2382  * interfaces; @bio must be presetup and ready for I/O.
2383  *
2384  */
2385 blk_qc_t submit_bio(struct bio *bio)
2386 {
2387 	/*
2388 	 * If it's a regular read/write or a barrier with data attached,
2389 	 * go through the normal accounting stuff before submission.
2390 	 */
2391 	if (bio_has_data(bio)) {
2392 		unsigned int count;
2393 
2394 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2395 			count = queue_logical_block_size(bio->bi_disk->queue);
2396 		else
2397 			count = bio_sectors(bio);
2398 
2399 		if (op_is_write(bio_op(bio))) {
2400 			count_vm_events(PGPGOUT, count);
2401 		} else {
2402 			task_io_account_read(bio->bi_iter.bi_size);
2403 			count_vm_events(PGPGIN, count);
2404 		}
2405 
2406 		if (unlikely(block_dump)) {
2407 			char b[BDEVNAME_SIZE];
2408 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2409 			current->comm, task_pid_nr(current),
2410 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2411 				(unsigned long long)bio->bi_iter.bi_sector,
2412 				bio_devname(bio, b), count);
2413 		}
2414 	}
2415 
2416 	return generic_make_request(bio);
2417 }
2418 EXPORT_SYMBOL(submit_bio);
2419 
2420 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2421 {
2422 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2423 		return false;
2424 
2425 	if (current->plug)
2426 		blk_flush_plug_list(current->plug, false);
2427 	return q->poll_fn(q, cookie);
2428 }
2429 EXPORT_SYMBOL_GPL(blk_poll);
2430 
2431 /**
2432  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2433  *                              for new the queue limits
2434  * @q:  the queue
2435  * @rq: the request being checked
2436  *
2437  * Description:
2438  *    @rq may have been made based on weaker limitations of upper-level queues
2439  *    in request stacking drivers, and it may violate the limitation of @q.
2440  *    Since the block layer and the underlying device driver trust @rq
2441  *    after it is inserted to @q, it should be checked against @q before
2442  *    the insertion using this generic function.
2443  *
2444  *    Request stacking drivers like request-based dm may change the queue
2445  *    limits when retrying requests on other queues. Those requests need
2446  *    to be checked against the new queue limits again during dispatch.
2447  */
2448 static int blk_cloned_rq_check_limits(struct request_queue *q,
2449 				      struct request *rq)
2450 {
2451 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2452 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2453 		return -EIO;
2454 	}
2455 
2456 	/*
2457 	 * queue's settings related to segment counting like q->bounce_pfn
2458 	 * may differ from that of other stacking queues.
2459 	 * Recalculate it to check the request correctly on this queue's
2460 	 * limitation.
2461 	 */
2462 	blk_recalc_rq_segments(rq);
2463 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2464 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2465 		return -EIO;
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 /**
2472  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2473  * @q:  the queue to submit the request
2474  * @rq: the request being queued
2475  */
2476 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2477 {
2478 	unsigned long flags;
2479 	int where = ELEVATOR_INSERT_BACK;
2480 
2481 	if (blk_cloned_rq_check_limits(q, rq))
2482 		return BLK_STS_IOERR;
2483 
2484 	if (rq->rq_disk &&
2485 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2486 		return BLK_STS_IOERR;
2487 
2488 	if (q->mq_ops) {
2489 		if (blk_queue_io_stat(q))
2490 			blk_account_io_start(rq, true);
2491 		/*
2492 		 * Since we have a scheduler attached on the top device,
2493 		 * bypass a potential scheduler on the bottom device for
2494 		 * insert.
2495 		 */
2496 		blk_mq_request_bypass_insert(rq, true);
2497 		return BLK_STS_OK;
2498 	}
2499 
2500 	spin_lock_irqsave(q->queue_lock, flags);
2501 	if (unlikely(blk_queue_dying(q))) {
2502 		spin_unlock_irqrestore(q->queue_lock, flags);
2503 		return BLK_STS_IOERR;
2504 	}
2505 
2506 	/*
2507 	 * Submitting request must be dequeued before calling this function
2508 	 * because it will be linked to another request_queue
2509 	 */
2510 	BUG_ON(blk_queued_rq(rq));
2511 
2512 	if (op_is_flush(rq->cmd_flags))
2513 		where = ELEVATOR_INSERT_FLUSH;
2514 
2515 	add_acct_request(q, rq, where);
2516 	if (where == ELEVATOR_INSERT_FLUSH)
2517 		__blk_run_queue(q);
2518 	spin_unlock_irqrestore(q->queue_lock, flags);
2519 
2520 	return BLK_STS_OK;
2521 }
2522 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2523 
2524 /**
2525  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2526  * @rq: request to examine
2527  *
2528  * Description:
2529  *     A request could be merge of IOs which require different failure
2530  *     handling.  This function determines the number of bytes which
2531  *     can be failed from the beginning of the request without
2532  *     crossing into area which need to be retried further.
2533  *
2534  * Return:
2535  *     The number of bytes to fail.
2536  */
2537 unsigned int blk_rq_err_bytes(const struct request *rq)
2538 {
2539 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2540 	unsigned int bytes = 0;
2541 	struct bio *bio;
2542 
2543 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2544 		return blk_rq_bytes(rq);
2545 
2546 	/*
2547 	 * Currently the only 'mixing' which can happen is between
2548 	 * different fastfail types.  We can safely fail portions
2549 	 * which have all the failfast bits that the first one has -
2550 	 * the ones which are at least as eager to fail as the first
2551 	 * one.
2552 	 */
2553 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2554 		if ((bio->bi_opf & ff) != ff)
2555 			break;
2556 		bytes += bio->bi_iter.bi_size;
2557 	}
2558 
2559 	/* this could lead to infinite loop */
2560 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2561 	return bytes;
2562 }
2563 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2564 
2565 void blk_account_io_completion(struct request *req, unsigned int bytes)
2566 {
2567 	if (blk_do_io_stat(req)) {
2568 		const int rw = rq_data_dir(req);
2569 		struct hd_struct *part;
2570 		int cpu;
2571 
2572 		cpu = part_stat_lock();
2573 		part = req->part;
2574 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2575 		part_stat_unlock();
2576 	}
2577 }
2578 
2579 void blk_account_io_done(struct request *req)
2580 {
2581 	/*
2582 	 * Account IO completion.  flush_rq isn't accounted as a
2583 	 * normal IO on queueing nor completion.  Accounting the
2584 	 * containing request is enough.
2585 	 */
2586 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2587 		unsigned long duration = jiffies - req->start_time;
2588 		const int rw = rq_data_dir(req);
2589 		struct hd_struct *part;
2590 		int cpu;
2591 
2592 		cpu = part_stat_lock();
2593 		part = req->part;
2594 
2595 		part_stat_inc(cpu, part, ios[rw]);
2596 		part_stat_add(cpu, part, ticks[rw], duration);
2597 		part_round_stats(req->q, cpu, part);
2598 		part_dec_in_flight(req->q, part, rw);
2599 
2600 		hd_struct_put(part);
2601 		part_stat_unlock();
2602 	}
2603 }
2604 
2605 #ifdef CONFIG_PM
2606 /*
2607  * Don't process normal requests when queue is suspended
2608  * or in the process of suspending/resuming
2609  */
2610 static bool blk_pm_allow_request(struct request *rq)
2611 {
2612 	switch (rq->q->rpm_status) {
2613 	case RPM_RESUMING:
2614 	case RPM_SUSPENDING:
2615 		return rq->rq_flags & RQF_PM;
2616 	case RPM_SUSPENDED:
2617 		return false;
2618 	}
2619 
2620 	return true;
2621 }
2622 #else
2623 static bool blk_pm_allow_request(struct request *rq)
2624 {
2625 	return true;
2626 }
2627 #endif
2628 
2629 void blk_account_io_start(struct request *rq, bool new_io)
2630 {
2631 	struct hd_struct *part;
2632 	int rw = rq_data_dir(rq);
2633 	int cpu;
2634 
2635 	if (!blk_do_io_stat(rq))
2636 		return;
2637 
2638 	cpu = part_stat_lock();
2639 
2640 	if (!new_io) {
2641 		part = rq->part;
2642 		part_stat_inc(cpu, part, merges[rw]);
2643 	} else {
2644 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2645 		if (!hd_struct_try_get(part)) {
2646 			/*
2647 			 * The partition is already being removed,
2648 			 * the request will be accounted on the disk only
2649 			 *
2650 			 * We take a reference on disk->part0 although that
2651 			 * partition will never be deleted, so we can treat
2652 			 * it as any other partition.
2653 			 */
2654 			part = &rq->rq_disk->part0;
2655 			hd_struct_get(part);
2656 		}
2657 		part_round_stats(rq->q, cpu, part);
2658 		part_inc_in_flight(rq->q, part, rw);
2659 		rq->part = part;
2660 	}
2661 
2662 	part_stat_unlock();
2663 }
2664 
2665 static struct request *elv_next_request(struct request_queue *q)
2666 {
2667 	struct request *rq;
2668 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2669 
2670 	WARN_ON_ONCE(q->mq_ops);
2671 
2672 	while (1) {
2673 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2674 			if (blk_pm_allow_request(rq))
2675 				return rq;
2676 
2677 			if (rq->rq_flags & RQF_SOFTBARRIER)
2678 				break;
2679 		}
2680 
2681 		/*
2682 		 * Flush request is running and flush request isn't queueable
2683 		 * in the drive, we can hold the queue till flush request is
2684 		 * finished. Even we don't do this, driver can't dispatch next
2685 		 * requests and will requeue them. And this can improve
2686 		 * throughput too. For example, we have request flush1, write1,
2687 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2688 		 * isn't inserted to queue. After flush1 is finished, flush2
2689 		 * will be dispatched. Since disk cache is already clean,
2690 		 * flush2 will be finished very soon, so looks like flush2 is
2691 		 * folded to flush1.
2692 		 * Since the queue is hold, a flag is set to indicate the queue
2693 		 * should be restarted later. Please see flush_end_io() for
2694 		 * details.
2695 		 */
2696 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2697 				!queue_flush_queueable(q)) {
2698 			fq->flush_queue_delayed = 1;
2699 			return NULL;
2700 		}
2701 		if (unlikely(blk_queue_bypass(q)) ||
2702 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2703 			return NULL;
2704 	}
2705 }
2706 
2707 /**
2708  * blk_peek_request - peek at the top of a request queue
2709  * @q: request queue to peek at
2710  *
2711  * Description:
2712  *     Return the request at the top of @q.  The returned request
2713  *     should be started using blk_start_request() before LLD starts
2714  *     processing it.
2715  *
2716  * Return:
2717  *     Pointer to the request at the top of @q if available.  Null
2718  *     otherwise.
2719  */
2720 struct request *blk_peek_request(struct request_queue *q)
2721 {
2722 	struct request *rq;
2723 	int ret;
2724 
2725 	lockdep_assert_held(q->queue_lock);
2726 	WARN_ON_ONCE(q->mq_ops);
2727 
2728 	while ((rq = elv_next_request(q)) != NULL) {
2729 		if (!(rq->rq_flags & RQF_STARTED)) {
2730 			/*
2731 			 * This is the first time the device driver
2732 			 * sees this request (possibly after
2733 			 * requeueing).  Notify IO scheduler.
2734 			 */
2735 			if (rq->rq_flags & RQF_SORTED)
2736 				elv_activate_rq(q, rq);
2737 
2738 			/*
2739 			 * just mark as started even if we don't start
2740 			 * it, a request that has been delayed should
2741 			 * not be passed by new incoming requests
2742 			 */
2743 			rq->rq_flags |= RQF_STARTED;
2744 			trace_block_rq_issue(q, rq);
2745 		}
2746 
2747 		if (!q->boundary_rq || q->boundary_rq == rq) {
2748 			q->end_sector = rq_end_sector(rq);
2749 			q->boundary_rq = NULL;
2750 		}
2751 
2752 		if (rq->rq_flags & RQF_DONTPREP)
2753 			break;
2754 
2755 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2756 			/*
2757 			 * make sure space for the drain appears we
2758 			 * know we can do this because max_hw_segments
2759 			 * has been adjusted to be one fewer than the
2760 			 * device can handle
2761 			 */
2762 			rq->nr_phys_segments++;
2763 		}
2764 
2765 		if (!q->prep_rq_fn)
2766 			break;
2767 
2768 		ret = q->prep_rq_fn(q, rq);
2769 		if (ret == BLKPREP_OK) {
2770 			break;
2771 		} else if (ret == BLKPREP_DEFER) {
2772 			/*
2773 			 * the request may have been (partially) prepped.
2774 			 * we need to keep this request in the front to
2775 			 * avoid resource deadlock.  RQF_STARTED will
2776 			 * prevent other fs requests from passing this one.
2777 			 */
2778 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2779 			    !(rq->rq_flags & RQF_DONTPREP)) {
2780 				/*
2781 				 * remove the space for the drain we added
2782 				 * so that we don't add it again
2783 				 */
2784 				--rq->nr_phys_segments;
2785 			}
2786 
2787 			rq = NULL;
2788 			break;
2789 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2790 			rq->rq_flags |= RQF_QUIET;
2791 			/*
2792 			 * Mark this request as started so we don't trigger
2793 			 * any debug logic in the end I/O path.
2794 			 */
2795 			blk_start_request(rq);
2796 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2797 					BLK_STS_TARGET : BLK_STS_IOERR);
2798 		} else {
2799 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2800 			break;
2801 		}
2802 	}
2803 
2804 	return rq;
2805 }
2806 EXPORT_SYMBOL(blk_peek_request);
2807 
2808 static void blk_dequeue_request(struct request *rq)
2809 {
2810 	struct request_queue *q = rq->q;
2811 
2812 	BUG_ON(list_empty(&rq->queuelist));
2813 	BUG_ON(ELV_ON_HASH(rq));
2814 
2815 	list_del_init(&rq->queuelist);
2816 
2817 	/*
2818 	 * the time frame between a request being removed from the lists
2819 	 * and to it is freed is accounted as io that is in progress at
2820 	 * the driver side.
2821 	 */
2822 	if (blk_account_rq(rq)) {
2823 		q->in_flight[rq_is_sync(rq)]++;
2824 		set_io_start_time_ns(rq);
2825 	}
2826 }
2827 
2828 /**
2829  * blk_start_request - start request processing on the driver
2830  * @req: request to dequeue
2831  *
2832  * Description:
2833  *     Dequeue @req and start timeout timer on it.  This hands off the
2834  *     request to the driver.
2835  */
2836 void blk_start_request(struct request *req)
2837 {
2838 	lockdep_assert_held(req->q->queue_lock);
2839 	WARN_ON_ONCE(req->q->mq_ops);
2840 
2841 	blk_dequeue_request(req);
2842 
2843 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2844 		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2845 		req->rq_flags |= RQF_STATS;
2846 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2847 	}
2848 
2849 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2850 	blk_add_timer(req);
2851 }
2852 EXPORT_SYMBOL(blk_start_request);
2853 
2854 /**
2855  * blk_fetch_request - fetch a request from a request queue
2856  * @q: request queue to fetch a request from
2857  *
2858  * Description:
2859  *     Return the request at the top of @q.  The request is started on
2860  *     return and LLD can start processing it immediately.
2861  *
2862  * Return:
2863  *     Pointer to the request at the top of @q if available.  Null
2864  *     otherwise.
2865  */
2866 struct request *blk_fetch_request(struct request_queue *q)
2867 {
2868 	struct request *rq;
2869 
2870 	lockdep_assert_held(q->queue_lock);
2871 	WARN_ON_ONCE(q->mq_ops);
2872 
2873 	rq = blk_peek_request(q);
2874 	if (rq)
2875 		blk_start_request(rq);
2876 	return rq;
2877 }
2878 EXPORT_SYMBOL(blk_fetch_request);
2879 
2880 /*
2881  * Steal bios from a request and add them to a bio list.
2882  * The request must not have been partially completed before.
2883  */
2884 void blk_steal_bios(struct bio_list *list, struct request *rq)
2885 {
2886 	if (rq->bio) {
2887 		if (list->tail)
2888 			list->tail->bi_next = rq->bio;
2889 		else
2890 			list->head = rq->bio;
2891 		list->tail = rq->biotail;
2892 
2893 		rq->bio = NULL;
2894 		rq->biotail = NULL;
2895 	}
2896 
2897 	rq->__data_len = 0;
2898 }
2899 EXPORT_SYMBOL_GPL(blk_steal_bios);
2900 
2901 /**
2902  * blk_update_request - Special helper function for request stacking drivers
2903  * @req:      the request being processed
2904  * @error:    block status code
2905  * @nr_bytes: number of bytes to complete @req
2906  *
2907  * Description:
2908  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2909  *     the request structure even if @req doesn't have leftover.
2910  *     If @req has leftover, sets it up for the next range of segments.
2911  *
2912  *     This special helper function is only for request stacking drivers
2913  *     (e.g. request-based dm) so that they can handle partial completion.
2914  *     Actual device drivers should use blk_end_request instead.
2915  *
2916  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2917  *     %false return from this function.
2918  *
2919  * Return:
2920  *     %false - this request doesn't have any more data
2921  *     %true  - this request has more data
2922  **/
2923 bool blk_update_request(struct request *req, blk_status_t error,
2924 		unsigned int nr_bytes)
2925 {
2926 	int total_bytes;
2927 
2928 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2929 
2930 	if (!req->bio)
2931 		return false;
2932 
2933 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
2934 		     !(req->rq_flags & RQF_QUIET)))
2935 		print_req_error(req, error);
2936 
2937 	blk_account_io_completion(req, nr_bytes);
2938 
2939 	total_bytes = 0;
2940 	while (req->bio) {
2941 		struct bio *bio = req->bio;
2942 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2943 
2944 		if (bio_bytes == bio->bi_iter.bi_size)
2945 			req->bio = bio->bi_next;
2946 
2947 		/* Completion has already been traced */
2948 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2949 		req_bio_endio(req, bio, bio_bytes, error);
2950 
2951 		total_bytes += bio_bytes;
2952 		nr_bytes -= bio_bytes;
2953 
2954 		if (!nr_bytes)
2955 			break;
2956 	}
2957 
2958 	/*
2959 	 * completely done
2960 	 */
2961 	if (!req->bio) {
2962 		/*
2963 		 * Reset counters so that the request stacking driver
2964 		 * can find how many bytes remain in the request
2965 		 * later.
2966 		 */
2967 		req->__data_len = 0;
2968 		return false;
2969 	}
2970 
2971 	req->__data_len -= total_bytes;
2972 
2973 	/* update sector only for requests with clear definition of sector */
2974 	if (!blk_rq_is_passthrough(req))
2975 		req->__sector += total_bytes >> 9;
2976 
2977 	/* mixed attributes always follow the first bio */
2978 	if (req->rq_flags & RQF_MIXED_MERGE) {
2979 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2980 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2981 	}
2982 
2983 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2984 		/*
2985 		 * If total number of sectors is less than the first segment
2986 		 * size, something has gone terribly wrong.
2987 		 */
2988 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2989 			blk_dump_rq_flags(req, "request botched");
2990 			req->__data_len = blk_rq_cur_bytes(req);
2991 		}
2992 
2993 		/* recalculate the number of segments */
2994 		blk_recalc_rq_segments(req);
2995 	}
2996 
2997 	return true;
2998 }
2999 EXPORT_SYMBOL_GPL(blk_update_request);
3000 
3001 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3002 				    unsigned int nr_bytes,
3003 				    unsigned int bidi_bytes)
3004 {
3005 	if (blk_update_request(rq, error, nr_bytes))
3006 		return true;
3007 
3008 	/* Bidi request must be completed as a whole */
3009 	if (unlikely(blk_bidi_rq(rq)) &&
3010 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3011 		return true;
3012 
3013 	if (blk_queue_add_random(rq->q))
3014 		add_disk_randomness(rq->rq_disk);
3015 
3016 	return false;
3017 }
3018 
3019 /**
3020  * blk_unprep_request - unprepare a request
3021  * @req:	the request
3022  *
3023  * This function makes a request ready for complete resubmission (or
3024  * completion).  It happens only after all error handling is complete,
3025  * so represents the appropriate moment to deallocate any resources
3026  * that were allocated to the request in the prep_rq_fn.  The queue
3027  * lock is held when calling this.
3028  */
3029 void blk_unprep_request(struct request *req)
3030 {
3031 	struct request_queue *q = req->q;
3032 
3033 	req->rq_flags &= ~RQF_DONTPREP;
3034 	if (q->unprep_rq_fn)
3035 		q->unprep_rq_fn(q, req);
3036 }
3037 EXPORT_SYMBOL_GPL(blk_unprep_request);
3038 
3039 void blk_finish_request(struct request *req, blk_status_t error)
3040 {
3041 	struct request_queue *q = req->q;
3042 
3043 	lockdep_assert_held(req->q->queue_lock);
3044 	WARN_ON_ONCE(q->mq_ops);
3045 
3046 	if (req->rq_flags & RQF_STATS)
3047 		blk_stat_add(req);
3048 
3049 	if (req->rq_flags & RQF_QUEUED)
3050 		blk_queue_end_tag(q, req);
3051 
3052 	BUG_ON(blk_queued_rq(req));
3053 
3054 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3055 		laptop_io_completion(req->q->backing_dev_info);
3056 
3057 	blk_delete_timer(req);
3058 
3059 	if (req->rq_flags & RQF_DONTPREP)
3060 		blk_unprep_request(req);
3061 
3062 	blk_account_io_done(req);
3063 
3064 	if (req->end_io) {
3065 		wbt_done(req->q->rq_wb, &req->issue_stat);
3066 		req->end_io(req, error);
3067 	} else {
3068 		if (blk_bidi_rq(req))
3069 			__blk_put_request(req->next_rq->q, req->next_rq);
3070 
3071 		__blk_put_request(q, req);
3072 	}
3073 }
3074 EXPORT_SYMBOL(blk_finish_request);
3075 
3076 /**
3077  * blk_end_bidi_request - Complete a bidi request
3078  * @rq:         the request to complete
3079  * @error:      block status code
3080  * @nr_bytes:   number of bytes to complete @rq
3081  * @bidi_bytes: number of bytes to complete @rq->next_rq
3082  *
3083  * Description:
3084  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3085  *     Drivers that supports bidi can safely call this member for any
3086  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3087  *     just ignored.
3088  *
3089  * Return:
3090  *     %false - we are done with this request
3091  *     %true  - still buffers pending for this request
3092  **/
3093 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3094 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3095 {
3096 	struct request_queue *q = rq->q;
3097 	unsigned long flags;
3098 
3099 	WARN_ON_ONCE(q->mq_ops);
3100 
3101 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3102 		return true;
3103 
3104 	spin_lock_irqsave(q->queue_lock, flags);
3105 	blk_finish_request(rq, error);
3106 	spin_unlock_irqrestore(q->queue_lock, flags);
3107 
3108 	return false;
3109 }
3110 
3111 /**
3112  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3113  * @rq:         the request to complete
3114  * @error:      block status code
3115  * @nr_bytes:   number of bytes to complete @rq
3116  * @bidi_bytes: number of bytes to complete @rq->next_rq
3117  *
3118  * Description:
3119  *     Identical to blk_end_bidi_request() except that queue lock is
3120  *     assumed to be locked on entry and remains so on return.
3121  *
3122  * Return:
3123  *     %false - we are done with this request
3124  *     %true  - still buffers pending for this request
3125  **/
3126 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3127 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3128 {
3129 	lockdep_assert_held(rq->q->queue_lock);
3130 	WARN_ON_ONCE(rq->q->mq_ops);
3131 
3132 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3133 		return true;
3134 
3135 	blk_finish_request(rq, error);
3136 
3137 	return false;
3138 }
3139 
3140 /**
3141  * blk_end_request - Helper function for drivers to complete the request.
3142  * @rq:       the request being processed
3143  * @error:    block status code
3144  * @nr_bytes: number of bytes to complete
3145  *
3146  * Description:
3147  *     Ends I/O on a number of bytes attached to @rq.
3148  *     If @rq has leftover, sets it up for the next range of segments.
3149  *
3150  * Return:
3151  *     %false - we are done with this request
3152  *     %true  - still buffers pending for this request
3153  **/
3154 bool blk_end_request(struct request *rq, blk_status_t error,
3155 		unsigned int nr_bytes)
3156 {
3157 	WARN_ON_ONCE(rq->q->mq_ops);
3158 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3159 }
3160 EXPORT_SYMBOL(blk_end_request);
3161 
3162 /**
3163  * blk_end_request_all - Helper function for drives to finish the request.
3164  * @rq: the request to finish
3165  * @error: block status code
3166  *
3167  * Description:
3168  *     Completely finish @rq.
3169  */
3170 void blk_end_request_all(struct request *rq, blk_status_t error)
3171 {
3172 	bool pending;
3173 	unsigned int bidi_bytes = 0;
3174 
3175 	if (unlikely(blk_bidi_rq(rq)))
3176 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3177 
3178 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3179 	BUG_ON(pending);
3180 }
3181 EXPORT_SYMBOL(blk_end_request_all);
3182 
3183 /**
3184  * __blk_end_request - Helper function for drivers to complete the request.
3185  * @rq:       the request being processed
3186  * @error:    block status code
3187  * @nr_bytes: number of bytes to complete
3188  *
3189  * Description:
3190  *     Must be called with queue lock held unlike blk_end_request().
3191  *
3192  * Return:
3193  *     %false - we are done with this request
3194  *     %true  - still buffers pending for this request
3195  **/
3196 bool __blk_end_request(struct request *rq, blk_status_t error,
3197 		unsigned int nr_bytes)
3198 {
3199 	lockdep_assert_held(rq->q->queue_lock);
3200 	WARN_ON_ONCE(rq->q->mq_ops);
3201 
3202 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3203 }
3204 EXPORT_SYMBOL(__blk_end_request);
3205 
3206 /**
3207  * __blk_end_request_all - Helper function for drives to finish the request.
3208  * @rq: the request to finish
3209  * @error:    block status code
3210  *
3211  * Description:
3212  *     Completely finish @rq.  Must be called with queue lock held.
3213  */
3214 void __blk_end_request_all(struct request *rq, blk_status_t error)
3215 {
3216 	bool pending;
3217 	unsigned int bidi_bytes = 0;
3218 
3219 	lockdep_assert_held(rq->q->queue_lock);
3220 	WARN_ON_ONCE(rq->q->mq_ops);
3221 
3222 	if (unlikely(blk_bidi_rq(rq)))
3223 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3224 
3225 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3226 	BUG_ON(pending);
3227 }
3228 EXPORT_SYMBOL(__blk_end_request_all);
3229 
3230 /**
3231  * __blk_end_request_cur - Helper function to finish the current request chunk.
3232  * @rq: the request to finish the current chunk for
3233  * @error:    block status code
3234  *
3235  * Description:
3236  *     Complete the current consecutively mapped chunk from @rq.  Must
3237  *     be called with queue lock held.
3238  *
3239  * Return:
3240  *     %false - we are done with this request
3241  *     %true  - still buffers pending for this request
3242  */
3243 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3244 {
3245 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3246 }
3247 EXPORT_SYMBOL(__blk_end_request_cur);
3248 
3249 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3250 		     struct bio *bio)
3251 {
3252 	if (bio_has_data(bio))
3253 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3254 
3255 	rq->__data_len = bio->bi_iter.bi_size;
3256 	rq->bio = rq->biotail = bio;
3257 
3258 	if (bio->bi_disk)
3259 		rq->rq_disk = bio->bi_disk;
3260 }
3261 
3262 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3263 /**
3264  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3265  * @rq: the request to be flushed
3266  *
3267  * Description:
3268  *     Flush all pages in @rq.
3269  */
3270 void rq_flush_dcache_pages(struct request *rq)
3271 {
3272 	struct req_iterator iter;
3273 	struct bio_vec bvec;
3274 
3275 	rq_for_each_segment(bvec, rq, iter)
3276 		flush_dcache_page(bvec.bv_page);
3277 }
3278 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3279 #endif
3280 
3281 /**
3282  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3283  * @q : the queue of the device being checked
3284  *
3285  * Description:
3286  *    Check if underlying low-level drivers of a device are busy.
3287  *    If the drivers want to export their busy state, they must set own
3288  *    exporting function using blk_queue_lld_busy() first.
3289  *
3290  *    Basically, this function is used only by request stacking drivers
3291  *    to stop dispatching requests to underlying devices when underlying
3292  *    devices are busy.  This behavior helps more I/O merging on the queue
3293  *    of the request stacking driver and prevents I/O throughput regression
3294  *    on burst I/O load.
3295  *
3296  * Return:
3297  *    0 - Not busy (The request stacking driver should dispatch request)
3298  *    1 - Busy (The request stacking driver should stop dispatching request)
3299  */
3300 int blk_lld_busy(struct request_queue *q)
3301 {
3302 	if (q->lld_busy_fn)
3303 		return q->lld_busy_fn(q);
3304 
3305 	return 0;
3306 }
3307 EXPORT_SYMBOL_GPL(blk_lld_busy);
3308 
3309 /**
3310  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3311  * @rq: the clone request to be cleaned up
3312  *
3313  * Description:
3314  *     Free all bios in @rq for a cloned request.
3315  */
3316 void blk_rq_unprep_clone(struct request *rq)
3317 {
3318 	struct bio *bio;
3319 
3320 	while ((bio = rq->bio) != NULL) {
3321 		rq->bio = bio->bi_next;
3322 
3323 		bio_put(bio);
3324 	}
3325 }
3326 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3327 
3328 /*
3329  * Copy attributes of the original request to the clone request.
3330  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3331  */
3332 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3333 {
3334 	dst->cpu = src->cpu;
3335 	dst->__sector = blk_rq_pos(src);
3336 	dst->__data_len = blk_rq_bytes(src);
3337 	dst->nr_phys_segments = src->nr_phys_segments;
3338 	dst->ioprio = src->ioprio;
3339 	dst->extra_len = src->extra_len;
3340 }
3341 
3342 /**
3343  * blk_rq_prep_clone - Helper function to setup clone request
3344  * @rq: the request to be setup
3345  * @rq_src: original request to be cloned
3346  * @bs: bio_set that bios for clone are allocated from
3347  * @gfp_mask: memory allocation mask for bio
3348  * @bio_ctr: setup function to be called for each clone bio.
3349  *           Returns %0 for success, non %0 for failure.
3350  * @data: private data to be passed to @bio_ctr
3351  *
3352  * Description:
3353  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3354  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3355  *     are not copied, and copying such parts is the caller's responsibility.
3356  *     Also, pages which the original bios are pointing to are not copied
3357  *     and the cloned bios just point same pages.
3358  *     So cloned bios must be completed before original bios, which means
3359  *     the caller must complete @rq before @rq_src.
3360  */
3361 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3362 		      struct bio_set *bs, gfp_t gfp_mask,
3363 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3364 		      void *data)
3365 {
3366 	struct bio *bio, *bio_src;
3367 
3368 	if (!bs)
3369 		bs = fs_bio_set;
3370 
3371 	__rq_for_each_bio(bio_src, rq_src) {
3372 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3373 		if (!bio)
3374 			goto free_and_out;
3375 
3376 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3377 			goto free_and_out;
3378 
3379 		if (rq->bio) {
3380 			rq->biotail->bi_next = bio;
3381 			rq->biotail = bio;
3382 		} else
3383 			rq->bio = rq->biotail = bio;
3384 	}
3385 
3386 	__blk_rq_prep_clone(rq, rq_src);
3387 
3388 	return 0;
3389 
3390 free_and_out:
3391 	if (bio)
3392 		bio_put(bio);
3393 	blk_rq_unprep_clone(rq);
3394 
3395 	return -ENOMEM;
3396 }
3397 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3398 
3399 int kblockd_schedule_work(struct work_struct *work)
3400 {
3401 	return queue_work(kblockd_workqueue, work);
3402 }
3403 EXPORT_SYMBOL(kblockd_schedule_work);
3404 
3405 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3406 {
3407 	return queue_work_on(cpu, kblockd_workqueue, work);
3408 }
3409 EXPORT_SYMBOL(kblockd_schedule_work_on);
3410 
3411 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3412 				unsigned long delay)
3413 {
3414 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3415 }
3416 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3417 
3418 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3419 				  unsigned long delay)
3420 {
3421 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3422 }
3423 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3424 
3425 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3426 				     unsigned long delay)
3427 {
3428 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3429 }
3430 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3431 
3432 /**
3433  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3434  * @plug:	The &struct blk_plug that needs to be initialized
3435  *
3436  * Description:
3437  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3438  *   pending I/O should the task end up blocking between blk_start_plug() and
3439  *   blk_finish_plug(). This is important from a performance perspective, but
3440  *   also ensures that we don't deadlock. For instance, if the task is blocking
3441  *   for a memory allocation, memory reclaim could end up wanting to free a
3442  *   page belonging to that request that is currently residing in our private
3443  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3444  *   this kind of deadlock.
3445  */
3446 void blk_start_plug(struct blk_plug *plug)
3447 {
3448 	struct task_struct *tsk = current;
3449 
3450 	/*
3451 	 * If this is a nested plug, don't actually assign it.
3452 	 */
3453 	if (tsk->plug)
3454 		return;
3455 
3456 	INIT_LIST_HEAD(&plug->list);
3457 	INIT_LIST_HEAD(&plug->mq_list);
3458 	INIT_LIST_HEAD(&plug->cb_list);
3459 	/*
3460 	 * Store ordering should not be needed here, since a potential
3461 	 * preempt will imply a full memory barrier
3462 	 */
3463 	tsk->plug = plug;
3464 }
3465 EXPORT_SYMBOL(blk_start_plug);
3466 
3467 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3468 {
3469 	struct request *rqa = container_of(a, struct request, queuelist);
3470 	struct request *rqb = container_of(b, struct request, queuelist);
3471 
3472 	return !(rqa->q < rqb->q ||
3473 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3474 }
3475 
3476 /*
3477  * If 'from_schedule' is true, then postpone the dispatch of requests
3478  * until a safe kblockd context. We due this to avoid accidental big
3479  * additional stack usage in driver dispatch, in places where the originally
3480  * plugger did not intend it.
3481  */
3482 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3483 			    bool from_schedule)
3484 	__releases(q->queue_lock)
3485 {
3486 	lockdep_assert_held(q->queue_lock);
3487 
3488 	trace_block_unplug(q, depth, !from_schedule);
3489 
3490 	if (from_schedule)
3491 		blk_run_queue_async(q);
3492 	else
3493 		__blk_run_queue(q);
3494 	spin_unlock(q->queue_lock);
3495 }
3496 
3497 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3498 {
3499 	LIST_HEAD(callbacks);
3500 
3501 	while (!list_empty(&plug->cb_list)) {
3502 		list_splice_init(&plug->cb_list, &callbacks);
3503 
3504 		while (!list_empty(&callbacks)) {
3505 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3506 							  struct blk_plug_cb,
3507 							  list);
3508 			list_del(&cb->list);
3509 			cb->callback(cb, from_schedule);
3510 		}
3511 	}
3512 }
3513 
3514 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3515 				      int size)
3516 {
3517 	struct blk_plug *plug = current->plug;
3518 	struct blk_plug_cb *cb;
3519 
3520 	if (!plug)
3521 		return NULL;
3522 
3523 	list_for_each_entry(cb, &plug->cb_list, list)
3524 		if (cb->callback == unplug && cb->data == data)
3525 			return cb;
3526 
3527 	/* Not currently on the callback list */
3528 	BUG_ON(size < sizeof(*cb));
3529 	cb = kzalloc(size, GFP_ATOMIC);
3530 	if (cb) {
3531 		cb->data = data;
3532 		cb->callback = unplug;
3533 		list_add(&cb->list, &plug->cb_list);
3534 	}
3535 	return cb;
3536 }
3537 EXPORT_SYMBOL(blk_check_plugged);
3538 
3539 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3540 {
3541 	struct request_queue *q;
3542 	unsigned long flags;
3543 	struct request *rq;
3544 	LIST_HEAD(list);
3545 	unsigned int depth;
3546 
3547 	flush_plug_callbacks(plug, from_schedule);
3548 
3549 	if (!list_empty(&plug->mq_list))
3550 		blk_mq_flush_plug_list(plug, from_schedule);
3551 
3552 	if (list_empty(&plug->list))
3553 		return;
3554 
3555 	list_splice_init(&plug->list, &list);
3556 
3557 	list_sort(NULL, &list, plug_rq_cmp);
3558 
3559 	q = NULL;
3560 	depth = 0;
3561 
3562 	/*
3563 	 * Save and disable interrupts here, to avoid doing it for every
3564 	 * queue lock we have to take.
3565 	 */
3566 	local_irq_save(flags);
3567 	while (!list_empty(&list)) {
3568 		rq = list_entry_rq(list.next);
3569 		list_del_init(&rq->queuelist);
3570 		BUG_ON(!rq->q);
3571 		if (rq->q != q) {
3572 			/*
3573 			 * This drops the queue lock
3574 			 */
3575 			if (q)
3576 				queue_unplugged(q, depth, from_schedule);
3577 			q = rq->q;
3578 			depth = 0;
3579 			spin_lock(q->queue_lock);
3580 		}
3581 
3582 		/*
3583 		 * Short-circuit if @q is dead
3584 		 */
3585 		if (unlikely(blk_queue_dying(q))) {
3586 			__blk_end_request_all(rq, BLK_STS_IOERR);
3587 			continue;
3588 		}
3589 
3590 		/*
3591 		 * rq is already accounted, so use raw insert
3592 		 */
3593 		if (op_is_flush(rq->cmd_flags))
3594 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3595 		else
3596 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3597 
3598 		depth++;
3599 	}
3600 
3601 	/*
3602 	 * This drops the queue lock
3603 	 */
3604 	if (q)
3605 		queue_unplugged(q, depth, from_schedule);
3606 
3607 	local_irq_restore(flags);
3608 }
3609 
3610 void blk_finish_plug(struct blk_plug *plug)
3611 {
3612 	if (plug != current->plug)
3613 		return;
3614 	blk_flush_plug_list(plug, false);
3615 
3616 	current->plug = NULL;
3617 }
3618 EXPORT_SYMBOL(blk_finish_plug);
3619 
3620 #ifdef CONFIG_PM
3621 /**
3622  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3623  * @q: the queue of the device
3624  * @dev: the device the queue belongs to
3625  *
3626  * Description:
3627  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3628  *    @dev. Drivers that want to take advantage of request-based runtime PM
3629  *    should call this function after @dev has been initialized, and its
3630  *    request queue @q has been allocated, and runtime PM for it can not happen
3631  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3632  *    cases, driver should call this function before any I/O has taken place.
3633  *
3634  *    This function takes care of setting up using auto suspend for the device,
3635  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3636  *    until an updated value is either set by user or by driver. Drivers do
3637  *    not need to touch other autosuspend settings.
3638  *
3639  *    The block layer runtime PM is request based, so only works for drivers
3640  *    that use request as their IO unit instead of those directly use bio's.
3641  */
3642 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3643 {
3644 	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
3645 	if (q->mq_ops)
3646 		return;
3647 
3648 	q->dev = dev;
3649 	q->rpm_status = RPM_ACTIVE;
3650 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3651 	pm_runtime_use_autosuspend(q->dev);
3652 }
3653 EXPORT_SYMBOL(blk_pm_runtime_init);
3654 
3655 /**
3656  * blk_pre_runtime_suspend - Pre runtime suspend check
3657  * @q: the queue of the device
3658  *
3659  * Description:
3660  *    This function will check if runtime suspend is allowed for the device
3661  *    by examining if there are any requests pending in the queue. If there
3662  *    are requests pending, the device can not be runtime suspended; otherwise,
3663  *    the queue's status will be updated to SUSPENDING and the driver can
3664  *    proceed to suspend the device.
3665  *
3666  *    For the not allowed case, we mark last busy for the device so that
3667  *    runtime PM core will try to autosuspend it some time later.
3668  *
3669  *    This function should be called near the start of the device's
3670  *    runtime_suspend callback.
3671  *
3672  * Return:
3673  *    0		- OK to runtime suspend the device
3674  *    -EBUSY	- Device should not be runtime suspended
3675  */
3676 int blk_pre_runtime_suspend(struct request_queue *q)
3677 {
3678 	int ret = 0;
3679 
3680 	if (!q->dev)
3681 		return ret;
3682 
3683 	spin_lock_irq(q->queue_lock);
3684 	if (q->nr_pending) {
3685 		ret = -EBUSY;
3686 		pm_runtime_mark_last_busy(q->dev);
3687 	} else {
3688 		q->rpm_status = RPM_SUSPENDING;
3689 	}
3690 	spin_unlock_irq(q->queue_lock);
3691 	return ret;
3692 }
3693 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3694 
3695 /**
3696  * blk_post_runtime_suspend - Post runtime suspend processing
3697  * @q: the queue of the device
3698  * @err: return value of the device's runtime_suspend function
3699  *
3700  * Description:
3701  *    Update the queue's runtime status according to the return value of the
3702  *    device's runtime suspend function and mark last busy for the device so
3703  *    that PM core will try to auto suspend the device at a later time.
3704  *
3705  *    This function should be called near the end of the device's
3706  *    runtime_suspend callback.
3707  */
3708 void blk_post_runtime_suspend(struct request_queue *q, int err)
3709 {
3710 	if (!q->dev)
3711 		return;
3712 
3713 	spin_lock_irq(q->queue_lock);
3714 	if (!err) {
3715 		q->rpm_status = RPM_SUSPENDED;
3716 	} else {
3717 		q->rpm_status = RPM_ACTIVE;
3718 		pm_runtime_mark_last_busy(q->dev);
3719 	}
3720 	spin_unlock_irq(q->queue_lock);
3721 }
3722 EXPORT_SYMBOL(blk_post_runtime_suspend);
3723 
3724 /**
3725  * blk_pre_runtime_resume - Pre runtime resume processing
3726  * @q: the queue of the device
3727  *
3728  * Description:
3729  *    Update the queue's runtime status to RESUMING in preparation for the
3730  *    runtime resume of the device.
3731  *
3732  *    This function should be called near the start of the device's
3733  *    runtime_resume callback.
3734  */
3735 void blk_pre_runtime_resume(struct request_queue *q)
3736 {
3737 	if (!q->dev)
3738 		return;
3739 
3740 	spin_lock_irq(q->queue_lock);
3741 	q->rpm_status = RPM_RESUMING;
3742 	spin_unlock_irq(q->queue_lock);
3743 }
3744 EXPORT_SYMBOL(blk_pre_runtime_resume);
3745 
3746 /**
3747  * blk_post_runtime_resume - Post runtime resume processing
3748  * @q: the queue of the device
3749  * @err: return value of the device's runtime_resume function
3750  *
3751  * Description:
3752  *    Update the queue's runtime status according to the return value of the
3753  *    device's runtime_resume function. If it is successfully resumed, process
3754  *    the requests that are queued into the device's queue when it is resuming
3755  *    and then mark last busy and initiate autosuspend for it.
3756  *
3757  *    This function should be called near the end of the device's
3758  *    runtime_resume callback.
3759  */
3760 void blk_post_runtime_resume(struct request_queue *q, int err)
3761 {
3762 	if (!q->dev)
3763 		return;
3764 
3765 	spin_lock_irq(q->queue_lock);
3766 	if (!err) {
3767 		q->rpm_status = RPM_ACTIVE;
3768 		__blk_run_queue(q);
3769 		pm_runtime_mark_last_busy(q->dev);
3770 		pm_request_autosuspend(q->dev);
3771 	} else {
3772 		q->rpm_status = RPM_SUSPENDED;
3773 	}
3774 	spin_unlock_irq(q->queue_lock);
3775 }
3776 EXPORT_SYMBOL(blk_post_runtime_resume);
3777 
3778 /**
3779  * blk_set_runtime_active - Force runtime status of the queue to be active
3780  * @q: the queue of the device
3781  *
3782  * If the device is left runtime suspended during system suspend the resume
3783  * hook typically resumes the device and corrects runtime status
3784  * accordingly. However, that does not affect the queue runtime PM status
3785  * which is still "suspended". This prevents processing requests from the
3786  * queue.
3787  *
3788  * This function can be used in driver's resume hook to correct queue
3789  * runtime PM status and re-enable peeking requests from the queue. It
3790  * should be called before first request is added to the queue.
3791  */
3792 void blk_set_runtime_active(struct request_queue *q)
3793 {
3794 	spin_lock_irq(q->queue_lock);
3795 	q->rpm_status = RPM_ACTIVE;
3796 	pm_runtime_mark_last_busy(q->dev);
3797 	pm_request_autosuspend(q->dev);
3798 	spin_unlock_irq(q->queue_lock);
3799 }
3800 EXPORT_SYMBOL(blk_set_runtime_active);
3801 #endif
3802 
3803 int __init blk_dev_init(void)
3804 {
3805 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3806 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3807 			FIELD_SIZEOF(struct request, cmd_flags));
3808 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3809 			FIELD_SIZEOF(struct bio, bi_opf));
3810 
3811 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3812 	kblockd_workqueue = alloc_workqueue("kblockd",
3813 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3814 	if (!kblockd_workqueue)
3815 		panic("Failed to create kblockd\n");
3816 
3817 	request_cachep = kmem_cache_create("blkdev_requests",
3818 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3819 
3820 	blk_requestq_cachep = kmem_cache_create("request_queue",
3821 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3822 
3823 #ifdef CONFIG_DEBUG_FS
3824 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3825 #endif
3826 
3827 	return 0;
3828 }
3829