1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/block.h> 33 34 #include "blk.h" 35 36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 39 40 static int __make_request(struct request_queue *q, struct bio *bio); 41 42 /* 43 * For the allocated request tables 44 */ 45 static struct kmem_cache *request_cachep; 46 47 /* 48 * For queue allocation 49 */ 50 struct kmem_cache *blk_requestq_cachep; 51 52 /* 53 * Controlling structure to kblockd 54 */ 55 static struct workqueue_struct *kblockd_workqueue; 56 57 static void drive_stat_acct(struct request *rq, int new_io) 58 { 59 struct hd_struct *part; 60 int rw = rq_data_dir(rq); 61 int cpu; 62 63 if (!blk_do_io_stat(rq)) 64 return; 65 66 cpu = part_stat_lock(); 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 68 69 if (!new_io) 70 part_stat_inc(cpu, part, merges[rw]); 71 else { 72 part_round_stats(cpu, part); 73 part_inc_in_flight(part, rw); 74 } 75 76 part_stat_unlock(); 77 } 78 79 void blk_queue_congestion_threshold(struct request_queue *q) 80 { 81 int nr; 82 83 nr = q->nr_requests - (q->nr_requests / 8) + 1; 84 if (nr > q->nr_requests) 85 nr = q->nr_requests; 86 q->nr_congestion_on = nr; 87 88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 89 if (nr < 1) 90 nr = 1; 91 q->nr_congestion_off = nr; 92 } 93 94 /** 95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 96 * @bdev: device 97 * 98 * Locates the passed device's request queue and returns the address of its 99 * backing_dev_info 100 * 101 * Will return NULL if the request queue cannot be located. 102 */ 103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 104 { 105 struct backing_dev_info *ret = NULL; 106 struct request_queue *q = bdev_get_queue(bdev); 107 108 if (q) 109 ret = &q->backing_dev_info; 110 return ret; 111 } 112 EXPORT_SYMBOL(blk_get_backing_dev_info); 113 114 void blk_rq_init(struct request_queue *q, struct request *rq) 115 { 116 memset(rq, 0, sizeof(*rq)); 117 118 INIT_LIST_HEAD(&rq->queuelist); 119 INIT_LIST_HEAD(&rq->timeout_list); 120 rq->cpu = -1; 121 rq->q = q; 122 rq->__sector = (sector_t) -1; 123 INIT_HLIST_NODE(&rq->hash); 124 RB_CLEAR_NODE(&rq->rb_node); 125 rq->cmd = rq->__cmd; 126 rq->cmd_len = BLK_MAX_CDB; 127 rq->tag = -1; 128 rq->ref_count = 1; 129 rq->start_time = jiffies; 130 set_start_time_ns(rq); 131 } 132 EXPORT_SYMBOL(blk_rq_init); 133 134 static void req_bio_endio(struct request *rq, struct bio *bio, 135 unsigned int nbytes, int error) 136 { 137 struct request_queue *q = rq->q; 138 139 if (&q->bar_rq != rq) { 140 if (error) 141 clear_bit(BIO_UPTODATE, &bio->bi_flags); 142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 143 error = -EIO; 144 145 if (unlikely(nbytes > bio->bi_size)) { 146 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 147 __func__, nbytes, bio->bi_size); 148 nbytes = bio->bi_size; 149 } 150 151 if (unlikely(rq->cmd_flags & REQ_QUIET)) 152 set_bit(BIO_QUIET, &bio->bi_flags); 153 154 bio->bi_size -= nbytes; 155 bio->bi_sector += (nbytes >> 9); 156 157 if (bio_integrity(bio)) 158 bio_integrity_advance(bio, nbytes); 159 160 if (bio->bi_size == 0) 161 bio_endio(bio, error); 162 } else { 163 164 /* 165 * Okay, this is the barrier request in progress, just 166 * record the error; 167 */ 168 if (error && !q->orderr) 169 q->orderr = error; 170 } 171 } 172 173 void blk_dump_rq_flags(struct request *rq, char *msg) 174 { 175 int bit; 176 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 179 rq->cmd_flags); 180 181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 182 (unsigned long long)blk_rq_pos(rq), 183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 186 187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 188 printk(KERN_INFO " cdb: "); 189 for (bit = 0; bit < BLK_MAX_CDB; bit++) 190 printk("%02x ", rq->cmd[bit]); 191 printk("\n"); 192 } 193 } 194 EXPORT_SYMBOL(blk_dump_rq_flags); 195 196 /* 197 * "plug" the device if there are no outstanding requests: this will 198 * force the transfer to start only after we have put all the requests 199 * on the list. 200 * 201 * This is called with interrupts off and no requests on the queue and 202 * with the queue lock held. 203 */ 204 void blk_plug_device(struct request_queue *q) 205 { 206 WARN_ON(!irqs_disabled()); 207 208 /* 209 * don't plug a stopped queue, it must be paired with blk_start_queue() 210 * which will restart the queueing 211 */ 212 if (blk_queue_stopped(q)) 213 return; 214 215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 217 trace_block_plug(q); 218 } 219 } 220 EXPORT_SYMBOL(blk_plug_device); 221 222 /** 223 * blk_plug_device_unlocked - plug a device without queue lock held 224 * @q: The &struct request_queue to plug 225 * 226 * Description: 227 * Like @blk_plug_device(), but grabs the queue lock and disables 228 * interrupts. 229 **/ 230 void blk_plug_device_unlocked(struct request_queue *q) 231 { 232 unsigned long flags; 233 234 spin_lock_irqsave(q->queue_lock, flags); 235 blk_plug_device(q); 236 spin_unlock_irqrestore(q->queue_lock, flags); 237 } 238 EXPORT_SYMBOL(blk_plug_device_unlocked); 239 240 /* 241 * remove the queue from the plugged list, if present. called with 242 * queue lock held and interrupts disabled. 243 */ 244 int blk_remove_plug(struct request_queue *q) 245 { 246 WARN_ON(!irqs_disabled()); 247 248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 249 return 0; 250 251 del_timer(&q->unplug_timer); 252 return 1; 253 } 254 EXPORT_SYMBOL(blk_remove_plug); 255 256 /* 257 * remove the plug and let it rip.. 258 */ 259 void __generic_unplug_device(struct request_queue *q) 260 { 261 if (unlikely(blk_queue_stopped(q))) 262 return; 263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q)) 264 return; 265 266 q->request_fn(q); 267 } 268 269 /** 270 * generic_unplug_device - fire a request queue 271 * @q: The &struct request_queue in question 272 * 273 * Description: 274 * Linux uses plugging to build bigger requests queues before letting 275 * the device have at them. If a queue is plugged, the I/O scheduler 276 * is still adding and merging requests on the queue. Once the queue 277 * gets unplugged, the request_fn defined for the queue is invoked and 278 * transfers started. 279 **/ 280 void generic_unplug_device(struct request_queue *q) 281 { 282 if (blk_queue_plugged(q)) { 283 spin_lock_irq(q->queue_lock); 284 __generic_unplug_device(q); 285 spin_unlock_irq(q->queue_lock); 286 } 287 } 288 EXPORT_SYMBOL(generic_unplug_device); 289 290 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 291 struct page *page) 292 { 293 struct request_queue *q = bdi->unplug_io_data; 294 295 blk_unplug(q); 296 } 297 298 void blk_unplug_work(struct work_struct *work) 299 { 300 struct request_queue *q = 301 container_of(work, struct request_queue, unplug_work); 302 303 trace_block_unplug_io(q); 304 q->unplug_fn(q); 305 } 306 307 void blk_unplug_timeout(unsigned long data) 308 { 309 struct request_queue *q = (struct request_queue *)data; 310 311 trace_block_unplug_timer(q); 312 kblockd_schedule_work(q, &q->unplug_work); 313 } 314 315 void blk_unplug(struct request_queue *q) 316 { 317 /* 318 * devices don't necessarily have an ->unplug_fn defined 319 */ 320 if (q->unplug_fn) { 321 trace_block_unplug_io(q); 322 q->unplug_fn(q); 323 } 324 } 325 EXPORT_SYMBOL(blk_unplug); 326 327 /** 328 * blk_start_queue - restart a previously stopped queue 329 * @q: The &struct request_queue in question 330 * 331 * Description: 332 * blk_start_queue() will clear the stop flag on the queue, and call 333 * the request_fn for the queue if it was in a stopped state when 334 * entered. Also see blk_stop_queue(). Queue lock must be held. 335 **/ 336 void blk_start_queue(struct request_queue *q) 337 { 338 WARN_ON(!irqs_disabled()); 339 340 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 341 __blk_run_queue(q); 342 } 343 EXPORT_SYMBOL(blk_start_queue); 344 345 /** 346 * blk_stop_queue - stop a queue 347 * @q: The &struct request_queue in question 348 * 349 * Description: 350 * The Linux block layer assumes that a block driver will consume all 351 * entries on the request queue when the request_fn strategy is called. 352 * Often this will not happen, because of hardware limitations (queue 353 * depth settings). If a device driver gets a 'queue full' response, 354 * or if it simply chooses not to queue more I/O at one point, it can 355 * call this function to prevent the request_fn from being called until 356 * the driver has signalled it's ready to go again. This happens by calling 357 * blk_start_queue() to restart queue operations. Queue lock must be held. 358 **/ 359 void blk_stop_queue(struct request_queue *q) 360 { 361 blk_remove_plug(q); 362 queue_flag_set(QUEUE_FLAG_STOPPED, q); 363 } 364 EXPORT_SYMBOL(blk_stop_queue); 365 366 /** 367 * blk_sync_queue - cancel any pending callbacks on a queue 368 * @q: the queue 369 * 370 * Description: 371 * The block layer may perform asynchronous callback activity 372 * on a queue, such as calling the unplug function after a timeout. 373 * A block device may call blk_sync_queue to ensure that any 374 * such activity is cancelled, thus allowing it to release resources 375 * that the callbacks might use. The caller must already have made sure 376 * that its ->make_request_fn will not re-add plugging prior to calling 377 * this function. 378 * 379 */ 380 void blk_sync_queue(struct request_queue *q) 381 { 382 del_timer_sync(&q->unplug_timer); 383 del_timer_sync(&q->timeout); 384 cancel_work_sync(&q->unplug_work); 385 } 386 EXPORT_SYMBOL(blk_sync_queue); 387 388 /** 389 * __blk_run_queue - run a single device queue 390 * @q: The queue to run 391 * 392 * Description: 393 * See @blk_run_queue. This variant must be called with the queue lock 394 * held and interrupts disabled. 395 * 396 */ 397 void __blk_run_queue(struct request_queue *q) 398 { 399 blk_remove_plug(q); 400 401 if (unlikely(blk_queue_stopped(q))) 402 return; 403 404 if (elv_queue_empty(q)) 405 return; 406 407 /* 408 * Only recurse once to avoid overrunning the stack, let the unplug 409 * handling reinvoke the handler shortly if we already got there. 410 */ 411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 412 q->request_fn(q); 413 queue_flag_clear(QUEUE_FLAG_REENTER, q); 414 } else { 415 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 416 kblockd_schedule_work(q, &q->unplug_work); 417 } 418 } 419 EXPORT_SYMBOL(__blk_run_queue); 420 421 /** 422 * blk_run_queue - run a single device queue 423 * @q: The queue to run 424 * 425 * Description: 426 * Invoke request handling on this queue, if it has pending work to do. 427 * May be used to restart queueing when a request has completed. 428 */ 429 void blk_run_queue(struct request_queue *q) 430 { 431 unsigned long flags; 432 433 spin_lock_irqsave(q->queue_lock, flags); 434 __blk_run_queue(q); 435 spin_unlock_irqrestore(q->queue_lock, flags); 436 } 437 EXPORT_SYMBOL(blk_run_queue); 438 439 void blk_put_queue(struct request_queue *q) 440 { 441 kobject_put(&q->kobj); 442 } 443 444 void blk_cleanup_queue(struct request_queue *q) 445 { 446 /* 447 * We know we have process context here, so we can be a little 448 * cautious and ensure that pending block actions on this device 449 * are done before moving on. Going into this function, we should 450 * not have processes doing IO to this device. 451 */ 452 blk_sync_queue(q); 453 454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 455 mutex_lock(&q->sysfs_lock); 456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 457 mutex_unlock(&q->sysfs_lock); 458 459 if (q->elevator) 460 elevator_exit(q->elevator); 461 462 blk_put_queue(q); 463 } 464 EXPORT_SYMBOL(blk_cleanup_queue); 465 466 static int blk_init_free_list(struct request_queue *q) 467 { 468 struct request_list *rl = &q->rq; 469 470 if (unlikely(rl->rq_pool)) 471 return 0; 472 473 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 474 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 475 rl->elvpriv = 0; 476 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 477 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 478 479 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 480 mempool_free_slab, request_cachep, q->node); 481 482 if (!rl->rq_pool) 483 return -ENOMEM; 484 485 return 0; 486 } 487 488 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 489 { 490 return blk_alloc_queue_node(gfp_mask, -1); 491 } 492 EXPORT_SYMBOL(blk_alloc_queue); 493 494 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 495 { 496 struct request_queue *q; 497 int err; 498 499 q = kmem_cache_alloc_node(blk_requestq_cachep, 500 gfp_mask | __GFP_ZERO, node_id); 501 if (!q) 502 return NULL; 503 504 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 505 q->backing_dev_info.unplug_io_data = q; 506 q->backing_dev_info.ra_pages = 507 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 508 q->backing_dev_info.state = 0; 509 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 510 q->backing_dev_info.name = "block"; 511 512 err = bdi_init(&q->backing_dev_info); 513 if (err) { 514 kmem_cache_free(blk_requestq_cachep, q); 515 return NULL; 516 } 517 518 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 519 laptop_mode_timer_fn, (unsigned long) q); 520 init_timer(&q->unplug_timer); 521 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 522 INIT_LIST_HEAD(&q->timeout_list); 523 INIT_WORK(&q->unplug_work, blk_unplug_work); 524 525 kobject_init(&q->kobj, &blk_queue_ktype); 526 527 mutex_init(&q->sysfs_lock); 528 spin_lock_init(&q->__queue_lock); 529 530 return q; 531 } 532 EXPORT_SYMBOL(blk_alloc_queue_node); 533 534 /** 535 * blk_init_queue - prepare a request queue for use with a block device 536 * @rfn: The function to be called to process requests that have been 537 * placed on the queue. 538 * @lock: Request queue spin lock 539 * 540 * Description: 541 * If a block device wishes to use the standard request handling procedures, 542 * which sorts requests and coalesces adjacent requests, then it must 543 * call blk_init_queue(). The function @rfn will be called when there 544 * are requests on the queue that need to be processed. If the device 545 * supports plugging, then @rfn may not be called immediately when requests 546 * are available on the queue, but may be called at some time later instead. 547 * Plugged queues are generally unplugged when a buffer belonging to one 548 * of the requests on the queue is needed, or due to memory pressure. 549 * 550 * @rfn is not required, or even expected, to remove all requests off the 551 * queue, but only as many as it can handle at a time. If it does leave 552 * requests on the queue, it is responsible for arranging that the requests 553 * get dealt with eventually. 554 * 555 * The queue spin lock must be held while manipulating the requests on the 556 * request queue; this lock will be taken also from interrupt context, so irq 557 * disabling is needed for it. 558 * 559 * Function returns a pointer to the initialized request queue, or %NULL if 560 * it didn't succeed. 561 * 562 * Note: 563 * blk_init_queue() must be paired with a blk_cleanup_queue() call 564 * when the block device is deactivated (such as at module unload). 565 **/ 566 567 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 568 { 569 return blk_init_queue_node(rfn, lock, -1); 570 } 571 EXPORT_SYMBOL(blk_init_queue); 572 573 struct request_queue * 574 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 575 { 576 struct request_queue *uninit_q, *q; 577 578 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 579 if (!uninit_q) 580 return NULL; 581 582 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id); 583 if (!q) 584 blk_cleanup_queue(uninit_q); 585 586 return q; 587 } 588 EXPORT_SYMBOL(blk_init_queue_node); 589 590 struct request_queue * 591 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 592 spinlock_t *lock) 593 { 594 return blk_init_allocated_queue_node(q, rfn, lock, -1); 595 } 596 EXPORT_SYMBOL(blk_init_allocated_queue); 597 598 struct request_queue * 599 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn, 600 spinlock_t *lock, int node_id) 601 { 602 if (!q) 603 return NULL; 604 605 q->node = node_id; 606 if (blk_init_free_list(q)) 607 return NULL; 608 609 q->request_fn = rfn; 610 q->prep_rq_fn = NULL; 611 q->unprep_rq_fn = NULL; 612 q->unplug_fn = generic_unplug_device; 613 q->queue_flags = QUEUE_FLAG_DEFAULT; 614 q->queue_lock = lock; 615 616 /* 617 * This also sets hw/phys segments, boundary and size 618 */ 619 blk_queue_make_request(q, __make_request); 620 621 q->sg_reserved_size = INT_MAX; 622 623 /* 624 * all done 625 */ 626 if (!elevator_init(q, NULL)) { 627 blk_queue_congestion_threshold(q); 628 return q; 629 } 630 631 return NULL; 632 } 633 EXPORT_SYMBOL(blk_init_allocated_queue_node); 634 635 int blk_get_queue(struct request_queue *q) 636 { 637 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 638 kobject_get(&q->kobj); 639 return 0; 640 } 641 642 return 1; 643 } 644 645 static inline void blk_free_request(struct request_queue *q, struct request *rq) 646 { 647 if (rq->cmd_flags & REQ_ELVPRIV) 648 elv_put_request(q, rq); 649 mempool_free(rq, q->rq.rq_pool); 650 } 651 652 static struct request * 653 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 654 { 655 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 656 657 if (!rq) 658 return NULL; 659 660 blk_rq_init(q, rq); 661 662 rq->cmd_flags = flags | REQ_ALLOCED; 663 664 if (priv) { 665 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 666 mempool_free(rq, q->rq.rq_pool); 667 return NULL; 668 } 669 rq->cmd_flags |= REQ_ELVPRIV; 670 } 671 672 return rq; 673 } 674 675 /* 676 * ioc_batching returns true if the ioc is a valid batching request and 677 * should be given priority access to a request. 678 */ 679 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 680 { 681 if (!ioc) 682 return 0; 683 684 /* 685 * Make sure the process is able to allocate at least 1 request 686 * even if the batch times out, otherwise we could theoretically 687 * lose wakeups. 688 */ 689 return ioc->nr_batch_requests == q->nr_batching || 690 (ioc->nr_batch_requests > 0 691 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 692 } 693 694 /* 695 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 696 * will cause the process to be a "batcher" on all queues in the system. This 697 * is the behaviour we want though - once it gets a wakeup it should be given 698 * a nice run. 699 */ 700 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 701 { 702 if (!ioc || ioc_batching(q, ioc)) 703 return; 704 705 ioc->nr_batch_requests = q->nr_batching; 706 ioc->last_waited = jiffies; 707 } 708 709 static void __freed_request(struct request_queue *q, int sync) 710 { 711 struct request_list *rl = &q->rq; 712 713 if (rl->count[sync] < queue_congestion_off_threshold(q)) 714 blk_clear_queue_congested(q, sync); 715 716 if (rl->count[sync] + 1 <= q->nr_requests) { 717 if (waitqueue_active(&rl->wait[sync])) 718 wake_up(&rl->wait[sync]); 719 720 blk_clear_queue_full(q, sync); 721 } 722 } 723 724 /* 725 * A request has just been released. Account for it, update the full and 726 * congestion status, wake up any waiters. Called under q->queue_lock. 727 */ 728 static void freed_request(struct request_queue *q, int sync, int priv) 729 { 730 struct request_list *rl = &q->rq; 731 732 rl->count[sync]--; 733 if (priv) 734 rl->elvpriv--; 735 736 __freed_request(q, sync); 737 738 if (unlikely(rl->starved[sync ^ 1])) 739 __freed_request(q, sync ^ 1); 740 } 741 742 /* 743 * Get a free request, queue_lock must be held. 744 * Returns NULL on failure, with queue_lock held. 745 * Returns !NULL on success, with queue_lock *not held*. 746 */ 747 static struct request *get_request(struct request_queue *q, int rw_flags, 748 struct bio *bio, gfp_t gfp_mask) 749 { 750 struct request *rq = NULL; 751 struct request_list *rl = &q->rq; 752 struct io_context *ioc = NULL; 753 const bool is_sync = rw_is_sync(rw_flags) != 0; 754 int may_queue, priv; 755 756 may_queue = elv_may_queue(q, rw_flags); 757 if (may_queue == ELV_MQUEUE_NO) 758 goto rq_starved; 759 760 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 761 if (rl->count[is_sync]+1 >= q->nr_requests) { 762 ioc = current_io_context(GFP_ATOMIC, q->node); 763 /* 764 * The queue will fill after this allocation, so set 765 * it as full, and mark this process as "batching". 766 * This process will be allowed to complete a batch of 767 * requests, others will be blocked. 768 */ 769 if (!blk_queue_full(q, is_sync)) { 770 ioc_set_batching(q, ioc); 771 blk_set_queue_full(q, is_sync); 772 } else { 773 if (may_queue != ELV_MQUEUE_MUST 774 && !ioc_batching(q, ioc)) { 775 /* 776 * The queue is full and the allocating 777 * process is not a "batcher", and not 778 * exempted by the IO scheduler 779 */ 780 goto out; 781 } 782 } 783 } 784 blk_set_queue_congested(q, is_sync); 785 } 786 787 /* 788 * Only allow batching queuers to allocate up to 50% over the defined 789 * limit of requests, otherwise we could have thousands of requests 790 * allocated with any setting of ->nr_requests 791 */ 792 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 793 goto out; 794 795 rl->count[is_sync]++; 796 rl->starved[is_sync] = 0; 797 798 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 799 if (priv) 800 rl->elvpriv++; 801 802 if (blk_queue_io_stat(q)) 803 rw_flags |= REQ_IO_STAT; 804 spin_unlock_irq(q->queue_lock); 805 806 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 807 if (unlikely(!rq)) { 808 /* 809 * Allocation failed presumably due to memory. Undo anything 810 * we might have messed up. 811 * 812 * Allocating task should really be put onto the front of the 813 * wait queue, but this is pretty rare. 814 */ 815 spin_lock_irq(q->queue_lock); 816 freed_request(q, is_sync, priv); 817 818 /* 819 * in the very unlikely event that allocation failed and no 820 * requests for this direction was pending, mark us starved 821 * so that freeing of a request in the other direction will 822 * notice us. another possible fix would be to split the 823 * rq mempool into READ and WRITE 824 */ 825 rq_starved: 826 if (unlikely(rl->count[is_sync] == 0)) 827 rl->starved[is_sync] = 1; 828 829 goto out; 830 } 831 832 /* 833 * ioc may be NULL here, and ioc_batching will be false. That's 834 * OK, if the queue is under the request limit then requests need 835 * not count toward the nr_batch_requests limit. There will always 836 * be some limit enforced by BLK_BATCH_TIME. 837 */ 838 if (ioc_batching(q, ioc)) 839 ioc->nr_batch_requests--; 840 841 trace_block_getrq(q, bio, rw_flags & 1); 842 out: 843 return rq; 844 } 845 846 /* 847 * No available requests for this queue, unplug the device and wait for some 848 * requests to become available. 849 * 850 * Called with q->queue_lock held, and returns with it unlocked. 851 */ 852 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 853 struct bio *bio) 854 { 855 const bool is_sync = rw_is_sync(rw_flags) != 0; 856 struct request *rq; 857 858 rq = get_request(q, rw_flags, bio, GFP_NOIO); 859 while (!rq) { 860 DEFINE_WAIT(wait); 861 struct io_context *ioc; 862 struct request_list *rl = &q->rq; 863 864 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 865 TASK_UNINTERRUPTIBLE); 866 867 trace_block_sleeprq(q, bio, rw_flags & 1); 868 869 __generic_unplug_device(q); 870 spin_unlock_irq(q->queue_lock); 871 io_schedule(); 872 873 /* 874 * After sleeping, we become a "batching" process and 875 * will be able to allocate at least one request, and 876 * up to a big batch of them for a small period time. 877 * See ioc_batching, ioc_set_batching 878 */ 879 ioc = current_io_context(GFP_NOIO, q->node); 880 ioc_set_batching(q, ioc); 881 882 spin_lock_irq(q->queue_lock); 883 finish_wait(&rl->wait[is_sync], &wait); 884 885 rq = get_request(q, rw_flags, bio, GFP_NOIO); 886 }; 887 888 return rq; 889 } 890 891 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 892 { 893 struct request *rq; 894 895 BUG_ON(rw != READ && rw != WRITE); 896 897 spin_lock_irq(q->queue_lock); 898 if (gfp_mask & __GFP_WAIT) { 899 rq = get_request_wait(q, rw, NULL); 900 } else { 901 rq = get_request(q, rw, NULL, gfp_mask); 902 if (!rq) 903 spin_unlock_irq(q->queue_lock); 904 } 905 /* q->queue_lock is unlocked at this point */ 906 907 return rq; 908 } 909 EXPORT_SYMBOL(blk_get_request); 910 911 /** 912 * blk_make_request - given a bio, allocate a corresponding struct request. 913 * @q: target request queue 914 * @bio: The bio describing the memory mappings that will be submitted for IO. 915 * It may be a chained-bio properly constructed by block/bio layer. 916 * @gfp_mask: gfp flags to be used for memory allocation 917 * 918 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 919 * type commands. Where the struct request needs to be farther initialized by 920 * the caller. It is passed a &struct bio, which describes the memory info of 921 * the I/O transfer. 922 * 923 * The caller of blk_make_request must make sure that bi_io_vec 924 * are set to describe the memory buffers. That bio_data_dir() will return 925 * the needed direction of the request. (And all bio's in the passed bio-chain 926 * are properly set accordingly) 927 * 928 * If called under none-sleepable conditions, mapped bio buffers must not 929 * need bouncing, by calling the appropriate masked or flagged allocator, 930 * suitable for the target device. Otherwise the call to blk_queue_bounce will 931 * BUG. 932 * 933 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 934 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 935 * anything but the first bio in the chain. Otherwise you risk waiting for IO 936 * completion of a bio that hasn't been submitted yet, thus resulting in a 937 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 938 * of bio_alloc(), as that avoids the mempool deadlock. 939 * If possible a big IO should be split into smaller parts when allocation 940 * fails. Partial allocation should not be an error, or you risk a live-lock. 941 */ 942 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 943 gfp_t gfp_mask) 944 { 945 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 946 947 if (unlikely(!rq)) 948 return ERR_PTR(-ENOMEM); 949 950 for_each_bio(bio) { 951 struct bio *bounce_bio = bio; 952 int ret; 953 954 blk_queue_bounce(q, &bounce_bio); 955 ret = blk_rq_append_bio(q, rq, bounce_bio); 956 if (unlikely(ret)) { 957 blk_put_request(rq); 958 return ERR_PTR(ret); 959 } 960 } 961 962 return rq; 963 } 964 EXPORT_SYMBOL(blk_make_request); 965 966 /** 967 * blk_requeue_request - put a request back on queue 968 * @q: request queue where request should be inserted 969 * @rq: request to be inserted 970 * 971 * Description: 972 * Drivers often keep queueing requests until the hardware cannot accept 973 * more, when that condition happens we need to put the request back 974 * on the queue. Must be called with queue lock held. 975 */ 976 void blk_requeue_request(struct request_queue *q, struct request *rq) 977 { 978 blk_delete_timer(rq); 979 blk_clear_rq_complete(rq); 980 trace_block_rq_requeue(q, rq); 981 982 if (blk_rq_tagged(rq)) 983 blk_queue_end_tag(q, rq); 984 985 BUG_ON(blk_queued_rq(rq)); 986 987 elv_requeue_request(q, rq); 988 } 989 EXPORT_SYMBOL(blk_requeue_request); 990 991 /** 992 * blk_insert_request - insert a special request into a request queue 993 * @q: request queue where request should be inserted 994 * @rq: request to be inserted 995 * @at_head: insert request at head or tail of queue 996 * @data: private data 997 * 998 * Description: 999 * Many block devices need to execute commands asynchronously, so they don't 1000 * block the whole kernel from preemption during request execution. This is 1001 * accomplished normally by inserting aritficial requests tagged as 1002 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 1003 * be scheduled for actual execution by the request queue. 1004 * 1005 * We have the option of inserting the head or the tail of the queue. 1006 * Typically we use the tail for new ioctls and so forth. We use the head 1007 * of the queue for things like a QUEUE_FULL message from a device, or a 1008 * host that is unable to accept a particular command. 1009 */ 1010 void blk_insert_request(struct request_queue *q, struct request *rq, 1011 int at_head, void *data) 1012 { 1013 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 1014 unsigned long flags; 1015 1016 /* 1017 * tell I/O scheduler that this isn't a regular read/write (ie it 1018 * must not attempt merges on this) and that it acts as a soft 1019 * barrier 1020 */ 1021 rq->cmd_type = REQ_TYPE_SPECIAL; 1022 1023 rq->special = data; 1024 1025 spin_lock_irqsave(q->queue_lock, flags); 1026 1027 /* 1028 * If command is tagged, release the tag 1029 */ 1030 if (blk_rq_tagged(rq)) 1031 blk_queue_end_tag(q, rq); 1032 1033 drive_stat_acct(rq, 1); 1034 __elv_add_request(q, rq, where, 0); 1035 __blk_run_queue(q); 1036 spin_unlock_irqrestore(q->queue_lock, flags); 1037 } 1038 EXPORT_SYMBOL(blk_insert_request); 1039 1040 /* 1041 * add-request adds a request to the linked list. 1042 * queue lock is held and interrupts disabled, as we muck with the 1043 * request queue list. 1044 */ 1045 static inline void add_request(struct request_queue *q, struct request *req) 1046 { 1047 drive_stat_acct(req, 1); 1048 1049 /* 1050 * elevator indicated where it wants this request to be 1051 * inserted at elevator_merge time 1052 */ 1053 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 1054 } 1055 1056 static void part_round_stats_single(int cpu, struct hd_struct *part, 1057 unsigned long now) 1058 { 1059 if (now == part->stamp) 1060 return; 1061 1062 if (part_in_flight(part)) { 1063 __part_stat_add(cpu, part, time_in_queue, 1064 part_in_flight(part) * (now - part->stamp)); 1065 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1066 } 1067 part->stamp = now; 1068 } 1069 1070 /** 1071 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1072 * @cpu: cpu number for stats access 1073 * @part: target partition 1074 * 1075 * The average IO queue length and utilisation statistics are maintained 1076 * by observing the current state of the queue length and the amount of 1077 * time it has been in this state for. 1078 * 1079 * Normally, that accounting is done on IO completion, but that can result 1080 * in more than a second's worth of IO being accounted for within any one 1081 * second, leading to >100% utilisation. To deal with that, we call this 1082 * function to do a round-off before returning the results when reading 1083 * /proc/diskstats. This accounts immediately for all queue usage up to 1084 * the current jiffies and restarts the counters again. 1085 */ 1086 void part_round_stats(int cpu, struct hd_struct *part) 1087 { 1088 unsigned long now = jiffies; 1089 1090 if (part->partno) 1091 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1092 part_round_stats_single(cpu, part, now); 1093 } 1094 EXPORT_SYMBOL_GPL(part_round_stats); 1095 1096 /* 1097 * queue lock must be held 1098 */ 1099 void __blk_put_request(struct request_queue *q, struct request *req) 1100 { 1101 if (unlikely(!q)) 1102 return; 1103 if (unlikely(--req->ref_count)) 1104 return; 1105 1106 elv_completed_request(q, req); 1107 1108 /* this is a bio leak */ 1109 WARN_ON(req->bio != NULL); 1110 1111 /* 1112 * Request may not have originated from ll_rw_blk. if not, 1113 * it didn't come out of our reserved rq pools 1114 */ 1115 if (req->cmd_flags & REQ_ALLOCED) { 1116 int is_sync = rq_is_sync(req) != 0; 1117 int priv = req->cmd_flags & REQ_ELVPRIV; 1118 1119 BUG_ON(!list_empty(&req->queuelist)); 1120 BUG_ON(!hlist_unhashed(&req->hash)); 1121 1122 blk_free_request(q, req); 1123 freed_request(q, is_sync, priv); 1124 } 1125 } 1126 EXPORT_SYMBOL_GPL(__blk_put_request); 1127 1128 void blk_put_request(struct request *req) 1129 { 1130 unsigned long flags; 1131 struct request_queue *q = req->q; 1132 1133 spin_lock_irqsave(q->queue_lock, flags); 1134 __blk_put_request(q, req); 1135 spin_unlock_irqrestore(q->queue_lock, flags); 1136 } 1137 EXPORT_SYMBOL(blk_put_request); 1138 1139 /** 1140 * blk_add_request_payload - add a payload to a request 1141 * @rq: request to update 1142 * @page: page backing the payload 1143 * @len: length of the payload. 1144 * 1145 * This allows to later add a payload to an already submitted request by 1146 * a block driver. The driver needs to take care of freeing the payload 1147 * itself. 1148 * 1149 * Note that this is a quite horrible hack and nothing but handling of 1150 * discard requests should ever use it. 1151 */ 1152 void blk_add_request_payload(struct request *rq, struct page *page, 1153 unsigned int len) 1154 { 1155 struct bio *bio = rq->bio; 1156 1157 bio->bi_io_vec->bv_page = page; 1158 bio->bi_io_vec->bv_offset = 0; 1159 bio->bi_io_vec->bv_len = len; 1160 1161 bio->bi_size = len; 1162 bio->bi_vcnt = 1; 1163 bio->bi_phys_segments = 1; 1164 1165 rq->__data_len = rq->resid_len = len; 1166 rq->nr_phys_segments = 1; 1167 rq->buffer = bio_data(bio); 1168 } 1169 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1170 1171 void init_request_from_bio(struct request *req, struct bio *bio) 1172 { 1173 req->cpu = bio->bi_comp_cpu; 1174 req->cmd_type = REQ_TYPE_FS; 1175 1176 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1177 if (bio->bi_rw & REQ_RAHEAD) 1178 req->cmd_flags |= REQ_FAILFAST_MASK; 1179 1180 req->errors = 0; 1181 req->__sector = bio->bi_sector; 1182 req->ioprio = bio_prio(bio); 1183 blk_rq_bio_prep(req->q, req, bio); 1184 } 1185 1186 /* 1187 * Only disabling plugging for non-rotational devices if it does tagging 1188 * as well, otherwise we do need the proper merging 1189 */ 1190 static inline bool queue_should_plug(struct request_queue *q) 1191 { 1192 return !(blk_queue_nonrot(q) && blk_queue_tagged(q)); 1193 } 1194 1195 static int __make_request(struct request_queue *q, struct bio *bio) 1196 { 1197 struct request *req; 1198 int el_ret; 1199 unsigned int bytes = bio->bi_size; 1200 const unsigned short prio = bio_prio(bio); 1201 const bool sync = (bio->bi_rw & REQ_SYNC); 1202 const bool unplug = (bio->bi_rw & REQ_UNPLUG); 1203 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1204 int rw_flags; 1205 1206 if ((bio->bi_rw & REQ_HARDBARRIER) && 1207 (q->next_ordered == QUEUE_ORDERED_NONE)) { 1208 bio_endio(bio, -EOPNOTSUPP); 1209 return 0; 1210 } 1211 /* 1212 * low level driver can indicate that it wants pages above a 1213 * certain limit bounced to low memory (ie for highmem, or even 1214 * ISA dma in theory) 1215 */ 1216 blk_queue_bounce(q, &bio); 1217 1218 spin_lock_irq(q->queue_lock); 1219 1220 if (unlikely((bio->bi_rw & REQ_HARDBARRIER)) || elv_queue_empty(q)) 1221 goto get_rq; 1222 1223 el_ret = elv_merge(q, &req, bio); 1224 switch (el_ret) { 1225 case ELEVATOR_BACK_MERGE: 1226 BUG_ON(!rq_mergeable(req)); 1227 1228 if (!ll_back_merge_fn(q, req, bio)) 1229 break; 1230 1231 trace_block_bio_backmerge(q, bio); 1232 1233 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1234 blk_rq_set_mixed_merge(req); 1235 1236 req->biotail->bi_next = bio; 1237 req->biotail = bio; 1238 req->__data_len += bytes; 1239 req->ioprio = ioprio_best(req->ioprio, prio); 1240 if (!blk_rq_cpu_valid(req)) 1241 req->cpu = bio->bi_comp_cpu; 1242 drive_stat_acct(req, 0); 1243 elv_bio_merged(q, req, bio); 1244 if (!attempt_back_merge(q, req)) 1245 elv_merged_request(q, req, el_ret); 1246 goto out; 1247 1248 case ELEVATOR_FRONT_MERGE: 1249 BUG_ON(!rq_mergeable(req)); 1250 1251 if (!ll_front_merge_fn(q, req, bio)) 1252 break; 1253 1254 trace_block_bio_frontmerge(q, bio); 1255 1256 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) { 1257 blk_rq_set_mixed_merge(req); 1258 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1259 req->cmd_flags |= ff; 1260 } 1261 1262 bio->bi_next = req->bio; 1263 req->bio = bio; 1264 1265 /* 1266 * may not be valid. if the low level driver said 1267 * it didn't need a bounce buffer then it better 1268 * not touch req->buffer either... 1269 */ 1270 req->buffer = bio_data(bio); 1271 req->__sector = bio->bi_sector; 1272 req->__data_len += bytes; 1273 req->ioprio = ioprio_best(req->ioprio, prio); 1274 if (!blk_rq_cpu_valid(req)) 1275 req->cpu = bio->bi_comp_cpu; 1276 drive_stat_acct(req, 0); 1277 elv_bio_merged(q, req, bio); 1278 if (!attempt_front_merge(q, req)) 1279 elv_merged_request(q, req, el_ret); 1280 goto out; 1281 1282 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1283 default: 1284 ; 1285 } 1286 1287 get_rq: 1288 /* 1289 * This sync check and mask will be re-done in init_request_from_bio(), 1290 * but we need to set it earlier to expose the sync flag to the 1291 * rq allocator and io schedulers. 1292 */ 1293 rw_flags = bio_data_dir(bio); 1294 if (sync) 1295 rw_flags |= REQ_SYNC; 1296 1297 /* 1298 * Grab a free request. This is might sleep but can not fail. 1299 * Returns with the queue unlocked. 1300 */ 1301 req = get_request_wait(q, rw_flags, bio); 1302 1303 /* 1304 * After dropping the lock and possibly sleeping here, our request 1305 * may now be mergeable after it had proven unmergeable (above). 1306 * We don't worry about that case for efficiency. It won't happen 1307 * often, and the elevators are able to handle it. 1308 */ 1309 init_request_from_bio(req, bio); 1310 1311 spin_lock_irq(q->queue_lock); 1312 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1313 bio_flagged(bio, BIO_CPU_AFFINE)) 1314 req->cpu = blk_cpu_to_group(smp_processor_id()); 1315 if (queue_should_plug(q) && elv_queue_empty(q)) 1316 blk_plug_device(q); 1317 add_request(q, req); 1318 out: 1319 if (unplug || !queue_should_plug(q)) 1320 __generic_unplug_device(q); 1321 spin_unlock_irq(q->queue_lock); 1322 return 0; 1323 } 1324 1325 /* 1326 * If bio->bi_dev is a partition, remap the location 1327 */ 1328 static inline void blk_partition_remap(struct bio *bio) 1329 { 1330 struct block_device *bdev = bio->bi_bdev; 1331 1332 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1333 struct hd_struct *p = bdev->bd_part; 1334 1335 bio->bi_sector += p->start_sect; 1336 bio->bi_bdev = bdev->bd_contains; 1337 1338 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio, 1339 bdev->bd_dev, 1340 bio->bi_sector - p->start_sect); 1341 } 1342 } 1343 1344 static void handle_bad_sector(struct bio *bio) 1345 { 1346 char b[BDEVNAME_SIZE]; 1347 1348 printk(KERN_INFO "attempt to access beyond end of device\n"); 1349 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1350 bdevname(bio->bi_bdev, b), 1351 bio->bi_rw, 1352 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1353 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1354 1355 set_bit(BIO_EOF, &bio->bi_flags); 1356 } 1357 1358 #ifdef CONFIG_FAIL_MAKE_REQUEST 1359 1360 static DECLARE_FAULT_ATTR(fail_make_request); 1361 1362 static int __init setup_fail_make_request(char *str) 1363 { 1364 return setup_fault_attr(&fail_make_request, str); 1365 } 1366 __setup("fail_make_request=", setup_fail_make_request); 1367 1368 static int should_fail_request(struct bio *bio) 1369 { 1370 struct hd_struct *part = bio->bi_bdev->bd_part; 1371 1372 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1373 return should_fail(&fail_make_request, bio->bi_size); 1374 1375 return 0; 1376 } 1377 1378 static int __init fail_make_request_debugfs(void) 1379 { 1380 return init_fault_attr_dentries(&fail_make_request, 1381 "fail_make_request"); 1382 } 1383 1384 late_initcall(fail_make_request_debugfs); 1385 1386 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1387 1388 static inline int should_fail_request(struct bio *bio) 1389 { 1390 return 0; 1391 } 1392 1393 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1394 1395 /* 1396 * Check whether this bio extends beyond the end of the device. 1397 */ 1398 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1399 { 1400 sector_t maxsector; 1401 1402 if (!nr_sectors) 1403 return 0; 1404 1405 /* Test device or partition size, when known. */ 1406 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1407 if (maxsector) { 1408 sector_t sector = bio->bi_sector; 1409 1410 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1411 /* 1412 * This may well happen - the kernel calls bread() 1413 * without checking the size of the device, e.g., when 1414 * mounting a device. 1415 */ 1416 handle_bad_sector(bio); 1417 return 1; 1418 } 1419 } 1420 1421 return 0; 1422 } 1423 1424 /** 1425 * generic_make_request - hand a buffer to its device driver for I/O 1426 * @bio: The bio describing the location in memory and on the device. 1427 * 1428 * generic_make_request() is used to make I/O requests of block 1429 * devices. It is passed a &struct bio, which describes the I/O that needs 1430 * to be done. 1431 * 1432 * generic_make_request() does not return any status. The 1433 * success/failure status of the request, along with notification of 1434 * completion, is delivered asynchronously through the bio->bi_end_io 1435 * function described (one day) else where. 1436 * 1437 * The caller of generic_make_request must make sure that bi_io_vec 1438 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1439 * set to describe the device address, and the 1440 * bi_end_io and optionally bi_private are set to describe how 1441 * completion notification should be signaled. 1442 * 1443 * generic_make_request and the drivers it calls may use bi_next if this 1444 * bio happens to be merged with someone else, and may change bi_dev and 1445 * bi_sector for remaps as it sees fit. So the values of these fields 1446 * should NOT be depended on after the call to generic_make_request. 1447 */ 1448 static inline void __generic_make_request(struct bio *bio) 1449 { 1450 struct request_queue *q; 1451 sector_t old_sector; 1452 int ret, nr_sectors = bio_sectors(bio); 1453 dev_t old_dev; 1454 int err = -EIO; 1455 1456 might_sleep(); 1457 1458 if (bio_check_eod(bio, nr_sectors)) 1459 goto end_io; 1460 1461 /* 1462 * Resolve the mapping until finished. (drivers are 1463 * still free to implement/resolve their own stacking 1464 * by explicitly returning 0) 1465 * 1466 * NOTE: we don't repeat the blk_size check for each new device. 1467 * Stacking drivers are expected to know what they are doing. 1468 */ 1469 old_sector = -1; 1470 old_dev = 0; 1471 do { 1472 char b[BDEVNAME_SIZE]; 1473 1474 q = bdev_get_queue(bio->bi_bdev); 1475 if (unlikely(!q)) { 1476 printk(KERN_ERR 1477 "generic_make_request: Trying to access " 1478 "nonexistent block-device %s (%Lu)\n", 1479 bdevname(bio->bi_bdev, b), 1480 (long long) bio->bi_sector); 1481 goto end_io; 1482 } 1483 1484 if (unlikely(!(bio->bi_rw & REQ_DISCARD) && 1485 nr_sectors > queue_max_hw_sectors(q))) { 1486 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1487 bdevname(bio->bi_bdev, b), 1488 bio_sectors(bio), 1489 queue_max_hw_sectors(q)); 1490 goto end_io; 1491 } 1492 1493 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1494 goto end_io; 1495 1496 if (should_fail_request(bio)) 1497 goto end_io; 1498 1499 /* 1500 * If this device has partitions, remap block n 1501 * of partition p to block n+start(p) of the disk. 1502 */ 1503 blk_partition_remap(bio); 1504 1505 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1506 goto end_io; 1507 1508 if (old_sector != -1) 1509 trace_block_remap(q, bio, old_dev, old_sector); 1510 1511 old_sector = bio->bi_sector; 1512 old_dev = bio->bi_bdev->bd_dev; 1513 1514 if (bio_check_eod(bio, nr_sectors)) 1515 goto end_io; 1516 1517 if ((bio->bi_rw & REQ_DISCARD) && 1518 (!blk_queue_discard(q) || 1519 ((bio->bi_rw & REQ_SECURE) && 1520 !blk_queue_secdiscard(q)))) { 1521 err = -EOPNOTSUPP; 1522 goto end_io; 1523 } 1524 1525 trace_block_bio_queue(q, bio); 1526 1527 ret = q->make_request_fn(q, bio); 1528 } while (ret); 1529 1530 return; 1531 1532 end_io: 1533 bio_endio(bio, err); 1534 } 1535 1536 /* 1537 * We only want one ->make_request_fn to be active at a time, 1538 * else stack usage with stacked devices could be a problem. 1539 * So use current->bio_list to keep a list of requests 1540 * submited by a make_request_fn function. 1541 * current->bio_list is also used as a flag to say if 1542 * generic_make_request is currently active in this task or not. 1543 * If it is NULL, then no make_request is active. If it is non-NULL, 1544 * then a make_request is active, and new requests should be added 1545 * at the tail 1546 */ 1547 void generic_make_request(struct bio *bio) 1548 { 1549 struct bio_list bio_list_on_stack; 1550 1551 if (current->bio_list) { 1552 /* make_request is active */ 1553 bio_list_add(current->bio_list, bio); 1554 return; 1555 } 1556 /* following loop may be a bit non-obvious, and so deserves some 1557 * explanation. 1558 * Before entering the loop, bio->bi_next is NULL (as all callers 1559 * ensure that) so we have a list with a single bio. 1560 * We pretend that we have just taken it off a longer list, so 1561 * we assign bio_list to a pointer to the bio_list_on_stack, 1562 * thus initialising the bio_list of new bios to be 1563 * added. __generic_make_request may indeed add some more bios 1564 * through a recursive call to generic_make_request. If it 1565 * did, we find a non-NULL value in bio_list and re-enter the loop 1566 * from the top. In this case we really did just take the bio 1567 * of the top of the list (no pretending) and so remove it from 1568 * bio_list, and call into __generic_make_request again. 1569 * 1570 * The loop was structured like this to make only one call to 1571 * __generic_make_request (which is important as it is large and 1572 * inlined) and to keep the structure simple. 1573 */ 1574 BUG_ON(bio->bi_next); 1575 bio_list_init(&bio_list_on_stack); 1576 current->bio_list = &bio_list_on_stack; 1577 do { 1578 __generic_make_request(bio); 1579 bio = bio_list_pop(current->bio_list); 1580 } while (bio); 1581 current->bio_list = NULL; /* deactivate */ 1582 } 1583 EXPORT_SYMBOL(generic_make_request); 1584 1585 /** 1586 * submit_bio - submit a bio to the block device layer for I/O 1587 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1588 * @bio: The &struct bio which describes the I/O 1589 * 1590 * submit_bio() is very similar in purpose to generic_make_request(), and 1591 * uses that function to do most of the work. Both are fairly rough 1592 * interfaces; @bio must be presetup and ready for I/O. 1593 * 1594 */ 1595 void submit_bio(int rw, struct bio *bio) 1596 { 1597 int count = bio_sectors(bio); 1598 1599 bio->bi_rw |= rw; 1600 1601 /* 1602 * If it's a regular read/write or a barrier with data attached, 1603 * go through the normal accounting stuff before submission. 1604 */ 1605 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) { 1606 if (rw & WRITE) { 1607 count_vm_events(PGPGOUT, count); 1608 } else { 1609 task_io_account_read(bio->bi_size); 1610 count_vm_events(PGPGIN, count); 1611 } 1612 1613 if (unlikely(block_dump)) { 1614 char b[BDEVNAME_SIZE]; 1615 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1616 current->comm, task_pid_nr(current), 1617 (rw & WRITE) ? "WRITE" : "READ", 1618 (unsigned long long)bio->bi_sector, 1619 bdevname(bio->bi_bdev, b)); 1620 } 1621 } 1622 1623 generic_make_request(bio); 1624 } 1625 EXPORT_SYMBOL(submit_bio); 1626 1627 /** 1628 * blk_rq_check_limits - Helper function to check a request for the queue limit 1629 * @q: the queue 1630 * @rq: the request being checked 1631 * 1632 * Description: 1633 * @rq may have been made based on weaker limitations of upper-level queues 1634 * in request stacking drivers, and it may violate the limitation of @q. 1635 * Since the block layer and the underlying device driver trust @rq 1636 * after it is inserted to @q, it should be checked against @q before 1637 * the insertion using this generic function. 1638 * 1639 * This function should also be useful for request stacking drivers 1640 * in some cases below, so export this fuction. 1641 * Request stacking drivers like request-based dm may change the queue 1642 * limits while requests are in the queue (e.g. dm's table swapping). 1643 * Such request stacking drivers should check those requests agaist 1644 * the new queue limits again when they dispatch those requests, 1645 * although such checkings are also done against the old queue limits 1646 * when submitting requests. 1647 */ 1648 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1649 { 1650 if (rq->cmd_flags & REQ_DISCARD) 1651 return 0; 1652 1653 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1654 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1655 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1656 return -EIO; 1657 } 1658 1659 /* 1660 * queue's settings related to segment counting like q->bounce_pfn 1661 * may differ from that of other stacking queues. 1662 * Recalculate it to check the request correctly on this queue's 1663 * limitation. 1664 */ 1665 blk_recalc_rq_segments(rq); 1666 if (rq->nr_phys_segments > queue_max_segments(q)) { 1667 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1668 return -EIO; 1669 } 1670 1671 return 0; 1672 } 1673 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1674 1675 /** 1676 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1677 * @q: the queue to submit the request 1678 * @rq: the request being queued 1679 */ 1680 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1681 { 1682 unsigned long flags; 1683 1684 if (blk_rq_check_limits(q, rq)) 1685 return -EIO; 1686 1687 #ifdef CONFIG_FAIL_MAKE_REQUEST 1688 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1689 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1690 return -EIO; 1691 #endif 1692 1693 spin_lock_irqsave(q->queue_lock, flags); 1694 1695 /* 1696 * Submitting request must be dequeued before calling this function 1697 * because it will be linked to another request_queue 1698 */ 1699 BUG_ON(blk_queued_rq(rq)); 1700 1701 drive_stat_acct(rq, 1); 1702 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1703 1704 spin_unlock_irqrestore(q->queue_lock, flags); 1705 1706 return 0; 1707 } 1708 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1709 1710 /** 1711 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1712 * @rq: request to examine 1713 * 1714 * Description: 1715 * A request could be merge of IOs which require different failure 1716 * handling. This function determines the number of bytes which 1717 * can be failed from the beginning of the request without 1718 * crossing into area which need to be retried further. 1719 * 1720 * Return: 1721 * The number of bytes to fail. 1722 * 1723 * Context: 1724 * queue_lock must be held. 1725 */ 1726 unsigned int blk_rq_err_bytes(const struct request *rq) 1727 { 1728 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1729 unsigned int bytes = 0; 1730 struct bio *bio; 1731 1732 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1733 return blk_rq_bytes(rq); 1734 1735 /* 1736 * Currently the only 'mixing' which can happen is between 1737 * different fastfail types. We can safely fail portions 1738 * which have all the failfast bits that the first one has - 1739 * the ones which are at least as eager to fail as the first 1740 * one. 1741 */ 1742 for (bio = rq->bio; bio; bio = bio->bi_next) { 1743 if ((bio->bi_rw & ff) != ff) 1744 break; 1745 bytes += bio->bi_size; 1746 } 1747 1748 /* this could lead to infinite loop */ 1749 BUG_ON(blk_rq_bytes(rq) && !bytes); 1750 return bytes; 1751 } 1752 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1753 1754 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1755 { 1756 if (blk_do_io_stat(req)) { 1757 const int rw = rq_data_dir(req); 1758 struct hd_struct *part; 1759 int cpu; 1760 1761 cpu = part_stat_lock(); 1762 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req)); 1763 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1764 part_stat_unlock(); 1765 } 1766 } 1767 1768 static void blk_account_io_done(struct request *req) 1769 { 1770 /* 1771 * Account IO completion. bar_rq isn't accounted as a normal 1772 * IO on queueing nor completion. Accounting the containing 1773 * request is enough. 1774 */ 1775 if (blk_do_io_stat(req) && req != &req->q->bar_rq) { 1776 unsigned long duration = jiffies - req->start_time; 1777 const int rw = rq_data_dir(req); 1778 struct hd_struct *part; 1779 int cpu; 1780 1781 cpu = part_stat_lock(); 1782 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req)); 1783 1784 part_stat_inc(cpu, part, ios[rw]); 1785 part_stat_add(cpu, part, ticks[rw], duration); 1786 part_round_stats(cpu, part); 1787 part_dec_in_flight(part, rw); 1788 1789 part_stat_unlock(); 1790 } 1791 } 1792 1793 /** 1794 * blk_peek_request - peek at the top of a request queue 1795 * @q: request queue to peek at 1796 * 1797 * Description: 1798 * Return the request at the top of @q. The returned request 1799 * should be started using blk_start_request() before LLD starts 1800 * processing it. 1801 * 1802 * Return: 1803 * Pointer to the request at the top of @q if available. Null 1804 * otherwise. 1805 * 1806 * Context: 1807 * queue_lock must be held. 1808 */ 1809 struct request *blk_peek_request(struct request_queue *q) 1810 { 1811 struct request *rq; 1812 int ret; 1813 1814 while ((rq = __elv_next_request(q)) != NULL) { 1815 if (!(rq->cmd_flags & REQ_STARTED)) { 1816 /* 1817 * This is the first time the device driver 1818 * sees this request (possibly after 1819 * requeueing). Notify IO scheduler. 1820 */ 1821 if (rq->cmd_flags & REQ_SORTED) 1822 elv_activate_rq(q, rq); 1823 1824 /* 1825 * just mark as started even if we don't start 1826 * it, a request that has been delayed should 1827 * not be passed by new incoming requests 1828 */ 1829 rq->cmd_flags |= REQ_STARTED; 1830 trace_block_rq_issue(q, rq); 1831 } 1832 1833 if (!q->boundary_rq || q->boundary_rq == rq) { 1834 q->end_sector = rq_end_sector(rq); 1835 q->boundary_rq = NULL; 1836 } 1837 1838 if (rq->cmd_flags & REQ_DONTPREP) 1839 break; 1840 1841 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1842 /* 1843 * make sure space for the drain appears we 1844 * know we can do this because max_hw_segments 1845 * has been adjusted to be one fewer than the 1846 * device can handle 1847 */ 1848 rq->nr_phys_segments++; 1849 } 1850 1851 if (!q->prep_rq_fn) 1852 break; 1853 1854 ret = q->prep_rq_fn(q, rq); 1855 if (ret == BLKPREP_OK) { 1856 break; 1857 } else if (ret == BLKPREP_DEFER) { 1858 /* 1859 * the request may have been (partially) prepped. 1860 * we need to keep this request in the front to 1861 * avoid resource deadlock. REQ_STARTED will 1862 * prevent other fs requests from passing this one. 1863 */ 1864 if (q->dma_drain_size && blk_rq_bytes(rq) && 1865 !(rq->cmd_flags & REQ_DONTPREP)) { 1866 /* 1867 * remove the space for the drain we added 1868 * so that we don't add it again 1869 */ 1870 --rq->nr_phys_segments; 1871 } 1872 1873 rq = NULL; 1874 break; 1875 } else if (ret == BLKPREP_KILL) { 1876 rq->cmd_flags |= REQ_QUIET; 1877 /* 1878 * Mark this request as started so we don't trigger 1879 * any debug logic in the end I/O path. 1880 */ 1881 blk_start_request(rq); 1882 __blk_end_request_all(rq, -EIO); 1883 } else { 1884 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1885 break; 1886 } 1887 } 1888 1889 return rq; 1890 } 1891 EXPORT_SYMBOL(blk_peek_request); 1892 1893 void blk_dequeue_request(struct request *rq) 1894 { 1895 struct request_queue *q = rq->q; 1896 1897 BUG_ON(list_empty(&rq->queuelist)); 1898 BUG_ON(ELV_ON_HASH(rq)); 1899 1900 list_del_init(&rq->queuelist); 1901 1902 /* 1903 * the time frame between a request being removed from the lists 1904 * and to it is freed is accounted as io that is in progress at 1905 * the driver side. 1906 */ 1907 if (blk_account_rq(rq)) { 1908 q->in_flight[rq_is_sync(rq)]++; 1909 set_io_start_time_ns(rq); 1910 } 1911 } 1912 1913 /** 1914 * blk_start_request - start request processing on the driver 1915 * @req: request to dequeue 1916 * 1917 * Description: 1918 * Dequeue @req and start timeout timer on it. This hands off the 1919 * request to the driver. 1920 * 1921 * Block internal functions which don't want to start timer should 1922 * call blk_dequeue_request(). 1923 * 1924 * Context: 1925 * queue_lock must be held. 1926 */ 1927 void blk_start_request(struct request *req) 1928 { 1929 blk_dequeue_request(req); 1930 1931 /* 1932 * We are now handing the request to the hardware, initialize 1933 * resid_len to full count and add the timeout handler. 1934 */ 1935 req->resid_len = blk_rq_bytes(req); 1936 if (unlikely(blk_bidi_rq(req))) 1937 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1938 1939 blk_add_timer(req); 1940 } 1941 EXPORT_SYMBOL(blk_start_request); 1942 1943 /** 1944 * blk_fetch_request - fetch a request from a request queue 1945 * @q: request queue to fetch a request from 1946 * 1947 * Description: 1948 * Return the request at the top of @q. The request is started on 1949 * return and LLD can start processing it immediately. 1950 * 1951 * Return: 1952 * Pointer to the request at the top of @q if available. Null 1953 * otherwise. 1954 * 1955 * Context: 1956 * queue_lock must be held. 1957 */ 1958 struct request *blk_fetch_request(struct request_queue *q) 1959 { 1960 struct request *rq; 1961 1962 rq = blk_peek_request(q); 1963 if (rq) 1964 blk_start_request(rq); 1965 return rq; 1966 } 1967 EXPORT_SYMBOL(blk_fetch_request); 1968 1969 /** 1970 * blk_update_request - Special helper function for request stacking drivers 1971 * @req: the request being processed 1972 * @error: %0 for success, < %0 for error 1973 * @nr_bytes: number of bytes to complete @req 1974 * 1975 * Description: 1976 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1977 * the request structure even if @req doesn't have leftover. 1978 * If @req has leftover, sets it up for the next range of segments. 1979 * 1980 * This special helper function is only for request stacking drivers 1981 * (e.g. request-based dm) so that they can handle partial completion. 1982 * Actual device drivers should use blk_end_request instead. 1983 * 1984 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1985 * %false return from this function. 1986 * 1987 * Return: 1988 * %false - this request doesn't have any more data 1989 * %true - this request has more data 1990 **/ 1991 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 1992 { 1993 int total_bytes, bio_nbytes, next_idx = 0; 1994 struct bio *bio; 1995 1996 if (!req->bio) 1997 return false; 1998 1999 trace_block_rq_complete(req->q, req); 2000 2001 /* 2002 * For fs requests, rq is just carrier of independent bio's 2003 * and each partial completion should be handled separately. 2004 * Reset per-request error on each partial completion. 2005 * 2006 * TODO: tj: This is too subtle. It would be better to let 2007 * low level drivers do what they see fit. 2008 */ 2009 if (req->cmd_type == REQ_TYPE_FS) 2010 req->errors = 0; 2011 2012 if (error && req->cmd_type == REQ_TYPE_FS && 2013 !(req->cmd_flags & REQ_QUIET)) { 2014 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 2015 req->rq_disk ? req->rq_disk->disk_name : "?", 2016 (unsigned long long)blk_rq_pos(req)); 2017 } 2018 2019 blk_account_io_completion(req, nr_bytes); 2020 2021 total_bytes = bio_nbytes = 0; 2022 while ((bio = req->bio) != NULL) { 2023 int nbytes; 2024 2025 if (nr_bytes >= bio->bi_size) { 2026 req->bio = bio->bi_next; 2027 nbytes = bio->bi_size; 2028 req_bio_endio(req, bio, nbytes, error); 2029 next_idx = 0; 2030 bio_nbytes = 0; 2031 } else { 2032 int idx = bio->bi_idx + next_idx; 2033 2034 if (unlikely(idx >= bio->bi_vcnt)) { 2035 blk_dump_rq_flags(req, "__end_that"); 2036 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2037 __func__, idx, bio->bi_vcnt); 2038 break; 2039 } 2040 2041 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2042 BIO_BUG_ON(nbytes > bio->bi_size); 2043 2044 /* 2045 * not a complete bvec done 2046 */ 2047 if (unlikely(nbytes > nr_bytes)) { 2048 bio_nbytes += nr_bytes; 2049 total_bytes += nr_bytes; 2050 break; 2051 } 2052 2053 /* 2054 * advance to the next vector 2055 */ 2056 next_idx++; 2057 bio_nbytes += nbytes; 2058 } 2059 2060 total_bytes += nbytes; 2061 nr_bytes -= nbytes; 2062 2063 bio = req->bio; 2064 if (bio) { 2065 /* 2066 * end more in this run, or just return 'not-done' 2067 */ 2068 if (unlikely(nr_bytes <= 0)) 2069 break; 2070 } 2071 } 2072 2073 /* 2074 * completely done 2075 */ 2076 if (!req->bio) { 2077 /* 2078 * Reset counters so that the request stacking driver 2079 * can find how many bytes remain in the request 2080 * later. 2081 */ 2082 req->__data_len = 0; 2083 return false; 2084 } 2085 2086 /* 2087 * if the request wasn't completed, update state 2088 */ 2089 if (bio_nbytes) { 2090 req_bio_endio(req, bio, bio_nbytes, error); 2091 bio->bi_idx += next_idx; 2092 bio_iovec(bio)->bv_offset += nr_bytes; 2093 bio_iovec(bio)->bv_len -= nr_bytes; 2094 } 2095 2096 req->__data_len -= total_bytes; 2097 req->buffer = bio_data(req->bio); 2098 2099 /* update sector only for requests with clear definition of sector */ 2100 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD)) 2101 req->__sector += total_bytes >> 9; 2102 2103 /* mixed attributes always follow the first bio */ 2104 if (req->cmd_flags & REQ_MIXED_MERGE) { 2105 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2106 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2107 } 2108 2109 /* 2110 * If total number of sectors is less than the first segment 2111 * size, something has gone terribly wrong. 2112 */ 2113 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2114 printk(KERN_ERR "blk: request botched\n"); 2115 req->__data_len = blk_rq_cur_bytes(req); 2116 } 2117 2118 /* recalculate the number of segments */ 2119 blk_recalc_rq_segments(req); 2120 2121 return true; 2122 } 2123 EXPORT_SYMBOL_GPL(blk_update_request); 2124 2125 static bool blk_update_bidi_request(struct request *rq, int error, 2126 unsigned int nr_bytes, 2127 unsigned int bidi_bytes) 2128 { 2129 if (blk_update_request(rq, error, nr_bytes)) 2130 return true; 2131 2132 /* Bidi request must be completed as a whole */ 2133 if (unlikely(blk_bidi_rq(rq)) && 2134 blk_update_request(rq->next_rq, error, bidi_bytes)) 2135 return true; 2136 2137 if (blk_queue_add_random(rq->q)) 2138 add_disk_randomness(rq->rq_disk); 2139 2140 return false; 2141 } 2142 2143 /** 2144 * blk_unprep_request - unprepare a request 2145 * @req: the request 2146 * 2147 * This function makes a request ready for complete resubmission (or 2148 * completion). It happens only after all error handling is complete, 2149 * so represents the appropriate moment to deallocate any resources 2150 * that were allocated to the request in the prep_rq_fn. The queue 2151 * lock is held when calling this. 2152 */ 2153 void blk_unprep_request(struct request *req) 2154 { 2155 struct request_queue *q = req->q; 2156 2157 req->cmd_flags &= ~REQ_DONTPREP; 2158 if (q->unprep_rq_fn) 2159 q->unprep_rq_fn(q, req); 2160 } 2161 EXPORT_SYMBOL_GPL(blk_unprep_request); 2162 2163 /* 2164 * queue lock must be held 2165 */ 2166 static void blk_finish_request(struct request *req, int error) 2167 { 2168 if (blk_rq_tagged(req)) 2169 blk_queue_end_tag(req->q, req); 2170 2171 BUG_ON(blk_queued_rq(req)); 2172 2173 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2174 laptop_io_completion(&req->q->backing_dev_info); 2175 2176 blk_delete_timer(req); 2177 2178 if (req->cmd_flags & REQ_DONTPREP) 2179 blk_unprep_request(req); 2180 2181 2182 blk_account_io_done(req); 2183 2184 if (req->end_io) 2185 req->end_io(req, error); 2186 else { 2187 if (blk_bidi_rq(req)) 2188 __blk_put_request(req->next_rq->q, req->next_rq); 2189 2190 __blk_put_request(req->q, req); 2191 } 2192 } 2193 2194 /** 2195 * blk_end_bidi_request - Complete a bidi request 2196 * @rq: the request to complete 2197 * @error: %0 for success, < %0 for error 2198 * @nr_bytes: number of bytes to complete @rq 2199 * @bidi_bytes: number of bytes to complete @rq->next_rq 2200 * 2201 * Description: 2202 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2203 * Drivers that supports bidi can safely call this member for any 2204 * type of request, bidi or uni. In the later case @bidi_bytes is 2205 * just ignored. 2206 * 2207 * Return: 2208 * %false - we are done with this request 2209 * %true - still buffers pending for this request 2210 **/ 2211 static bool blk_end_bidi_request(struct request *rq, int error, 2212 unsigned int nr_bytes, unsigned int bidi_bytes) 2213 { 2214 struct request_queue *q = rq->q; 2215 unsigned long flags; 2216 2217 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2218 return true; 2219 2220 spin_lock_irqsave(q->queue_lock, flags); 2221 blk_finish_request(rq, error); 2222 spin_unlock_irqrestore(q->queue_lock, flags); 2223 2224 return false; 2225 } 2226 2227 /** 2228 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2229 * @rq: the request to complete 2230 * @error: %0 for success, < %0 for error 2231 * @nr_bytes: number of bytes to complete @rq 2232 * @bidi_bytes: number of bytes to complete @rq->next_rq 2233 * 2234 * Description: 2235 * Identical to blk_end_bidi_request() except that queue lock is 2236 * assumed to be locked on entry and remains so on return. 2237 * 2238 * Return: 2239 * %false - we are done with this request 2240 * %true - still buffers pending for this request 2241 **/ 2242 static bool __blk_end_bidi_request(struct request *rq, int error, 2243 unsigned int nr_bytes, unsigned int bidi_bytes) 2244 { 2245 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2246 return true; 2247 2248 blk_finish_request(rq, error); 2249 2250 return false; 2251 } 2252 2253 /** 2254 * blk_end_request - Helper function for drivers to complete the request. 2255 * @rq: the request being processed 2256 * @error: %0 for success, < %0 for error 2257 * @nr_bytes: number of bytes to complete 2258 * 2259 * Description: 2260 * Ends I/O on a number of bytes attached to @rq. 2261 * If @rq has leftover, sets it up for the next range of segments. 2262 * 2263 * Return: 2264 * %false - we are done with this request 2265 * %true - still buffers pending for this request 2266 **/ 2267 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2268 { 2269 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2270 } 2271 EXPORT_SYMBOL(blk_end_request); 2272 2273 /** 2274 * blk_end_request_all - Helper function for drives to finish the request. 2275 * @rq: the request to finish 2276 * @error: %0 for success, < %0 for error 2277 * 2278 * Description: 2279 * Completely finish @rq. 2280 */ 2281 void blk_end_request_all(struct request *rq, int error) 2282 { 2283 bool pending; 2284 unsigned int bidi_bytes = 0; 2285 2286 if (unlikely(blk_bidi_rq(rq))) 2287 bidi_bytes = blk_rq_bytes(rq->next_rq); 2288 2289 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2290 BUG_ON(pending); 2291 } 2292 EXPORT_SYMBOL(blk_end_request_all); 2293 2294 /** 2295 * blk_end_request_cur - Helper function to finish the current request chunk. 2296 * @rq: the request to finish the current chunk for 2297 * @error: %0 for success, < %0 for error 2298 * 2299 * Description: 2300 * Complete the current consecutively mapped chunk from @rq. 2301 * 2302 * Return: 2303 * %false - we are done with this request 2304 * %true - still buffers pending for this request 2305 */ 2306 bool blk_end_request_cur(struct request *rq, int error) 2307 { 2308 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2309 } 2310 EXPORT_SYMBOL(blk_end_request_cur); 2311 2312 /** 2313 * blk_end_request_err - Finish a request till the next failure boundary. 2314 * @rq: the request to finish till the next failure boundary for 2315 * @error: must be negative errno 2316 * 2317 * Description: 2318 * Complete @rq till the next failure boundary. 2319 * 2320 * Return: 2321 * %false - we are done with this request 2322 * %true - still buffers pending for this request 2323 */ 2324 bool blk_end_request_err(struct request *rq, int error) 2325 { 2326 WARN_ON(error >= 0); 2327 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2328 } 2329 EXPORT_SYMBOL_GPL(blk_end_request_err); 2330 2331 /** 2332 * __blk_end_request - Helper function for drivers to complete the request. 2333 * @rq: the request being processed 2334 * @error: %0 for success, < %0 for error 2335 * @nr_bytes: number of bytes to complete 2336 * 2337 * Description: 2338 * Must be called with queue lock held unlike blk_end_request(). 2339 * 2340 * Return: 2341 * %false - we are done with this request 2342 * %true - still buffers pending for this request 2343 **/ 2344 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2345 { 2346 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2347 } 2348 EXPORT_SYMBOL(__blk_end_request); 2349 2350 /** 2351 * __blk_end_request_all - Helper function for drives to finish the request. 2352 * @rq: the request to finish 2353 * @error: %0 for success, < %0 for error 2354 * 2355 * Description: 2356 * Completely finish @rq. Must be called with queue lock held. 2357 */ 2358 void __blk_end_request_all(struct request *rq, int error) 2359 { 2360 bool pending; 2361 unsigned int bidi_bytes = 0; 2362 2363 if (unlikely(blk_bidi_rq(rq))) 2364 bidi_bytes = blk_rq_bytes(rq->next_rq); 2365 2366 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2367 BUG_ON(pending); 2368 } 2369 EXPORT_SYMBOL(__blk_end_request_all); 2370 2371 /** 2372 * __blk_end_request_cur - Helper function to finish the current request chunk. 2373 * @rq: the request to finish the current chunk for 2374 * @error: %0 for success, < %0 for error 2375 * 2376 * Description: 2377 * Complete the current consecutively mapped chunk from @rq. Must 2378 * be called with queue lock held. 2379 * 2380 * Return: 2381 * %false - we are done with this request 2382 * %true - still buffers pending for this request 2383 */ 2384 bool __blk_end_request_cur(struct request *rq, int error) 2385 { 2386 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2387 } 2388 EXPORT_SYMBOL(__blk_end_request_cur); 2389 2390 /** 2391 * __blk_end_request_err - Finish a request till the next failure boundary. 2392 * @rq: the request to finish till the next failure boundary for 2393 * @error: must be negative errno 2394 * 2395 * Description: 2396 * Complete @rq till the next failure boundary. Must be called 2397 * with queue lock held. 2398 * 2399 * Return: 2400 * %false - we are done with this request 2401 * %true - still buffers pending for this request 2402 */ 2403 bool __blk_end_request_err(struct request *rq, int error) 2404 { 2405 WARN_ON(error >= 0); 2406 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2407 } 2408 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2409 2410 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2411 struct bio *bio) 2412 { 2413 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2414 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2415 2416 if (bio_has_data(bio)) { 2417 rq->nr_phys_segments = bio_phys_segments(q, bio); 2418 rq->buffer = bio_data(bio); 2419 } 2420 rq->__data_len = bio->bi_size; 2421 rq->bio = rq->biotail = bio; 2422 2423 if (bio->bi_bdev) 2424 rq->rq_disk = bio->bi_bdev->bd_disk; 2425 } 2426 2427 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2428 /** 2429 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2430 * @rq: the request to be flushed 2431 * 2432 * Description: 2433 * Flush all pages in @rq. 2434 */ 2435 void rq_flush_dcache_pages(struct request *rq) 2436 { 2437 struct req_iterator iter; 2438 struct bio_vec *bvec; 2439 2440 rq_for_each_segment(bvec, rq, iter) 2441 flush_dcache_page(bvec->bv_page); 2442 } 2443 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2444 #endif 2445 2446 /** 2447 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2448 * @q : the queue of the device being checked 2449 * 2450 * Description: 2451 * Check if underlying low-level drivers of a device are busy. 2452 * If the drivers want to export their busy state, they must set own 2453 * exporting function using blk_queue_lld_busy() first. 2454 * 2455 * Basically, this function is used only by request stacking drivers 2456 * to stop dispatching requests to underlying devices when underlying 2457 * devices are busy. This behavior helps more I/O merging on the queue 2458 * of the request stacking driver and prevents I/O throughput regression 2459 * on burst I/O load. 2460 * 2461 * Return: 2462 * 0 - Not busy (The request stacking driver should dispatch request) 2463 * 1 - Busy (The request stacking driver should stop dispatching request) 2464 */ 2465 int blk_lld_busy(struct request_queue *q) 2466 { 2467 if (q->lld_busy_fn) 2468 return q->lld_busy_fn(q); 2469 2470 return 0; 2471 } 2472 EXPORT_SYMBOL_GPL(blk_lld_busy); 2473 2474 /** 2475 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2476 * @rq: the clone request to be cleaned up 2477 * 2478 * Description: 2479 * Free all bios in @rq for a cloned request. 2480 */ 2481 void blk_rq_unprep_clone(struct request *rq) 2482 { 2483 struct bio *bio; 2484 2485 while ((bio = rq->bio) != NULL) { 2486 rq->bio = bio->bi_next; 2487 2488 bio_put(bio); 2489 } 2490 } 2491 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2492 2493 /* 2494 * Copy attributes of the original request to the clone request. 2495 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2496 */ 2497 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2498 { 2499 dst->cpu = src->cpu; 2500 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE); 2501 if (src->cmd_flags & REQ_DISCARD) 2502 dst->cmd_flags |= REQ_DISCARD; 2503 dst->cmd_type = src->cmd_type; 2504 dst->__sector = blk_rq_pos(src); 2505 dst->__data_len = blk_rq_bytes(src); 2506 dst->nr_phys_segments = src->nr_phys_segments; 2507 dst->ioprio = src->ioprio; 2508 dst->extra_len = src->extra_len; 2509 } 2510 2511 /** 2512 * blk_rq_prep_clone - Helper function to setup clone request 2513 * @rq: the request to be setup 2514 * @rq_src: original request to be cloned 2515 * @bs: bio_set that bios for clone are allocated from 2516 * @gfp_mask: memory allocation mask for bio 2517 * @bio_ctr: setup function to be called for each clone bio. 2518 * Returns %0 for success, non %0 for failure. 2519 * @data: private data to be passed to @bio_ctr 2520 * 2521 * Description: 2522 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2523 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2524 * are not copied, and copying such parts is the caller's responsibility. 2525 * Also, pages which the original bios are pointing to are not copied 2526 * and the cloned bios just point same pages. 2527 * So cloned bios must be completed before original bios, which means 2528 * the caller must complete @rq before @rq_src. 2529 */ 2530 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2531 struct bio_set *bs, gfp_t gfp_mask, 2532 int (*bio_ctr)(struct bio *, struct bio *, void *), 2533 void *data) 2534 { 2535 struct bio *bio, *bio_src; 2536 2537 if (!bs) 2538 bs = fs_bio_set; 2539 2540 blk_rq_init(NULL, rq); 2541 2542 __rq_for_each_bio(bio_src, rq_src) { 2543 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2544 if (!bio) 2545 goto free_and_out; 2546 2547 __bio_clone(bio, bio_src); 2548 2549 if (bio_integrity(bio_src) && 2550 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2551 goto free_and_out; 2552 2553 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2554 goto free_and_out; 2555 2556 if (rq->bio) { 2557 rq->biotail->bi_next = bio; 2558 rq->biotail = bio; 2559 } else 2560 rq->bio = rq->biotail = bio; 2561 } 2562 2563 __blk_rq_prep_clone(rq, rq_src); 2564 2565 return 0; 2566 2567 free_and_out: 2568 if (bio) 2569 bio_free(bio, bs); 2570 blk_rq_unprep_clone(rq); 2571 2572 return -ENOMEM; 2573 } 2574 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2575 2576 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2577 { 2578 return queue_work(kblockd_workqueue, work); 2579 } 2580 EXPORT_SYMBOL(kblockd_schedule_work); 2581 2582 int __init blk_dev_init(void) 2583 { 2584 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2585 sizeof(((struct request *)0)->cmd_flags)); 2586 2587 kblockd_workqueue = create_workqueue("kblockd"); 2588 if (!kblockd_workqueue) 2589 panic("Failed to create kblockd\n"); 2590 2591 request_cachep = kmem_cache_create("blkdev_requests", 2592 sizeof(struct request), 0, SLAB_PANIC, NULL); 2593 2594 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2595 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2596 2597 return 0; 2598 } 2599