xref: /linux/block/blk-core.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
33 
34 #include "blk.h"
35 
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
39 
40 static int __make_request(struct request_queue *q, struct bio *bio);
41 
42 /*
43  * For the allocated request tables
44  */
45 static struct kmem_cache *request_cachep;
46 
47 /*
48  * For queue allocation
49  */
50 struct kmem_cache *blk_requestq_cachep;
51 
52 /*
53  * Controlling structure to kblockd
54  */
55 static struct workqueue_struct *kblockd_workqueue;
56 
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 	struct hd_struct *part;
60 	int rw = rq_data_dir(rq);
61 	int cpu;
62 
63 	if (!blk_do_io_stat(rq))
64 		return;
65 
66 	cpu = part_stat_lock();
67 	part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
68 
69 	if (!new_io)
70 		part_stat_inc(cpu, part, merges[rw]);
71 	else {
72 		part_round_stats(cpu, part);
73 		part_inc_in_flight(part, rw);
74 	}
75 
76 	part_stat_unlock();
77 }
78 
79 void blk_queue_congestion_threshold(struct request_queue *q)
80 {
81 	int nr;
82 
83 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 	if (nr > q->nr_requests)
85 		nr = q->nr_requests;
86 	q->nr_congestion_on = nr;
87 
88 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 	if (nr < 1)
90 		nr = 1;
91 	q->nr_congestion_off = nr;
92 }
93 
94 /**
95  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96  * @bdev:	device
97  *
98  * Locates the passed device's request queue and returns the address of its
99  * backing_dev_info
100  *
101  * Will return NULL if the request queue cannot be located.
102  */
103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104 {
105 	struct backing_dev_info *ret = NULL;
106 	struct request_queue *q = bdev_get_queue(bdev);
107 
108 	if (q)
109 		ret = &q->backing_dev_info;
110 	return ret;
111 }
112 EXPORT_SYMBOL(blk_get_backing_dev_info);
113 
114 void blk_rq_init(struct request_queue *q, struct request *rq)
115 {
116 	memset(rq, 0, sizeof(*rq));
117 
118 	INIT_LIST_HEAD(&rq->queuelist);
119 	INIT_LIST_HEAD(&rq->timeout_list);
120 	rq->cpu = -1;
121 	rq->q = q;
122 	rq->__sector = (sector_t) -1;
123 	INIT_HLIST_NODE(&rq->hash);
124 	RB_CLEAR_NODE(&rq->rb_node);
125 	rq->cmd = rq->__cmd;
126 	rq->cmd_len = BLK_MAX_CDB;
127 	rq->tag = -1;
128 	rq->ref_count = 1;
129 	rq->start_time = jiffies;
130 	set_start_time_ns(rq);
131 }
132 EXPORT_SYMBOL(blk_rq_init);
133 
134 static void req_bio_endio(struct request *rq, struct bio *bio,
135 			  unsigned int nbytes, int error)
136 {
137 	struct request_queue *q = rq->q;
138 
139 	if (&q->bar_rq != rq) {
140 		if (error)
141 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
142 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
143 			error = -EIO;
144 
145 		if (unlikely(nbytes > bio->bi_size)) {
146 			printk(KERN_ERR "%s: want %u bytes done, %u left\n",
147 			       __func__, nbytes, bio->bi_size);
148 			nbytes = bio->bi_size;
149 		}
150 
151 		if (unlikely(rq->cmd_flags & REQ_QUIET))
152 			set_bit(BIO_QUIET, &bio->bi_flags);
153 
154 		bio->bi_size -= nbytes;
155 		bio->bi_sector += (nbytes >> 9);
156 
157 		if (bio_integrity(bio))
158 			bio_integrity_advance(bio, nbytes);
159 
160 		if (bio->bi_size == 0)
161 			bio_endio(bio, error);
162 	} else {
163 
164 		/*
165 		 * Okay, this is the barrier request in progress, just
166 		 * record the error;
167 		 */
168 		if (error && !q->orderr)
169 			q->orderr = error;
170 	}
171 }
172 
173 void blk_dump_rq_flags(struct request *rq, char *msg)
174 {
175 	int bit;
176 
177 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
178 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 		rq->cmd_flags);
180 
181 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
182 	       (unsigned long long)blk_rq_pos(rq),
183 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
184 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
185 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
186 
187 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
188 		printk(KERN_INFO "  cdb: ");
189 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
190 			printk("%02x ", rq->cmd[bit]);
191 		printk("\n");
192 	}
193 }
194 EXPORT_SYMBOL(blk_dump_rq_flags);
195 
196 /*
197  * "plug" the device if there are no outstanding requests: this will
198  * force the transfer to start only after we have put all the requests
199  * on the list.
200  *
201  * This is called with interrupts off and no requests on the queue and
202  * with the queue lock held.
203  */
204 void blk_plug_device(struct request_queue *q)
205 {
206 	WARN_ON(!irqs_disabled());
207 
208 	/*
209 	 * don't plug a stopped queue, it must be paired with blk_start_queue()
210 	 * which will restart the queueing
211 	 */
212 	if (blk_queue_stopped(q))
213 		return;
214 
215 	if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
216 		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
217 		trace_block_plug(q);
218 	}
219 }
220 EXPORT_SYMBOL(blk_plug_device);
221 
222 /**
223  * blk_plug_device_unlocked - plug a device without queue lock held
224  * @q:    The &struct request_queue to plug
225  *
226  * Description:
227  *   Like @blk_plug_device(), but grabs the queue lock and disables
228  *   interrupts.
229  **/
230 void blk_plug_device_unlocked(struct request_queue *q)
231 {
232 	unsigned long flags;
233 
234 	spin_lock_irqsave(q->queue_lock, flags);
235 	blk_plug_device(q);
236 	spin_unlock_irqrestore(q->queue_lock, flags);
237 }
238 EXPORT_SYMBOL(blk_plug_device_unlocked);
239 
240 /*
241  * remove the queue from the plugged list, if present. called with
242  * queue lock held and interrupts disabled.
243  */
244 int blk_remove_plug(struct request_queue *q)
245 {
246 	WARN_ON(!irqs_disabled());
247 
248 	if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
249 		return 0;
250 
251 	del_timer(&q->unplug_timer);
252 	return 1;
253 }
254 EXPORT_SYMBOL(blk_remove_plug);
255 
256 /*
257  * remove the plug and let it rip..
258  */
259 void __generic_unplug_device(struct request_queue *q)
260 {
261 	if (unlikely(blk_queue_stopped(q)))
262 		return;
263 	if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
264 		return;
265 
266 	q->request_fn(q);
267 }
268 
269 /**
270  * generic_unplug_device - fire a request queue
271  * @q:    The &struct request_queue in question
272  *
273  * Description:
274  *   Linux uses plugging to build bigger requests queues before letting
275  *   the device have at them. If a queue is plugged, the I/O scheduler
276  *   is still adding and merging requests on the queue. Once the queue
277  *   gets unplugged, the request_fn defined for the queue is invoked and
278  *   transfers started.
279  **/
280 void generic_unplug_device(struct request_queue *q)
281 {
282 	if (blk_queue_plugged(q)) {
283 		spin_lock_irq(q->queue_lock);
284 		__generic_unplug_device(q);
285 		spin_unlock_irq(q->queue_lock);
286 	}
287 }
288 EXPORT_SYMBOL(generic_unplug_device);
289 
290 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
291 				   struct page *page)
292 {
293 	struct request_queue *q = bdi->unplug_io_data;
294 
295 	blk_unplug(q);
296 }
297 
298 void blk_unplug_work(struct work_struct *work)
299 {
300 	struct request_queue *q =
301 		container_of(work, struct request_queue, unplug_work);
302 
303 	trace_block_unplug_io(q);
304 	q->unplug_fn(q);
305 }
306 
307 void blk_unplug_timeout(unsigned long data)
308 {
309 	struct request_queue *q = (struct request_queue *)data;
310 
311 	trace_block_unplug_timer(q);
312 	kblockd_schedule_work(q, &q->unplug_work);
313 }
314 
315 void blk_unplug(struct request_queue *q)
316 {
317 	/*
318 	 * devices don't necessarily have an ->unplug_fn defined
319 	 */
320 	if (q->unplug_fn) {
321 		trace_block_unplug_io(q);
322 		q->unplug_fn(q);
323 	}
324 }
325 EXPORT_SYMBOL(blk_unplug);
326 
327 /**
328  * blk_start_queue - restart a previously stopped queue
329  * @q:    The &struct request_queue in question
330  *
331  * Description:
332  *   blk_start_queue() will clear the stop flag on the queue, and call
333  *   the request_fn for the queue if it was in a stopped state when
334  *   entered. Also see blk_stop_queue(). Queue lock must be held.
335  **/
336 void blk_start_queue(struct request_queue *q)
337 {
338 	WARN_ON(!irqs_disabled());
339 
340 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 	__blk_run_queue(q);
342 }
343 EXPORT_SYMBOL(blk_start_queue);
344 
345 /**
346  * blk_stop_queue - stop a queue
347  * @q:    The &struct request_queue in question
348  *
349  * Description:
350  *   The Linux block layer assumes that a block driver will consume all
351  *   entries on the request queue when the request_fn strategy is called.
352  *   Often this will not happen, because of hardware limitations (queue
353  *   depth settings). If a device driver gets a 'queue full' response,
354  *   or if it simply chooses not to queue more I/O at one point, it can
355  *   call this function to prevent the request_fn from being called until
356  *   the driver has signalled it's ready to go again. This happens by calling
357  *   blk_start_queue() to restart queue operations. Queue lock must be held.
358  **/
359 void blk_stop_queue(struct request_queue *q)
360 {
361 	blk_remove_plug(q);
362 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
363 }
364 EXPORT_SYMBOL(blk_stop_queue);
365 
366 /**
367  * blk_sync_queue - cancel any pending callbacks on a queue
368  * @q: the queue
369  *
370  * Description:
371  *     The block layer may perform asynchronous callback activity
372  *     on a queue, such as calling the unplug function after a timeout.
373  *     A block device may call blk_sync_queue to ensure that any
374  *     such activity is cancelled, thus allowing it to release resources
375  *     that the callbacks might use. The caller must already have made sure
376  *     that its ->make_request_fn will not re-add plugging prior to calling
377  *     this function.
378  *
379  */
380 void blk_sync_queue(struct request_queue *q)
381 {
382 	del_timer_sync(&q->unplug_timer);
383 	del_timer_sync(&q->timeout);
384 	cancel_work_sync(&q->unplug_work);
385 }
386 EXPORT_SYMBOL(blk_sync_queue);
387 
388 /**
389  * __blk_run_queue - run a single device queue
390  * @q:	The queue to run
391  *
392  * Description:
393  *    See @blk_run_queue. This variant must be called with the queue lock
394  *    held and interrupts disabled.
395  *
396  */
397 void __blk_run_queue(struct request_queue *q)
398 {
399 	blk_remove_plug(q);
400 
401 	if (unlikely(blk_queue_stopped(q)))
402 		return;
403 
404 	if (elv_queue_empty(q))
405 		return;
406 
407 	/*
408 	 * Only recurse once to avoid overrunning the stack, let the unplug
409 	 * handling reinvoke the handler shortly if we already got there.
410 	 */
411 	if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
412 		q->request_fn(q);
413 		queue_flag_clear(QUEUE_FLAG_REENTER, q);
414 	} else {
415 		queue_flag_set(QUEUE_FLAG_PLUGGED, q);
416 		kblockd_schedule_work(q, &q->unplug_work);
417 	}
418 }
419 EXPORT_SYMBOL(__blk_run_queue);
420 
421 /**
422  * blk_run_queue - run a single device queue
423  * @q: The queue to run
424  *
425  * Description:
426  *    Invoke request handling on this queue, if it has pending work to do.
427  *    May be used to restart queueing when a request has completed.
428  */
429 void blk_run_queue(struct request_queue *q)
430 {
431 	unsigned long flags;
432 
433 	spin_lock_irqsave(q->queue_lock, flags);
434 	__blk_run_queue(q);
435 	spin_unlock_irqrestore(q->queue_lock, flags);
436 }
437 EXPORT_SYMBOL(blk_run_queue);
438 
439 void blk_put_queue(struct request_queue *q)
440 {
441 	kobject_put(&q->kobj);
442 }
443 
444 void blk_cleanup_queue(struct request_queue *q)
445 {
446 	/*
447 	 * We know we have process context here, so we can be a little
448 	 * cautious and ensure that pending block actions on this device
449 	 * are done before moving on. Going into this function, we should
450 	 * not have processes doing IO to this device.
451 	 */
452 	blk_sync_queue(q);
453 
454 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
455 	mutex_lock(&q->sysfs_lock);
456 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
457 	mutex_unlock(&q->sysfs_lock);
458 
459 	if (q->elevator)
460 		elevator_exit(q->elevator);
461 
462 	blk_put_queue(q);
463 }
464 EXPORT_SYMBOL(blk_cleanup_queue);
465 
466 static int blk_init_free_list(struct request_queue *q)
467 {
468 	struct request_list *rl = &q->rq;
469 
470 	if (unlikely(rl->rq_pool))
471 		return 0;
472 
473 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
474 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
475 	rl->elvpriv = 0;
476 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
477 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
478 
479 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
480 				mempool_free_slab, request_cachep, q->node);
481 
482 	if (!rl->rq_pool)
483 		return -ENOMEM;
484 
485 	return 0;
486 }
487 
488 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
489 {
490 	return blk_alloc_queue_node(gfp_mask, -1);
491 }
492 EXPORT_SYMBOL(blk_alloc_queue);
493 
494 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
495 {
496 	struct request_queue *q;
497 	int err;
498 
499 	q = kmem_cache_alloc_node(blk_requestq_cachep,
500 				gfp_mask | __GFP_ZERO, node_id);
501 	if (!q)
502 		return NULL;
503 
504 	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
505 	q->backing_dev_info.unplug_io_data = q;
506 	q->backing_dev_info.ra_pages =
507 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
508 	q->backing_dev_info.state = 0;
509 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
510 	q->backing_dev_info.name = "block";
511 
512 	err = bdi_init(&q->backing_dev_info);
513 	if (err) {
514 		kmem_cache_free(blk_requestq_cachep, q);
515 		return NULL;
516 	}
517 
518 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
519 		    laptop_mode_timer_fn, (unsigned long) q);
520 	init_timer(&q->unplug_timer);
521 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
522 	INIT_LIST_HEAD(&q->timeout_list);
523 	INIT_WORK(&q->unplug_work, blk_unplug_work);
524 
525 	kobject_init(&q->kobj, &blk_queue_ktype);
526 
527 	mutex_init(&q->sysfs_lock);
528 	spin_lock_init(&q->__queue_lock);
529 
530 	return q;
531 }
532 EXPORT_SYMBOL(blk_alloc_queue_node);
533 
534 /**
535  * blk_init_queue  - prepare a request queue for use with a block device
536  * @rfn:  The function to be called to process requests that have been
537  *        placed on the queue.
538  * @lock: Request queue spin lock
539  *
540  * Description:
541  *    If a block device wishes to use the standard request handling procedures,
542  *    which sorts requests and coalesces adjacent requests, then it must
543  *    call blk_init_queue().  The function @rfn will be called when there
544  *    are requests on the queue that need to be processed.  If the device
545  *    supports plugging, then @rfn may not be called immediately when requests
546  *    are available on the queue, but may be called at some time later instead.
547  *    Plugged queues are generally unplugged when a buffer belonging to one
548  *    of the requests on the queue is needed, or due to memory pressure.
549  *
550  *    @rfn is not required, or even expected, to remove all requests off the
551  *    queue, but only as many as it can handle at a time.  If it does leave
552  *    requests on the queue, it is responsible for arranging that the requests
553  *    get dealt with eventually.
554  *
555  *    The queue spin lock must be held while manipulating the requests on the
556  *    request queue; this lock will be taken also from interrupt context, so irq
557  *    disabling is needed for it.
558  *
559  *    Function returns a pointer to the initialized request queue, or %NULL if
560  *    it didn't succeed.
561  *
562  * Note:
563  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
564  *    when the block device is deactivated (such as at module unload).
565  **/
566 
567 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
568 {
569 	return blk_init_queue_node(rfn, lock, -1);
570 }
571 EXPORT_SYMBOL(blk_init_queue);
572 
573 struct request_queue *
574 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
575 {
576 	struct request_queue *uninit_q, *q;
577 
578 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
579 	if (!uninit_q)
580 		return NULL;
581 
582 	q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
583 	if (!q)
584 		blk_cleanup_queue(uninit_q);
585 
586 	return q;
587 }
588 EXPORT_SYMBOL(blk_init_queue_node);
589 
590 struct request_queue *
591 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
592 			 spinlock_t *lock)
593 {
594 	return blk_init_allocated_queue_node(q, rfn, lock, -1);
595 }
596 EXPORT_SYMBOL(blk_init_allocated_queue);
597 
598 struct request_queue *
599 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
600 			      spinlock_t *lock, int node_id)
601 {
602 	if (!q)
603 		return NULL;
604 
605 	q->node = node_id;
606 	if (blk_init_free_list(q))
607 		return NULL;
608 
609 	q->request_fn		= rfn;
610 	q->prep_rq_fn		= NULL;
611 	q->unprep_rq_fn		= NULL;
612 	q->unplug_fn		= generic_unplug_device;
613 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
614 	q->queue_lock		= lock;
615 
616 	/*
617 	 * This also sets hw/phys segments, boundary and size
618 	 */
619 	blk_queue_make_request(q, __make_request);
620 
621 	q->sg_reserved_size = INT_MAX;
622 
623 	/*
624 	 * all done
625 	 */
626 	if (!elevator_init(q, NULL)) {
627 		blk_queue_congestion_threshold(q);
628 		return q;
629 	}
630 
631 	return NULL;
632 }
633 EXPORT_SYMBOL(blk_init_allocated_queue_node);
634 
635 int blk_get_queue(struct request_queue *q)
636 {
637 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
638 		kobject_get(&q->kobj);
639 		return 0;
640 	}
641 
642 	return 1;
643 }
644 
645 static inline void blk_free_request(struct request_queue *q, struct request *rq)
646 {
647 	if (rq->cmd_flags & REQ_ELVPRIV)
648 		elv_put_request(q, rq);
649 	mempool_free(rq, q->rq.rq_pool);
650 }
651 
652 static struct request *
653 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
654 {
655 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
656 
657 	if (!rq)
658 		return NULL;
659 
660 	blk_rq_init(q, rq);
661 
662 	rq->cmd_flags = flags | REQ_ALLOCED;
663 
664 	if (priv) {
665 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
666 			mempool_free(rq, q->rq.rq_pool);
667 			return NULL;
668 		}
669 		rq->cmd_flags |= REQ_ELVPRIV;
670 	}
671 
672 	return rq;
673 }
674 
675 /*
676  * ioc_batching returns true if the ioc is a valid batching request and
677  * should be given priority access to a request.
678  */
679 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
680 {
681 	if (!ioc)
682 		return 0;
683 
684 	/*
685 	 * Make sure the process is able to allocate at least 1 request
686 	 * even if the batch times out, otherwise we could theoretically
687 	 * lose wakeups.
688 	 */
689 	return ioc->nr_batch_requests == q->nr_batching ||
690 		(ioc->nr_batch_requests > 0
691 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
692 }
693 
694 /*
695  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
696  * will cause the process to be a "batcher" on all queues in the system. This
697  * is the behaviour we want though - once it gets a wakeup it should be given
698  * a nice run.
699  */
700 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
701 {
702 	if (!ioc || ioc_batching(q, ioc))
703 		return;
704 
705 	ioc->nr_batch_requests = q->nr_batching;
706 	ioc->last_waited = jiffies;
707 }
708 
709 static void __freed_request(struct request_queue *q, int sync)
710 {
711 	struct request_list *rl = &q->rq;
712 
713 	if (rl->count[sync] < queue_congestion_off_threshold(q))
714 		blk_clear_queue_congested(q, sync);
715 
716 	if (rl->count[sync] + 1 <= q->nr_requests) {
717 		if (waitqueue_active(&rl->wait[sync]))
718 			wake_up(&rl->wait[sync]);
719 
720 		blk_clear_queue_full(q, sync);
721 	}
722 }
723 
724 /*
725  * A request has just been released.  Account for it, update the full and
726  * congestion status, wake up any waiters.   Called under q->queue_lock.
727  */
728 static void freed_request(struct request_queue *q, int sync, int priv)
729 {
730 	struct request_list *rl = &q->rq;
731 
732 	rl->count[sync]--;
733 	if (priv)
734 		rl->elvpriv--;
735 
736 	__freed_request(q, sync);
737 
738 	if (unlikely(rl->starved[sync ^ 1]))
739 		__freed_request(q, sync ^ 1);
740 }
741 
742 /*
743  * Get a free request, queue_lock must be held.
744  * Returns NULL on failure, with queue_lock held.
745  * Returns !NULL on success, with queue_lock *not held*.
746  */
747 static struct request *get_request(struct request_queue *q, int rw_flags,
748 				   struct bio *bio, gfp_t gfp_mask)
749 {
750 	struct request *rq = NULL;
751 	struct request_list *rl = &q->rq;
752 	struct io_context *ioc = NULL;
753 	const bool is_sync = rw_is_sync(rw_flags) != 0;
754 	int may_queue, priv;
755 
756 	may_queue = elv_may_queue(q, rw_flags);
757 	if (may_queue == ELV_MQUEUE_NO)
758 		goto rq_starved;
759 
760 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
761 		if (rl->count[is_sync]+1 >= q->nr_requests) {
762 			ioc = current_io_context(GFP_ATOMIC, q->node);
763 			/*
764 			 * The queue will fill after this allocation, so set
765 			 * it as full, and mark this process as "batching".
766 			 * This process will be allowed to complete a batch of
767 			 * requests, others will be blocked.
768 			 */
769 			if (!blk_queue_full(q, is_sync)) {
770 				ioc_set_batching(q, ioc);
771 				blk_set_queue_full(q, is_sync);
772 			} else {
773 				if (may_queue != ELV_MQUEUE_MUST
774 						&& !ioc_batching(q, ioc)) {
775 					/*
776 					 * The queue is full and the allocating
777 					 * process is not a "batcher", and not
778 					 * exempted by the IO scheduler
779 					 */
780 					goto out;
781 				}
782 			}
783 		}
784 		blk_set_queue_congested(q, is_sync);
785 	}
786 
787 	/*
788 	 * Only allow batching queuers to allocate up to 50% over the defined
789 	 * limit of requests, otherwise we could have thousands of requests
790 	 * allocated with any setting of ->nr_requests
791 	 */
792 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
793 		goto out;
794 
795 	rl->count[is_sync]++;
796 	rl->starved[is_sync] = 0;
797 
798 	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
799 	if (priv)
800 		rl->elvpriv++;
801 
802 	if (blk_queue_io_stat(q))
803 		rw_flags |= REQ_IO_STAT;
804 	spin_unlock_irq(q->queue_lock);
805 
806 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
807 	if (unlikely(!rq)) {
808 		/*
809 		 * Allocation failed presumably due to memory. Undo anything
810 		 * we might have messed up.
811 		 *
812 		 * Allocating task should really be put onto the front of the
813 		 * wait queue, but this is pretty rare.
814 		 */
815 		spin_lock_irq(q->queue_lock);
816 		freed_request(q, is_sync, priv);
817 
818 		/*
819 		 * in the very unlikely event that allocation failed and no
820 		 * requests for this direction was pending, mark us starved
821 		 * so that freeing of a request in the other direction will
822 		 * notice us. another possible fix would be to split the
823 		 * rq mempool into READ and WRITE
824 		 */
825 rq_starved:
826 		if (unlikely(rl->count[is_sync] == 0))
827 			rl->starved[is_sync] = 1;
828 
829 		goto out;
830 	}
831 
832 	/*
833 	 * ioc may be NULL here, and ioc_batching will be false. That's
834 	 * OK, if the queue is under the request limit then requests need
835 	 * not count toward the nr_batch_requests limit. There will always
836 	 * be some limit enforced by BLK_BATCH_TIME.
837 	 */
838 	if (ioc_batching(q, ioc))
839 		ioc->nr_batch_requests--;
840 
841 	trace_block_getrq(q, bio, rw_flags & 1);
842 out:
843 	return rq;
844 }
845 
846 /*
847  * No available requests for this queue, unplug the device and wait for some
848  * requests to become available.
849  *
850  * Called with q->queue_lock held, and returns with it unlocked.
851  */
852 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
853 					struct bio *bio)
854 {
855 	const bool is_sync = rw_is_sync(rw_flags) != 0;
856 	struct request *rq;
857 
858 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
859 	while (!rq) {
860 		DEFINE_WAIT(wait);
861 		struct io_context *ioc;
862 		struct request_list *rl = &q->rq;
863 
864 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
865 				TASK_UNINTERRUPTIBLE);
866 
867 		trace_block_sleeprq(q, bio, rw_flags & 1);
868 
869 		__generic_unplug_device(q);
870 		spin_unlock_irq(q->queue_lock);
871 		io_schedule();
872 
873 		/*
874 		 * After sleeping, we become a "batching" process and
875 		 * will be able to allocate at least one request, and
876 		 * up to a big batch of them for a small period time.
877 		 * See ioc_batching, ioc_set_batching
878 		 */
879 		ioc = current_io_context(GFP_NOIO, q->node);
880 		ioc_set_batching(q, ioc);
881 
882 		spin_lock_irq(q->queue_lock);
883 		finish_wait(&rl->wait[is_sync], &wait);
884 
885 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
886 	};
887 
888 	return rq;
889 }
890 
891 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
892 {
893 	struct request *rq;
894 
895 	BUG_ON(rw != READ && rw != WRITE);
896 
897 	spin_lock_irq(q->queue_lock);
898 	if (gfp_mask & __GFP_WAIT) {
899 		rq = get_request_wait(q, rw, NULL);
900 	} else {
901 		rq = get_request(q, rw, NULL, gfp_mask);
902 		if (!rq)
903 			spin_unlock_irq(q->queue_lock);
904 	}
905 	/* q->queue_lock is unlocked at this point */
906 
907 	return rq;
908 }
909 EXPORT_SYMBOL(blk_get_request);
910 
911 /**
912  * blk_make_request - given a bio, allocate a corresponding struct request.
913  * @q: target request queue
914  * @bio:  The bio describing the memory mappings that will be submitted for IO.
915  *        It may be a chained-bio properly constructed by block/bio layer.
916  * @gfp_mask: gfp flags to be used for memory allocation
917  *
918  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
919  * type commands. Where the struct request needs to be farther initialized by
920  * the caller. It is passed a &struct bio, which describes the memory info of
921  * the I/O transfer.
922  *
923  * The caller of blk_make_request must make sure that bi_io_vec
924  * are set to describe the memory buffers. That bio_data_dir() will return
925  * the needed direction of the request. (And all bio's in the passed bio-chain
926  * are properly set accordingly)
927  *
928  * If called under none-sleepable conditions, mapped bio buffers must not
929  * need bouncing, by calling the appropriate masked or flagged allocator,
930  * suitable for the target device. Otherwise the call to blk_queue_bounce will
931  * BUG.
932  *
933  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
934  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
935  * anything but the first bio in the chain. Otherwise you risk waiting for IO
936  * completion of a bio that hasn't been submitted yet, thus resulting in a
937  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
938  * of bio_alloc(), as that avoids the mempool deadlock.
939  * If possible a big IO should be split into smaller parts when allocation
940  * fails. Partial allocation should not be an error, or you risk a live-lock.
941  */
942 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
943 				 gfp_t gfp_mask)
944 {
945 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
946 
947 	if (unlikely(!rq))
948 		return ERR_PTR(-ENOMEM);
949 
950 	for_each_bio(bio) {
951 		struct bio *bounce_bio = bio;
952 		int ret;
953 
954 		blk_queue_bounce(q, &bounce_bio);
955 		ret = blk_rq_append_bio(q, rq, bounce_bio);
956 		if (unlikely(ret)) {
957 			blk_put_request(rq);
958 			return ERR_PTR(ret);
959 		}
960 	}
961 
962 	return rq;
963 }
964 EXPORT_SYMBOL(blk_make_request);
965 
966 /**
967  * blk_requeue_request - put a request back on queue
968  * @q:		request queue where request should be inserted
969  * @rq:		request to be inserted
970  *
971  * Description:
972  *    Drivers often keep queueing requests until the hardware cannot accept
973  *    more, when that condition happens we need to put the request back
974  *    on the queue. Must be called with queue lock held.
975  */
976 void blk_requeue_request(struct request_queue *q, struct request *rq)
977 {
978 	blk_delete_timer(rq);
979 	blk_clear_rq_complete(rq);
980 	trace_block_rq_requeue(q, rq);
981 
982 	if (blk_rq_tagged(rq))
983 		blk_queue_end_tag(q, rq);
984 
985 	BUG_ON(blk_queued_rq(rq));
986 
987 	elv_requeue_request(q, rq);
988 }
989 EXPORT_SYMBOL(blk_requeue_request);
990 
991 /**
992  * blk_insert_request - insert a special request into a request queue
993  * @q:		request queue where request should be inserted
994  * @rq:		request to be inserted
995  * @at_head:	insert request at head or tail of queue
996  * @data:	private data
997  *
998  * Description:
999  *    Many block devices need to execute commands asynchronously, so they don't
1000  *    block the whole kernel from preemption during request execution.  This is
1001  *    accomplished normally by inserting aritficial requests tagged as
1002  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1003  *    be scheduled for actual execution by the request queue.
1004  *
1005  *    We have the option of inserting the head or the tail of the queue.
1006  *    Typically we use the tail for new ioctls and so forth.  We use the head
1007  *    of the queue for things like a QUEUE_FULL message from a device, or a
1008  *    host that is unable to accept a particular command.
1009  */
1010 void blk_insert_request(struct request_queue *q, struct request *rq,
1011 			int at_head, void *data)
1012 {
1013 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1014 	unsigned long flags;
1015 
1016 	/*
1017 	 * tell I/O scheduler that this isn't a regular read/write (ie it
1018 	 * must not attempt merges on this) and that it acts as a soft
1019 	 * barrier
1020 	 */
1021 	rq->cmd_type = REQ_TYPE_SPECIAL;
1022 
1023 	rq->special = data;
1024 
1025 	spin_lock_irqsave(q->queue_lock, flags);
1026 
1027 	/*
1028 	 * If command is tagged, release the tag
1029 	 */
1030 	if (blk_rq_tagged(rq))
1031 		blk_queue_end_tag(q, rq);
1032 
1033 	drive_stat_acct(rq, 1);
1034 	__elv_add_request(q, rq, where, 0);
1035 	__blk_run_queue(q);
1036 	spin_unlock_irqrestore(q->queue_lock, flags);
1037 }
1038 EXPORT_SYMBOL(blk_insert_request);
1039 
1040 /*
1041  * add-request adds a request to the linked list.
1042  * queue lock is held and interrupts disabled, as we muck with the
1043  * request queue list.
1044  */
1045 static inline void add_request(struct request_queue *q, struct request *req)
1046 {
1047 	drive_stat_acct(req, 1);
1048 
1049 	/*
1050 	 * elevator indicated where it wants this request to be
1051 	 * inserted at elevator_merge time
1052 	 */
1053 	__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1054 }
1055 
1056 static void part_round_stats_single(int cpu, struct hd_struct *part,
1057 				    unsigned long now)
1058 {
1059 	if (now == part->stamp)
1060 		return;
1061 
1062 	if (part_in_flight(part)) {
1063 		__part_stat_add(cpu, part, time_in_queue,
1064 				part_in_flight(part) * (now - part->stamp));
1065 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1066 	}
1067 	part->stamp = now;
1068 }
1069 
1070 /**
1071  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1072  * @cpu: cpu number for stats access
1073  * @part: target partition
1074  *
1075  * The average IO queue length and utilisation statistics are maintained
1076  * by observing the current state of the queue length and the amount of
1077  * time it has been in this state for.
1078  *
1079  * Normally, that accounting is done on IO completion, but that can result
1080  * in more than a second's worth of IO being accounted for within any one
1081  * second, leading to >100% utilisation.  To deal with that, we call this
1082  * function to do a round-off before returning the results when reading
1083  * /proc/diskstats.  This accounts immediately for all queue usage up to
1084  * the current jiffies and restarts the counters again.
1085  */
1086 void part_round_stats(int cpu, struct hd_struct *part)
1087 {
1088 	unsigned long now = jiffies;
1089 
1090 	if (part->partno)
1091 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1092 	part_round_stats_single(cpu, part, now);
1093 }
1094 EXPORT_SYMBOL_GPL(part_round_stats);
1095 
1096 /*
1097  * queue lock must be held
1098  */
1099 void __blk_put_request(struct request_queue *q, struct request *req)
1100 {
1101 	if (unlikely(!q))
1102 		return;
1103 	if (unlikely(--req->ref_count))
1104 		return;
1105 
1106 	elv_completed_request(q, req);
1107 
1108 	/* this is a bio leak */
1109 	WARN_ON(req->bio != NULL);
1110 
1111 	/*
1112 	 * Request may not have originated from ll_rw_blk. if not,
1113 	 * it didn't come out of our reserved rq pools
1114 	 */
1115 	if (req->cmd_flags & REQ_ALLOCED) {
1116 		int is_sync = rq_is_sync(req) != 0;
1117 		int priv = req->cmd_flags & REQ_ELVPRIV;
1118 
1119 		BUG_ON(!list_empty(&req->queuelist));
1120 		BUG_ON(!hlist_unhashed(&req->hash));
1121 
1122 		blk_free_request(q, req);
1123 		freed_request(q, is_sync, priv);
1124 	}
1125 }
1126 EXPORT_SYMBOL_GPL(__blk_put_request);
1127 
1128 void blk_put_request(struct request *req)
1129 {
1130 	unsigned long flags;
1131 	struct request_queue *q = req->q;
1132 
1133 	spin_lock_irqsave(q->queue_lock, flags);
1134 	__blk_put_request(q, req);
1135 	spin_unlock_irqrestore(q->queue_lock, flags);
1136 }
1137 EXPORT_SYMBOL(blk_put_request);
1138 
1139 /**
1140  * blk_add_request_payload - add a payload to a request
1141  * @rq: request to update
1142  * @page: page backing the payload
1143  * @len: length of the payload.
1144  *
1145  * This allows to later add a payload to an already submitted request by
1146  * a block driver.  The driver needs to take care of freeing the payload
1147  * itself.
1148  *
1149  * Note that this is a quite horrible hack and nothing but handling of
1150  * discard requests should ever use it.
1151  */
1152 void blk_add_request_payload(struct request *rq, struct page *page,
1153 		unsigned int len)
1154 {
1155 	struct bio *bio = rq->bio;
1156 
1157 	bio->bi_io_vec->bv_page = page;
1158 	bio->bi_io_vec->bv_offset = 0;
1159 	bio->bi_io_vec->bv_len = len;
1160 
1161 	bio->bi_size = len;
1162 	bio->bi_vcnt = 1;
1163 	bio->bi_phys_segments = 1;
1164 
1165 	rq->__data_len = rq->resid_len = len;
1166 	rq->nr_phys_segments = 1;
1167 	rq->buffer = bio_data(bio);
1168 }
1169 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1170 
1171 void init_request_from_bio(struct request *req, struct bio *bio)
1172 {
1173 	req->cpu = bio->bi_comp_cpu;
1174 	req->cmd_type = REQ_TYPE_FS;
1175 
1176 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1177 	if (bio->bi_rw & REQ_RAHEAD)
1178 		req->cmd_flags |= REQ_FAILFAST_MASK;
1179 
1180 	req->errors = 0;
1181 	req->__sector = bio->bi_sector;
1182 	req->ioprio = bio_prio(bio);
1183 	blk_rq_bio_prep(req->q, req, bio);
1184 }
1185 
1186 /*
1187  * Only disabling plugging for non-rotational devices if it does tagging
1188  * as well, otherwise we do need the proper merging
1189  */
1190 static inline bool queue_should_plug(struct request_queue *q)
1191 {
1192 	return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1193 }
1194 
1195 static int __make_request(struct request_queue *q, struct bio *bio)
1196 {
1197 	struct request *req;
1198 	int el_ret;
1199 	unsigned int bytes = bio->bi_size;
1200 	const unsigned short prio = bio_prio(bio);
1201 	const bool sync = (bio->bi_rw & REQ_SYNC);
1202 	const bool unplug = (bio->bi_rw & REQ_UNPLUG);
1203 	const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1204 	int rw_flags;
1205 
1206 	if ((bio->bi_rw & REQ_HARDBARRIER) &&
1207 	    (q->next_ordered == QUEUE_ORDERED_NONE)) {
1208 		bio_endio(bio, -EOPNOTSUPP);
1209 		return 0;
1210 	}
1211 	/*
1212 	 * low level driver can indicate that it wants pages above a
1213 	 * certain limit bounced to low memory (ie for highmem, or even
1214 	 * ISA dma in theory)
1215 	 */
1216 	blk_queue_bounce(q, &bio);
1217 
1218 	spin_lock_irq(q->queue_lock);
1219 
1220 	if (unlikely((bio->bi_rw & REQ_HARDBARRIER)) || elv_queue_empty(q))
1221 		goto get_rq;
1222 
1223 	el_ret = elv_merge(q, &req, bio);
1224 	switch (el_ret) {
1225 	case ELEVATOR_BACK_MERGE:
1226 		BUG_ON(!rq_mergeable(req));
1227 
1228 		if (!ll_back_merge_fn(q, req, bio))
1229 			break;
1230 
1231 		trace_block_bio_backmerge(q, bio);
1232 
1233 		if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1234 			blk_rq_set_mixed_merge(req);
1235 
1236 		req->biotail->bi_next = bio;
1237 		req->biotail = bio;
1238 		req->__data_len += bytes;
1239 		req->ioprio = ioprio_best(req->ioprio, prio);
1240 		if (!blk_rq_cpu_valid(req))
1241 			req->cpu = bio->bi_comp_cpu;
1242 		drive_stat_acct(req, 0);
1243 		elv_bio_merged(q, req, bio);
1244 		if (!attempt_back_merge(q, req))
1245 			elv_merged_request(q, req, el_ret);
1246 		goto out;
1247 
1248 	case ELEVATOR_FRONT_MERGE:
1249 		BUG_ON(!rq_mergeable(req));
1250 
1251 		if (!ll_front_merge_fn(q, req, bio))
1252 			break;
1253 
1254 		trace_block_bio_frontmerge(q, bio);
1255 
1256 		if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1257 			blk_rq_set_mixed_merge(req);
1258 			req->cmd_flags &= ~REQ_FAILFAST_MASK;
1259 			req->cmd_flags |= ff;
1260 		}
1261 
1262 		bio->bi_next = req->bio;
1263 		req->bio = bio;
1264 
1265 		/*
1266 		 * may not be valid. if the low level driver said
1267 		 * it didn't need a bounce buffer then it better
1268 		 * not touch req->buffer either...
1269 		 */
1270 		req->buffer = bio_data(bio);
1271 		req->__sector = bio->bi_sector;
1272 		req->__data_len += bytes;
1273 		req->ioprio = ioprio_best(req->ioprio, prio);
1274 		if (!blk_rq_cpu_valid(req))
1275 			req->cpu = bio->bi_comp_cpu;
1276 		drive_stat_acct(req, 0);
1277 		elv_bio_merged(q, req, bio);
1278 		if (!attempt_front_merge(q, req))
1279 			elv_merged_request(q, req, el_ret);
1280 		goto out;
1281 
1282 	/* ELV_NO_MERGE: elevator says don't/can't merge. */
1283 	default:
1284 		;
1285 	}
1286 
1287 get_rq:
1288 	/*
1289 	 * This sync check and mask will be re-done in init_request_from_bio(),
1290 	 * but we need to set it earlier to expose the sync flag to the
1291 	 * rq allocator and io schedulers.
1292 	 */
1293 	rw_flags = bio_data_dir(bio);
1294 	if (sync)
1295 		rw_flags |= REQ_SYNC;
1296 
1297 	/*
1298 	 * Grab a free request. This is might sleep but can not fail.
1299 	 * Returns with the queue unlocked.
1300 	 */
1301 	req = get_request_wait(q, rw_flags, bio);
1302 
1303 	/*
1304 	 * After dropping the lock and possibly sleeping here, our request
1305 	 * may now be mergeable after it had proven unmergeable (above).
1306 	 * We don't worry about that case for efficiency. It won't happen
1307 	 * often, and the elevators are able to handle it.
1308 	 */
1309 	init_request_from_bio(req, bio);
1310 
1311 	spin_lock_irq(q->queue_lock);
1312 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1313 	    bio_flagged(bio, BIO_CPU_AFFINE))
1314 		req->cpu = blk_cpu_to_group(smp_processor_id());
1315 	if (queue_should_plug(q) && elv_queue_empty(q))
1316 		blk_plug_device(q);
1317 	add_request(q, req);
1318 out:
1319 	if (unplug || !queue_should_plug(q))
1320 		__generic_unplug_device(q);
1321 	spin_unlock_irq(q->queue_lock);
1322 	return 0;
1323 }
1324 
1325 /*
1326  * If bio->bi_dev is a partition, remap the location
1327  */
1328 static inline void blk_partition_remap(struct bio *bio)
1329 {
1330 	struct block_device *bdev = bio->bi_bdev;
1331 
1332 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1333 		struct hd_struct *p = bdev->bd_part;
1334 
1335 		bio->bi_sector += p->start_sect;
1336 		bio->bi_bdev = bdev->bd_contains;
1337 
1338 		trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1339 				    bdev->bd_dev,
1340 				    bio->bi_sector - p->start_sect);
1341 	}
1342 }
1343 
1344 static void handle_bad_sector(struct bio *bio)
1345 {
1346 	char b[BDEVNAME_SIZE];
1347 
1348 	printk(KERN_INFO "attempt to access beyond end of device\n");
1349 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1350 			bdevname(bio->bi_bdev, b),
1351 			bio->bi_rw,
1352 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1353 			(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1354 
1355 	set_bit(BIO_EOF, &bio->bi_flags);
1356 }
1357 
1358 #ifdef CONFIG_FAIL_MAKE_REQUEST
1359 
1360 static DECLARE_FAULT_ATTR(fail_make_request);
1361 
1362 static int __init setup_fail_make_request(char *str)
1363 {
1364 	return setup_fault_attr(&fail_make_request, str);
1365 }
1366 __setup("fail_make_request=", setup_fail_make_request);
1367 
1368 static int should_fail_request(struct bio *bio)
1369 {
1370 	struct hd_struct *part = bio->bi_bdev->bd_part;
1371 
1372 	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1373 		return should_fail(&fail_make_request, bio->bi_size);
1374 
1375 	return 0;
1376 }
1377 
1378 static int __init fail_make_request_debugfs(void)
1379 {
1380 	return init_fault_attr_dentries(&fail_make_request,
1381 					"fail_make_request");
1382 }
1383 
1384 late_initcall(fail_make_request_debugfs);
1385 
1386 #else /* CONFIG_FAIL_MAKE_REQUEST */
1387 
1388 static inline int should_fail_request(struct bio *bio)
1389 {
1390 	return 0;
1391 }
1392 
1393 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1394 
1395 /*
1396  * Check whether this bio extends beyond the end of the device.
1397  */
1398 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1399 {
1400 	sector_t maxsector;
1401 
1402 	if (!nr_sectors)
1403 		return 0;
1404 
1405 	/* Test device or partition size, when known. */
1406 	maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1407 	if (maxsector) {
1408 		sector_t sector = bio->bi_sector;
1409 
1410 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1411 			/*
1412 			 * This may well happen - the kernel calls bread()
1413 			 * without checking the size of the device, e.g., when
1414 			 * mounting a device.
1415 			 */
1416 			handle_bad_sector(bio);
1417 			return 1;
1418 		}
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 /**
1425  * generic_make_request - hand a buffer to its device driver for I/O
1426  * @bio:  The bio describing the location in memory and on the device.
1427  *
1428  * generic_make_request() is used to make I/O requests of block
1429  * devices. It is passed a &struct bio, which describes the I/O that needs
1430  * to be done.
1431  *
1432  * generic_make_request() does not return any status.  The
1433  * success/failure status of the request, along with notification of
1434  * completion, is delivered asynchronously through the bio->bi_end_io
1435  * function described (one day) else where.
1436  *
1437  * The caller of generic_make_request must make sure that bi_io_vec
1438  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1439  * set to describe the device address, and the
1440  * bi_end_io and optionally bi_private are set to describe how
1441  * completion notification should be signaled.
1442  *
1443  * generic_make_request and the drivers it calls may use bi_next if this
1444  * bio happens to be merged with someone else, and may change bi_dev and
1445  * bi_sector for remaps as it sees fit.  So the values of these fields
1446  * should NOT be depended on after the call to generic_make_request.
1447  */
1448 static inline void __generic_make_request(struct bio *bio)
1449 {
1450 	struct request_queue *q;
1451 	sector_t old_sector;
1452 	int ret, nr_sectors = bio_sectors(bio);
1453 	dev_t old_dev;
1454 	int err = -EIO;
1455 
1456 	might_sleep();
1457 
1458 	if (bio_check_eod(bio, nr_sectors))
1459 		goto end_io;
1460 
1461 	/*
1462 	 * Resolve the mapping until finished. (drivers are
1463 	 * still free to implement/resolve their own stacking
1464 	 * by explicitly returning 0)
1465 	 *
1466 	 * NOTE: we don't repeat the blk_size check for each new device.
1467 	 * Stacking drivers are expected to know what they are doing.
1468 	 */
1469 	old_sector = -1;
1470 	old_dev = 0;
1471 	do {
1472 		char b[BDEVNAME_SIZE];
1473 
1474 		q = bdev_get_queue(bio->bi_bdev);
1475 		if (unlikely(!q)) {
1476 			printk(KERN_ERR
1477 			       "generic_make_request: Trying to access "
1478 				"nonexistent block-device %s (%Lu)\n",
1479 				bdevname(bio->bi_bdev, b),
1480 				(long long) bio->bi_sector);
1481 			goto end_io;
1482 		}
1483 
1484 		if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1485 			     nr_sectors > queue_max_hw_sectors(q))) {
1486 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1487 			       bdevname(bio->bi_bdev, b),
1488 			       bio_sectors(bio),
1489 			       queue_max_hw_sectors(q));
1490 			goto end_io;
1491 		}
1492 
1493 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1494 			goto end_io;
1495 
1496 		if (should_fail_request(bio))
1497 			goto end_io;
1498 
1499 		/*
1500 		 * If this device has partitions, remap block n
1501 		 * of partition p to block n+start(p) of the disk.
1502 		 */
1503 		blk_partition_remap(bio);
1504 
1505 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1506 			goto end_io;
1507 
1508 		if (old_sector != -1)
1509 			trace_block_remap(q, bio, old_dev, old_sector);
1510 
1511 		old_sector = bio->bi_sector;
1512 		old_dev = bio->bi_bdev->bd_dev;
1513 
1514 		if (bio_check_eod(bio, nr_sectors))
1515 			goto end_io;
1516 
1517 		if ((bio->bi_rw & REQ_DISCARD) &&
1518 		    (!blk_queue_discard(q) ||
1519 		     ((bio->bi_rw & REQ_SECURE) &&
1520 		      !blk_queue_secdiscard(q)))) {
1521 			err = -EOPNOTSUPP;
1522 			goto end_io;
1523 		}
1524 
1525 		trace_block_bio_queue(q, bio);
1526 
1527 		ret = q->make_request_fn(q, bio);
1528 	} while (ret);
1529 
1530 	return;
1531 
1532 end_io:
1533 	bio_endio(bio, err);
1534 }
1535 
1536 /*
1537  * We only want one ->make_request_fn to be active at a time,
1538  * else stack usage with stacked devices could be a problem.
1539  * So use current->bio_list to keep a list of requests
1540  * submited by a make_request_fn function.
1541  * current->bio_list is also used as a flag to say if
1542  * generic_make_request is currently active in this task or not.
1543  * If it is NULL, then no make_request is active.  If it is non-NULL,
1544  * then a make_request is active, and new requests should be added
1545  * at the tail
1546  */
1547 void generic_make_request(struct bio *bio)
1548 {
1549 	struct bio_list bio_list_on_stack;
1550 
1551 	if (current->bio_list) {
1552 		/* make_request is active */
1553 		bio_list_add(current->bio_list, bio);
1554 		return;
1555 	}
1556 	/* following loop may be a bit non-obvious, and so deserves some
1557 	 * explanation.
1558 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1559 	 * ensure that) so we have a list with a single bio.
1560 	 * We pretend that we have just taken it off a longer list, so
1561 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1562 	 * thus initialising the bio_list of new bios to be
1563 	 * added.  __generic_make_request may indeed add some more bios
1564 	 * through a recursive call to generic_make_request.  If it
1565 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1566 	 * from the top.  In this case we really did just take the bio
1567 	 * of the top of the list (no pretending) and so remove it from
1568 	 * bio_list, and call into __generic_make_request again.
1569 	 *
1570 	 * The loop was structured like this to make only one call to
1571 	 * __generic_make_request (which is important as it is large and
1572 	 * inlined) and to keep the structure simple.
1573 	 */
1574 	BUG_ON(bio->bi_next);
1575 	bio_list_init(&bio_list_on_stack);
1576 	current->bio_list = &bio_list_on_stack;
1577 	do {
1578 		__generic_make_request(bio);
1579 		bio = bio_list_pop(current->bio_list);
1580 	} while (bio);
1581 	current->bio_list = NULL; /* deactivate */
1582 }
1583 EXPORT_SYMBOL(generic_make_request);
1584 
1585 /**
1586  * submit_bio - submit a bio to the block device layer for I/O
1587  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1588  * @bio: The &struct bio which describes the I/O
1589  *
1590  * submit_bio() is very similar in purpose to generic_make_request(), and
1591  * uses that function to do most of the work. Both are fairly rough
1592  * interfaces; @bio must be presetup and ready for I/O.
1593  *
1594  */
1595 void submit_bio(int rw, struct bio *bio)
1596 {
1597 	int count = bio_sectors(bio);
1598 
1599 	bio->bi_rw |= rw;
1600 
1601 	/*
1602 	 * If it's a regular read/write or a barrier with data attached,
1603 	 * go through the normal accounting stuff before submission.
1604 	 */
1605 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1606 		if (rw & WRITE) {
1607 			count_vm_events(PGPGOUT, count);
1608 		} else {
1609 			task_io_account_read(bio->bi_size);
1610 			count_vm_events(PGPGIN, count);
1611 		}
1612 
1613 		if (unlikely(block_dump)) {
1614 			char b[BDEVNAME_SIZE];
1615 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1616 			current->comm, task_pid_nr(current),
1617 				(rw & WRITE) ? "WRITE" : "READ",
1618 				(unsigned long long)bio->bi_sector,
1619 				bdevname(bio->bi_bdev, b));
1620 		}
1621 	}
1622 
1623 	generic_make_request(bio);
1624 }
1625 EXPORT_SYMBOL(submit_bio);
1626 
1627 /**
1628  * blk_rq_check_limits - Helper function to check a request for the queue limit
1629  * @q:  the queue
1630  * @rq: the request being checked
1631  *
1632  * Description:
1633  *    @rq may have been made based on weaker limitations of upper-level queues
1634  *    in request stacking drivers, and it may violate the limitation of @q.
1635  *    Since the block layer and the underlying device driver trust @rq
1636  *    after it is inserted to @q, it should be checked against @q before
1637  *    the insertion using this generic function.
1638  *
1639  *    This function should also be useful for request stacking drivers
1640  *    in some cases below, so export this fuction.
1641  *    Request stacking drivers like request-based dm may change the queue
1642  *    limits while requests are in the queue (e.g. dm's table swapping).
1643  *    Such request stacking drivers should check those requests agaist
1644  *    the new queue limits again when they dispatch those requests,
1645  *    although such checkings are also done against the old queue limits
1646  *    when submitting requests.
1647  */
1648 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1649 {
1650 	if (rq->cmd_flags & REQ_DISCARD)
1651 		return 0;
1652 
1653 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1654 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1655 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1656 		return -EIO;
1657 	}
1658 
1659 	/*
1660 	 * queue's settings related to segment counting like q->bounce_pfn
1661 	 * may differ from that of other stacking queues.
1662 	 * Recalculate it to check the request correctly on this queue's
1663 	 * limitation.
1664 	 */
1665 	blk_recalc_rq_segments(rq);
1666 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1667 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1668 		return -EIO;
1669 	}
1670 
1671 	return 0;
1672 }
1673 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1674 
1675 /**
1676  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1677  * @q:  the queue to submit the request
1678  * @rq: the request being queued
1679  */
1680 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1681 {
1682 	unsigned long flags;
1683 
1684 	if (blk_rq_check_limits(q, rq))
1685 		return -EIO;
1686 
1687 #ifdef CONFIG_FAIL_MAKE_REQUEST
1688 	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1689 	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
1690 		return -EIO;
1691 #endif
1692 
1693 	spin_lock_irqsave(q->queue_lock, flags);
1694 
1695 	/*
1696 	 * Submitting request must be dequeued before calling this function
1697 	 * because it will be linked to another request_queue
1698 	 */
1699 	BUG_ON(blk_queued_rq(rq));
1700 
1701 	drive_stat_acct(rq, 1);
1702 	__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1703 
1704 	spin_unlock_irqrestore(q->queue_lock, flags);
1705 
1706 	return 0;
1707 }
1708 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1709 
1710 /**
1711  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1712  * @rq: request to examine
1713  *
1714  * Description:
1715  *     A request could be merge of IOs which require different failure
1716  *     handling.  This function determines the number of bytes which
1717  *     can be failed from the beginning of the request without
1718  *     crossing into area which need to be retried further.
1719  *
1720  * Return:
1721  *     The number of bytes to fail.
1722  *
1723  * Context:
1724  *     queue_lock must be held.
1725  */
1726 unsigned int blk_rq_err_bytes(const struct request *rq)
1727 {
1728 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1729 	unsigned int bytes = 0;
1730 	struct bio *bio;
1731 
1732 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1733 		return blk_rq_bytes(rq);
1734 
1735 	/*
1736 	 * Currently the only 'mixing' which can happen is between
1737 	 * different fastfail types.  We can safely fail portions
1738 	 * which have all the failfast bits that the first one has -
1739 	 * the ones which are at least as eager to fail as the first
1740 	 * one.
1741 	 */
1742 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1743 		if ((bio->bi_rw & ff) != ff)
1744 			break;
1745 		bytes += bio->bi_size;
1746 	}
1747 
1748 	/* this could lead to infinite loop */
1749 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1750 	return bytes;
1751 }
1752 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1753 
1754 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1755 {
1756 	if (blk_do_io_stat(req)) {
1757 		const int rw = rq_data_dir(req);
1758 		struct hd_struct *part;
1759 		int cpu;
1760 
1761 		cpu = part_stat_lock();
1762 		part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1763 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1764 		part_stat_unlock();
1765 	}
1766 }
1767 
1768 static void blk_account_io_done(struct request *req)
1769 {
1770 	/*
1771 	 * Account IO completion.  bar_rq isn't accounted as a normal
1772 	 * IO on queueing nor completion.  Accounting the containing
1773 	 * request is enough.
1774 	 */
1775 	if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1776 		unsigned long duration = jiffies - req->start_time;
1777 		const int rw = rq_data_dir(req);
1778 		struct hd_struct *part;
1779 		int cpu;
1780 
1781 		cpu = part_stat_lock();
1782 		part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1783 
1784 		part_stat_inc(cpu, part, ios[rw]);
1785 		part_stat_add(cpu, part, ticks[rw], duration);
1786 		part_round_stats(cpu, part);
1787 		part_dec_in_flight(part, rw);
1788 
1789 		part_stat_unlock();
1790 	}
1791 }
1792 
1793 /**
1794  * blk_peek_request - peek at the top of a request queue
1795  * @q: request queue to peek at
1796  *
1797  * Description:
1798  *     Return the request at the top of @q.  The returned request
1799  *     should be started using blk_start_request() before LLD starts
1800  *     processing it.
1801  *
1802  * Return:
1803  *     Pointer to the request at the top of @q if available.  Null
1804  *     otherwise.
1805  *
1806  * Context:
1807  *     queue_lock must be held.
1808  */
1809 struct request *blk_peek_request(struct request_queue *q)
1810 {
1811 	struct request *rq;
1812 	int ret;
1813 
1814 	while ((rq = __elv_next_request(q)) != NULL) {
1815 		if (!(rq->cmd_flags & REQ_STARTED)) {
1816 			/*
1817 			 * This is the first time the device driver
1818 			 * sees this request (possibly after
1819 			 * requeueing).  Notify IO scheduler.
1820 			 */
1821 			if (rq->cmd_flags & REQ_SORTED)
1822 				elv_activate_rq(q, rq);
1823 
1824 			/*
1825 			 * just mark as started even if we don't start
1826 			 * it, a request that has been delayed should
1827 			 * not be passed by new incoming requests
1828 			 */
1829 			rq->cmd_flags |= REQ_STARTED;
1830 			trace_block_rq_issue(q, rq);
1831 		}
1832 
1833 		if (!q->boundary_rq || q->boundary_rq == rq) {
1834 			q->end_sector = rq_end_sector(rq);
1835 			q->boundary_rq = NULL;
1836 		}
1837 
1838 		if (rq->cmd_flags & REQ_DONTPREP)
1839 			break;
1840 
1841 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1842 			/*
1843 			 * make sure space for the drain appears we
1844 			 * know we can do this because max_hw_segments
1845 			 * has been adjusted to be one fewer than the
1846 			 * device can handle
1847 			 */
1848 			rq->nr_phys_segments++;
1849 		}
1850 
1851 		if (!q->prep_rq_fn)
1852 			break;
1853 
1854 		ret = q->prep_rq_fn(q, rq);
1855 		if (ret == BLKPREP_OK) {
1856 			break;
1857 		} else if (ret == BLKPREP_DEFER) {
1858 			/*
1859 			 * the request may have been (partially) prepped.
1860 			 * we need to keep this request in the front to
1861 			 * avoid resource deadlock.  REQ_STARTED will
1862 			 * prevent other fs requests from passing this one.
1863 			 */
1864 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1865 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1866 				/*
1867 				 * remove the space for the drain we added
1868 				 * so that we don't add it again
1869 				 */
1870 				--rq->nr_phys_segments;
1871 			}
1872 
1873 			rq = NULL;
1874 			break;
1875 		} else if (ret == BLKPREP_KILL) {
1876 			rq->cmd_flags |= REQ_QUIET;
1877 			/*
1878 			 * Mark this request as started so we don't trigger
1879 			 * any debug logic in the end I/O path.
1880 			 */
1881 			blk_start_request(rq);
1882 			__blk_end_request_all(rq, -EIO);
1883 		} else {
1884 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1885 			break;
1886 		}
1887 	}
1888 
1889 	return rq;
1890 }
1891 EXPORT_SYMBOL(blk_peek_request);
1892 
1893 void blk_dequeue_request(struct request *rq)
1894 {
1895 	struct request_queue *q = rq->q;
1896 
1897 	BUG_ON(list_empty(&rq->queuelist));
1898 	BUG_ON(ELV_ON_HASH(rq));
1899 
1900 	list_del_init(&rq->queuelist);
1901 
1902 	/*
1903 	 * the time frame between a request being removed from the lists
1904 	 * and to it is freed is accounted as io that is in progress at
1905 	 * the driver side.
1906 	 */
1907 	if (blk_account_rq(rq)) {
1908 		q->in_flight[rq_is_sync(rq)]++;
1909 		set_io_start_time_ns(rq);
1910 	}
1911 }
1912 
1913 /**
1914  * blk_start_request - start request processing on the driver
1915  * @req: request to dequeue
1916  *
1917  * Description:
1918  *     Dequeue @req and start timeout timer on it.  This hands off the
1919  *     request to the driver.
1920  *
1921  *     Block internal functions which don't want to start timer should
1922  *     call blk_dequeue_request().
1923  *
1924  * Context:
1925  *     queue_lock must be held.
1926  */
1927 void blk_start_request(struct request *req)
1928 {
1929 	blk_dequeue_request(req);
1930 
1931 	/*
1932 	 * We are now handing the request to the hardware, initialize
1933 	 * resid_len to full count and add the timeout handler.
1934 	 */
1935 	req->resid_len = blk_rq_bytes(req);
1936 	if (unlikely(blk_bidi_rq(req)))
1937 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1938 
1939 	blk_add_timer(req);
1940 }
1941 EXPORT_SYMBOL(blk_start_request);
1942 
1943 /**
1944  * blk_fetch_request - fetch a request from a request queue
1945  * @q: request queue to fetch a request from
1946  *
1947  * Description:
1948  *     Return the request at the top of @q.  The request is started on
1949  *     return and LLD can start processing it immediately.
1950  *
1951  * Return:
1952  *     Pointer to the request at the top of @q if available.  Null
1953  *     otherwise.
1954  *
1955  * Context:
1956  *     queue_lock must be held.
1957  */
1958 struct request *blk_fetch_request(struct request_queue *q)
1959 {
1960 	struct request *rq;
1961 
1962 	rq = blk_peek_request(q);
1963 	if (rq)
1964 		blk_start_request(rq);
1965 	return rq;
1966 }
1967 EXPORT_SYMBOL(blk_fetch_request);
1968 
1969 /**
1970  * blk_update_request - Special helper function for request stacking drivers
1971  * @req:      the request being processed
1972  * @error:    %0 for success, < %0 for error
1973  * @nr_bytes: number of bytes to complete @req
1974  *
1975  * Description:
1976  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1977  *     the request structure even if @req doesn't have leftover.
1978  *     If @req has leftover, sets it up for the next range of segments.
1979  *
1980  *     This special helper function is only for request stacking drivers
1981  *     (e.g. request-based dm) so that they can handle partial completion.
1982  *     Actual device drivers should use blk_end_request instead.
1983  *
1984  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1985  *     %false return from this function.
1986  *
1987  * Return:
1988  *     %false - this request doesn't have any more data
1989  *     %true  - this request has more data
1990  **/
1991 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1992 {
1993 	int total_bytes, bio_nbytes, next_idx = 0;
1994 	struct bio *bio;
1995 
1996 	if (!req->bio)
1997 		return false;
1998 
1999 	trace_block_rq_complete(req->q, req);
2000 
2001 	/*
2002 	 * For fs requests, rq is just carrier of independent bio's
2003 	 * and each partial completion should be handled separately.
2004 	 * Reset per-request error on each partial completion.
2005 	 *
2006 	 * TODO: tj: This is too subtle.  It would be better to let
2007 	 * low level drivers do what they see fit.
2008 	 */
2009 	if (req->cmd_type == REQ_TYPE_FS)
2010 		req->errors = 0;
2011 
2012 	if (error && req->cmd_type == REQ_TYPE_FS &&
2013 	    !(req->cmd_flags & REQ_QUIET)) {
2014 		printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
2015 				req->rq_disk ? req->rq_disk->disk_name : "?",
2016 				(unsigned long long)blk_rq_pos(req));
2017 	}
2018 
2019 	blk_account_io_completion(req, nr_bytes);
2020 
2021 	total_bytes = bio_nbytes = 0;
2022 	while ((bio = req->bio) != NULL) {
2023 		int nbytes;
2024 
2025 		if (nr_bytes >= bio->bi_size) {
2026 			req->bio = bio->bi_next;
2027 			nbytes = bio->bi_size;
2028 			req_bio_endio(req, bio, nbytes, error);
2029 			next_idx = 0;
2030 			bio_nbytes = 0;
2031 		} else {
2032 			int idx = bio->bi_idx + next_idx;
2033 
2034 			if (unlikely(idx >= bio->bi_vcnt)) {
2035 				blk_dump_rq_flags(req, "__end_that");
2036 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2037 				       __func__, idx, bio->bi_vcnt);
2038 				break;
2039 			}
2040 
2041 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2042 			BIO_BUG_ON(nbytes > bio->bi_size);
2043 
2044 			/*
2045 			 * not a complete bvec done
2046 			 */
2047 			if (unlikely(nbytes > nr_bytes)) {
2048 				bio_nbytes += nr_bytes;
2049 				total_bytes += nr_bytes;
2050 				break;
2051 			}
2052 
2053 			/*
2054 			 * advance to the next vector
2055 			 */
2056 			next_idx++;
2057 			bio_nbytes += nbytes;
2058 		}
2059 
2060 		total_bytes += nbytes;
2061 		nr_bytes -= nbytes;
2062 
2063 		bio = req->bio;
2064 		if (bio) {
2065 			/*
2066 			 * end more in this run, or just return 'not-done'
2067 			 */
2068 			if (unlikely(nr_bytes <= 0))
2069 				break;
2070 		}
2071 	}
2072 
2073 	/*
2074 	 * completely done
2075 	 */
2076 	if (!req->bio) {
2077 		/*
2078 		 * Reset counters so that the request stacking driver
2079 		 * can find how many bytes remain in the request
2080 		 * later.
2081 		 */
2082 		req->__data_len = 0;
2083 		return false;
2084 	}
2085 
2086 	/*
2087 	 * if the request wasn't completed, update state
2088 	 */
2089 	if (bio_nbytes) {
2090 		req_bio_endio(req, bio, bio_nbytes, error);
2091 		bio->bi_idx += next_idx;
2092 		bio_iovec(bio)->bv_offset += nr_bytes;
2093 		bio_iovec(bio)->bv_len -= nr_bytes;
2094 	}
2095 
2096 	req->__data_len -= total_bytes;
2097 	req->buffer = bio_data(req->bio);
2098 
2099 	/* update sector only for requests with clear definition of sector */
2100 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2101 		req->__sector += total_bytes >> 9;
2102 
2103 	/* mixed attributes always follow the first bio */
2104 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2105 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2106 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2107 	}
2108 
2109 	/*
2110 	 * If total number of sectors is less than the first segment
2111 	 * size, something has gone terribly wrong.
2112 	 */
2113 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2114 		printk(KERN_ERR "blk: request botched\n");
2115 		req->__data_len = blk_rq_cur_bytes(req);
2116 	}
2117 
2118 	/* recalculate the number of segments */
2119 	blk_recalc_rq_segments(req);
2120 
2121 	return true;
2122 }
2123 EXPORT_SYMBOL_GPL(blk_update_request);
2124 
2125 static bool blk_update_bidi_request(struct request *rq, int error,
2126 				    unsigned int nr_bytes,
2127 				    unsigned int bidi_bytes)
2128 {
2129 	if (blk_update_request(rq, error, nr_bytes))
2130 		return true;
2131 
2132 	/* Bidi request must be completed as a whole */
2133 	if (unlikely(blk_bidi_rq(rq)) &&
2134 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2135 		return true;
2136 
2137 	if (blk_queue_add_random(rq->q))
2138 		add_disk_randomness(rq->rq_disk);
2139 
2140 	return false;
2141 }
2142 
2143 /**
2144  * blk_unprep_request - unprepare a request
2145  * @req:	the request
2146  *
2147  * This function makes a request ready for complete resubmission (or
2148  * completion).  It happens only after all error handling is complete,
2149  * so represents the appropriate moment to deallocate any resources
2150  * that were allocated to the request in the prep_rq_fn.  The queue
2151  * lock is held when calling this.
2152  */
2153 void blk_unprep_request(struct request *req)
2154 {
2155 	struct request_queue *q = req->q;
2156 
2157 	req->cmd_flags &= ~REQ_DONTPREP;
2158 	if (q->unprep_rq_fn)
2159 		q->unprep_rq_fn(q, req);
2160 }
2161 EXPORT_SYMBOL_GPL(blk_unprep_request);
2162 
2163 /*
2164  * queue lock must be held
2165  */
2166 static void blk_finish_request(struct request *req, int error)
2167 {
2168 	if (blk_rq_tagged(req))
2169 		blk_queue_end_tag(req->q, req);
2170 
2171 	BUG_ON(blk_queued_rq(req));
2172 
2173 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2174 		laptop_io_completion(&req->q->backing_dev_info);
2175 
2176 	blk_delete_timer(req);
2177 
2178 	if (req->cmd_flags & REQ_DONTPREP)
2179 		blk_unprep_request(req);
2180 
2181 
2182 	blk_account_io_done(req);
2183 
2184 	if (req->end_io)
2185 		req->end_io(req, error);
2186 	else {
2187 		if (blk_bidi_rq(req))
2188 			__blk_put_request(req->next_rq->q, req->next_rq);
2189 
2190 		__blk_put_request(req->q, req);
2191 	}
2192 }
2193 
2194 /**
2195  * blk_end_bidi_request - Complete a bidi request
2196  * @rq:         the request to complete
2197  * @error:      %0 for success, < %0 for error
2198  * @nr_bytes:   number of bytes to complete @rq
2199  * @bidi_bytes: number of bytes to complete @rq->next_rq
2200  *
2201  * Description:
2202  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2203  *     Drivers that supports bidi can safely call this member for any
2204  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2205  *     just ignored.
2206  *
2207  * Return:
2208  *     %false - we are done with this request
2209  *     %true  - still buffers pending for this request
2210  **/
2211 static bool blk_end_bidi_request(struct request *rq, int error,
2212 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2213 {
2214 	struct request_queue *q = rq->q;
2215 	unsigned long flags;
2216 
2217 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2218 		return true;
2219 
2220 	spin_lock_irqsave(q->queue_lock, flags);
2221 	blk_finish_request(rq, error);
2222 	spin_unlock_irqrestore(q->queue_lock, flags);
2223 
2224 	return false;
2225 }
2226 
2227 /**
2228  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2229  * @rq:         the request to complete
2230  * @error:      %0 for success, < %0 for error
2231  * @nr_bytes:   number of bytes to complete @rq
2232  * @bidi_bytes: number of bytes to complete @rq->next_rq
2233  *
2234  * Description:
2235  *     Identical to blk_end_bidi_request() except that queue lock is
2236  *     assumed to be locked on entry and remains so on return.
2237  *
2238  * Return:
2239  *     %false - we are done with this request
2240  *     %true  - still buffers pending for this request
2241  **/
2242 static bool __blk_end_bidi_request(struct request *rq, int error,
2243 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2244 {
2245 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2246 		return true;
2247 
2248 	blk_finish_request(rq, error);
2249 
2250 	return false;
2251 }
2252 
2253 /**
2254  * blk_end_request - Helper function for drivers to complete the request.
2255  * @rq:       the request being processed
2256  * @error:    %0 for success, < %0 for error
2257  * @nr_bytes: number of bytes to complete
2258  *
2259  * Description:
2260  *     Ends I/O on a number of bytes attached to @rq.
2261  *     If @rq has leftover, sets it up for the next range of segments.
2262  *
2263  * Return:
2264  *     %false - we are done with this request
2265  *     %true  - still buffers pending for this request
2266  **/
2267 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2268 {
2269 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2270 }
2271 EXPORT_SYMBOL(blk_end_request);
2272 
2273 /**
2274  * blk_end_request_all - Helper function for drives to finish the request.
2275  * @rq: the request to finish
2276  * @error: %0 for success, < %0 for error
2277  *
2278  * Description:
2279  *     Completely finish @rq.
2280  */
2281 void blk_end_request_all(struct request *rq, int error)
2282 {
2283 	bool pending;
2284 	unsigned int bidi_bytes = 0;
2285 
2286 	if (unlikely(blk_bidi_rq(rq)))
2287 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2288 
2289 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2290 	BUG_ON(pending);
2291 }
2292 EXPORT_SYMBOL(blk_end_request_all);
2293 
2294 /**
2295  * blk_end_request_cur - Helper function to finish the current request chunk.
2296  * @rq: the request to finish the current chunk for
2297  * @error: %0 for success, < %0 for error
2298  *
2299  * Description:
2300  *     Complete the current consecutively mapped chunk from @rq.
2301  *
2302  * Return:
2303  *     %false - we are done with this request
2304  *     %true  - still buffers pending for this request
2305  */
2306 bool blk_end_request_cur(struct request *rq, int error)
2307 {
2308 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2309 }
2310 EXPORT_SYMBOL(blk_end_request_cur);
2311 
2312 /**
2313  * blk_end_request_err - Finish a request till the next failure boundary.
2314  * @rq: the request to finish till the next failure boundary for
2315  * @error: must be negative errno
2316  *
2317  * Description:
2318  *     Complete @rq till the next failure boundary.
2319  *
2320  * Return:
2321  *     %false - we are done with this request
2322  *     %true  - still buffers pending for this request
2323  */
2324 bool blk_end_request_err(struct request *rq, int error)
2325 {
2326 	WARN_ON(error >= 0);
2327 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2328 }
2329 EXPORT_SYMBOL_GPL(blk_end_request_err);
2330 
2331 /**
2332  * __blk_end_request - Helper function for drivers to complete the request.
2333  * @rq:       the request being processed
2334  * @error:    %0 for success, < %0 for error
2335  * @nr_bytes: number of bytes to complete
2336  *
2337  * Description:
2338  *     Must be called with queue lock held unlike blk_end_request().
2339  *
2340  * Return:
2341  *     %false - we are done with this request
2342  *     %true  - still buffers pending for this request
2343  **/
2344 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2345 {
2346 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2347 }
2348 EXPORT_SYMBOL(__blk_end_request);
2349 
2350 /**
2351  * __blk_end_request_all - Helper function for drives to finish the request.
2352  * @rq: the request to finish
2353  * @error: %0 for success, < %0 for error
2354  *
2355  * Description:
2356  *     Completely finish @rq.  Must be called with queue lock held.
2357  */
2358 void __blk_end_request_all(struct request *rq, int error)
2359 {
2360 	bool pending;
2361 	unsigned int bidi_bytes = 0;
2362 
2363 	if (unlikely(blk_bidi_rq(rq)))
2364 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2365 
2366 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2367 	BUG_ON(pending);
2368 }
2369 EXPORT_SYMBOL(__blk_end_request_all);
2370 
2371 /**
2372  * __blk_end_request_cur - Helper function to finish the current request chunk.
2373  * @rq: the request to finish the current chunk for
2374  * @error: %0 for success, < %0 for error
2375  *
2376  * Description:
2377  *     Complete the current consecutively mapped chunk from @rq.  Must
2378  *     be called with queue lock held.
2379  *
2380  * Return:
2381  *     %false - we are done with this request
2382  *     %true  - still buffers pending for this request
2383  */
2384 bool __blk_end_request_cur(struct request *rq, int error)
2385 {
2386 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2387 }
2388 EXPORT_SYMBOL(__blk_end_request_cur);
2389 
2390 /**
2391  * __blk_end_request_err - Finish a request till the next failure boundary.
2392  * @rq: the request to finish till the next failure boundary for
2393  * @error: must be negative errno
2394  *
2395  * Description:
2396  *     Complete @rq till the next failure boundary.  Must be called
2397  *     with queue lock held.
2398  *
2399  * Return:
2400  *     %false - we are done with this request
2401  *     %true  - still buffers pending for this request
2402  */
2403 bool __blk_end_request_err(struct request *rq, int error)
2404 {
2405 	WARN_ON(error >= 0);
2406 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2407 }
2408 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2409 
2410 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2411 		     struct bio *bio)
2412 {
2413 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2414 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2415 
2416 	if (bio_has_data(bio)) {
2417 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2418 		rq->buffer = bio_data(bio);
2419 	}
2420 	rq->__data_len = bio->bi_size;
2421 	rq->bio = rq->biotail = bio;
2422 
2423 	if (bio->bi_bdev)
2424 		rq->rq_disk = bio->bi_bdev->bd_disk;
2425 }
2426 
2427 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2428 /**
2429  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2430  * @rq: the request to be flushed
2431  *
2432  * Description:
2433  *     Flush all pages in @rq.
2434  */
2435 void rq_flush_dcache_pages(struct request *rq)
2436 {
2437 	struct req_iterator iter;
2438 	struct bio_vec *bvec;
2439 
2440 	rq_for_each_segment(bvec, rq, iter)
2441 		flush_dcache_page(bvec->bv_page);
2442 }
2443 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2444 #endif
2445 
2446 /**
2447  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2448  * @q : the queue of the device being checked
2449  *
2450  * Description:
2451  *    Check if underlying low-level drivers of a device are busy.
2452  *    If the drivers want to export their busy state, they must set own
2453  *    exporting function using blk_queue_lld_busy() first.
2454  *
2455  *    Basically, this function is used only by request stacking drivers
2456  *    to stop dispatching requests to underlying devices when underlying
2457  *    devices are busy.  This behavior helps more I/O merging on the queue
2458  *    of the request stacking driver and prevents I/O throughput regression
2459  *    on burst I/O load.
2460  *
2461  * Return:
2462  *    0 - Not busy (The request stacking driver should dispatch request)
2463  *    1 - Busy (The request stacking driver should stop dispatching request)
2464  */
2465 int blk_lld_busy(struct request_queue *q)
2466 {
2467 	if (q->lld_busy_fn)
2468 		return q->lld_busy_fn(q);
2469 
2470 	return 0;
2471 }
2472 EXPORT_SYMBOL_GPL(blk_lld_busy);
2473 
2474 /**
2475  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2476  * @rq: the clone request to be cleaned up
2477  *
2478  * Description:
2479  *     Free all bios in @rq for a cloned request.
2480  */
2481 void blk_rq_unprep_clone(struct request *rq)
2482 {
2483 	struct bio *bio;
2484 
2485 	while ((bio = rq->bio) != NULL) {
2486 		rq->bio = bio->bi_next;
2487 
2488 		bio_put(bio);
2489 	}
2490 }
2491 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2492 
2493 /*
2494  * Copy attributes of the original request to the clone request.
2495  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2496  */
2497 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2498 {
2499 	dst->cpu = src->cpu;
2500 	dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2501 	if (src->cmd_flags & REQ_DISCARD)
2502 		dst->cmd_flags |= REQ_DISCARD;
2503 	dst->cmd_type = src->cmd_type;
2504 	dst->__sector = blk_rq_pos(src);
2505 	dst->__data_len = blk_rq_bytes(src);
2506 	dst->nr_phys_segments = src->nr_phys_segments;
2507 	dst->ioprio = src->ioprio;
2508 	dst->extra_len = src->extra_len;
2509 }
2510 
2511 /**
2512  * blk_rq_prep_clone - Helper function to setup clone request
2513  * @rq: the request to be setup
2514  * @rq_src: original request to be cloned
2515  * @bs: bio_set that bios for clone are allocated from
2516  * @gfp_mask: memory allocation mask for bio
2517  * @bio_ctr: setup function to be called for each clone bio.
2518  *           Returns %0 for success, non %0 for failure.
2519  * @data: private data to be passed to @bio_ctr
2520  *
2521  * Description:
2522  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2523  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2524  *     are not copied, and copying such parts is the caller's responsibility.
2525  *     Also, pages which the original bios are pointing to are not copied
2526  *     and the cloned bios just point same pages.
2527  *     So cloned bios must be completed before original bios, which means
2528  *     the caller must complete @rq before @rq_src.
2529  */
2530 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2531 		      struct bio_set *bs, gfp_t gfp_mask,
2532 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2533 		      void *data)
2534 {
2535 	struct bio *bio, *bio_src;
2536 
2537 	if (!bs)
2538 		bs = fs_bio_set;
2539 
2540 	blk_rq_init(NULL, rq);
2541 
2542 	__rq_for_each_bio(bio_src, rq_src) {
2543 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2544 		if (!bio)
2545 			goto free_and_out;
2546 
2547 		__bio_clone(bio, bio_src);
2548 
2549 		if (bio_integrity(bio_src) &&
2550 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2551 			goto free_and_out;
2552 
2553 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2554 			goto free_and_out;
2555 
2556 		if (rq->bio) {
2557 			rq->biotail->bi_next = bio;
2558 			rq->biotail = bio;
2559 		} else
2560 			rq->bio = rq->biotail = bio;
2561 	}
2562 
2563 	__blk_rq_prep_clone(rq, rq_src);
2564 
2565 	return 0;
2566 
2567 free_and_out:
2568 	if (bio)
2569 		bio_free(bio, bs);
2570 	blk_rq_unprep_clone(rq);
2571 
2572 	return -ENOMEM;
2573 }
2574 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2575 
2576 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2577 {
2578 	return queue_work(kblockd_workqueue, work);
2579 }
2580 EXPORT_SYMBOL(kblockd_schedule_work);
2581 
2582 int __init blk_dev_init(void)
2583 {
2584 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2585 			sizeof(((struct request *)0)->cmd_flags));
2586 
2587 	kblockd_workqueue = create_workqueue("kblockd");
2588 	if (!kblockd_workqueue)
2589 		panic("Failed to create kblockd\n");
2590 
2591 	request_cachep = kmem_cache_create("blkdev_requests",
2592 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2593 
2594 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2595 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2596 
2597 	return 0;
2598 }
2599