xref: /linux/block/blk-core.c (revision d09560435cb712c9ec1e62b8a43a79b0af69fe77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48 
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-rq-qos.h"
54 
55 struct dentry *blk_debugfs_root;
56 
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63 
64 DEFINE_IDA(blk_queue_ida);
65 
66 /*
67  * For queue allocation
68  */
69 struct kmem_cache *blk_requestq_cachep;
70 
71 /*
72  * Controlling structure to kblockd
73  */
74 static struct workqueue_struct *kblockd_workqueue;
75 
76 /**
77  * blk_queue_flag_set - atomically set a queue flag
78  * @flag: flag to be set
79  * @q: request queue
80  */
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 {
83 	set_bit(flag, &q->queue_flags);
84 }
85 EXPORT_SYMBOL(blk_queue_flag_set);
86 
87 /**
88  * blk_queue_flag_clear - atomically clear a queue flag
89  * @flag: flag to be cleared
90  * @q: request queue
91  */
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 {
94 	clear_bit(flag, &q->queue_flags);
95 }
96 EXPORT_SYMBOL(blk_queue_flag_clear);
97 
98 /**
99  * blk_queue_flag_test_and_set - atomically test and set a queue flag
100  * @flag: flag to be set
101  * @q: request queue
102  *
103  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104  * the flag was already set.
105  */
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 {
108 	return test_and_set_bit(flag, &q->queue_flags);
109 }
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111 
112 void blk_rq_init(struct request_queue *q, struct request *rq)
113 {
114 	memset(rq, 0, sizeof(*rq));
115 
116 	INIT_LIST_HEAD(&rq->queuelist);
117 	rq->q = q;
118 	rq->__sector = (sector_t) -1;
119 	INIT_HLIST_NODE(&rq->hash);
120 	RB_CLEAR_NODE(&rq->rb_node);
121 	rq->tag = BLK_MQ_NO_TAG;
122 	rq->internal_tag = BLK_MQ_NO_TAG;
123 	rq->start_time_ns = ktime_get_ns();
124 	rq->part = NULL;
125 	refcount_set(&rq->ref, 1);
126 	blk_crypto_rq_set_defaults(rq);
127 }
128 EXPORT_SYMBOL(blk_rq_init);
129 
130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
131 static const char *const blk_op_name[] = {
132 	REQ_OP_NAME(READ),
133 	REQ_OP_NAME(WRITE),
134 	REQ_OP_NAME(FLUSH),
135 	REQ_OP_NAME(DISCARD),
136 	REQ_OP_NAME(SECURE_ERASE),
137 	REQ_OP_NAME(ZONE_RESET),
138 	REQ_OP_NAME(ZONE_RESET_ALL),
139 	REQ_OP_NAME(ZONE_OPEN),
140 	REQ_OP_NAME(ZONE_CLOSE),
141 	REQ_OP_NAME(ZONE_FINISH),
142 	REQ_OP_NAME(ZONE_APPEND),
143 	REQ_OP_NAME(WRITE_SAME),
144 	REQ_OP_NAME(WRITE_ZEROES),
145 	REQ_OP_NAME(DRV_IN),
146 	REQ_OP_NAME(DRV_OUT),
147 };
148 #undef REQ_OP_NAME
149 
150 /**
151  * blk_op_str - Return string XXX in the REQ_OP_XXX.
152  * @op: REQ_OP_XXX.
153  *
154  * Description: Centralize block layer function to convert REQ_OP_XXX into
155  * string format. Useful in the debugging and tracing bio or request. For
156  * invalid REQ_OP_XXX it returns string "UNKNOWN".
157  */
158 inline const char *blk_op_str(unsigned int op)
159 {
160 	const char *op_str = "UNKNOWN";
161 
162 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163 		op_str = blk_op_name[op];
164 
165 	return op_str;
166 }
167 EXPORT_SYMBOL_GPL(blk_op_str);
168 
169 static const struct {
170 	int		errno;
171 	const char	*name;
172 } blk_errors[] = {
173 	[BLK_STS_OK]		= { 0,		"" },
174 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
175 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
176 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
177 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
178 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
179 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
180 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
181 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
182 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
183 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
184 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
185 
186 	/* device mapper special case, should not leak out: */
187 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
188 
189 	/* zone device specific errors */
190 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
191 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
192 
193 	/* everything else not covered above: */
194 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
195 };
196 
197 blk_status_t errno_to_blk_status(int errno)
198 {
199 	int i;
200 
201 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
202 		if (blk_errors[i].errno == errno)
203 			return (__force blk_status_t)i;
204 	}
205 
206 	return BLK_STS_IOERR;
207 }
208 EXPORT_SYMBOL_GPL(errno_to_blk_status);
209 
210 int blk_status_to_errno(blk_status_t status)
211 {
212 	int idx = (__force int)status;
213 
214 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
215 		return -EIO;
216 	return blk_errors[idx].errno;
217 }
218 EXPORT_SYMBOL_GPL(blk_status_to_errno);
219 
220 static void print_req_error(struct request *req, blk_status_t status,
221 		const char *caller)
222 {
223 	int idx = (__force int)status;
224 
225 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
226 		return;
227 
228 	printk_ratelimited(KERN_ERR
229 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
230 		"phys_seg %u prio class %u\n",
231 		caller, blk_errors[idx].name,
232 		req->rq_disk ? req->rq_disk->disk_name : "?",
233 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
234 		req->cmd_flags & ~REQ_OP_MASK,
235 		req->nr_phys_segments,
236 		IOPRIO_PRIO_CLASS(req->ioprio));
237 }
238 
239 static void req_bio_endio(struct request *rq, struct bio *bio,
240 			  unsigned int nbytes, blk_status_t error)
241 {
242 	if (error)
243 		bio->bi_status = error;
244 
245 	if (unlikely(rq->rq_flags & RQF_QUIET))
246 		bio_set_flag(bio, BIO_QUIET);
247 
248 	bio_advance(bio, nbytes);
249 
250 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
251 		/*
252 		 * Partial zone append completions cannot be supported as the
253 		 * BIO fragments may end up not being written sequentially.
254 		 */
255 		if (bio->bi_iter.bi_size)
256 			bio->bi_status = BLK_STS_IOERR;
257 		else
258 			bio->bi_iter.bi_sector = rq->__sector;
259 	}
260 
261 	/* don't actually finish bio if it's part of flush sequence */
262 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
263 		bio_endio(bio);
264 }
265 
266 void blk_dump_rq_flags(struct request *rq, char *msg)
267 {
268 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
269 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
270 		(unsigned long long) rq->cmd_flags);
271 
272 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
273 	       (unsigned long long)blk_rq_pos(rq),
274 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
275 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
276 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
277 }
278 EXPORT_SYMBOL(blk_dump_rq_flags);
279 
280 /**
281  * blk_sync_queue - cancel any pending callbacks on a queue
282  * @q: the queue
283  *
284  * Description:
285  *     The block layer may perform asynchronous callback activity
286  *     on a queue, such as calling the unplug function after a timeout.
287  *     A block device may call blk_sync_queue to ensure that any
288  *     such activity is cancelled, thus allowing it to release resources
289  *     that the callbacks might use. The caller must already have made sure
290  *     that its ->submit_bio will not re-add plugging prior to calling
291  *     this function.
292  *
293  *     This function does not cancel any asynchronous activity arising
294  *     out of elevator or throttling code. That would require elevator_exit()
295  *     and blkcg_exit_queue() to be called with queue lock initialized.
296  *
297  */
298 void blk_sync_queue(struct request_queue *q)
299 {
300 	del_timer_sync(&q->timeout);
301 	cancel_work_sync(&q->timeout_work);
302 }
303 EXPORT_SYMBOL(blk_sync_queue);
304 
305 /**
306  * blk_set_pm_only - increment pm_only counter
307  * @q: request queue pointer
308  */
309 void blk_set_pm_only(struct request_queue *q)
310 {
311 	atomic_inc(&q->pm_only);
312 }
313 EXPORT_SYMBOL_GPL(blk_set_pm_only);
314 
315 void blk_clear_pm_only(struct request_queue *q)
316 {
317 	int pm_only;
318 
319 	pm_only = atomic_dec_return(&q->pm_only);
320 	WARN_ON_ONCE(pm_only < 0);
321 	if (pm_only == 0)
322 		wake_up_all(&q->mq_freeze_wq);
323 }
324 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
325 
326 /**
327  * blk_put_queue - decrement the request_queue refcount
328  * @q: the request_queue structure to decrement the refcount for
329  *
330  * Decrements the refcount of the request_queue kobject. When this reaches 0
331  * we'll have blk_release_queue() called.
332  *
333  * Context: Any context, but the last reference must not be dropped from
334  *          atomic context.
335  */
336 void blk_put_queue(struct request_queue *q)
337 {
338 	kobject_put(&q->kobj);
339 }
340 EXPORT_SYMBOL(blk_put_queue);
341 
342 void blk_set_queue_dying(struct request_queue *q)
343 {
344 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
345 
346 	/*
347 	 * When queue DYING flag is set, we need to block new req
348 	 * entering queue, so we call blk_freeze_queue_start() to
349 	 * prevent I/O from crossing blk_queue_enter().
350 	 */
351 	blk_freeze_queue_start(q);
352 
353 	if (queue_is_mq(q))
354 		blk_mq_wake_waiters(q);
355 
356 	/* Make blk_queue_enter() reexamine the DYING flag. */
357 	wake_up_all(&q->mq_freeze_wq);
358 }
359 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
360 
361 /**
362  * blk_cleanup_queue - shutdown a request queue
363  * @q: request queue to shutdown
364  *
365  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
366  * put it.  All future requests will be failed immediately with -ENODEV.
367  *
368  * Context: can sleep
369  */
370 void blk_cleanup_queue(struct request_queue *q)
371 {
372 	/* cannot be called from atomic context */
373 	might_sleep();
374 
375 	WARN_ON_ONCE(blk_queue_registered(q));
376 
377 	/* mark @q DYING, no new request or merges will be allowed afterwards */
378 	blk_set_queue_dying(q);
379 
380 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
381 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
382 
383 	/*
384 	 * Drain all requests queued before DYING marking. Set DEAD flag to
385 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
386 	 * after draining finished.
387 	 */
388 	blk_freeze_queue(q);
389 
390 	rq_qos_exit(q);
391 
392 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
393 
394 	/* for synchronous bio-based driver finish in-flight integrity i/o */
395 	blk_flush_integrity();
396 
397 	/* @q won't process any more request, flush async actions */
398 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
399 	blk_sync_queue(q);
400 
401 	if (queue_is_mq(q))
402 		blk_mq_exit_queue(q);
403 
404 	/*
405 	 * In theory, request pool of sched_tags belongs to request queue.
406 	 * However, the current implementation requires tag_set for freeing
407 	 * requests, so free the pool now.
408 	 *
409 	 * Queue has become frozen, there can't be any in-queue requests, so
410 	 * it is safe to free requests now.
411 	 */
412 	mutex_lock(&q->sysfs_lock);
413 	if (q->elevator)
414 		blk_mq_sched_free_requests(q);
415 	mutex_unlock(&q->sysfs_lock);
416 
417 	percpu_ref_exit(&q->q_usage_counter);
418 
419 	/* @q is and will stay empty, shutdown and put */
420 	blk_put_queue(q);
421 }
422 EXPORT_SYMBOL(blk_cleanup_queue);
423 
424 /**
425  * blk_queue_enter() - try to increase q->q_usage_counter
426  * @q: request queue pointer
427  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
428  */
429 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
430 {
431 	const bool pm = flags & BLK_MQ_REQ_PM;
432 
433 	while (true) {
434 		bool success = false;
435 
436 		rcu_read_lock();
437 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
438 			/*
439 			 * The code that increments the pm_only counter is
440 			 * responsible for ensuring that that counter is
441 			 * globally visible before the queue is unfrozen.
442 			 */
443 			if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
444 			    !blk_queue_pm_only(q)) {
445 				success = true;
446 			} else {
447 				percpu_ref_put(&q->q_usage_counter);
448 			}
449 		}
450 		rcu_read_unlock();
451 
452 		if (success)
453 			return 0;
454 
455 		if (flags & BLK_MQ_REQ_NOWAIT)
456 			return -EBUSY;
457 
458 		/*
459 		 * read pair of barrier in blk_freeze_queue_start(),
460 		 * we need to order reading __PERCPU_REF_DEAD flag of
461 		 * .q_usage_counter and reading .mq_freeze_depth or
462 		 * queue dying flag, otherwise the following wait may
463 		 * never return if the two reads are reordered.
464 		 */
465 		smp_rmb();
466 
467 		wait_event(q->mq_freeze_wq,
468 			   (!q->mq_freeze_depth &&
469 			    blk_pm_resume_queue(pm, q)) ||
470 			   blk_queue_dying(q));
471 		if (blk_queue_dying(q))
472 			return -ENODEV;
473 	}
474 }
475 
476 static inline int bio_queue_enter(struct bio *bio)
477 {
478 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
479 	bool nowait = bio->bi_opf & REQ_NOWAIT;
480 	int ret;
481 
482 	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
483 	if (unlikely(ret)) {
484 		if (nowait && !blk_queue_dying(q))
485 			bio_wouldblock_error(bio);
486 		else
487 			bio_io_error(bio);
488 	}
489 
490 	return ret;
491 }
492 
493 void blk_queue_exit(struct request_queue *q)
494 {
495 	percpu_ref_put(&q->q_usage_counter);
496 }
497 
498 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
499 {
500 	struct request_queue *q =
501 		container_of(ref, struct request_queue, q_usage_counter);
502 
503 	wake_up_all(&q->mq_freeze_wq);
504 }
505 
506 static void blk_rq_timed_out_timer(struct timer_list *t)
507 {
508 	struct request_queue *q = from_timer(q, t, timeout);
509 
510 	kblockd_schedule_work(&q->timeout_work);
511 }
512 
513 static void blk_timeout_work(struct work_struct *work)
514 {
515 }
516 
517 struct request_queue *blk_alloc_queue(int node_id)
518 {
519 	struct request_queue *q;
520 	int ret;
521 
522 	q = kmem_cache_alloc_node(blk_requestq_cachep,
523 				GFP_KERNEL | __GFP_ZERO, node_id);
524 	if (!q)
525 		return NULL;
526 
527 	q->last_merge = NULL;
528 
529 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
530 	if (q->id < 0)
531 		goto fail_q;
532 
533 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
534 	if (ret)
535 		goto fail_id;
536 
537 	q->backing_dev_info = bdi_alloc(node_id);
538 	if (!q->backing_dev_info)
539 		goto fail_split;
540 
541 	q->stats = blk_alloc_queue_stats();
542 	if (!q->stats)
543 		goto fail_stats;
544 
545 	q->node = node_id;
546 
547 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
548 
549 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
550 		    laptop_mode_timer_fn, 0);
551 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
552 	INIT_WORK(&q->timeout_work, blk_timeout_work);
553 	INIT_LIST_HEAD(&q->icq_list);
554 #ifdef CONFIG_BLK_CGROUP
555 	INIT_LIST_HEAD(&q->blkg_list);
556 #endif
557 
558 	kobject_init(&q->kobj, &blk_queue_ktype);
559 
560 	mutex_init(&q->debugfs_mutex);
561 	mutex_init(&q->sysfs_lock);
562 	mutex_init(&q->sysfs_dir_lock);
563 	spin_lock_init(&q->queue_lock);
564 
565 	init_waitqueue_head(&q->mq_freeze_wq);
566 	mutex_init(&q->mq_freeze_lock);
567 
568 	/*
569 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
570 	 * See blk_register_queue() for details.
571 	 */
572 	if (percpu_ref_init(&q->q_usage_counter,
573 				blk_queue_usage_counter_release,
574 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
575 		goto fail_bdi;
576 
577 	if (blkcg_init_queue(q))
578 		goto fail_ref;
579 
580 	blk_queue_dma_alignment(q, 511);
581 	blk_set_default_limits(&q->limits);
582 	q->nr_requests = BLKDEV_MAX_RQ;
583 
584 	return q;
585 
586 fail_ref:
587 	percpu_ref_exit(&q->q_usage_counter);
588 fail_bdi:
589 	blk_free_queue_stats(q->stats);
590 fail_stats:
591 	bdi_put(q->backing_dev_info);
592 fail_split:
593 	bioset_exit(&q->bio_split);
594 fail_id:
595 	ida_simple_remove(&blk_queue_ida, q->id);
596 fail_q:
597 	kmem_cache_free(blk_requestq_cachep, q);
598 	return NULL;
599 }
600 
601 /**
602  * blk_get_queue - increment the request_queue refcount
603  * @q: the request_queue structure to increment the refcount for
604  *
605  * Increment the refcount of the request_queue kobject.
606  *
607  * Context: Any context.
608  */
609 bool blk_get_queue(struct request_queue *q)
610 {
611 	if (likely(!blk_queue_dying(q))) {
612 		__blk_get_queue(q);
613 		return true;
614 	}
615 
616 	return false;
617 }
618 EXPORT_SYMBOL(blk_get_queue);
619 
620 /**
621  * blk_get_request - allocate a request
622  * @q: request queue to allocate a request for
623  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
624  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
625  */
626 struct request *blk_get_request(struct request_queue *q, unsigned int op,
627 				blk_mq_req_flags_t flags)
628 {
629 	struct request *req;
630 
631 	WARN_ON_ONCE(op & REQ_NOWAIT);
632 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
633 
634 	req = blk_mq_alloc_request(q, op, flags);
635 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
636 		q->mq_ops->initialize_rq_fn(req);
637 
638 	return req;
639 }
640 EXPORT_SYMBOL(blk_get_request);
641 
642 void blk_put_request(struct request *req)
643 {
644 	blk_mq_free_request(req);
645 }
646 EXPORT_SYMBOL(blk_put_request);
647 
648 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
649 {
650 	char b[BDEVNAME_SIZE];
651 
652 	pr_info_ratelimited("attempt to access beyond end of device\n"
653 			    "%s: rw=%d, want=%llu, limit=%llu\n",
654 			    bio_devname(bio, b), bio->bi_opf,
655 			    bio_end_sector(bio), maxsector);
656 }
657 
658 #ifdef CONFIG_FAIL_MAKE_REQUEST
659 
660 static DECLARE_FAULT_ATTR(fail_make_request);
661 
662 static int __init setup_fail_make_request(char *str)
663 {
664 	return setup_fault_attr(&fail_make_request, str);
665 }
666 __setup("fail_make_request=", setup_fail_make_request);
667 
668 static bool should_fail_request(struct block_device *part, unsigned int bytes)
669 {
670 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
671 }
672 
673 static int __init fail_make_request_debugfs(void)
674 {
675 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
676 						NULL, &fail_make_request);
677 
678 	return PTR_ERR_OR_ZERO(dir);
679 }
680 
681 late_initcall(fail_make_request_debugfs);
682 
683 #else /* CONFIG_FAIL_MAKE_REQUEST */
684 
685 static inline bool should_fail_request(struct block_device *part,
686 					unsigned int bytes)
687 {
688 	return false;
689 }
690 
691 #endif /* CONFIG_FAIL_MAKE_REQUEST */
692 
693 static inline bool bio_check_ro(struct bio *bio)
694 {
695 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
696 		char b[BDEVNAME_SIZE];
697 
698 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
699 			return false;
700 
701 		WARN_ONCE(1,
702 		       "Trying to write to read-only block-device %s (partno %d)\n",
703 			bio_devname(bio, b), bio->bi_bdev->bd_partno);
704 		/* Older lvm-tools actually trigger this */
705 		return false;
706 	}
707 
708 	return false;
709 }
710 
711 static noinline int should_fail_bio(struct bio *bio)
712 {
713 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
714 		return -EIO;
715 	return 0;
716 }
717 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
718 
719 /*
720  * Check whether this bio extends beyond the end of the device or partition.
721  * This may well happen - the kernel calls bread() without checking the size of
722  * the device, e.g., when mounting a file system.
723  */
724 static inline int bio_check_eod(struct bio *bio)
725 {
726 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
727 	unsigned int nr_sectors = bio_sectors(bio);
728 
729 	if (nr_sectors && maxsector &&
730 	    (nr_sectors > maxsector ||
731 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
732 		handle_bad_sector(bio, maxsector);
733 		return -EIO;
734 	}
735 	return 0;
736 }
737 
738 /*
739  * Remap block n of partition p to block n+start(p) of the disk.
740  */
741 static int blk_partition_remap(struct bio *bio)
742 {
743 	struct block_device *p = bio->bi_bdev;
744 
745 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
746 		return -EIO;
747 	if (bio_sectors(bio)) {
748 		bio->bi_iter.bi_sector += p->bd_start_sect;
749 		trace_block_bio_remap(bio, p->bd_dev,
750 				      bio->bi_iter.bi_sector -
751 				      p->bd_start_sect);
752 	}
753 	bio_set_flag(bio, BIO_REMAPPED);
754 	return 0;
755 }
756 
757 /*
758  * Check write append to a zoned block device.
759  */
760 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
761 						 struct bio *bio)
762 {
763 	sector_t pos = bio->bi_iter.bi_sector;
764 	int nr_sectors = bio_sectors(bio);
765 
766 	/* Only applicable to zoned block devices */
767 	if (!blk_queue_is_zoned(q))
768 		return BLK_STS_NOTSUPP;
769 
770 	/* The bio sector must point to the start of a sequential zone */
771 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
772 	    !blk_queue_zone_is_seq(q, pos))
773 		return BLK_STS_IOERR;
774 
775 	/*
776 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
777 	 * split and could result in non-contiguous sectors being written in
778 	 * different zones.
779 	 */
780 	if (nr_sectors > q->limits.chunk_sectors)
781 		return BLK_STS_IOERR;
782 
783 	/* Make sure the BIO is small enough and will not get split */
784 	if (nr_sectors > q->limits.max_zone_append_sectors)
785 		return BLK_STS_IOERR;
786 
787 	bio->bi_opf |= REQ_NOMERGE;
788 
789 	return BLK_STS_OK;
790 }
791 
792 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
793 {
794 	struct block_device *bdev = bio->bi_bdev;
795 	struct request_queue *q = bdev->bd_disk->queue;
796 	blk_status_t status = BLK_STS_IOERR;
797 	struct blk_plug *plug;
798 
799 	might_sleep();
800 
801 	plug = blk_mq_plug(q, bio);
802 	if (plug && plug->nowait)
803 		bio->bi_opf |= REQ_NOWAIT;
804 
805 	/*
806 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
807 	 * if queue does not support NOWAIT.
808 	 */
809 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
810 		goto not_supported;
811 
812 	if (should_fail_bio(bio))
813 		goto end_io;
814 	if (unlikely(bio_check_ro(bio)))
815 		goto end_io;
816 	if (!bio_flagged(bio, BIO_REMAPPED)) {
817 		if (unlikely(bio_check_eod(bio)))
818 			goto end_io;
819 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
820 			goto end_io;
821 	}
822 
823 	/*
824 	 * Filter flush bio's early so that bio based drivers without flush
825 	 * support don't have to worry about them.
826 	 */
827 	if (op_is_flush(bio->bi_opf) &&
828 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
829 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
830 		if (!bio_sectors(bio)) {
831 			status = BLK_STS_OK;
832 			goto end_io;
833 		}
834 	}
835 
836 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
837 		bio->bi_opf &= ~REQ_HIPRI;
838 
839 	switch (bio_op(bio)) {
840 	case REQ_OP_DISCARD:
841 		if (!blk_queue_discard(q))
842 			goto not_supported;
843 		break;
844 	case REQ_OP_SECURE_ERASE:
845 		if (!blk_queue_secure_erase(q))
846 			goto not_supported;
847 		break;
848 	case REQ_OP_WRITE_SAME:
849 		if (!q->limits.max_write_same_sectors)
850 			goto not_supported;
851 		break;
852 	case REQ_OP_ZONE_APPEND:
853 		status = blk_check_zone_append(q, bio);
854 		if (status != BLK_STS_OK)
855 			goto end_io;
856 		break;
857 	case REQ_OP_ZONE_RESET:
858 	case REQ_OP_ZONE_OPEN:
859 	case REQ_OP_ZONE_CLOSE:
860 	case REQ_OP_ZONE_FINISH:
861 		if (!blk_queue_is_zoned(q))
862 			goto not_supported;
863 		break;
864 	case REQ_OP_ZONE_RESET_ALL:
865 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
866 			goto not_supported;
867 		break;
868 	case REQ_OP_WRITE_ZEROES:
869 		if (!q->limits.max_write_zeroes_sectors)
870 			goto not_supported;
871 		break;
872 	default:
873 		break;
874 	}
875 
876 	/*
877 	 * Various block parts want %current->io_context, so allocate it up
878 	 * front rather than dealing with lots of pain to allocate it only
879 	 * where needed. This may fail and the block layer knows how to live
880 	 * with it.
881 	 */
882 	if (unlikely(!current->io_context))
883 		create_task_io_context(current, GFP_ATOMIC, q->node);
884 
885 	if (blk_throtl_bio(bio)) {
886 		blkcg_bio_issue_init(bio);
887 		return false;
888 	}
889 
890 	blk_cgroup_bio_start(bio);
891 	blkcg_bio_issue_init(bio);
892 
893 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
894 		trace_block_bio_queue(bio);
895 		/* Now that enqueuing has been traced, we need to trace
896 		 * completion as well.
897 		 */
898 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
899 	}
900 	return true;
901 
902 not_supported:
903 	status = BLK_STS_NOTSUPP;
904 end_io:
905 	bio->bi_status = status;
906 	bio_endio(bio);
907 	return false;
908 }
909 
910 static blk_qc_t __submit_bio(struct bio *bio)
911 {
912 	struct gendisk *disk = bio->bi_bdev->bd_disk;
913 	blk_qc_t ret = BLK_QC_T_NONE;
914 
915 	if (blk_crypto_bio_prep(&bio)) {
916 		if (!disk->fops->submit_bio)
917 			return blk_mq_submit_bio(bio);
918 		ret = disk->fops->submit_bio(bio);
919 	}
920 	blk_queue_exit(disk->queue);
921 	return ret;
922 }
923 
924 /*
925  * The loop in this function may be a bit non-obvious, and so deserves some
926  * explanation:
927  *
928  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
929  *    that), so we have a list with a single bio.
930  *  - We pretend that we have just taken it off a longer list, so we assign
931  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
932  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
933  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
934  *    non-NULL value in bio_list and re-enter the loop from the top.
935  *  - In this case we really did just take the bio of the top of the list (no
936  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
937  *    again.
938  *
939  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
940  * bio_list_on_stack[1] contains bios that were submitted before the current
941  *	->submit_bio_bio, but that haven't been processed yet.
942  */
943 static blk_qc_t __submit_bio_noacct(struct bio *bio)
944 {
945 	struct bio_list bio_list_on_stack[2];
946 	blk_qc_t ret = BLK_QC_T_NONE;
947 
948 	BUG_ON(bio->bi_next);
949 
950 	bio_list_init(&bio_list_on_stack[0]);
951 	current->bio_list = bio_list_on_stack;
952 
953 	do {
954 		struct request_queue *q = bio->bi_bdev->bd_disk->queue;
955 		struct bio_list lower, same;
956 
957 		if (unlikely(bio_queue_enter(bio) != 0))
958 			continue;
959 
960 		/*
961 		 * Create a fresh bio_list for all subordinate requests.
962 		 */
963 		bio_list_on_stack[1] = bio_list_on_stack[0];
964 		bio_list_init(&bio_list_on_stack[0]);
965 
966 		ret = __submit_bio(bio);
967 
968 		/*
969 		 * Sort new bios into those for a lower level and those for the
970 		 * same level.
971 		 */
972 		bio_list_init(&lower);
973 		bio_list_init(&same);
974 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
975 			if (q == bio->bi_bdev->bd_disk->queue)
976 				bio_list_add(&same, bio);
977 			else
978 				bio_list_add(&lower, bio);
979 
980 		/*
981 		 * Now assemble so we handle the lowest level first.
982 		 */
983 		bio_list_merge(&bio_list_on_stack[0], &lower);
984 		bio_list_merge(&bio_list_on_stack[0], &same);
985 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
986 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
987 
988 	current->bio_list = NULL;
989 	return ret;
990 }
991 
992 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
993 {
994 	struct bio_list bio_list[2] = { };
995 	blk_qc_t ret = BLK_QC_T_NONE;
996 
997 	current->bio_list = bio_list;
998 
999 	do {
1000 		struct gendisk *disk = bio->bi_bdev->bd_disk;
1001 
1002 		if (unlikely(bio_queue_enter(bio) != 0))
1003 			continue;
1004 
1005 		if (!blk_crypto_bio_prep(&bio)) {
1006 			blk_queue_exit(disk->queue);
1007 			ret = BLK_QC_T_NONE;
1008 			continue;
1009 		}
1010 
1011 		ret = blk_mq_submit_bio(bio);
1012 	} while ((bio = bio_list_pop(&bio_list[0])));
1013 
1014 	current->bio_list = NULL;
1015 	return ret;
1016 }
1017 
1018 /**
1019  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1020  * @bio:  The bio describing the location in memory and on the device.
1021  *
1022  * This is a version of submit_bio() that shall only be used for I/O that is
1023  * resubmitted to lower level drivers by stacking block drivers.  All file
1024  * systems and other upper level users of the block layer should use
1025  * submit_bio() instead.
1026  */
1027 blk_qc_t submit_bio_noacct(struct bio *bio)
1028 {
1029 	if (!submit_bio_checks(bio))
1030 		return BLK_QC_T_NONE;
1031 
1032 	/*
1033 	 * We only want one ->submit_bio to be active at a time, else stack
1034 	 * usage with stacked devices could be a problem.  Use current->bio_list
1035 	 * to collect a list of requests submited by a ->submit_bio method while
1036 	 * it is active, and then process them after it returned.
1037 	 */
1038 	if (current->bio_list) {
1039 		bio_list_add(&current->bio_list[0], bio);
1040 		return BLK_QC_T_NONE;
1041 	}
1042 
1043 	if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1044 		return __submit_bio_noacct_mq(bio);
1045 	return __submit_bio_noacct(bio);
1046 }
1047 EXPORT_SYMBOL(submit_bio_noacct);
1048 
1049 /**
1050  * submit_bio - submit a bio to the block device layer for I/O
1051  * @bio: The &struct bio which describes the I/O
1052  *
1053  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1054  * fully set up &struct bio that describes the I/O that needs to be done.  The
1055  * bio will be send to the device described by the bi_bdev field.
1056  *
1057  * The success/failure status of the request, along with notification of
1058  * completion, is delivered asynchronously through the ->bi_end_io() callback
1059  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1060  * been called.
1061  */
1062 blk_qc_t submit_bio(struct bio *bio)
1063 {
1064 	if (blkcg_punt_bio_submit(bio))
1065 		return BLK_QC_T_NONE;
1066 
1067 	/*
1068 	 * If it's a regular read/write or a barrier with data attached,
1069 	 * go through the normal accounting stuff before submission.
1070 	 */
1071 	if (bio_has_data(bio)) {
1072 		unsigned int count;
1073 
1074 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1075 			count = queue_logical_block_size(
1076 					bio->bi_bdev->bd_disk->queue) >> 9;
1077 		else
1078 			count = bio_sectors(bio);
1079 
1080 		if (op_is_write(bio_op(bio))) {
1081 			count_vm_events(PGPGOUT, count);
1082 		} else {
1083 			task_io_account_read(bio->bi_iter.bi_size);
1084 			count_vm_events(PGPGIN, count);
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * If we're reading data that is part of the userspace workingset, count
1090 	 * submission time as memory stall.  When the device is congested, or
1091 	 * the submitting cgroup IO-throttled, submission can be a significant
1092 	 * part of overall IO time.
1093 	 */
1094 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1095 	    bio_flagged(bio, BIO_WORKINGSET))) {
1096 		unsigned long pflags;
1097 		blk_qc_t ret;
1098 
1099 		psi_memstall_enter(&pflags);
1100 		ret = submit_bio_noacct(bio);
1101 		psi_memstall_leave(&pflags);
1102 
1103 		return ret;
1104 	}
1105 
1106 	return submit_bio_noacct(bio);
1107 }
1108 EXPORT_SYMBOL(submit_bio);
1109 
1110 /**
1111  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1112  *                              for the new queue limits
1113  * @q:  the queue
1114  * @rq: the request being checked
1115  *
1116  * Description:
1117  *    @rq may have been made based on weaker limitations of upper-level queues
1118  *    in request stacking drivers, and it may violate the limitation of @q.
1119  *    Since the block layer and the underlying device driver trust @rq
1120  *    after it is inserted to @q, it should be checked against @q before
1121  *    the insertion using this generic function.
1122  *
1123  *    Request stacking drivers like request-based dm may change the queue
1124  *    limits when retrying requests on other queues. Those requests need
1125  *    to be checked against the new queue limits again during dispatch.
1126  */
1127 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1128 				      struct request *rq)
1129 {
1130 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1131 
1132 	if (blk_rq_sectors(rq) > max_sectors) {
1133 		/*
1134 		 * SCSI device does not have a good way to return if
1135 		 * Write Same/Zero is actually supported. If a device rejects
1136 		 * a non-read/write command (discard, write same,etc.) the
1137 		 * low-level device driver will set the relevant queue limit to
1138 		 * 0 to prevent blk-lib from issuing more of the offending
1139 		 * operations. Commands queued prior to the queue limit being
1140 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1141 		 * errors being propagated to upper layers.
1142 		 */
1143 		if (max_sectors == 0)
1144 			return BLK_STS_NOTSUPP;
1145 
1146 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1147 			__func__, blk_rq_sectors(rq), max_sectors);
1148 		return BLK_STS_IOERR;
1149 	}
1150 
1151 	/*
1152 	 * The queue settings related to segment counting may differ from the
1153 	 * original queue.
1154 	 */
1155 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1156 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1157 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1158 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1159 		return BLK_STS_IOERR;
1160 	}
1161 
1162 	return BLK_STS_OK;
1163 }
1164 
1165 /**
1166  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1167  * @q:  the queue to submit the request
1168  * @rq: the request being queued
1169  */
1170 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1171 {
1172 	blk_status_t ret;
1173 
1174 	ret = blk_cloned_rq_check_limits(q, rq);
1175 	if (ret != BLK_STS_OK)
1176 		return ret;
1177 
1178 	if (rq->rq_disk &&
1179 	    should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1180 		return BLK_STS_IOERR;
1181 
1182 	if (blk_crypto_insert_cloned_request(rq))
1183 		return BLK_STS_IOERR;
1184 
1185 	if (blk_queue_io_stat(q))
1186 		blk_account_io_start(rq);
1187 
1188 	/*
1189 	 * Since we have a scheduler attached on the top device,
1190 	 * bypass a potential scheduler on the bottom device for
1191 	 * insert.
1192 	 */
1193 	return blk_mq_request_issue_directly(rq, true);
1194 }
1195 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1196 
1197 /**
1198  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1199  * @rq: request to examine
1200  *
1201  * Description:
1202  *     A request could be merge of IOs which require different failure
1203  *     handling.  This function determines the number of bytes which
1204  *     can be failed from the beginning of the request without
1205  *     crossing into area which need to be retried further.
1206  *
1207  * Return:
1208  *     The number of bytes to fail.
1209  */
1210 unsigned int blk_rq_err_bytes(const struct request *rq)
1211 {
1212 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1213 	unsigned int bytes = 0;
1214 	struct bio *bio;
1215 
1216 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1217 		return blk_rq_bytes(rq);
1218 
1219 	/*
1220 	 * Currently the only 'mixing' which can happen is between
1221 	 * different fastfail types.  We can safely fail portions
1222 	 * which have all the failfast bits that the first one has -
1223 	 * the ones which are at least as eager to fail as the first
1224 	 * one.
1225 	 */
1226 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1227 		if ((bio->bi_opf & ff) != ff)
1228 			break;
1229 		bytes += bio->bi_iter.bi_size;
1230 	}
1231 
1232 	/* this could lead to infinite loop */
1233 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1234 	return bytes;
1235 }
1236 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1237 
1238 static void update_io_ticks(struct block_device *part, unsigned long now,
1239 		bool end)
1240 {
1241 	unsigned long stamp;
1242 again:
1243 	stamp = READ_ONCE(part->bd_stamp);
1244 	if (unlikely(time_after(now, stamp))) {
1245 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1246 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1247 	}
1248 	if (part->bd_partno) {
1249 		part = bdev_whole(part);
1250 		goto again;
1251 	}
1252 }
1253 
1254 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1255 {
1256 	if (req->part && blk_do_io_stat(req)) {
1257 		const int sgrp = op_stat_group(req_op(req));
1258 
1259 		part_stat_lock();
1260 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1261 		part_stat_unlock();
1262 	}
1263 }
1264 
1265 void blk_account_io_done(struct request *req, u64 now)
1266 {
1267 	/*
1268 	 * Account IO completion.  flush_rq isn't accounted as a
1269 	 * normal IO on queueing nor completion.  Accounting the
1270 	 * containing request is enough.
1271 	 */
1272 	if (req->part && blk_do_io_stat(req) &&
1273 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1274 		const int sgrp = op_stat_group(req_op(req));
1275 
1276 		part_stat_lock();
1277 		update_io_ticks(req->part, jiffies, true);
1278 		part_stat_inc(req->part, ios[sgrp]);
1279 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1280 		part_stat_unlock();
1281 	}
1282 }
1283 
1284 void blk_account_io_start(struct request *rq)
1285 {
1286 	if (!blk_do_io_stat(rq))
1287 		return;
1288 
1289 	/* passthrough requests can hold bios that do not have ->bi_bdev set */
1290 	if (rq->bio && rq->bio->bi_bdev)
1291 		rq->part = rq->bio->bi_bdev;
1292 	else
1293 		rq->part = rq->rq_disk->part0;
1294 
1295 	part_stat_lock();
1296 	update_io_ticks(rq->part, jiffies, false);
1297 	part_stat_unlock();
1298 }
1299 
1300 static unsigned long __part_start_io_acct(struct block_device *part,
1301 					  unsigned int sectors, unsigned int op)
1302 {
1303 	const int sgrp = op_stat_group(op);
1304 	unsigned long now = READ_ONCE(jiffies);
1305 
1306 	part_stat_lock();
1307 	update_io_ticks(part, now, false);
1308 	part_stat_inc(part, ios[sgrp]);
1309 	part_stat_add(part, sectors[sgrp], sectors);
1310 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1311 	part_stat_unlock();
1312 
1313 	return now;
1314 }
1315 
1316 /**
1317  * bio_start_io_acct - start I/O accounting for bio based drivers
1318  * @bio:	bio to start account for
1319  *
1320  * Returns the start time that should be passed back to bio_end_io_acct().
1321  */
1322 unsigned long bio_start_io_acct(struct bio *bio)
1323 {
1324 	return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1325 }
1326 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1327 
1328 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1329 				 unsigned int op)
1330 {
1331 	return __part_start_io_acct(disk->part0, sectors, op);
1332 }
1333 EXPORT_SYMBOL(disk_start_io_acct);
1334 
1335 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1336 			       unsigned long start_time)
1337 {
1338 	const int sgrp = op_stat_group(op);
1339 	unsigned long now = READ_ONCE(jiffies);
1340 	unsigned long duration = now - start_time;
1341 
1342 	part_stat_lock();
1343 	update_io_ticks(part, now, true);
1344 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1345 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1346 	part_stat_unlock();
1347 }
1348 
1349 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1350 		struct block_device *orig_bdev)
1351 {
1352 	__part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1353 }
1354 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1355 
1356 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1357 		      unsigned long start_time)
1358 {
1359 	__part_end_io_acct(disk->part0, op, start_time);
1360 }
1361 EXPORT_SYMBOL(disk_end_io_acct);
1362 
1363 /*
1364  * Steal bios from a request and add them to a bio list.
1365  * The request must not have been partially completed before.
1366  */
1367 void blk_steal_bios(struct bio_list *list, struct request *rq)
1368 {
1369 	if (rq->bio) {
1370 		if (list->tail)
1371 			list->tail->bi_next = rq->bio;
1372 		else
1373 			list->head = rq->bio;
1374 		list->tail = rq->biotail;
1375 
1376 		rq->bio = NULL;
1377 		rq->biotail = NULL;
1378 	}
1379 
1380 	rq->__data_len = 0;
1381 }
1382 EXPORT_SYMBOL_GPL(blk_steal_bios);
1383 
1384 /**
1385  * blk_update_request - Complete multiple bytes without completing the request
1386  * @req:      the request being processed
1387  * @error:    block status code
1388  * @nr_bytes: number of bytes to complete for @req
1389  *
1390  * Description:
1391  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1392  *     the request structure even if @req doesn't have leftover.
1393  *     If @req has leftover, sets it up for the next range of segments.
1394  *
1395  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1396  *     %false return from this function.
1397  *
1398  * Note:
1399  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1400  *      except in the consistency check at the end of this function.
1401  *
1402  * Return:
1403  *     %false - this request doesn't have any more data
1404  *     %true  - this request has more data
1405  **/
1406 bool blk_update_request(struct request *req, blk_status_t error,
1407 		unsigned int nr_bytes)
1408 {
1409 	int total_bytes;
1410 
1411 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1412 
1413 	if (!req->bio)
1414 		return false;
1415 
1416 #ifdef CONFIG_BLK_DEV_INTEGRITY
1417 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1418 	    error == BLK_STS_OK)
1419 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1420 #endif
1421 
1422 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1423 		     !(req->rq_flags & RQF_QUIET)))
1424 		print_req_error(req, error, __func__);
1425 
1426 	blk_account_io_completion(req, nr_bytes);
1427 
1428 	total_bytes = 0;
1429 	while (req->bio) {
1430 		struct bio *bio = req->bio;
1431 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1432 
1433 		if (bio_bytes == bio->bi_iter.bi_size)
1434 			req->bio = bio->bi_next;
1435 
1436 		/* Completion has already been traced */
1437 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1438 		req_bio_endio(req, bio, bio_bytes, error);
1439 
1440 		total_bytes += bio_bytes;
1441 		nr_bytes -= bio_bytes;
1442 
1443 		if (!nr_bytes)
1444 			break;
1445 	}
1446 
1447 	/*
1448 	 * completely done
1449 	 */
1450 	if (!req->bio) {
1451 		/*
1452 		 * Reset counters so that the request stacking driver
1453 		 * can find how many bytes remain in the request
1454 		 * later.
1455 		 */
1456 		req->__data_len = 0;
1457 		return false;
1458 	}
1459 
1460 	req->__data_len -= total_bytes;
1461 
1462 	/* update sector only for requests with clear definition of sector */
1463 	if (!blk_rq_is_passthrough(req))
1464 		req->__sector += total_bytes >> 9;
1465 
1466 	/* mixed attributes always follow the first bio */
1467 	if (req->rq_flags & RQF_MIXED_MERGE) {
1468 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1469 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1470 	}
1471 
1472 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1473 		/*
1474 		 * If total number of sectors is less than the first segment
1475 		 * size, something has gone terribly wrong.
1476 		 */
1477 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1478 			blk_dump_rq_flags(req, "request botched");
1479 			req->__data_len = blk_rq_cur_bytes(req);
1480 		}
1481 
1482 		/* recalculate the number of segments */
1483 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1484 	}
1485 
1486 	return true;
1487 }
1488 EXPORT_SYMBOL_GPL(blk_update_request);
1489 
1490 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1491 /**
1492  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1493  * @rq: the request to be flushed
1494  *
1495  * Description:
1496  *     Flush all pages in @rq.
1497  */
1498 void rq_flush_dcache_pages(struct request *rq)
1499 {
1500 	struct req_iterator iter;
1501 	struct bio_vec bvec;
1502 
1503 	rq_for_each_segment(bvec, rq, iter)
1504 		flush_dcache_page(bvec.bv_page);
1505 }
1506 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1507 #endif
1508 
1509 /**
1510  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1511  * @q : the queue of the device being checked
1512  *
1513  * Description:
1514  *    Check if underlying low-level drivers of a device are busy.
1515  *    If the drivers want to export their busy state, they must set own
1516  *    exporting function using blk_queue_lld_busy() first.
1517  *
1518  *    Basically, this function is used only by request stacking drivers
1519  *    to stop dispatching requests to underlying devices when underlying
1520  *    devices are busy.  This behavior helps more I/O merging on the queue
1521  *    of the request stacking driver and prevents I/O throughput regression
1522  *    on burst I/O load.
1523  *
1524  * Return:
1525  *    0 - Not busy (The request stacking driver should dispatch request)
1526  *    1 - Busy (The request stacking driver should stop dispatching request)
1527  */
1528 int blk_lld_busy(struct request_queue *q)
1529 {
1530 	if (queue_is_mq(q) && q->mq_ops->busy)
1531 		return q->mq_ops->busy(q);
1532 
1533 	return 0;
1534 }
1535 EXPORT_SYMBOL_GPL(blk_lld_busy);
1536 
1537 /**
1538  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1539  * @rq: the clone request to be cleaned up
1540  *
1541  * Description:
1542  *     Free all bios in @rq for a cloned request.
1543  */
1544 void blk_rq_unprep_clone(struct request *rq)
1545 {
1546 	struct bio *bio;
1547 
1548 	while ((bio = rq->bio) != NULL) {
1549 		rq->bio = bio->bi_next;
1550 
1551 		bio_put(bio);
1552 	}
1553 }
1554 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1555 
1556 /**
1557  * blk_rq_prep_clone - Helper function to setup clone request
1558  * @rq: the request to be setup
1559  * @rq_src: original request to be cloned
1560  * @bs: bio_set that bios for clone are allocated from
1561  * @gfp_mask: memory allocation mask for bio
1562  * @bio_ctr: setup function to be called for each clone bio.
1563  *           Returns %0 for success, non %0 for failure.
1564  * @data: private data to be passed to @bio_ctr
1565  *
1566  * Description:
1567  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1568  *     Also, pages which the original bios are pointing to are not copied
1569  *     and the cloned bios just point same pages.
1570  *     So cloned bios must be completed before original bios, which means
1571  *     the caller must complete @rq before @rq_src.
1572  */
1573 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1574 		      struct bio_set *bs, gfp_t gfp_mask,
1575 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1576 		      void *data)
1577 {
1578 	struct bio *bio, *bio_src;
1579 
1580 	if (!bs)
1581 		bs = &fs_bio_set;
1582 
1583 	__rq_for_each_bio(bio_src, rq_src) {
1584 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1585 		if (!bio)
1586 			goto free_and_out;
1587 
1588 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1589 			goto free_and_out;
1590 
1591 		if (rq->bio) {
1592 			rq->biotail->bi_next = bio;
1593 			rq->biotail = bio;
1594 		} else {
1595 			rq->bio = rq->biotail = bio;
1596 		}
1597 		bio = NULL;
1598 	}
1599 
1600 	/* Copy attributes of the original request to the clone request. */
1601 	rq->__sector = blk_rq_pos(rq_src);
1602 	rq->__data_len = blk_rq_bytes(rq_src);
1603 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1604 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1605 		rq->special_vec = rq_src->special_vec;
1606 	}
1607 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1608 	rq->ioprio = rq_src->ioprio;
1609 
1610 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1611 		goto free_and_out;
1612 
1613 	return 0;
1614 
1615 free_and_out:
1616 	if (bio)
1617 		bio_put(bio);
1618 	blk_rq_unprep_clone(rq);
1619 
1620 	return -ENOMEM;
1621 }
1622 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1623 
1624 int kblockd_schedule_work(struct work_struct *work)
1625 {
1626 	return queue_work(kblockd_workqueue, work);
1627 }
1628 EXPORT_SYMBOL(kblockd_schedule_work);
1629 
1630 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1631 				unsigned long delay)
1632 {
1633 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1634 }
1635 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1636 
1637 /**
1638  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1639  * @plug:	The &struct blk_plug that needs to be initialized
1640  *
1641  * Description:
1642  *   blk_start_plug() indicates to the block layer an intent by the caller
1643  *   to submit multiple I/O requests in a batch.  The block layer may use
1644  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1645  *   is called.  However, the block layer may choose to submit requests
1646  *   before a call to blk_finish_plug() if the number of queued I/Os
1647  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1648  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1649  *   the task schedules (see below).
1650  *
1651  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1652  *   pending I/O should the task end up blocking between blk_start_plug() and
1653  *   blk_finish_plug(). This is important from a performance perspective, but
1654  *   also ensures that we don't deadlock. For instance, if the task is blocking
1655  *   for a memory allocation, memory reclaim could end up wanting to free a
1656  *   page belonging to that request that is currently residing in our private
1657  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1658  *   this kind of deadlock.
1659  */
1660 void blk_start_plug(struct blk_plug *plug)
1661 {
1662 	struct task_struct *tsk = current;
1663 
1664 	/*
1665 	 * If this is a nested plug, don't actually assign it.
1666 	 */
1667 	if (tsk->plug)
1668 		return;
1669 
1670 	INIT_LIST_HEAD(&plug->mq_list);
1671 	INIT_LIST_HEAD(&plug->cb_list);
1672 	plug->rq_count = 0;
1673 	plug->multiple_queues = false;
1674 	plug->nowait = false;
1675 
1676 	/*
1677 	 * Store ordering should not be needed here, since a potential
1678 	 * preempt will imply a full memory barrier
1679 	 */
1680 	tsk->plug = plug;
1681 }
1682 EXPORT_SYMBOL(blk_start_plug);
1683 
1684 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1685 {
1686 	LIST_HEAD(callbacks);
1687 
1688 	while (!list_empty(&plug->cb_list)) {
1689 		list_splice_init(&plug->cb_list, &callbacks);
1690 
1691 		while (!list_empty(&callbacks)) {
1692 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1693 							  struct blk_plug_cb,
1694 							  list);
1695 			list_del(&cb->list);
1696 			cb->callback(cb, from_schedule);
1697 		}
1698 	}
1699 }
1700 
1701 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1702 				      int size)
1703 {
1704 	struct blk_plug *plug = current->plug;
1705 	struct blk_plug_cb *cb;
1706 
1707 	if (!plug)
1708 		return NULL;
1709 
1710 	list_for_each_entry(cb, &plug->cb_list, list)
1711 		if (cb->callback == unplug && cb->data == data)
1712 			return cb;
1713 
1714 	/* Not currently on the callback list */
1715 	BUG_ON(size < sizeof(*cb));
1716 	cb = kzalloc(size, GFP_ATOMIC);
1717 	if (cb) {
1718 		cb->data = data;
1719 		cb->callback = unplug;
1720 		list_add(&cb->list, &plug->cb_list);
1721 	}
1722 	return cb;
1723 }
1724 EXPORT_SYMBOL(blk_check_plugged);
1725 
1726 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1727 {
1728 	flush_plug_callbacks(plug, from_schedule);
1729 
1730 	if (!list_empty(&plug->mq_list))
1731 		blk_mq_flush_plug_list(plug, from_schedule);
1732 }
1733 
1734 /**
1735  * blk_finish_plug - mark the end of a batch of submitted I/O
1736  * @plug:	The &struct blk_plug passed to blk_start_plug()
1737  *
1738  * Description:
1739  * Indicate that a batch of I/O submissions is complete.  This function
1740  * must be paired with an initial call to blk_start_plug().  The intent
1741  * is to allow the block layer to optimize I/O submission.  See the
1742  * documentation for blk_start_plug() for more information.
1743  */
1744 void blk_finish_plug(struct blk_plug *plug)
1745 {
1746 	if (plug != current->plug)
1747 		return;
1748 	blk_flush_plug_list(plug, false);
1749 
1750 	current->plug = NULL;
1751 }
1752 EXPORT_SYMBOL(blk_finish_plug);
1753 
1754 void blk_io_schedule(void)
1755 {
1756 	/* Prevent hang_check timer from firing at us during very long I/O */
1757 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1758 
1759 	if (timeout)
1760 		io_schedule_timeout(timeout);
1761 	else
1762 		io_schedule();
1763 }
1764 EXPORT_SYMBOL_GPL(blk_io_schedule);
1765 
1766 int __init blk_dev_init(void)
1767 {
1768 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1769 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1770 			sizeof_field(struct request, cmd_flags));
1771 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1772 			sizeof_field(struct bio, bi_opf));
1773 
1774 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1775 	kblockd_workqueue = alloc_workqueue("kblockd",
1776 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1777 	if (!kblockd_workqueue)
1778 		panic("Failed to create kblockd\n");
1779 
1780 	blk_requestq_cachep = kmem_cache_create("request_queue",
1781 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1782 
1783 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1784 
1785 	return 0;
1786 }
1787