xref: /linux/block/blk-core.c (revision c75c5ab575af7db707689cdbb5a5c458e9a034bb)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
36 
37 #include "blk.h"
38 #include "blk-cgroup.h"
39 
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
44 
45 DEFINE_IDA(blk_queue_ida);
46 
47 /*
48  * For the allocated request tables
49  */
50 static struct kmem_cache *request_cachep;
51 
52 /*
53  * For queue allocation
54  */
55 struct kmem_cache *blk_requestq_cachep;
56 
57 /*
58  * Controlling structure to kblockd
59  */
60 static struct workqueue_struct *kblockd_workqueue;
61 
62 static void drive_stat_acct(struct request *rq, int new_io)
63 {
64 	struct hd_struct *part;
65 	int rw = rq_data_dir(rq);
66 	int cpu;
67 
68 	if (!blk_do_io_stat(rq))
69 		return;
70 
71 	cpu = part_stat_lock();
72 
73 	if (!new_io) {
74 		part = rq->part;
75 		part_stat_inc(cpu, part, merges[rw]);
76 	} else {
77 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
78 		if (!hd_struct_try_get(part)) {
79 			/*
80 			 * The partition is already being removed,
81 			 * the request will be accounted on the disk only
82 			 *
83 			 * We take a reference on disk->part0 although that
84 			 * partition will never be deleted, so we can treat
85 			 * it as any other partition.
86 			 */
87 			part = &rq->rq_disk->part0;
88 			hd_struct_get(part);
89 		}
90 		part_round_stats(cpu, part);
91 		part_inc_in_flight(part, rw);
92 		rq->part = part;
93 	}
94 
95 	part_stat_unlock();
96 }
97 
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 	int nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 	if (nr > q->nr_requests)
104 		nr = q->nr_requests;
105 	q->nr_congestion_on = nr;
106 
107 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 	if (nr < 1)
109 		nr = 1;
110 	q->nr_congestion_off = nr;
111 }
112 
113 /**
114  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
115  * @bdev:	device
116  *
117  * Locates the passed device's request queue and returns the address of its
118  * backing_dev_info
119  *
120  * Will return NULL if the request queue cannot be located.
121  */
122 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
123 {
124 	struct backing_dev_info *ret = NULL;
125 	struct request_queue *q = bdev_get_queue(bdev);
126 
127 	if (q)
128 		ret = &q->backing_dev_info;
129 	return ret;
130 }
131 EXPORT_SYMBOL(blk_get_backing_dev_info);
132 
133 void blk_rq_init(struct request_queue *q, struct request *rq)
134 {
135 	memset(rq, 0, sizeof(*rq));
136 
137 	INIT_LIST_HEAD(&rq->queuelist);
138 	INIT_LIST_HEAD(&rq->timeout_list);
139 	rq->cpu = -1;
140 	rq->q = q;
141 	rq->__sector = (sector_t) -1;
142 	INIT_HLIST_NODE(&rq->hash);
143 	RB_CLEAR_NODE(&rq->rb_node);
144 	rq->cmd = rq->__cmd;
145 	rq->cmd_len = BLK_MAX_CDB;
146 	rq->tag = -1;
147 	rq->ref_count = 1;
148 	rq->start_time = jiffies;
149 	set_start_time_ns(rq);
150 	rq->part = NULL;
151 }
152 EXPORT_SYMBOL(blk_rq_init);
153 
154 static void req_bio_endio(struct request *rq, struct bio *bio,
155 			  unsigned int nbytes, int error)
156 {
157 	if (error)
158 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
159 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
160 		error = -EIO;
161 
162 	if (unlikely(nbytes > bio->bi_size)) {
163 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
164 		       __func__, nbytes, bio->bi_size);
165 		nbytes = bio->bi_size;
166 	}
167 
168 	if (unlikely(rq->cmd_flags & REQ_QUIET))
169 		set_bit(BIO_QUIET, &bio->bi_flags);
170 
171 	bio->bi_size -= nbytes;
172 	bio->bi_sector += (nbytes >> 9);
173 
174 	if (bio_integrity(bio))
175 		bio_integrity_advance(bio, nbytes);
176 
177 	/* don't actually finish bio if it's part of flush sequence */
178 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
179 		bio_endio(bio, error);
180 }
181 
182 void blk_dump_rq_flags(struct request *rq, char *msg)
183 {
184 	int bit;
185 
186 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
187 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
188 		rq->cmd_flags);
189 
190 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
191 	       (unsigned long long)blk_rq_pos(rq),
192 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
193 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
194 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
195 
196 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
197 		printk(KERN_INFO "  cdb: ");
198 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
199 			printk("%02x ", rq->cmd[bit]);
200 		printk("\n");
201 	}
202 }
203 EXPORT_SYMBOL(blk_dump_rq_flags);
204 
205 static void blk_delay_work(struct work_struct *work)
206 {
207 	struct request_queue *q;
208 
209 	q = container_of(work, struct request_queue, delay_work.work);
210 	spin_lock_irq(q->queue_lock);
211 	__blk_run_queue(q);
212 	spin_unlock_irq(q->queue_lock);
213 }
214 
215 /**
216  * blk_delay_queue - restart queueing after defined interval
217  * @q:		The &struct request_queue in question
218  * @msecs:	Delay in msecs
219  *
220  * Description:
221  *   Sometimes queueing needs to be postponed for a little while, to allow
222  *   resources to come back. This function will make sure that queueing is
223  *   restarted around the specified time. Queue lock must be held.
224  */
225 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
226 {
227 	if (likely(!blk_queue_dead(q)))
228 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
229 				   msecs_to_jiffies(msecs));
230 }
231 EXPORT_SYMBOL(blk_delay_queue);
232 
233 /**
234  * blk_start_queue - restart a previously stopped queue
235  * @q:    The &struct request_queue in question
236  *
237  * Description:
238  *   blk_start_queue() will clear the stop flag on the queue, and call
239  *   the request_fn for the queue if it was in a stopped state when
240  *   entered. Also see blk_stop_queue(). Queue lock must be held.
241  **/
242 void blk_start_queue(struct request_queue *q)
243 {
244 	WARN_ON(!irqs_disabled());
245 
246 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
247 	__blk_run_queue(q);
248 }
249 EXPORT_SYMBOL(blk_start_queue);
250 
251 /**
252  * blk_stop_queue - stop a queue
253  * @q:    The &struct request_queue in question
254  *
255  * Description:
256  *   The Linux block layer assumes that a block driver will consume all
257  *   entries on the request queue when the request_fn strategy is called.
258  *   Often this will not happen, because of hardware limitations (queue
259  *   depth settings). If a device driver gets a 'queue full' response,
260  *   or if it simply chooses not to queue more I/O at one point, it can
261  *   call this function to prevent the request_fn from being called until
262  *   the driver has signalled it's ready to go again. This happens by calling
263  *   blk_start_queue() to restart queue operations. Queue lock must be held.
264  **/
265 void blk_stop_queue(struct request_queue *q)
266 {
267 	cancel_delayed_work(&q->delay_work);
268 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
269 }
270 EXPORT_SYMBOL(blk_stop_queue);
271 
272 /**
273  * blk_sync_queue - cancel any pending callbacks on a queue
274  * @q: the queue
275  *
276  * Description:
277  *     The block layer may perform asynchronous callback activity
278  *     on a queue, such as calling the unplug function after a timeout.
279  *     A block device may call blk_sync_queue to ensure that any
280  *     such activity is cancelled, thus allowing it to release resources
281  *     that the callbacks might use. The caller must already have made sure
282  *     that its ->make_request_fn will not re-add plugging prior to calling
283  *     this function.
284  *
285  *     This function does not cancel any asynchronous activity arising
286  *     out of elevator or throttling code. That would require elevaotor_exit()
287  *     and blkcg_exit_queue() to be called with queue lock initialized.
288  *
289  */
290 void blk_sync_queue(struct request_queue *q)
291 {
292 	del_timer_sync(&q->timeout);
293 	cancel_delayed_work_sync(&q->delay_work);
294 }
295 EXPORT_SYMBOL(blk_sync_queue);
296 
297 /**
298  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
299  * @q:	The queue to run
300  *
301  * Description:
302  *    Invoke request handling on a queue if there are any pending requests.
303  *    May be used to restart request handling after a request has completed.
304  *    This variant runs the queue whether or not the queue has been
305  *    stopped. Must be called with the queue lock held and interrupts
306  *    disabled. See also @blk_run_queue.
307  */
308 inline void __blk_run_queue_uncond(struct request_queue *q)
309 {
310 	if (unlikely(blk_queue_dead(q)))
311 		return;
312 
313 	/*
314 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
315 	 * the queue lock internally. As a result multiple threads may be
316 	 * running such a request function concurrently. Keep track of the
317 	 * number of active request_fn invocations such that blk_drain_queue()
318 	 * can wait until all these request_fn calls have finished.
319 	 */
320 	q->request_fn_active++;
321 	q->request_fn(q);
322 	q->request_fn_active--;
323 }
324 
325 /**
326  * __blk_run_queue - run a single device queue
327  * @q:	The queue to run
328  *
329  * Description:
330  *    See @blk_run_queue. This variant must be called with the queue lock
331  *    held and interrupts disabled.
332  */
333 void __blk_run_queue(struct request_queue *q)
334 {
335 	if (unlikely(blk_queue_stopped(q)))
336 		return;
337 
338 	__blk_run_queue_uncond(q);
339 }
340 EXPORT_SYMBOL(__blk_run_queue);
341 
342 /**
343  * blk_run_queue_async - run a single device queue in workqueue context
344  * @q:	The queue to run
345  *
346  * Description:
347  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
348  *    of us. The caller must hold the queue lock.
349  */
350 void blk_run_queue_async(struct request_queue *q)
351 {
352 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
353 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
354 }
355 EXPORT_SYMBOL(blk_run_queue_async);
356 
357 /**
358  * blk_run_queue - run a single device queue
359  * @q: The queue to run
360  *
361  * Description:
362  *    Invoke request handling on this queue, if it has pending work to do.
363  *    May be used to restart queueing when a request has completed.
364  */
365 void blk_run_queue(struct request_queue *q)
366 {
367 	unsigned long flags;
368 
369 	spin_lock_irqsave(q->queue_lock, flags);
370 	__blk_run_queue(q);
371 	spin_unlock_irqrestore(q->queue_lock, flags);
372 }
373 EXPORT_SYMBOL(blk_run_queue);
374 
375 void blk_put_queue(struct request_queue *q)
376 {
377 	kobject_put(&q->kobj);
378 }
379 EXPORT_SYMBOL(blk_put_queue);
380 
381 /**
382  * __blk_drain_queue - drain requests from request_queue
383  * @q: queue to drain
384  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
385  *
386  * Drain requests from @q.  If @drain_all is set, all requests are drained.
387  * If not, only ELVPRIV requests are drained.  The caller is responsible
388  * for ensuring that no new requests which need to be drained are queued.
389  */
390 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
391 	__releases(q->queue_lock)
392 	__acquires(q->queue_lock)
393 {
394 	int i;
395 
396 	lockdep_assert_held(q->queue_lock);
397 
398 	while (true) {
399 		bool drain = false;
400 
401 		/*
402 		 * The caller might be trying to drain @q before its
403 		 * elevator is initialized.
404 		 */
405 		if (q->elevator)
406 			elv_drain_elevator(q);
407 
408 		blkcg_drain_queue(q);
409 
410 		/*
411 		 * This function might be called on a queue which failed
412 		 * driver init after queue creation or is not yet fully
413 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
414 		 * in such cases.  Kick queue iff dispatch queue has
415 		 * something on it and @q has request_fn set.
416 		 */
417 		if (!list_empty(&q->queue_head) && q->request_fn)
418 			__blk_run_queue(q);
419 
420 		drain |= q->nr_rqs_elvpriv;
421 		drain |= q->request_fn_active;
422 
423 		/*
424 		 * Unfortunately, requests are queued at and tracked from
425 		 * multiple places and there's no single counter which can
426 		 * be drained.  Check all the queues and counters.
427 		 */
428 		if (drain_all) {
429 			drain |= !list_empty(&q->queue_head);
430 			for (i = 0; i < 2; i++) {
431 				drain |= q->nr_rqs[i];
432 				drain |= q->in_flight[i];
433 				drain |= !list_empty(&q->flush_queue[i]);
434 			}
435 		}
436 
437 		if (!drain)
438 			break;
439 
440 		spin_unlock_irq(q->queue_lock);
441 
442 		msleep(10);
443 
444 		spin_lock_irq(q->queue_lock);
445 	}
446 
447 	/*
448 	 * With queue marked dead, any woken up waiter will fail the
449 	 * allocation path, so the wakeup chaining is lost and we're
450 	 * left with hung waiters. We need to wake up those waiters.
451 	 */
452 	if (q->request_fn) {
453 		struct request_list *rl;
454 
455 		blk_queue_for_each_rl(rl, q)
456 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
457 				wake_up_all(&rl->wait[i]);
458 	}
459 }
460 
461 /**
462  * blk_queue_bypass_start - enter queue bypass mode
463  * @q: queue of interest
464  *
465  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
466  * function makes @q enter bypass mode and drains all requests which were
467  * throttled or issued before.  On return, it's guaranteed that no request
468  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
469  * inside queue or RCU read lock.
470  */
471 void blk_queue_bypass_start(struct request_queue *q)
472 {
473 	bool drain;
474 
475 	spin_lock_irq(q->queue_lock);
476 	drain = !q->bypass_depth++;
477 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
478 	spin_unlock_irq(q->queue_lock);
479 
480 	if (drain) {
481 		spin_lock_irq(q->queue_lock);
482 		__blk_drain_queue(q, false);
483 		spin_unlock_irq(q->queue_lock);
484 
485 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
486 		synchronize_rcu();
487 	}
488 }
489 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
490 
491 /**
492  * blk_queue_bypass_end - leave queue bypass mode
493  * @q: queue of interest
494  *
495  * Leave bypass mode and restore the normal queueing behavior.
496  */
497 void blk_queue_bypass_end(struct request_queue *q)
498 {
499 	spin_lock_irq(q->queue_lock);
500 	if (!--q->bypass_depth)
501 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
502 	WARN_ON_ONCE(q->bypass_depth < 0);
503 	spin_unlock_irq(q->queue_lock);
504 }
505 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
506 
507 /**
508  * blk_cleanup_queue - shutdown a request queue
509  * @q: request queue to shutdown
510  *
511  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
512  * put it.  All future requests will be failed immediately with -ENODEV.
513  */
514 void blk_cleanup_queue(struct request_queue *q)
515 {
516 	spinlock_t *lock = q->queue_lock;
517 
518 	/* mark @q DYING, no new request or merges will be allowed afterwards */
519 	mutex_lock(&q->sysfs_lock);
520 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
521 	spin_lock_irq(lock);
522 
523 	/*
524 	 * A dying queue is permanently in bypass mode till released.  Note
525 	 * that, unlike blk_queue_bypass_start(), we aren't performing
526 	 * synchronize_rcu() after entering bypass mode to avoid the delay
527 	 * as some drivers create and destroy a lot of queues while
528 	 * probing.  This is still safe because blk_release_queue() will be
529 	 * called only after the queue refcnt drops to zero and nothing,
530 	 * RCU or not, would be traversing the queue by then.
531 	 */
532 	q->bypass_depth++;
533 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
534 
535 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
536 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
537 	queue_flag_set(QUEUE_FLAG_DYING, q);
538 	spin_unlock_irq(lock);
539 	mutex_unlock(&q->sysfs_lock);
540 
541 	/*
542 	 * Drain all requests queued before DYING marking. Set DEAD flag to
543 	 * prevent that q->request_fn() gets invoked after draining finished.
544 	 */
545 	spin_lock_irq(lock);
546 	__blk_drain_queue(q, true);
547 	queue_flag_set(QUEUE_FLAG_DEAD, q);
548 	spin_unlock_irq(lock);
549 
550 	/* @q won't process any more request, flush async actions */
551 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
552 	blk_sync_queue(q);
553 
554 	spin_lock_irq(lock);
555 	if (q->queue_lock != &q->__queue_lock)
556 		q->queue_lock = &q->__queue_lock;
557 	spin_unlock_irq(lock);
558 
559 	/* @q is and will stay empty, shutdown and put */
560 	blk_put_queue(q);
561 }
562 EXPORT_SYMBOL(blk_cleanup_queue);
563 
564 int blk_init_rl(struct request_list *rl, struct request_queue *q,
565 		gfp_t gfp_mask)
566 {
567 	if (unlikely(rl->rq_pool))
568 		return 0;
569 
570 	rl->q = q;
571 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
572 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
573 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
574 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
575 
576 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
577 					  mempool_free_slab, request_cachep,
578 					  gfp_mask, q->node);
579 	if (!rl->rq_pool)
580 		return -ENOMEM;
581 
582 	return 0;
583 }
584 
585 void blk_exit_rl(struct request_list *rl)
586 {
587 	if (rl->rq_pool)
588 		mempool_destroy(rl->rq_pool);
589 }
590 
591 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
592 {
593 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
594 }
595 EXPORT_SYMBOL(blk_alloc_queue);
596 
597 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
598 {
599 	struct request_queue *q;
600 	int err;
601 
602 	q = kmem_cache_alloc_node(blk_requestq_cachep,
603 				gfp_mask | __GFP_ZERO, node_id);
604 	if (!q)
605 		return NULL;
606 
607 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
608 	if (q->id < 0)
609 		goto fail_q;
610 
611 	q->backing_dev_info.ra_pages =
612 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
613 	q->backing_dev_info.state = 0;
614 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
615 	q->backing_dev_info.name = "block";
616 	q->node = node_id;
617 
618 	err = bdi_init(&q->backing_dev_info);
619 	if (err)
620 		goto fail_id;
621 
622 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
623 		    laptop_mode_timer_fn, (unsigned long) q);
624 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
625 	INIT_LIST_HEAD(&q->queue_head);
626 	INIT_LIST_HEAD(&q->timeout_list);
627 	INIT_LIST_HEAD(&q->icq_list);
628 #ifdef CONFIG_BLK_CGROUP
629 	INIT_LIST_HEAD(&q->blkg_list);
630 #endif
631 	INIT_LIST_HEAD(&q->flush_queue[0]);
632 	INIT_LIST_HEAD(&q->flush_queue[1]);
633 	INIT_LIST_HEAD(&q->flush_data_in_flight);
634 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
635 
636 	kobject_init(&q->kobj, &blk_queue_ktype);
637 
638 	mutex_init(&q->sysfs_lock);
639 	spin_lock_init(&q->__queue_lock);
640 
641 	/*
642 	 * By default initialize queue_lock to internal lock and driver can
643 	 * override it later if need be.
644 	 */
645 	q->queue_lock = &q->__queue_lock;
646 
647 	/*
648 	 * A queue starts its life with bypass turned on to avoid
649 	 * unnecessary bypass on/off overhead and nasty surprises during
650 	 * init.  The initial bypass will be finished when the queue is
651 	 * registered by blk_register_queue().
652 	 */
653 	q->bypass_depth = 1;
654 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
655 
656 	if (blkcg_init_queue(q))
657 		goto fail_id;
658 
659 	return q;
660 
661 fail_id:
662 	ida_simple_remove(&blk_queue_ida, q->id);
663 fail_q:
664 	kmem_cache_free(blk_requestq_cachep, q);
665 	return NULL;
666 }
667 EXPORT_SYMBOL(blk_alloc_queue_node);
668 
669 /**
670  * blk_init_queue  - prepare a request queue for use with a block device
671  * @rfn:  The function to be called to process requests that have been
672  *        placed on the queue.
673  * @lock: Request queue spin lock
674  *
675  * Description:
676  *    If a block device wishes to use the standard request handling procedures,
677  *    which sorts requests and coalesces adjacent requests, then it must
678  *    call blk_init_queue().  The function @rfn will be called when there
679  *    are requests on the queue that need to be processed.  If the device
680  *    supports plugging, then @rfn may not be called immediately when requests
681  *    are available on the queue, but may be called at some time later instead.
682  *    Plugged queues are generally unplugged when a buffer belonging to one
683  *    of the requests on the queue is needed, or due to memory pressure.
684  *
685  *    @rfn is not required, or even expected, to remove all requests off the
686  *    queue, but only as many as it can handle at a time.  If it does leave
687  *    requests on the queue, it is responsible for arranging that the requests
688  *    get dealt with eventually.
689  *
690  *    The queue spin lock must be held while manipulating the requests on the
691  *    request queue; this lock will be taken also from interrupt context, so irq
692  *    disabling is needed for it.
693  *
694  *    Function returns a pointer to the initialized request queue, or %NULL if
695  *    it didn't succeed.
696  *
697  * Note:
698  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
699  *    when the block device is deactivated (such as at module unload).
700  **/
701 
702 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
703 {
704 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
705 }
706 EXPORT_SYMBOL(blk_init_queue);
707 
708 struct request_queue *
709 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
710 {
711 	struct request_queue *uninit_q, *q;
712 
713 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
714 	if (!uninit_q)
715 		return NULL;
716 
717 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
718 	if (!q)
719 		blk_cleanup_queue(uninit_q);
720 
721 	return q;
722 }
723 EXPORT_SYMBOL(blk_init_queue_node);
724 
725 struct request_queue *
726 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
727 			 spinlock_t *lock)
728 {
729 	if (!q)
730 		return NULL;
731 
732 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
733 		return NULL;
734 
735 	q->request_fn		= rfn;
736 	q->prep_rq_fn		= NULL;
737 	q->unprep_rq_fn		= NULL;
738 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
739 
740 	/* Override internal queue lock with supplied lock pointer */
741 	if (lock)
742 		q->queue_lock		= lock;
743 
744 	/*
745 	 * This also sets hw/phys segments, boundary and size
746 	 */
747 	blk_queue_make_request(q, blk_queue_bio);
748 
749 	q->sg_reserved_size = INT_MAX;
750 
751 	/* init elevator */
752 	if (elevator_init(q, NULL))
753 		return NULL;
754 	return q;
755 }
756 EXPORT_SYMBOL(blk_init_allocated_queue);
757 
758 bool blk_get_queue(struct request_queue *q)
759 {
760 	if (likely(!blk_queue_dying(q))) {
761 		__blk_get_queue(q);
762 		return true;
763 	}
764 
765 	return false;
766 }
767 EXPORT_SYMBOL(blk_get_queue);
768 
769 static inline void blk_free_request(struct request_list *rl, struct request *rq)
770 {
771 	if (rq->cmd_flags & REQ_ELVPRIV) {
772 		elv_put_request(rl->q, rq);
773 		if (rq->elv.icq)
774 			put_io_context(rq->elv.icq->ioc);
775 	}
776 
777 	mempool_free(rq, rl->rq_pool);
778 }
779 
780 /*
781  * ioc_batching returns true if the ioc is a valid batching request and
782  * should be given priority access to a request.
783  */
784 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
785 {
786 	if (!ioc)
787 		return 0;
788 
789 	/*
790 	 * Make sure the process is able to allocate at least 1 request
791 	 * even if the batch times out, otherwise we could theoretically
792 	 * lose wakeups.
793 	 */
794 	return ioc->nr_batch_requests == q->nr_batching ||
795 		(ioc->nr_batch_requests > 0
796 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
797 }
798 
799 /*
800  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
801  * will cause the process to be a "batcher" on all queues in the system. This
802  * is the behaviour we want though - once it gets a wakeup it should be given
803  * a nice run.
804  */
805 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
806 {
807 	if (!ioc || ioc_batching(q, ioc))
808 		return;
809 
810 	ioc->nr_batch_requests = q->nr_batching;
811 	ioc->last_waited = jiffies;
812 }
813 
814 static void __freed_request(struct request_list *rl, int sync)
815 {
816 	struct request_queue *q = rl->q;
817 
818 	/*
819 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
820 	 * blkcg anyway, just use root blkcg state.
821 	 */
822 	if (rl == &q->root_rl &&
823 	    rl->count[sync] < queue_congestion_off_threshold(q))
824 		blk_clear_queue_congested(q, sync);
825 
826 	if (rl->count[sync] + 1 <= q->nr_requests) {
827 		if (waitqueue_active(&rl->wait[sync]))
828 			wake_up(&rl->wait[sync]);
829 
830 		blk_clear_rl_full(rl, sync);
831 	}
832 }
833 
834 /*
835  * A request has just been released.  Account for it, update the full and
836  * congestion status, wake up any waiters.   Called under q->queue_lock.
837  */
838 static void freed_request(struct request_list *rl, unsigned int flags)
839 {
840 	struct request_queue *q = rl->q;
841 	int sync = rw_is_sync(flags);
842 
843 	q->nr_rqs[sync]--;
844 	rl->count[sync]--;
845 	if (flags & REQ_ELVPRIV)
846 		q->nr_rqs_elvpriv--;
847 
848 	__freed_request(rl, sync);
849 
850 	if (unlikely(rl->starved[sync ^ 1]))
851 		__freed_request(rl, sync ^ 1);
852 }
853 
854 /*
855  * Determine if elevator data should be initialized when allocating the
856  * request associated with @bio.
857  */
858 static bool blk_rq_should_init_elevator(struct bio *bio)
859 {
860 	if (!bio)
861 		return true;
862 
863 	/*
864 	 * Flush requests do not use the elevator so skip initialization.
865 	 * This allows a request to share the flush and elevator data.
866 	 */
867 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
868 		return false;
869 
870 	return true;
871 }
872 
873 /**
874  * rq_ioc - determine io_context for request allocation
875  * @bio: request being allocated is for this bio (can be %NULL)
876  *
877  * Determine io_context to use for request allocation for @bio.  May return
878  * %NULL if %current->io_context doesn't exist.
879  */
880 static struct io_context *rq_ioc(struct bio *bio)
881 {
882 #ifdef CONFIG_BLK_CGROUP
883 	if (bio && bio->bi_ioc)
884 		return bio->bi_ioc;
885 #endif
886 	return current->io_context;
887 }
888 
889 /**
890  * __get_request - get a free request
891  * @rl: request list to allocate from
892  * @rw_flags: RW and SYNC flags
893  * @bio: bio to allocate request for (can be %NULL)
894  * @gfp_mask: allocation mask
895  *
896  * Get a free request from @q.  This function may fail under memory
897  * pressure or if @q is dead.
898  *
899  * Must be callled with @q->queue_lock held and,
900  * Returns %NULL on failure, with @q->queue_lock held.
901  * Returns !%NULL on success, with @q->queue_lock *not held*.
902  */
903 static struct request *__get_request(struct request_list *rl, int rw_flags,
904 				     struct bio *bio, gfp_t gfp_mask)
905 {
906 	struct request_queue *q = rl->q;
907 	struct request *rq;
908 	struct elevator_type *et = q->elevator->type;
909 	struct io_context *ioc = rq_ioc(bio);
910 	struct io_cq *icq = NULL;
911 	const bool is_sync = rw_is_sync(rw_flags) != 0;
912 	int may_queue;
913 
914 	if (unlikely(blk_queue_dying(q)))
915 		return NULL;
916 
917 	may_queue = elv_may_queue(q, rw_flags);
918 	if (may_queue == ELV_MQUEUE_NO)
919 		goto rq_starved;
920 
921 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
922 		if (rl->count[is_sync]+1 >= q->nr_requests) {
923 			/*
924 			 * The queue will fill after this allocation, so set
925 			 * it as full, and mark this process as "batching".
926 			 * This process will be allowed to complete a batch of
927 			 * requests, others will be blocked.
928 			 */
929 			if (!blk_rl_full(rl, is_sync)) {
930 				ioc_set_batching(q, ioc);
931 				blk_set_rl_full(rl, is_sync);
932 			} else {
933 				if (may_queue != ELV_MQUEUE_MUST
934 						&& !ioc_batching(q, ioc)) {
935 					/*
936 					 * The queue is full and the allocating
937 					 * process is not a "batcher", and not
938 					 * exempted by the IO scheduler
939 					 */
940 					return NULL;
941 				}
942 			}
943 		}
944 		/*
945 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
946 		 * root blkcg anyway, just use root blkcg state.
947 		 */
948 		if (rl == &q->root_rl)
949 			blk_set_queue_congested(q, is_sync);
950 	}
951 
952 	/*
953 	 * Only allow batching queuers to allocate up to 50% over the defined
954 	 * limit of requests, otherwise we could have thousands of requests
955 	 * allocated with any setting of ->nr_requests
956 	 */
957 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
958 		return NULL;
959 
960 	q->nr_rqs[is_sync]++;
961 	rl->count[is_sync]++;
962 	rl->starved[is_sync] = 0;
963 
964 	/*
965 	 * Decide whether the new request will be managed by elevator.  If
966 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
967 	 * prevent the current elevator from being destroyed until the new
968 	 * request is freed.  This guarantees icq's won't be destroyed and
969 	 * makes creating new ones safe.
970 	 *
971 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
972 	 * it will be created after releasing queue_lock.
973 	 */
974 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
975 		rw_flags |= REQ_ELVPRIV;
976 		q->nr_rqs_elvpriv++;
977 		if (et->icq_cache && ioc)
978 			icq = ioc_lookup_icq(ioc, q);
979 	}
980 
981 	if (blk_queue_io_stat(q))
982 		rw_flags |= REQ_IO_STAT;
983 	spin_unlock_irq(q->queue_lock);
984 
985 	/* allocate and init request */
986 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
987 	if (!rq)
988 		goto fail_alloc;
989 
990 	blk_rq_init(q, rq);
991 	blk_rq_set_rl(rq, rl);
992 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
993 
994 	/* init elvpriv */
995 	if (rw_flags & REQ_ELVPRIV) {
996 		if (unlikely(et->icq_cache && !icq)) {
997 			if (ioc)
998 				icq = ioc_create_icq(ioc, q, gfp_mask);
999 			if (!icq)
1000 				goto fail_elvpriv;
1001 		}
1002 
1003 		rq->elv.icq = icq;
1004 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1005 			goto fail_elvpriv;
1006 
1007 		/* @rq->elv.icq holds io_context until @rq is freed */
1008 		if (icq)
1009 			get_io_context(icq->ioc);
1010 	}
1011 out:
1012 	/*
1013 	 * ioc may be NULL here, and ioc_batching will be false. That's
1014 	 * OK, if the queue is under the request limit then requests need
1015 	 * not count toward the nr_batch_requests limit. There will always
1016 	 * be some limit enforced by BLK_BATCH_TIME.
1017 	 */
1018 	if (ioc_batching(q, ioc))
1019 		ioc->nr_batch_requests--;
1020 
1021 	trace_block_getrq(q, bio, rw_flags & 1);
1022 	return rq;
1023 
1024 fail_elvpriv:
1025 	/*
1026 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1027 	 * and may fail indefinitely under memory pressure and thus
1028 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1029 	 * disturb iosched and blkcg but weird is bettern than dead.
1030 	 */
1031 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1032 			   dev_name(q->backing_dev_info.dev));
1033 
1034 	rq->cmd_flags &= ~REQ_ELVPRIV;
1035 	rq->elv.icq = NULL;
1036 
1037 	spin_lock_irq(q->queue_lock);
1038 	q->nr_rqs_elvpriv--;
1039 	spin_unlock_irq(q->queue_lock);
1040 	goto out;
1041 
1042 fail_alloc:
1043 	/*
1044 	 * Allocation failed presumably due to memory. Undo anything we
1045 	 * might have messed up.
1046 	 *
1047 	 * Allocating task should really be put onto the front of the wait
1048 	 * queue, but this is pretty rare.
1049 	 */
1050 	spin_lock_irq(q->queue_lock);
1051 	freed_request(rl, rw_flags);
1052 
1053 	/*
1054 	 * in the very unlikely event that allocation failed and no
1055 	 * requests for this direction was pending, mark us starved so that
1056 	 * freeing of a request in the other direction will notice
1057 	 * us. another possible fix would be to split the rq mempool into
1058 	 * READ and WRITE
1059 	 */
1060 rq_starved:
1061 	if (unlikely(rl->count[is_sync] == 0))
1062 		rl->starved[is_sync] = 1;
1063 	return NULL;
1064 }
1065 
1066 /**
1067  * get_request - get a free request
1068  * @q: request_queue to allocate request from
1069  * @rw_flags: RW and SYNC flags
1070  * @bio: bio to allocate request for (can be %NULL)
1071  * @gfp_mask: allocation mask
1072  *
1073  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1074  * function keeps retrying under memory pressure and fails iff @q is dead.
1075  *
1076  * Must be callled with @q->queue_lock held and,
1077  * Returns %NULL on failure, with @q->queue_lock held.
1078  * Returns !%NULL on success, with @q->queue_lock *not held*.
1079  */
1080 static struct request *get_request(struct request_queue *q, int rw_flags,
1081 				   struct bio *bio, gfp_t gfp_mask)
1082 {
1083 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1084 	DEFINE_WAIT(wait);
1085 	struct request_list *rl;
1086 	struct request *rq;
1087 
1088 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1089 retry:
1090 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1091 	if (rq)
1092 		return rq;
1093 
1094 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1095 		blk_put_rl(rl);
1096 		return NULL;
1097 	}
1098 
1099 	/* wait on @rl and retry */
1100 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1101 				  TASK_UNINTERRUPTIBLE);
1102 
1103 	trace_block_sleeprq(q, bio, rw_flags & 1);
1104 
1105 	spin_unlock_irq(q->queue_lock);
1106 	io_schedule();
1107 
1108 	/*
1109 	 * After sleeping, we become a "batching" process and will be able
1110 	 * to allocate at least one request, and up to a big batch of them
1111 	 * for a small period time.  See ioc_batching, ioc_set_batching
1112 	 */
1113 	ioc_set_batching(q, current->io_context);
1114 
1115 	spin_lock_irq(q->queue_lock);
1116 	finish_wait(&rl->wait[is_sync], &wait);
1117 
1118 	goto retry;
1119 }
1120 
1121 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1122 {
1123 	struct request *rq;
1124 
1125 	BUG_ON(rw != READ && rw != WRITE);
1126 
1127 	/* create ioc upfront */
1128 	create_io_context(gfp_mask, q->node);
1129 
1130 	spin_lock_irq(q->queue_lock);
1131 	rq = get_request(q, rw, NULL, gfp_mask);
1132 	if (!rq)
1133 		spin_unlock_irq(q->queue_lock);
1134 	/* q->queue_lock is unlocked at this point */
1135 
1136 	return rq;
1137 }
1138 EXPORT_SYMBOL(blk_get_request);
1139 
1140 /**
1141  * blk_make_request - given a bio, allocate a corresponding struct request.
1142  * @q: target request queue
1143  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1144  *        It may be a chained-bio properly constructed by block/bio layer.
1145  * @gfp_mask: gfp flags to be used for memory allocation
1146  *
1147  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1148  * type commands. Where the struct request needs to be farther initialized by
1149  * the caller. It is passed a &struct bio, which describes the memory info of
1150  * the I/O transfer.
1151  *
1152  * The caller of blk_make_request must make sure that bi_io_vec
1153  * are set to describe the memory buffers. That bio_data_dir() will return
1154  * the needed direction of the request. (And all bio's in the passed bio-chain
1155  * are properly set accordingly)
1156  *
1157  * If called under none-sleepable conditions, mapped bio buffers must not
1158  * need bouncing, by calling the appropriate masked or flagged allocator,
1159  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1160  * BUG.
1161  *
1162  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1163  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1164  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1165  * completion of a bio that hasn't been submitted yet, thus resulting in a
1166  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1167  * of bio_alloc(), as that avoids the mempool deadlock.
1168  * If possible a big IO should be split into smaller parts when allocation
1169  * fails. Partial allocation should not be an error, or you risk a live-lock.
1170  */
1171 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1172 				 gfp_t gfp_mask)
1173 {
1174 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1175 
1176 	if (unlikely(!rq))
1177 		return ERR_PTR(-ENOMEM);
1178 
1179 	for_each_bio(bio) {
1180 		struct bio *bounce_bio = bio;
1181 		int ret;
1182 
1183 		blk_queue_bounce(q, &bounce_bio);
1184 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1185 		if (unlikely(ret)) {
1186 			blk_put_request(rq);
1187 			return ERR_PTR(ret);
1188 		}
1189 	}
1190 
1191 	return rq;
1192 }
1193 EXPORT_SYMBOL(blk_make_request);
1194 
1195 /**
1196  * blk_requeue_request - put a request back on queue
1197  * @q:		request queue where request should be inserted
1198  * @rq:		request to be inserted
1199  *
1200  * Description:
1201  *    Drivers often keep queueing requests until the hardware cannot accept
1202  *    more, when that condition happens we need to put the request back
1203  *    on the queue. Must be called with queue lock held.
1204  */
1205 void blk_requeue_request(struct request_queue *q, struct request *rq)
1206 {
1207 	blk_delete_timer(rq);
1208 	blk_clear_rq_complete(rq);
1209 	trace_block_rq_requeue(q, rq);
1210 
1211 	if (blk_rq_tagged(rq))
1212 		blk_queue_end_tag(q, rq);
1213 
1214 	BUG_ON(blk_queued_rq(rq));
1215 
1216 	elv_requeue_request(q, rq);
1217 }
1218 EXPORT_SYMBOL(blk_requeue_request);
1219 
1220 static void add_acct_request(struct request_queue *q, struct request *rq,
1221 			     int where)
1222 {
1223 	drive_stat_acct(rq, 1);
1224 	__elv_add_request(q, rq, where);
1225 }
1226 
1227 static void part_round_stats_single(int cpu, struct hd_struct *part,
1228 				    unsigned long now)
1229 {
1230 	if (now == part->stamp)
1231 		return;
1232 
1233 	if (part_in_flight(part)) {
1234 		__part_stat_add(cpu, part, time_in_queue,
1235 				part_in_flight(part) * (now - part->stamp));
1236 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1237 	}
1238 	part->stamp = now;
1239 }
1240 
1241 /**
1242  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1243  * @cpu: cpu number for stats access
1244  * @part: target partition
1245  *
1246  * The average IO queue length and utilisation statistics are maintained
1247  * by observing the current state of the queue length and the amount of
1248  * time it has been in this state for.
1249  *
1250  * Normally, that accounting is done on IO completion, but that can result
1251  * in more than a second's worth of IO being accounted for within any one
1252  * second, leading to >100% utilisation.  To deal with that, we call this
1253  * function to do a round-off before returning the results when reading
1254  * /proc/diskstats.  This accounts immediately for all queue usage up to
1255  * the current jiffies and restarts the counters again.
1256  */
1257 void part_round_stats(int cpu, struct hd_struct *part)
1258 {
1259 	unsigned long now = jiffies;
1260 
1261 	if (part->partno)
1262 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1263 	part_round_stats_single(cpu, part, now);
1264 }
1265 EXPORT_SYMBOL_GPL(part_round_stats);
1266 
1267 /*
1268  * queue lock must be held
1269  */
1270 void __blk_put_request(struct request_queue *q, struct request *req)
1271 {
1272 	if (unlikely(!q))
1273 		return;
1274 	if (unlikely(--req->ref_count))
1275 		return;
1276 
1277 	elv_completed_request(q, req);
1278 
1279 	/* this is a bio leak */
1280 	WARN_ON(req->bio != NULL);
1281 
1282 	/*
1283 	 * Request may not have originated from ll_rw_blk. if not,
1284 	 * it didn't come out of our reserved rq pools
1285 	 */
1286 	if (req->cmd_flags & REQ_ALLOCED) {
1287 		unsigned int flags = req->cmd_flags;
1288 		struct request_list *rl = blk_rq_rl(req);
1289 
1290 		BUG_ON(!list_empty(&req->queuelist));
1291 		BUG_ON(!hlist_unhashed(&req->hash));
1292 
1293 		blk_free_request(rl, req);
1294 		freed_request(rl, flags);
1295 		blk_put_rl(rl);
1296 	}
1297 }
1298 EXPORT_SYMBOL_GPL(__blk_put_request);
1299 
1300 void blk_put_request(struct request *req)
1301 {
1302 	unsigned long flags;
1303 	struct request_queue *q = req->q;
1304 
1305 	spin_lock_irqsave(q->queue_lock, flags);
1306 	__blk_put_request(q, req);
1307 	spin_unlock_irqrestore(q->queue_lock, flags);
1308 }
1309 EXPORT_SYMBOL(blk_put_request);
1310 
1311 /**
1312  * blk_add_request_payload - add a payload to a request
1313  * @rq: request to update
1314  * @page: page backing the payload
1315  * @len: length of the payload.
1316  *
1317  * This allows to later add a payload to an already submitted request by
1318  * a block driver.  The driver needs to take care of freeing the payload
1319  * itself.
1320  *
1321  * Note that this is a quite horrible hack and nothing but handling of
1322  * discard requests should ever use it.
1323  */
1324 void blk_add_request_payload(struct request *rq, struct page *page,
1325 		unsigned int len)
1326 {
1327 	struct bio *bio = rq->bio;
1328 
1329 	bio->bi_io_vec->bv_page = page;
1330 	bio->bi_io_vec->bv_offset = 0;
1331 	bio->bi_io_vec->bv_len = len;
1332 
1333 	bio->bi_size = len;
1334 	bio->bi_vcnt = 1;
1335 	bio->bi_phys_segments = 1;
1336 
1337 	rq->__data_len = rq->resid_len = len;
1338 	rq->nr_phys_segments = 1;
1339 	rq->buffer = bio_data(bio);
1340 }
1341 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1342 
1343 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1344 				   struct bio *bio)
1345 {
1346 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1347 
1348 	if (!ll_back_merge_fn(q, req, bio))
1349 		return false;
1350 
1351 	trace_block_bio_backmerge(q, req, bio);
1352 
1353 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1354 		blk_rq_set_mixed_merge(req);
1355 
1356 	req->biotail->bi_next = bio;
1357 	req->biotail = bio;
1358 	req->__data_len += bio->bi_size;
1359 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1360 
1361 	drive_stat_acct(req, 0);
1362 	return true;
1363 }
1364 
1365 static bool bio_attempt_front_merge(struct request_queue *q,
1366 				    struct request *req, struct bio *bio)
1367 {
1368 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1369 
1370 	if (!ll_front_merge_fn(q, req, bio))
1371 		return false;
1372 
1373 	trace_block_bio_frontmerge(q, req, bio);
1374 
1375 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1376 		blk_rq_set_mixed_merge(req);
1377 
1378 	bio->bi_next = req->bio;
1379 	req->bio = bio;
1380 
1381 	/*
1382 	 * may not be valid. if the low level driver said
1383 	 * it didn't need a bounce buffer then it better
1384 	 * not touch req->buffer either...
1385 	 */
1386 	req->buffer = bio_data(bio);
1387 	req->__sector = bio->bi_sector;
1388 	req->__data_len += bio->bi_size;
1389 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1390 
1391 	drive_stat_acct(req, 0);
1392 	return true;
1393 }
1394 
1395 /**
1396  * attempt_plug_merge - try to merge with %current's plugged list
1397  * @q: request_queue new bio is being queued at
1398  * @bio: new bio being queued
1399  * @request_count: out parameter for number of traversed plugged requests
1400  *
1401  * Determine whether @bio being queued on @q can be merged with a request
1402  * on %current's plugged list.  Returns %true if merge was successful,
1403  * otherwise %false.
1404  *
1405  * Plugging coalesces IOs from the same issuer for the same purpose without
1406  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1407  * than scheduling, and the request, while may have elvpriv data, is not
1408  * added on the elevator at this point.  In addition, we don't have
1409  * reliable access to the elevator outside queue lock.  Only check basic
1410  * merging parameters without querying the elevator.
1411  */
1412 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1413 			       unsigned int *request_count)
1414 {
1415 	struct blk_plug *plug;
1416 	struct request *rq;
1417 	bool ret = false;
1418 
1419 	plug = current->plug;
1420 	if (!plug)
1421 		goto out;
1422 	*request_count = 0;
1423 
1424 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1425 		int el_ret;
1426 
1427 		if (rq->q == q)
1428 			(*request_count)++;
1429 
1430 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1431 			continue;
1432 
1433 		el_ret = blk_try_merge(rq, bio);
1434 		if (el_ret == ELEVATOR_BACK_MERGE) {
1435 			ret = bio_attempt_back_merge(q, rq, bio);
1436 			if (ret)
1437 				break;
1438 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1439 			ret = bio_attempt_front_merge(q, rq, bio);
1440 			if (ret)
1441 				break;
1442 		}
1443 	}
1444 out:
1445 	return ret;
1446 }
1447 
1448 void init_request_from_bio(struct request *req, struct bio *bio)
1449 {
1450 	req->cmd_type = REQ_TYPE_FS;
1451 
1452 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1453 	if (bio->bi_rw & REQ_RAHEAD)
1454 		req->cmd_flags |= REQ_FAILFAST_MASK;
1455 
1456 	req->errors = 0;
1457 	req->__sector = bio->bi_sector;
1458 	req->ioprio = bio_prio(bio);
1459 	blk_rq_bio_prep(req->q, req, bio);
1460 }
1461 
1462 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1463 {
1464 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1465 	struct blk_plug *plug;
1466 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1467 	struct request *req;
1468 	unsigned int request_count = 0;
1469 
1470 	/*
1471 	 * low level driver can indicate that it wants pages above a
1472 	 * certain limit bounced to low memory (ie for highmem, or even
1473 	 * ISA dma in theory)
1474 	 */
1475 	blk_queue_bounce(q, &bio);
1476 
1477 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1478 		bio_endio(bio, -EIO);
1479 		return;
1480 	}
1481 
1482 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1483 		spin_lock_irq(q->queue_lock);
1484 		where = ELEVATOR_INSERT_FLUSH;
1485 		goto get_rq;
1486 	}
1487 
1488 	/*
1489 	 * Check if we can merge with the plugged list before grabbing
1490 	 * any locks.
1491 	 */
1492 	if (attempt_plug_merge(q, bio, &request_count))
1493 		return;
1494 
1495 	spin_lock_irq(q->queue_lock);
1496 
1497 	el_ret = elv_merge(q, &req, bio);
1498 	if (el_ret == ELEVATOR_BACK_MERGE) {
1499 		if (bio_attempt_back_merge(q, req, bio)) {
1500 			elv_bio_merged(q, req, bio);
1501 			if (!attempt_back_merge(q, req))
1502 				elv_merged_request(q, req, el_ret);
1503 			goto out_unlock;
1504 		}
1505 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1506 		if (bio_attempt_front_merge(q, req, bio)) {
1507 			elv_bio_merged(q, req, bio);
1508 			if (!attempt_front_merge(q, req))
1509 				elv_merged_request(q, req, el_ret);
1510 			goto out_unlock;
1511 		}
1512 	}
1513 
1514 get_rq:
1515 	/*
1516 	 * This sync check and mask will be re-done in init_request_from_bio(),
1517 	 * but we need to set it earlier to expose the sync flag to the
1518 	 * rq allocator and io schedulers.
1519 	 */
1520 	rw_flags = bio_data_dir(bio);
1521 	if (sync)
1522 		rw_flags |= REQ_SYNC;
1523 
1524 	/*
1525 	 * Grab a free request. This is might sleep but can not fail.
1526 	 * Returns with the queue unlocked.
1527 	 */
1528 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1529 	if (unlikely(!req)) {
1530 		bio_endio(bio, -ENODEV);	/* @q is dead */
1531 		goto out_unlock;
1532 	}
1533 
1534 	/*
1535 	 * After dropping the lock and possibly sleeping here, our request
1536 	 * may now be mergeable after it had proven unmergeable (above).
1537 	 * We don't worry about that case for efficiency. It won't happen
1538 	 * often, and the elevators are able to handle it.
1539 	 */
1540 	init_request_from_bio(req, bio);
1541 
1542 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1543 		req->cpu = raw_smp_processor_id();
1544 
1545 	plug = current->plug;
1546 	if (plug) {
1547 		/*
1548 		 * If this is the first request added after a plug, fire
1549 		 * of a plug trace. If others have been added before, check
1550 		 * if we have multiple devices in this plug. If so, make a
1551 		 * note to sort the list before dispatch.
1552 		 */
1553 		if (list_empty(&plug->list))
1554 			trace_block_plug(q);
1555 		else {
1556 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1557 				blk_flush_plug_list(plug, false);
1558 				trace_block_plug(q);
1559 			}
1560 		}
1561 		list_add_tail(&req->queuelist, &plug->list);
1562 		drive_stat_acct(req, 1);
1563 	} else {
1564 		spin_lock_irq(q->queue_lock);
1565 		add_acct_request(q, req, where);
1566 		__blk_run_queue(q);
1567 out_unlock:
1568 		spin_unlock_irq(q->queue_lock);
1569 	}
1570 }
1571 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1572 
1573 /*
1574  * If bio->bi_dev is a partition, remap the location
1575  */
1576 static inline void blk_partition_remap(struct bio *bio)
1577 {
1578 	struct block_device *bdev = bio->bi_bdev;
1579 
1580 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1581 		struct hd_struct *p = bdev->bd_part;
1582 
1583 		bio->bi_sector += p->start_sect;
1584 		bio->bi_bdev = bdev->bd_contains;
1585 
1586 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1587 				      bdev->bd_dev,
1588 				      bio->bi_sector - p->start_sect);
1589 	}
1590 }
1591 
1592 static void handle_bad_sector(struct bio *bio)
1593 {
1594 	char b[BDEVNAME_SIZE];
1595 
1596 	printk(KERN_INFO "attempt to access beyond end of device\n");
1597 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1598 			bdevname(bio->bi_bdev, b),
1599 			bio->bi_rw,
1600 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1601 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1602 
1603 	set_bit(BIO_EOF, &bio->bi_flags);
1604 }
1605 
1606 #ifdef CONFIG_FAIL_MAKE_REQUEST
1607 
1608 static DECLARE_FAULT_ATTR(fail_make_request);
1609 
1610 static int __init setup_fail_make_request(char *str)
1611 {
1612 	return setup_fault_attr(&fail_make_request, str);
1613 }
1614 __setup("fail_make_request=", setup_fail_make_request);
1615 
1616 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1617 {
1618 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1619 }
1620 
1621 static int __init fail_make_request_debugfs(void)
1622 {
1623 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1624 						NULL, &fail_make_request);
1625 
1626 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1627 }
1628 
1629 late_initcall(fail_make_request_debugfs);
1630 
1631 #else /* CONFIG_FAIL_MAKE_REQUEST */
1632 
1633 static inline bool should_fail_request(struct hd_struct *part,
1634 					unsigned int bytes)
1635 {
1636 	return false;
1637 }
1638 
1639 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1640 
1641 /*
1642  * Check whether this bio extends beyond the end of the device.
1643  */
1644 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1645 {
1646 	sector_t maxsector;
1647 
1648 	if (!nr_sectors)
1649 		return 0;
1650 
1651 	/* Test device or partition size, when known. */
1652 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1653 	if (maxsector) {
1654 		sector_t sector = bio->bi_sector;
1655 
1656 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1657 			/*
1658 			 * This may well happen - the kernel calls bread()
1659 			 * without checking the size of the device, e.g., when
1660 			 * mounting a device.
1661 			 */
1662 			handle_bad_sector(bio);
1663 			return 1;
1664 		}
1665 	}
1666 
1667 	return 0;
1668 }
1669 
1670 static noinline_for_stack bool
1671 generic_make_request_checks(struct bio *bio)
1672 {
1673 	struct request_queue *q;
1674 	int nr_sectors = bio_sectors(bio);
1675 	int err = -EIO;
1676 	char b[BDEVNAME_SIZE];
1677 	struct hd_struct *part;
1678 
1679 	might_sleep();
1680 
1681 	if (bio_check_eod(bio, nr_sectors))
1682 		goto end_io;
1683 
1684 	q = bdev_get_queue(bio->bi_bdev);
1685 	if (unlikely(!q)) {
1686 		printk(KERN_ERR
1687 		       "generic_make_request: Trying to access "
1688 			"nonexistent block-device %s (%Lu)\n",
1689 			bdevname(bio->bi_bdev, b),
1690 			(long long) bio->bi_sector);
1691 		goto end_io;
1692 	}
1693 
1694 	if (likely(bio_is_rw(bio) &&
1695 		   nr_sectors > queue_max_hw_sectors(q))) {
1696 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1697 		       bdevname(bio->bi_bdev, b),
1698 		       bio_sectors(bio),
1699 		       queue_max_hw_sectors(q));
1700 		goto end_io;
1701 	}
1702 
1703 	part = bio->bi_bdev->bd_part;
1704 	if (should_fail_request(part, bio->bi_size) ||
1705 	    should_fail_request(&part_to_disk(part)->part0,
1706 				bio->bi_size))
1707 		goto end_io;
1708 
1709 	/*
1710 	 * If this device has partitions, remap block n
1711 	 * of partition p to block n+start(p) of the disk.
1712 	 */
1713 	blk_partition_remap(bio);
1714 
1715 	if (bio_check_eod(bio, nr_sectors))
1716 		goto end_io;
1717 
1718 	/*
1719 	 * Filter flush bio's early so that make_request based
1720 	 * drivers without flush support don't have to worry
1721 	 * about them.
1722 	 */
1723 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1724 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1725 		if (!nr_sectors) {
1726 			err = 0;
1727 			goto end_io;
1728 		}
1729 	}
1730 
1731 	if ((bio->bi_rw & REQ_DISCARD) &&
1732 	    (!blk_queue_discard(q) ||
1733 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1734 		err = -EOPNOTSUPP;
1735 		goto end_io;
1736 	}
1737 
1738 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1739 		err = -EOPNOTSUPP;
1740 		goto end_io;
1741 	}
1742 
1743 	/*
1744 	 * Various block parts want %current->io_context and lazy ioc
1745 	 * allocation ends up trading a lot of pain for a small amount of
1746 	 * memory.  Just allocate it upfront.  This may fail and block
1747 	 * layer knows how to live with it.
1748 	 */
1749 	create_io_context(GFP_ATOMIC, q->node);
1750 
1751 	if (blk_throtl_bio(q, bio))
1752 		return false;	/* throttled, will be resubmitted later */
1753 
1754 	trace_block_bio_queue(q, bio);
1755 	return true;
1756 
1757 end_io:
1758 	bio_endio(bio, err);
1759 	return false;
1760 }
1761 
1762 /**
1763  * generic_make_request - hand a buffer to its device driver for I/O
1764  * @bio:  The bio describing the location in memory and on the device.
1765  *
1766  * generic_make_request() is used to make I/O requests of block
1767  * devices. It is passed a &struct bio, which describes the I/O that needs
1768  * to be done.
1769  *
1770  * generic_make_request() does not return any status.  The
1771  * success/failure status of the request, along with notification of
1772  * completion, is delivered asynchronously through the bio->bi_end_io
1773  * function described (one day) else where.
1774  *
1775  * The caller of generic_make_request must make sure that bi_io_vec
1776  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1777  * set to describe the device address, and the
1778  * bi_end_io and optionally bi_private are set to describe how
1779  * completion notification should be signaled.
1780  *
1781  * generic_make_request and the drivers it calls may use bi_next if this
1782  * bio happens to be merged with someone else, and may resubmit the bio to
1783  * a lower device by calling into generic_make_request recursively, which
1784  * means the bio should NOT be touched after the call to ->make_request_fn.
1785  */
1786 void generic_make_request(struct bio *bio)
1787 {
1788 	struct bio_list bio_list_on_stack;
1789 
1790 	if (!generic_make_request_checks(bio))
1791 		return;
1792 
1793 	/*
1794 	 * We only want one ->make_request_fn to be active at a time, else
1795 	 * stack usage with stacked devices could be a problem.  So use
1796 	 * current->bio_list to keep a list of requests submited by a
1797 	 * make_request_fn function.  current->bio_list is also used as a
1798 	 * flag to say if generic_make_request is currently active in this
1799 	 * task or not.  If it is NULL, then no make_request is active.  If
1800 	 * it is non-NULL, then a make_request is active, and new requests
1801 	 * should be added at the tail
1802 	 */
1803 	if (current->bio_list) {
1804 		bio_list_add(current->bio_list, bio);
1805 		return;
1806 	}
1807 
1808 	/* following loop may be a bit non-obvious, and so deserves some
1809 	 * explanation.
1810 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1811 	 * ensure that) so we have a list with a single bio.
1812 	 * We pretend that we have just taken it off a longer list, so
1813 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1814 	 * thus initialising the bio_list of new bios to be
1815 	 * added.  ->make_request() may indeed add some more bios
1816 	 * through a recursive call to generic_make_request.  If it
1817 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1818 	 * from the top.  In this case we really did just take the bio
1819 	 * of the top of the list (no pretending) and so remove it from
1820 	 * bio_list, and call into ->make_request() again.
1821 	 */
1822 	BUG_ON(bio->bi_next);
1823 	bio_list_init(&bio_list_on_stack);
1824 	current->bio_list = &bio_list_on_stack;
1825 	do {
1826 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1827 
1828 		q->make_request_fn(q, bio);
1829 
1830 		bio = bio_list_pop(current->bio_list);
1831 	} while (bio);
1832 	current->bio_list = NULL; /* deactivate */
1833 }
1834 EXPORT_SYMBOL(generic_make_request);
1835 
1836 /**
1837  * submit_bio - submit a bio to the block device layer for I/O
1838  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1839  * @bio: The &struct bio which describes the I/O
1840  *
1841  * submit_bio() is very similar in purpose to generic_make_request(), and
1842  * uses that function to do most of the work. Both are fairly rough
1843  * interfaces; @bio must be presetup and ready for I/O.
1844  *
1845  */
1846 void submit_bio(int rw, struct bio *bio)
1847 {
1848 	bio->bi_rw |= rw;
1849 
1850 	/*
1851 	 * If it's a regular read/write or a barrier with data attached,
1852 	 * go through the normal accounting stuff before submission.
1853 	 */
1854 	if (bio_has_data(bio)) {
1855 		unsigned int count;
1856 
1857 		if (unlikely(rw & REQ_WRITE_SAME))
1858 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1859 		else
1860 			count = bio_sectors(bio);
1861 
1862 		if (rw & WRITE) {
1863 			count_vm_events(PGPGOUT, count);
1864 		} else {
1865 			task_io_account_read(bio->bi_size);
1866 			count_vm_events(PGPGIN, count);
1867 		}
1868 
1869 		if (unlikely(block_dump)) {
1870 			char b[BDEVNAME_SIZE];
1871 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1872 			current->comm, task_pid_nr(current),
1873 				(rw & WRITE) ? "WRITE" : "READ",
1874 				(unsigned long long)bio->bi_sector,
1875 				bdevname(bio->bi_bdev, b),
1876 				count);
1877 		}
1878 	}
1879 
1880 	generic_make_request(bio);
1881 }
1882 EXPORT_SYMBOL(submit_bio);
1883 
1884 /**
1885  * blk_rq_check_limits - Helper function to check a request for the queue limit
1886  * @q:  the queue
1887  * @rq: the request being checked
1888  *
1889  * Description:
1890  *    @rq may have been made based on weaker limitations of upper-level queues
1891  *    in request stacking drivers, and it may violate the limitation of @q.
1892  *    Since the block layer and the underlying device driver trust @rq
1893  *    after it is inserted to @q, it should be checked against @q before
1894  *    the insertion using this generic function.
1895  *
1896  *    This function should also be useful for request stacking drivers
1897  *    in some cases below, so export this function.
1898  *    Request stacking drivers like request-based dm may change the queue
1899  *    limits while requests are in the queue (e.g. dm's table swapping).
1900  *    Such request stacking drivers should check those requests agaist
1901  *    the new queue limits again when they dispatch those requests,
1902  *    although such checkings are also done against the old queue limits
1903  *    when submitting requests.
1904  */
1905 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1906 {
1907 	if (!rq_mergeable(rq))
1908 		return 0;
1909 
1910 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1911 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1912 		return -EIO;
1913 	}
1914 
1915 	/*
1916 	 * queue's settings related to segment counting like q->bounce_pfn
1917 	 * may differ from that of other stacking queues.
1918 	 * Recalculate it to check the request correctly on this queue's
1919 	 * limitation.
1920 	 */
1921 	blk_recalc_rq_segments(rq);
1922 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1923 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1924 		return -EIO;
1925 	}
1926 
1927 	return 0;
1928 }
1929 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1930 
1931 /**
1932  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1933  * @q:  the queue to submit the request
1934  * @rq: the request being queued
1935  */
1936 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1937 {
1938 	unsigned long flags;
1939 	int where = ELEVATOR_INSERT_BACK;
1940 
1941 	if (blk_rq_check_limits(q, rq))
1942 		return -EIO;
1943 
1944 	if (rq->rq_disk &&
1945 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1946 		return -EIO;
1947 
1948 	spin_lock_irqsave(q->queue_lock, flags);
1949 	if (unlikely(blk_queue_dying(q))) {
1950 		spin_unlock_irqrestore(q->queue_lock, flags);
1951 		return -ENODEV;
1952 	}
1953 
1954 	/*
1955 	 * Submitting request must be dequeued before calling this function
1956 	 * because it will be linked to another request_queue
1957 	 */
1958 	BUG_ON(blk_queued_rq(rq));
1959 
1960 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1961 		where = ELEVATOR_INSERT_FLUSH;
1962 
1963 	add_acct_request(q, rq, where);
1964 	if (where == ELEVATOR_INSERT_FLUSH)
1965 		__blk_run_queue(q);
1966 	spin_unlock_irqrestore(q->queue_lock, flags);
1967 
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1971 
1972 /**
1973  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1974  * @rq: request to examine
1975  *
1976  * Description:
1977  *     A request could be merge of IOs which require different failure
1978  *     handling.  This function determines the number of bytes which
1979  *     can be failed from the beginning of the request without
1980  *     crossing into area which need to be retried further.
1981  *
1982  * Return:
1983  *     The number of bytes to fail.
1984  *
1985  * Context:
1986  *     queue_lock must be held.
1987  */
1988 unsigned int blk_rq_err_bytes(const struct request *rq)
1989 {
1990 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1991 	unsigned int bytes = 0;
1992 	struct bio *bio;
1993 
1994 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1995 		return blk_rq_bytes(rq);
1996 
1997 	/*
1998 	 * Currently the only 'mixing' which can happen is between
1999 	 * different fastfail types.  We can safely fail portions
2000 	 * which have all the failfast bits that the first one has -
2001 	 * the ones which are at least as eager to fail as the first
2002 	 * one.
2003 	 */
2004 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2005 		if ((bio->bi_rw & ff) != ff)
2006 			break;
2007 		bytes += bio->bi_size;
2008 	}
2009 
2010 	/* this could lead to infinite loop */
2011 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2012 	return bytes;
2013 }
2014 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2015 
2016 static void blk_account_io_completion(struct request *req, unsigned int bytes)
2017 {
2018 	if (blk_do_io_stat(req)) {
2019 		const int rw = rq_data_dir(req);
2020 		struct hd_struct *part;
2021 		int cpu;
2022 
2023 		cpu = part_stat_lock();
2024 		part = req->part;
2025 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2026 		part_stat_unlock();
2027 	}
2028 }
2029 
2030 static void blk_account_io_done(struct request *req)
2031 {
2032 	/*
2033 	 * Account IO completion.  flush_rq isn't accounted as a
2034 	 * normal IO on queueing nor completion.  Accounting the
2035 	 * containing request is enough.
2036 	 */
2037 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2038 		unsigned long duration = jiffies - req->start_time;
2039 		const int rw = rq_data_dir(req);
2040 		struct hd_struct *part;
2041 		int cpu;
2042 
2043 		cpu = part_stat_lock();
2044 		part = req->part;
2045 
2046 		part_stat_inc(cpu, part, ios[rw]);
2047 		part_stat_add(cpu, part, ticks[rw], duration);
2048 		part_round_stats(cpu, part);
2049 		part_dec_in_flight(part, rw);
2050 
2051 		hd_struct_put(part);
2052 		part_stat_unlock();
2053 	}
2054 }
2055 
2056 /**
2057  * blk_peek_request - peek at the top of a request queue
2058  * @q: request queue to peek at
2059  *
2060  * Description:
2061  *     Return the request at the top of @q.  The returned request
2062  *     should be started using blk_start_request() before LLD starts
2063  *     processing it.
2064  *
2065  * Return:
2066  *     Pointer to the request at the top of @q if available.  Null
2067  *     otherwise.
2068  *
2069  * Context:
2070  *     queue_lock must be held.
2071  */
2072 struct request *blk_peek_request(struct request_queue *q)
2073 {
2074 	struct request *rq;
2075 	int ret;
2076 
2077 	while ((rq = __elv_next_request(q)) != NULL) {
2078 		if (!(rq->cmd_flags & REQ_STARTED)) {
2079 			/*
2080 			 * This is the first time the device driver
2081 			 * sees this request (possibly after
2082 			 * requeueing).  Notify IO scheduler.
2083 			 */
2084 			if (rq->cmd_flags & REQ_SORTED)
2085 				elv_activate_rq(q, rq);
2086 
2087 			/*
2088 			 * just mark as started even if we don't start
2089 			 * it, a request that has been delayed should
2090 			 * not be passed by new incoming requests
2091 			 */
2092 			rq->cmd_flags |= REQ_STARTED;
2093 			trace_block_rq_issue(q, rq);
2094 		}
2095 
2096 		if (!q->boundary_rq || q->boundary_rq == rq) {
2097 			q->end_sector = rq_end_sector(rq);
2098 			q->boundary_rq = NULL;
2099 		}
2100 
2101 		if (rq->cmd_flags & REQ_DONTPREP)
2102 			break;
2103 
2104 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2105 			/*
2106 			 * make sure space for the drain appears we
2107 			 * know we can do this because max_hw_segments
2108 			 * has been adjusted to be one fewer than the
2109 			 * device can handle
2110 			 */
2111 			rq->nr_phys_segments++;
2112 		}
2113 
2114 		if (!q->prep_rq_fn)
2115 			break;
2116 
2117 		ret = q->prep_rq_fn(q, rq);
2118 		if (ret == BLKPREP_OK) {
2119 			break;
2120 		} else if (ret == BLKPREP_DEFER) {
2121 			/*
2122 			 * the request may have been (partially) prepped.
2123 			 * we need to keep this request in the front to
2124 			 * avoid resource deadlock.  REQ_STARTED will
2125 			 * prevent other fs requests from passing this one.
2126 			 */
2127 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2128 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2129 				/*
2130 				 * remove the space for the drain we added
2131 				 * so that we don't add it again
2132 				 */
2133 				--rq->nr_phys_segments;
2134 			}
2135 
2136 			rq = NULL;
2137 			break;
2138 		} else if (ret == BLKPREP_KILL) {
2139 			rq->cmd_flags |= REQ_QUIET;
2140 			/*
2141 			 * Mark this request as started so we don't trigger
2142 			 * any debug logic in the end I/O path.
2143 			 */
2144 			blk_start_request(rq);
2145 			__blk_end_request_all(rq, -EIO);
2146 		} else {
2147 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2148 			break;
2149 		}
2150 	}
2151 
2152 	return rq;
2153 }
2154 EXPORT_SYMBOL(blk_peek_request);
2155 
2156 void blk_dequeue_request(struct request *rq)
2157 {
2158 	struct request_queue *q = rq->q;
2159 
2160 	BUG_ON(list_empty(&rq->queuelist));
2161 	BUG_ON(ELV_ON_HASH(rq));
2162 
2163 	list_del_init(&rq->queuelist);
2164 
2165 	/*
2166 	 * the time frame between a request being removed from the lists
2167 	 * and to it is freed is accounted as io that is in progress at
2168 	 * the driver side.
2169 	 */
2170 	if (blk_account_rq(rq)) {
2171 		q->in_flight[rq_is_sync(rq)]++;
2172 		set_io_start_time_ns(rq);
2173 	}
2174 }
2175 
2176 /**
2177  * blk_start_request - start request processing on the driver
2178  * @req: request to dequeue
2179  *
2180  * Description:
2181  *     Dequeue @req and start timeout timer on it.  This hands off the
2182  *     request to the driver.
2183  *
2184  *     Block internal functions which don't want to start timer should
2185  *     call blk_dequeue_request().
2186  *
2187  * Context:
2188  *     queue_lock must be held.
2189  */
2190 void blk_start_request(struct request *req)
2191 {
2192 	blk_dequeue_request(req);
2193 
2194 	/*
2195 	 * We are now handing the request to the hardware, initialize
2196 	 * resid_len to full count and add the timeout handler.
2197 	 */
2198 	req->resid_len = blk_rq_bytes(req);
2199 	if (unlikely(blk_bidi_rq(req)))
2200 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2201 
2202 	blk_add_timer(req);
2203 }
2204 EXPORT_SYMBOL(blk_start_request);
2205 
2206 /**
2207  * blk_fetch_request - fetch a request from a request queue
2208  * @q: request queue to fetch a request from
2209  *
2210  * Description:
2211  *     Return the request at the top of @q.  The request is started on
2212  *     return and LLD can start processing it immediately.
2213  *
2214  * Return:
2215  *     Pointer to the request at the top of @q if available.  Null
2216  *     otherwise.
2217  *
2218  * Context:
2219  *     queue_lock must be held.
2220  */
2221 struct request *blk_fetch_request(struct request_queue *q)
2222 {
2223 	struct request *rq;
2224 
2225 	rq = blk_peek_request(q);
2226 	if (rq)
2227 		blk_start_request(rq);
2228 	return rq;
2229 }
2230 EXPORT_SYMBOL(blk_fetch_request);
2231 
2232 /**
2233  * blk_update_request - Special helper function for request stacking drivers
2234  * @req:      the request being processed
2235  * @error:    %0 for success, < %0 for error
2236  * @nr_bytes: number of bytes to complete @req
2237  *
2238  * Description:
2239  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2240  *     the request structure even if @req doesn't have leftover.
2241  *     If @req has leftover, sets it up for the next range of segments.
2242  *
2243  *     This special helper function is only for request stacking drivers
2244  *     (e.g. request-based dm) so that they can handle partial completion.
2245  *     Actual device drivers should use blk_end_request instead.
2246  *
2247  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2248  *     %false return from this function.
2249  *
2250  * Return:
2251  *     %false - this request doesn't have any more data
2252  *     %true  - this request has more data
2253  **/
2254 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2255 {
2256 	int total_bytes, bio_nbytes, next_idx = 0;
2257 	struct bio *bio;
2258 
2259 	if (!req->bio)
2260 		return false;
2261 
2262 	trace_block_rq_complete(req->q, req);
2263 
2264 	/*
2265 	 * For fs requests, rq is just carrier of independent bio's
2266 	 * and each partial completion should be handled separately.
2267 	 * Reset per-request error on each partial completion.
2268 	 *
2269 	 * TODO: tj: This is too subtle.  It would be better to let
2270 	 * low level drivers do what they see fit.
2271 	 */
2272 	if (req->cmd_type == REQ_TYPE_FS)
2273 		req->errors = 0;
2274 
2275 	if (error && req->cmd_type == REQ_TYPE_FS &&
2276 	    !(req->cmd_flags & REQ_QUIET)) {
2277 		char *error_type;
2278 
2279 		switch (error) {
2280 		case -ENOLINK:
2281 			error_type = "recoverable transport";
2282 			break;
2283 		case -EREMOTEIO:
2284 			error_type = "critical target";
2285 			break;
2286 		case -EBADE:
2287 			error_type = "critical nexus";
2288 			break;
2289 		case -EIO:
2290 		default:
2291 			error_type = "I/O";
2292 			break;
2293 		}
2294 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2295 				   error_type, req->rq_disk ?
2296 				   req->rq_disk->disk_name : "?",
2297 				   (unsigned long long)blk_rq_pos(req));
2298 
2299 	}
2300 
2301 	blk_account_io_completion(req, nr_bytes);
2302 
2303 	total_bytes = bio_nbytes = 0;
2304 	while ((bio = req->bio) != NULL) {
2305 		int nbytes;
2306 
2307 		if (nr_bytes >= bio->bi_size) {
2308 			req->bio = bio->bi_next;
2309 			nbytes = bio->bi_size;
2310 			req_bio_endio(req, bio, nbytes, error);
2311 			next_idx = 0;
2312 			bio_nbytes = 0;
2313 		} else {
2314 			int idx = bio->bi_idx + next_idx;
2315 
2316 			if (unlikely(idx >= bio->bi_vcnt)) {
2317 				blk_dump_rq_flags(req, "__end_that");
2318 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2319 				       __func__, idx, bio->bi_vcnt);
2320 				break;
2321 			}
2322 
2323 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2324 			BIO_BUG_ON(nbytes > bio->bi_size);
2325 
2326 			/*
2327 			 * not a complete bvec done
2328 			 */
2329 			if (unlikely(nbytes > nr_bytes)) {
2330 				bio_nbytes += nr_bytes;
2331 				total_bytes += nr_bytes;
2332 				break;
2333 			}
2334 
2335 			/*
2336 			 * advance to the next vector
2337 			 */
2338 			next_idx++;
2339 			bio_nbytes += nbytes;
2340 		}
2341 
2342 		total_bytes += nbytes;
2343 		nr_bytes -= nbytes;
2344 
2345 		bio = req->bio;
2346 		if (bio) {
2347 			/*
2348 			 * end more in this run, or just return 'not-done'
2349 			 */
2350 			if (unlikely(nr_bytes <= 0))
2351 				break;
2352 		}
2353 	}
2354 
2355 	/*
2356 	 * completely done
2357 	 */
2358 	if (!req->bio) {
2359 		/*
2360 		 * Reset counters so that the request stacking driver
2361 		 * can find how many bytes remain in the request
2362 		 * later.
2363 		 */
2364 		req->__data_len = 0;
2365 		return false;
2366 	}
2367 
2368 	/*
2369 	 * if the request wasn't completed, update state
2370 	 */
2371 	if (bio_nbytes) {
2372 		req_bio_endio(req, bio, bio_nbytes, error);
2373 		bio->bi_idx += next_idx;
2374 		bio_iovec(bio)->bv_offset += nr_bytes;
2375 		bio_iovec(bio)->bv_len -= nr_bytes;
2376 	}
2377 
2378 	req->__data_len -= total_bytes;
2379 	req->buffer = bio_data(req->bio);
2380 
2381 	/* update sector only for requests with clear definition of sector */
2382 	if (req->cmd_type == REQ_TYPE_FS)
2383 		req->__sector += total_bytes >> 9;
2384 
2385 	/* mixed attributes always follow the first bio */
2386 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2387 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2388 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2389 	}
2390 
2391 	/*
2392 	 * If total number of sectors is less than the first segment
2393 	 * size, something has gone terribly wrong.
2394 	 */
2395 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2396 		blk_dump_rq_flags(req, "request botched");
2397 		req->__data_len = blk_rq_cur_bytes(req);
2398 	}
2399 
2400 	/* recalculate the number of segments */
2401 	blk_recalc_rq_segments(req);
2402 
2403 	return true;
2404 }
2405 EXPORT_SYMBOL_GPL(blk_update_request);
2406 
2407 static bool blk_update_bidi_request(struct request *rq, int error,
2408 				    unsigned int nr_bytes,
2409 				    unsigned int bidi_bytes)
2410 {
2411 	if (blk_update_request(rq, error, nr_bytes))
2412 		return true;
2413 
2414 	/* Bidi request must be completed as a whole */
2415 	if (unlikely(blk_bidi_rq(rq)) &&
2416 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2417 		return true;
2418 
2419 	if (blk_queue_add_random(rq->q))
2420 		add_disk_randomness(rq->rq_disk);
2421 
2422 	return false;
2423 }
2424 
2425 /**
2426  * blk_unprep_request - unprepare a request
2427  * @req:	the request
2428  *
2429  * This function makes a request ready for complete resubmission (or
2430  * completion).  It happens only after all error handling is complete,
2431  * so represents the appropriate moment to deallocate any resources
2432  * that were allocated to the request in the prep_rq_fn.  The queue
2433  * lock is held when calling this.
2434  */
2435 void blk_unprep_request(struct request *req)
2436 {
2437 	struct request_queue *q = req->q;
2438 
2439 	req->cmd_flags &= ~REQ_DONTPREP;
2440 	if (q->unprep_rq_fn)
2441 		q->unprep_rq_fn(q, req);
2442 }
2443 EXPORT_SYMBOL_GPL(blk_unprep_request);
2444 
2445 /*
2446  * queue lock must be held
2447  */
2448 static void blk_finish_request(struct request *req, int error)
2449 {
2450 	if (blk_rq_tagged(req))
2451 		blk_queue_end_tag(req->q, req);
2452 
2453 	BUG_ON(blk_queued_rq(req));
2454 
2455 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2456 		laptop_io_completion(&req->q->backing_dev_info);
2457 
2458 	blk_delete_timer(req);
2459 
2460 	if (req->cmd_flags & REQ_DONTPREP)
2461 		blk_unprep_request(req);
2462 
2463 
2464 	blk_account_io_done(req);
2465 
2466 	if (req->end_io)
2467 		req->end_io(req, error);
2468 	else {
2469 		if (blk_bidi_rq(req))
2470 			__blk_put_request(req->next_rq->q, req->next_rq);
2471 
2472 		__blk_put_request(req->q, req);
2473 	}
2474 }
2475 
2476 /**
2477  * blk_end_bidi_request - Complete a bidi request
2478  * @rq:         the request to complete
2479  * @error:      %0 for success, < %0 for error
2480  * @nr_bytes:   number of bytes to complete @rq
2481  * @bidi_bytes: number of bytes to complete @rq->next_rq
2482  *
2483  * Description:
2484  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2485  *     Drivers that supports bidi can safely call this member for any
2486  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2487  *     just ignored.
2488  *
2489  * Return:
2490  *     %false - we are done with this request
2491  *     %true  - still buffers pending for this request
2492  **/
2493 static bool blk_end_bidi_request(struct request *rq, int error,
2494 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2495 {
2496 	struct request_queue *q = rq->q;
2497 	unsigned long flags;
2498 
2499 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2500 		return true;
2501 
2502 	spin_lock_irqsave(q->queue_lock, flags);
2503 	blk_finish_request(rq, error);
2504 	spin_unlock_irqrestore(q->queue_lock, flags);
2505 
2506 	return false;
2507 }
2508 
2509 /**
2510  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2511  * @rq:         the request to complete
2512  * @error:      %0 for success, < %0 for error
2513  * @nr_bytes:   number of bytes to complete @rq
2514  * @bidi_bytes: number of bytes to complete @rq->next_rq
2515  *
2516  * Description:
2517  *     Identical to blk_end_bidi_request() except that queue lock is
2518  *     assumed to be locked on entry and remains so on return.
2519  *
2520  * Return:
2521  *     %false - we are done with this request
2522  *     %true  - still buffers pending for this request
2523  **/
2524 bool __blk_end_bidi_request(struct request *rq, int error,
2525 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2526 {
2527 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2528 		return true;
2529 
2530 	blk_finish_request(rq, error);
2531 
2532 	return false;
2533 }
2534 
2535 /**
2536  * blk_end_request - Helper function for drivers to complete the request.
2537  * @rq:       the request being processed
2538  * @error:    %0 for success, < %0 for error
2539  * @nr_bytes: number of bytes to complete
2540  *
2541  * Description:
2542  *     Ends I/O on a number of bytes attached to @rq.
2543  *     If @rq has leftover, sets it up for the next range of segments.
2544  *
2545  * Return:
2546  *     %false - we are done with this request
2547  *     %true  - still buffers pending for this request
2548  **/
2549 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2550 {
2551 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2552 }
2553 EXPORT_SYMBOL(blk_end_request);
2554 
2555 /**
2556  * blk_end_request_all - Helper function for drives to finish the request.
2557  * @rq: the request to finish
2558  * @error: %0 for success, < %0 for error
2559  *
2560  * Description:
2561  *     Completely finish @rq.
2562  */
2563 void blk_end_request_all(struct request *rq, int error)
2564 {
2565 	bool pending;
2566 	unsigned int bidi_bytes = 0;
2567 
2568 	if (unlikely(blk_bidi_rq(rq)))
2569 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2570 
2571 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2572 	BUG_ON(pending);
2573 }
2574 EXPORT_SYMBOL(blk_end_request_all);
2575 
2576 /**
2577  * blk_end_request_cur - Helper function to finish the current request chunk.
2578  * @rq: the request to finish the current chunk for
2579  * @error: %0 for success, < %0 for error
2580  *
2581  * Description:
2582  *     Complete the current consecutively mapped chunk from @rq.
2583  *
2584  * Return:
2585  *     %false - we are done with this request
2586  *     %true  - still buffers pending for this request
2587  */
2588 bool blk_end_request_cur(struct request *rq, int error)
2589 {
2590 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2591 }
2592 EXPORT_SYMBOL(blk_end_request_cur);
2593 
2594 /**
2595  * blk_end_request_err - Finish a request till the next failure boundary.
2596  * @rq: the request to finish till the next failure boundary for
2597  * @error: must be negative errno
2598  *
2599  * Description:
2600  *     Complete @rq till the next failure boundary.
2601  *
2602  * Return:
2603  *     %false - we are done with this request
2604  *     %true  - still buffers pending for this request
2605  */
2606 bool blk_end_request_err(struct request *rq, int error)
2607 {
2608 	WARN_ON(error >= 0);
2609 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2610 }
2611 EXPORT_SYMBOL_GPL(blk_end_request_err);
2612 
2613 /**
2614  * __blk_end_request - Helper function for drivers to complete the request.
2615  * @rq:       the request being processed
2616  * @error:    %0 for success, < %0 for error
2617  * @nr_bytes: number of bytes to complete
2618  *
2619  * Description:
2620  *     Must be called with queue lock held unlike blk_end_request().
2621  *
2622  * Return:
2623  *     %false - we are done with this request
2624  *     %true  - still buffers pending for this request
2625  **/
2626 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2627 {
2628 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2629 }
2630 EXPORT_SYMBOL(__blk_end_request);
2631 
2632 /**
2633  * __blk_end_request_all - Helper function for drives to finish the request.
2634  * @rq: the request to finish
2635  * @error: %0 for success, < %0 for error
2636  *
2637  * Description:
2638  *     Completely finish @rq.  Must be called with queue lock held.
2639  */
2640 void __blk_end_request_all(struct request *rq, int error)
2641 {
2642 	bool pending;
2643 	unsigned int bidi_bytes = 0;
2644 
2645 	if (unlikely(blk_bidi_rq(rq)))
2646 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2647 
2648 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2649 	BUG_ON(pending);
2650 }
2651 EXPORT_SYMBOL(__blk_end_request_all);
2652 
2653 /**
2654  * __blk_end_request_cur - Helper function to finish the current request chunk.
2655  * @rq: the request to finish the current chunk for
2656  * @error: %0 for success, < %0 for error
2657  *
2658  * Description:
2659  *     Complete the current consecutively mapped chunk from @rq.  Must
2660  *     be called with queue lock held.
2661  *
2662  * Return:
2663  *     %false - we are done with this request
2664  *     %true  - still buffers pending for this request
2665  */
2666 bool __blk_end_request_cur(struct request *rq, int error)
2667 {
2668 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2669 }
2670 EXPORT_SYMBOL(__blk_end_request_cur);
2671 
2672 /**
2673  * __blk_end_request_err - Finish a request till the next failure boundary.
2674  * @rq: the request to finish till the next failure boundary for
2675  * @error: must be negative errno
2676  *
2677  * Description:
2678  *     Complete @rq till the next failure boundary.  Must be called
2679  *     with queue lock held.
2680  *
2681  * Return:
2682  *     %false - we are done with this request
2683  *     %true  - still buffers pending for this request
2684  */
2685 bool __blk_end_request_err(struct request *rq, int error)
2686 {
2687 	WARN_ON(error >= 0);
2688 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2689 }
2690 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2691 
2692 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2693 		     struct bio *bio)
2694 {
2695 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2696 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2697 
2698 	if (bio_has_data(bio)) {
2699 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2700 		rq->buffer = bio_data(bio);
2701 	}
2702 	rq->__data_len = bio->bi_size;
2703 	rq->bio = rq->biotail = bio;
2704 
2705 	if (bio->bi_bdev)
2706 		rq->rq_disk = bio->bi_bdev->bd_disk;
2707 }
2708 
2709 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2710 /**
2711  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2712  * @rq: the request to be flushed
2713  *
2714  * Description:
2715  *     Flush all pages in @rq.
2716  */
2717 void rq_flush_dcache_pages(struct request *rq)
2718 {
2719 	struct req_iterator iter;
2720 	struct bio_vec *bvec;
2721 
2722 	rq_for_each_segment(bvec, rq, iter)
2723 		flush_dcache_page(bvec->bv_page);
2724 }
2725 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2726 #endif
2727 
2728 /**
2729  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2730  * @q : the queue of the device being checked
2731  *
2732  * Description:
2733  *    Check if underlying low-level drivers of a device are busy.
2734  *    If the drivers want to export their busy state, they must set own
2735  *    exporting function using blk_queue_lld_busy() first.
2736  *
2737  *    Basically, this function is used only by request stacking drivers
2738  *    to stop dispatching requests to underlying devices when underlying
2739  *    devices are busy.  This behavior helps more I/O merging on the queue
2740  *    of the request stacking driver and prevents I/O throughput regression
2741  *    on burst I/O load.
2742  *
2743  * Return:
2744  *    0 - Not busy (The request stacking driver should dispatch request)
2745  *    1 - Busy (The request stacking driver should stop dispatching request)
2746  */
2747 int blk_lld_busy(struct request_queue *q)
2748 {
2749 	if (q->lld_busy_fn)
2750 		return q->lld_busy_fn(q);
2751 
2752 	return 0;
2753 }
2754 EXPORT_SYMBOL_GPL(blk_lld_busy);
2755 
2756 /**
2757  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2758  * @rq: the clone request to be cleaned up
2759  *
2760  * Description:
2761  *     Free all bios in @rq for a cloned request.
2762  */
2763 void blk_rq_unprep_clone(struct request *rq)
2764 {
2765 	struct bio *bio;
2766 
2767 	while ((bio = rq->bio) != NULL) {
2768 		rq->bio = bio->bi_next;
2769 
2770 		bio_put(bio);
2771 	}
2772 }
2773 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2774 
2775 /*
2776  * Copy attributes of the original request to the clone request.
2777  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2778  */
2779 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2780 {
2781 	dst->cpu = src->cpu;
2782 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2783 	dst->cmd_type = src->cmd_type;
2784 	dst->__sector = blk_rq_pos(src);
2785 	dst->__data_len = blk_rq_bytes(src);
2786 	dst->nr_phys_segments = src->nr_phys_segments;
2787 	dst->ioprio = src->ioprio;
2788 	dst->extra_len = src->extra_len;
2789 }
2790 
2791 /**
2792  * blk_rq_prep_clone - Helper function to setup clone request
2793  * @rq: the request to be setup
2794  * @rq_src: original request to be cloned
2795  * @bs: bio_set that bios for clone are allocated from
2796  * @gfp_mask: memory allocation mask for bio
2797  * @bio_ctr: setup function to be called for each clone bio.
2798  *           Returns %0 for success, non %0 for failure.
2799  * @data: private data to be passed to @bio_ctr
2800  *
2801  * Description:
2802  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2803  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2804  *     are not copied, and copying such parts is the caller's responsibility.
2805  *     Also, pages which the original bios are pointing to are not copied
2806  *     and the cloned bios just point same pages.
2807  *     So cloned bios must be completed before original bios, which means
2808  *     the caller must complete @rq before @rq_src.
2809  */
2810 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2811 		      struct bio_set *bs, gfp_t gfp_mask,
2812 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2813 		      void *data)
2814 {
2815 	struct bio *bio, *bio_src;
2816 
2817 	if (!bs)
2818 		bs = fs_bio_set;
2819 
2820 	blk_rq_init(NULL, rq);
2821 
2822 	__rq_for_each_bio(bio_src, rq_src) {
2823 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2824 		if (!bio)
2825 			goto free_and_out;
2826 
2827 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2828 			goto free_and_out;
2829 
2830 		if (rq->bio) {
2831 			rq->biotail->bi_next = bio;
2832 			rq->biotail = bio;
2833 		} else
2834 			rq->bio = rq->biotail = bio;
2835 	}
2836 
2837 	__blk_rq_prep_clone(rq, rq_src);
2838 
2839 	return 0;
2840 
2841 free_and_out:
2842 	if (bio)
2843 		bio_put(bio);
2844 	blk_rq_unprep_clone(rq);
2845 
2846 	return -ENOMEM;
2847 }
2848 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2849 
2850 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2851 {
2852 	return queue_work(kblockd_workqueue, work);
2853 }
2854 EXPORT_SYMBOL(kblockd_schedule_work);
2855 
2856 int kblockd_schedule_delayed_work(struct request_queue *q,
2857 			struct delayed_work *dwork, unsigned long delay)
2858 {
2859 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2860 }
2861 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2862 
2863 #define PLUG_MAGIC	0x91827364
2864 
2865 /**
2866  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2867  * @plug:	The &struct blk_plug that needs to be initialized
2868  *
2869  * Description:
2870  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2871  *   pending I/O should the task end up blocking between blk_start_plug() and
2872  *   blk_finish_plug(). This is important from a performance perspective, but
2873  *   also ensures that we don't deadlock. For instance, if the task is blocking
2874  *   for a memory allocation, memory reclaim could end up wanting to free a
2875  *   page belonging to that request that is currently residing in our private
2876  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2877  *   this kind of deadlock.
2878  */
2879 void blk_start_plug(struct blk_plug *plug)
2880 {
2881 	struct task_struct *tsk = current;
2882 
2883 	plug->magic = PLUG_MAGIC;
2884 	INIT_LIST_HEAD(&plug->list);
2885 	INIT_LIST_HEAD(&plug->cb_list);
2886 
2887 	/*
2888 	 * If this is a nested plug, don't actually assign it. It will be
2889 	 * flushed on its own.
2890 	 */
2891 	if (!tsk->plug) {
2892 		/*
2893 		 * Store ordering should not be needed here, since a potential
2894 		 * preempt will imply a full memory barrier
2895 		 */
2896 		tsk->plug = plug;
2897 	}
2898 }
2899 EXPORT_SYMBOL(blk_start_plug);
2900 
2901 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2902 {
2903 	struct request *rqa = container_of(a, struct request, queuelist);
2904 	struct request *rqb = container_of(b, struct request, queuelist);
2905 
2906 	return !(rqa->q < rqb->q ||
2907 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2908 }
2909 
2910 /*
2911  * If 'from_schedule' is true, then postpone the dispatch of requests
2912  * until a safe kblockd context. We due this to avoid accidental big
2913  * additional stack usage in driver dispatch, in places where the originally
2914  * plugger did not intend it.
2915  */
2916 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2917 			    bool from_schedule)
2918 	__releases(q->queue_lock)
2919 {
2920 	trace_block_unplug(q, depth, !from_schedule);
2921 
2922 	if (from_schedule)
2923 		blk_run_queue_async(q);
2924 	else
2925 		__blk_run_queue(q);
2926 	spin_unlock(q->queue_lock);
2927 }
2928 
2929 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2930 {
2931 	LIST_HEAD(callbacks);
2932 
2933 	while (!list_empty(&plug->cb_list)) {
2934 		list_splice_init(&plug->cb_list, &callbacks);
2935 
2936 		while (!list_empty(&callbacks)) {
2937 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2938 							  struct blk_plug_cb,
2939 							  list);
2940 			list_del(&cb->list);
2941 			cb->callback(cb, from_schedule);
2942 		}
2943 	}
2944 }
2945 
2946 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2947 				      int size)
2948 {
2949 	struct blk_plug *plug = current->plug;
2950 	struct blk_plug_cb *cb;
2951 
2952 	if (!plug)
2953 		return NULL;
2954 
2955 	list_for_each_entry(cb, &plug->cb_list, list)
2956 		if (cb->callback == unplug && cb->data == data)
2957 			return cb;
2958 
2959 	/* Not currently on the callback list */
2960 	BUG_ON(size < sizeof(*cb));
2961 	cb = kzalloc(size, GFP_ATOMIC);
2962 	if (cb) {
2963 		cb->data = data;
2964 		cb->callback = unplug;
2965 		list_add(&cb->list, &plug->cb_list);
2966 	}
2967 	return cb;
2968 }
2969 EXPORT_SYMBOL(blk_check_plugged);
2970 
2971 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2972 {
2973 	struct request_queue *q;
2974 	unsigned long flags;
2975 	struct request *rq;
2976 	LIST_HEAD(list);
2977 	unsigned int depth;
2978 
2979 	BUG_ON(plug->magic != PLUG_MAGIC);
2980 
2981 	flush_plug_callbacks(plug, from_schedule);
2982 	if (list_empty(&plug->list))
2983 		return;
2984 
2985 	list_splice_init(&plug->list, &list);
2986 
2987 	list_sort(NULL, &list, plug_rq_cmp);
2988 
2989 	q = NULL;
2990 	depth = 0;
2991 
2992 	/*
2993 	 * Save and disable interrupts here, to avoid doing it for every
2994 	 * queue lock we have to take.
2995 	 */
2996 	local_irq_save(flags);
2997 	while (!list_empty(&list)) {
2998 		rq = list_entry_rq(list.next);
2999 		list_del_init(&rq->queuelist);
3000 		BUG_ON(!rq->q);
3001 		if (rq->q != q) {
3002 			/*
3003 			 * This drops the queue lock
3004 			 */
3005 			if (q)
3006 				queue_unplugged(q, depth, from_schedule);
3007 			q = rq->q;
3008 			depth = 0;
3009 			spin_lock(q->queue_lock);
3010 		}
3011 
3012 		/*
3013 		 * Short-circuit if @q is dead
3014 		 */
3015 		if (unlikely(blk_queue_dying(q))) {
3016 			__blk_end_request_all(rq, -ENODEV);
3017 			continue;
3018 		}
3019 
3020 		/*
3021 		 * rq is already accounted, so use raw insert
3022 		 */
3023 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3024 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3025 		else
3026 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3027 
3028 		depth++;
3029 	}
3030 
3031 	/*
3032 	 * This drops the queue lock
3033 	 */
3034 	if (q)
3035 		queue_unplugged(q, depth, from_schedule);
3036 
3037 	local_irq_restore(flags);
3038 }
3039 
3040 void blk_finish_plug(struct blk_plug *plug)
3041 {
3042 	blk_flush_plug_list(plug, false);
3043 
3044 	if (plug == current->plug)
3045 		current->plug = NULL;
3046 }
3047 EXPORT_SYMBOL(blk_finish_plug);
3048 
3049 int __init blk_dev_init(void)
3050 {
3051 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3052 			sizeof(((struct request *)0)->cmd_flags));
3053 
3054 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3055 	kblockd_workqueue = alloc_workqueue("kblockd",
3056 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3057 	if (!kblockd_workqueue)
3058 		panic("Failed to create kblockd\n");
3059 
3060 	request_cachep = kmem_cache_create("blkdev_requests",
3061 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3062 
3063 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3064 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3065 
3066 	return 0;
3067 }
3068