1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/block.h> 38 39 #include "blk.h" 40 #include "blk-cgroup.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 47 48 DEFINE_IDA(blk_queue_ida); 49 50 /* 51 * For the allocated request tables 52 */ 53 struct kmem_cache *request_cachep = NULL; 54 55 /* 56 * For queue allocation 57 */ 58 struct kmem_cache *blk_requestq_cachep; 59 60 /* 61 * Controlling structure to kblockd 62 */ 63 static struct workqueue_struct *kblockd_workqueue; 64 65 void blk_queue_congestion_threshold(struct request_queue *q) 66 { 67 int nr; 68 69 nr = q->nr_requests - (q->nr_requests / 8) + 1; 70 if (nr > q->nr_requests) 71 nr = q->nr_requests; 72 q->nr_congestion_on = nr; 73 74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 75 if (nr < 1) 76 nr = 1; 77 q->nr_congestion_off = nr; 78 } 79 80 /** 81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 82 * @bdev: device 83 * 84 * Locates the passed device's request queue and returns the address of its 85 * backing_dev_info 86 * 87 * Will return NULL if the request queue cannot be located. 88 */ 89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 90 { 91 struct backing_dev_info *ret = NULL; 92 struct request_queue *q = bdev_get_queue(bdev); 93 94 if (q) 95 ret = &q->backing_dev_info; 96 return ret; 97 } 98 EXPORT_SYMBOL(blk_get_backing_dev_info); 99 100 void blk_rq_init(struct request_queue *q, struct request *rq) 101 { 102 memset(rq, 0, sizeof(*rq)); 103 104 INIT_LIST_HEAD(&rq->queuelist); 105 INIT_LIST_HEAD(&rq->timeout_list); 106 rq->cpu = -1; 107 rq->q = q; 108 rq->__sector = (sector_t) -1; 109 INIT_HLIST_NODE(&rq->hash); 110 RB_CLEAR_NODE(&rq->rb_node); 111 rq->cmd = rq->__cmd; 112 rq->cmd_len = BLK_MAX_CDB; 113 rq->tag = -1; 114 rq->start_time = jiffies; 115 set_start_time_ns(rq); 116 rq->part = NULL; 117 } 118 EXPORT_SYMBOL(blk_rq_init); 119 120 static void req_bio_endio(struct request *rq, struct bio *bio, 121 unsigned int nbytes, int error) 122 { 123 if (error) 124 clear_bit(BIO_UPTODATE, &bio->bi_flags); 125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 126 error = -EIO; 127 128 if (unlikely(rq->cmd_flags & REQ_QUIET)) 129 set_bit(BIO_QUIET, &bio->bi_flags); 130 131 bio_advance(bio, nbytes); 132 133 /* don't actually finish bio if it's part of flush sequence */ 134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 135 bio_endio(bio, error); 136 } 137 138 void blk_dump_rq_flags(struct request *rq, char *msg) 139 { 140 int bit; 141 142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 144 (unsigned long long) rq->cmd_flags); 145 146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 147 (unsigned long long)blk_rq_pos(rq), 148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 149 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 150 rq->bio, rq->biotail, blk_rq_bytes(rq)); 151 152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 153 printk(KERN_INFO " cdb: "); 154 for (bit = 0; bit < BLK_MAX_CDB; bit++) 155 printk("%02x ", rq->cmd[bit]); 156 printk("\n"); 157 } 158 } 159 EXPORT_SYMBOL(blk_dump_rq_flags); 160 161 static void blk_delay_work(struct work_struct *work) 162 { 163 struct request_queue *q; 164 165 q = container_of(work, struct request_queue, delay_work.work); 166 spin_lock_irq(q->queue_lock); 167 __blk_run_queue(q); 168 spin_unlock_irq(q->queue_lock); 169 } 170 171 /** 172 * blk_delay_queue - restart queueing after defined interval 173 * @q: The &struct request_queue in question 174 * @msecs: Delay in msecs 175 * 176 * Description: 177 * Sometimes queueing needs to be postponed for a little while, to allow 178 * resources to come back. This function will make sure that queueing is 179 * restarted around the specified time. Queue lock must be held. 180 */ 181 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 182 { 183 if (likely(!blk_queue_dead(q))) 184 queue_delayed_work(kblockd_workqueue, &q->delay_work, 185 msecs_to_jiffies(msecs)); 186 } 187 EXPORT_SYMBOL(blk_delay_queue); 188 189 /** 190 * blk_start_queue - restart a previously stopped queue 191 * @q: The &struct request_queue in question 192 * 193 * Description: 194 * blk_start_queue() will clear the stop flag on the queue, and call 195 * the request_fn for the queue if it was in a stopped state when 196 * entered. Also see blk_stop_queue(). Queue lock must be held. 197 **/ 198 void blk_start_queue(struct request_queue *q) 199 { 200 WARN_ON(!irqs_disabled()); 201 202 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 203 __blk_run_queue(q); 204 } 205 EXPORT_SYMBOL(blk_start_queue); 206 207 /** 208 * blk_stop_queue - stop a queue 209 * @q: The &struct request_queue in question 210 * 211 * Description: 212 * The Linux block layer assumes that a block driver will consume all 213 * entries on the request queue when the request_fn strategy is called. 214 * Often this will not happen, because of hardware limitations (queue 215 * depth settings). If a device driver gets a 'queue full' response, 216 * or if it simply chooses not to queue more I/O at one point, it can 217 * call this function to prevent the request_fn from being called until 218 * the driver has signalled it's ready to go again. This happens by calling 219 * blk_start_queue() to restart queue operations. Queue lock must be held. 220 **/ 221 void blk_stop_queue(struct request_queue *q) 222 { 223 cancel_delayed_work(&q->delay_work); 224 queue_flag_set(QUEUE_FLAG_STOPPED, q); 225 } 226 EXPORT_SYMBOL(blk_stop_queue); 227 228 /** 229 * blk_sync_queue - cancel any pending callbacks on a queue 230 * @q: the queue 231 * 232 * Description: 233 * The block layer may perform asynchronous callback activity 234 * on a queue, such as calling the unplug function after a timeout. 235 * A block device may call blk_sync_queue to ensure that any 236 * such activity is cancelled, thus allowing it to release resources 237 * that the callbacks might use. The caller must already have made sure 238 * that its ->make_request_fn will not re-add plugging prior to calling 239 * this function. 240 * 241 * This function does not cancel any asynchronous activity arising 242 * out of elevator or throttling code. That would require elevaotor_exit() 243 * and blkcg_exit_queue() to be called with queue lock initialized. 244 * 245 */ 246 void blk_sync_queue(struct request_queue *q) 247 { 248 del_timer_sync(&q->timeout); 249 250 if (q->mq_ops) { 251 struct blk_mq_hw_ctx *hctx; 252 int i; 253 254 queue_for_each_hw_ctx(q, hctx, i) { 255 cancel_delayed_work_sync(&hctx->run_work); 256 cancel_delayed_work_sync(&hctx->delay_work); 257 } 258 } else { 259 cancel_delayed_work_sync(&q->delay_work); 260 } 261 } 262 EXPORT_SYMBOL(blk_sync_queue); 263 264 /** 265 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 266 * @q: The queue to run 267 * 268 * Description: 269 * Invoke request handling on a queue if there are any pending requests. 270 * May be used to restart request handling after a request has completed. 271 * This variant runs the queue whether or not the queue has been 272 * stopped. Must be called with the queue lock held and interrupts 273 * disabled. See also @blk_run_queue. 274 */ 275 inline void __blk_run_queue_uncond(struct request_queue *q) 276 { 277 if (unlikely(blk_queue_dead(q))) 278 return; 279 280 /* 281 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 282 * the queue lock internally. As a result multiple threads may be 283 * running such a request function concurrently. Keep track of the 284 * number of active request_fn invocations such that blk_drain_queue() 285 * can wait until all these request_fn calls have finished. 286 */ 287 q->request_fn_active++; 288 q->request_fn(q); 289 q->request_fn_active--; 290 } 291 292 /** 293 * __blk_run_queue - run a single device queue 294 * @q: The queue to run 295 * 296 * Description: 297 * See @blk_run_queue. This variant must be called with the queue lock 298 * held and interrupts disabled. 299 */ 300 void __blk_run_queue(struct request_queue *q) 301 { 302 if (unlikely(blk_queue_stopped(q))) 303 return; 304 305 __blk_run_queue_uncond(q); 306 } 307 EXPORT_SYMBOL(__blk_run_queue); 308 309 /** 310 * blk_run_queue_async - run a single device queue in workqueue context 311 * @q: The queue to run 312 * 313 * Description: 314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 315 * of us. The caller must hold the queue lock. 316 */ 317 void blk_run_queue_async(struct request_queue *q) 318 { 319 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 320 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 321 } 322 EXPORT_SYMBOL(blk_run_queue_async); 323 324 /** 325 * blk_run_queue - run a single device queue 326 * @q: The queue to run 327 * 328 * Description: 329 * Invoke request handling on this queue, if it has pending work to do. 330 * May be used to restart queueing when a request has completed. 331 */ 332 void blk_run_queue(struct request_queue *q) 333 { 334 unsigned long flags; 335 336 spin_lock_irqsave(q->queue_lock, flags); 337 __blk_run_queue(q); 338 spin_unlock_irqrestore(q->queue_lock, flags); 339 } 340 EXPORT_SYMBOL(blk_run_queue); 341 342 void blk_put_queue(struct request_queue *q) 343 { 344 kobject_put(&q->kobj); 345 } 346 EXPORT_SYMBOL(blk_put_queue); 347 348 /** 349 * __blk_drain_queue - drain requests from request_queue 350 * @q: queue to drain 351 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 352 * 353 * Drain requests from @q. If @drain_all is set, all requests are drained. 354 * If not, only ELVPRIV requests are drained. The caller is responsible 355 * for ensuring that no new requests which need to be drained are queued. 356 */ 357 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 358 __releases(q->queue_lock) 359 __acquires(q->queue_lock) 360 { 361 int i; 362 363 lockdep_assert_held(q->queue_lock); 364 365 while (true) { 366 bool drain = false; 367 368 /* 369 * The caller might be trying to drain @q before its 370 * elevator is initialized. 371 */ 372 if (q->elevator) 373 elv_drain_elevator(q); 374 375 blkcg_drain_queue(q); 376 377 /* 378 * This function might be called on a queue which failed 379 * driver init after queue creation or is not yet fully 380 * active yet. Some drivers (e.g. fd and loop) get unhappy 381 * in such cases. Kick queue iff dispatch queue has 382 * something on it and @q has request_fn set. 383 */ 384 if (!list_empty(&q->queue_head) && q->request_fn) 385 __blk_run_queue(q); 386 387 drain |= q->nr_rqs_elvpriv; 388 drain |= q->request_fn_active; 389 390 /* 391 * Unfortunately, requests are queued at and tracked from 392 * multiple places and there's no single counter which can 393 * be drained. Check all the queues and counters. 394 */ 395 if (drain_all) { 396 drain |= !list_empty(&q->queue_head); 397 for (i = 0; i < 2; i++) { 398 drain |= q->nr_rqs[i]; 399 drain |= q->in_flight[i]; 400 drain |= !list_empty(&q->flush_queue[i]); 401 } 402 } 403 404 if (!drain) 405 break; 406 407 spin_unlock_irq(q->queue_lock); 408 409 msleep(10); 410 411 spin_lock_irq(q->queue_lock); 412 } 413 414 /* 415 * With queue marked dead, any woken up waiter will fail the 416 * allocation path, so the wakeup chaining is lost and we're 417 * left with hung waiters. We need to wake up those waiters. 418 */ 419 if (q->request_fn) { 420 struct request_list *rl; 421 422 blk_queue_for_each_rl(rl, q) 423 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 424 wake_up_all(&rl->wait[i]); 425 } 426 } 427 428 /** 429 * blk_queue_bypass_start - enter queue bypass mode 430 * @q: queue of interest 431 * 432 * In bypass mode, only the dispatch FIFO queue of @q is used. This 433 * function makes @q enter bypass mode and drains all requests which were 434 * throttled or issued before. On return, it's guaranteed that no request 435 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 436 * inside queue or RCU read lock. 437 */ 438 void blk_queue_bypass_start(struct request_queue *q) 439 { 440 bool drain; 441 442 spin_lock_irq(q->queue_lock); 443 drain = !q->bypass_depth++; 444 queue_flag_set(QUEUE_FLAG_BYPASS, q); 445 spin_unlock_irq(q->queue_lock); 446 447 if (drain) { 448 spin_lock_irq(q->queue_lock); 449 __blk_drain_queue(q, false); 450 spin_unlock_irq(q->queue_lock); 451 452 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 453 synchronize_rcu(); 454 } 455 } 456 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 457 458 /** 459 * blk_queue_bypass_end - leave queue bypass mode 460 * @q: queue of interest 461 * 462 * Leave bypass mode and restore the normal queueing behavior. 463 */ 464 void blk_queue_bypass_end(struct request_queue *q) 465 { 466 spin_lock_irq(q->queue_lock); 467 if (!--q->bypass_depth) 468 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 469 WARN_ON_ONCE(q->bypass_depth < 0); 470 spin_unlock_irq(q->queue_lock); 471 } 472 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 473 474 /** 475 * blk_cleanup_queue - shutdown a request queue 476 * @q: request queue to shutdown 477 * 478 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 479 * put it. All future requests will be failed immediately with -ENODEV. 480 */ 481 void blk_cleanup_queue(struct request_queue *q) 482 { 483 spinlock_t *lock = q->queue_lock; 484 485 /* mark @q DYING, no new request or merges will be allowed afterwards */ 486 mutex_lock(&q->sysfs_lock); 487 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 488 spin_lock_irq(lock); 489 490 /* 491 * A dying queue is permanently in bypass mode till released. Note 492 * that, unlike blk_queue_bypass_start(), we aren't performing 493 * synchronize_rcu() after entering bypass mode to avoid the delay 494 * as some drivers create and destroy a lot of queues while 495 * probing. This is still safe because blk_release_queue() will be 496 * called only after the queue refcnt drops to zero and nothing, 497 * RCU or not, would be traversing the queue by then. 498 */ 499 q->bypass_depth++; 500 queue_flag_set(QUEUE_FLAG_BYPASS, q); 501 502 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 503 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 504 queue_flag_set(QUEUE_FLAG_DYING, q); 505 spin_unlock_irq(lock); 506 mutex_unlock(&q->sysfs_lock); 507 508 /* 509 * Drain all requests queued before DYING marking. Set DEAD flag to 510 * prevent that q->request_fn() gets invoked after draining finished. 511 */ 512 if (q->mq_ops) { 513 blk_mq_drain_queue(q); 514 spin_lock_irq(lock); 515 } else { 516 spin_lock_irq(lock); 517 __blk_drain_queue(q, true); 518 } 519 queue_flag_set(QUEUE_FLAG_DEAD, q); 520 spin_unlock_irq(lock); 521 522 /* @q won't process any more request, flush async actions */ 523 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 524 blk_sync_queue(q); 525 526 spin_lock_irq(lock); 527 if (q->queue_lock != &q->__queue_lock) 528 q->queue_lock = &q->__queue_lock; 529 spin_unlock_irq(lock); 530 531 /* @q is and will stay empty, shutdown and put */ 532 blk_put_queue(q); 533 } 534 EXPORT_SYMBOL(blk_cleanup_queue); 535 536 int blk_init_rl(struct request_list *rl, struct request_queue *q, 537 gfp_t gfp_mask) 538 { 539 if (unlikely(rl->rq_pool)) 540 return 0; 541 542 rl->q = q; 543 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 544 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 545 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 546 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 547 548 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 549 mempool_free_slab, request_cachep, 550 gfp_mask, q->node); 551 if (!rl->rq_pool) 552 return -ENOMEM; 553 554 return 0; 555 } 556 557 void blk_exit_rl(struct request_list *rl) 558 { 559 if (rl->rq_pool) 560 mempool_destroy(rl->rq_pool); 561 } 562 563 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 564 { 565 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 566 } 567 EXPORT_SYMBOL(blk_alloc_queue); 568 569 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 570 { 571 struct request_queue *q; 572 int err; 573 574 q = kmem_cache_alloc_node(blk_requestq_cachep, 575 gfp_mask | __GFP_ZERO, node_id); 576 if (!q) 577 return NULL; 578 579 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 580 if (q->id < 0) 581 goto fail_q; 582 583 q->backing_dev_info.ra_pages = 584 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 585 q->backing_dev_info.state = 0; 586 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 587 q->backing_dev_info.name = "block"; 588 q->node = node_id; 589 590 err = bdi_init(&q->backing_dev_info); 591 if (err) 592 goto fail_id; 593 594 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 595 laptop_mode_timer_fn, (unsigned long) q); 596 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 597 INIT_LIST_HEAD(&q->queue_head); 598 INIT_LIST_HEAD(&q->timeout_list); 599 INIT_LIST_HEAD(&q->icq_list); 600 #ifdef CONFIG_BLK_CGROUP 601 INIT_LIST_HEAD(&q->blkg_list); 602 #endif 603 INIT_LIST_HEAD(&q->flush_queue[0]); 604 INIT_LIST_HEAD(&q->flush_queue[1]); 605 INIT_LIST_HEAD(&q->flush_data_in_flight); 606 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 607 608 kobject_init(&q->kobj, &blk_queue_ktype); 609 610 mutex_init(&q->sysfs_lock); 611 spin_lock_init(&q->__queue_lock); 612 613 /* 614 * By default initialize queue_lock to internal lock and driver can 615 * override it later if need be. 616 */ 617 q->queue_lock = &q->__queue_lock; 618 619 /* 620 * A queue starts its life with bypass turned on to avoid 621 * unnecessary bypass on/off overhead and nasty surprises during 622 * init. The initial bypass will be finished when the queue is 623 * registered by blk_register_queue(). 624 */ 625 q->bypass_depth = 1; 626 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 627 628 init_waitqueue_head(&q->mq_freeze_wq); 629 630 if (blkcg_init_queue(q)) 631 goto fail_bdi; 632 633 return q; 634 635 fail_bdi: 636 bdi_destroy(&q->backing_dev_info); 637 fail_id: 638 ida_simple_remove(&blk_queue_ida, q->id); 639 fail_q: 640 kmem_cache_free(blk_requestq_cachep, q); 641 return NULL; 642 } 643 EXPORT_SYMBOL(blk_alloc_queue_node); 644 645 /** 646 * blk_init_queue - prepare a request queue for use with a block device 647 * @rfn: The function to be called to process requests that have been 648 * placed on the queue. 649 * @lock: Request queue spin lock 650 * 651 * Description: 652 * If a block device wishes to use the standard request handling procedures, 653 * which sorts requests and coalesces adjacent requests, then it must 654 * call blk_init_queue(). The function @rfn will be called when there 655 * are requests on the queue that need to be processed. If the device 656 * supports plugging, then @rfn may not be called immediately when requests 657 * are available on the queue, but may be called at some time later instead. 658 * Plugged queues are generally unplugged when a buffer belonging to one 659 * of the requests on the queue is needed, or due to memory pressure. 660 * 661 * @rfn is not required, or even expected, to remove all requests off the 662 * queue, but only as many as it can handle at a time. If it does leave 663 * requests on the queue, it is responsible for arranging that the requests 664 * get dealt with eventually. 665 * 666 * The queue spin lock must be held while manipulating the requests on the 667 * request queue; this lock will be taken also from interrupt context, so irq 668 * disabling is needed for it. 669 * 670 * Function returns a pointer to the initialized request queue, or %NULL if 671 * it didn't succeed. 672 * 673 * Note: 674 * blk_init_queue() must be paired with a blk_cleanup_queue() call 675 * when the block device is deactivated (such as at module unload). 676 **/ 677 678 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 679 { 680 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 681 } 682 EXPORT_SYMBOL(blk_init_queue); 683 684 struct request_queue * 685 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 686 { 687 struct request_queue *uninit_q, *q; 688 689 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 690 if (!uninit_q) 691 return NULL; 692 693 q = blk_init_allocated_queue(uninit_q, rfn, lock); 694 if (!q) 695 blk_cleanup_queue(uninit_q); 696 697 return q; 698 } 699 EXPORT_SYMBOL(blk_init_queue_node); 700 701 struct request_queue * 702 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 703 spinlock_t *lock) 704 { 705 if (!q) 706 return NULL; 707 708 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL); 709 if (!q->flush_rq) 710 return NULL; 711 712 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 713 goto fail; 714 715 q->request_fn = rfn; 716 q->prep_rq_fn = NULL; 717 q->unprep_rq_fn = NULL; 718 q->queue_flags |= QUEUE_FLAG_DEFAULT; 719 720 /* Override internal queue lock with supplied lock pointer */ 721 if (lock) 722 q->queue_lock = lock; 723 724 /* 725 * This also sets hw/phys segments, boundary and size 726 */ 727 blk_queue_make_request(q, blk_queue_bio); 728 729 q->sg_reserved_size = INT_MAX; 730 731 /* Protect q->elevator from elevator_change */ 732 mutex_lock(&q->sysfs_lock); 733 734 /* init elevator */ 735 if (elevator_init(q, NULL)) { 736 mutex_unlock(&q->sysfs_lock); 737 goto fail; 738 } 739 740 mutex_unlock(&q->sysfs_lock); 741 742 return q; 743 744 fail: 745 kfree(q->flush_rq); 746 return NULL; 747 } 748 EXPORT_SYMBOL(blk_init_allocated_queue); 749 750 bool blk_get_queue(struct request_queue *q) 751 { 752 if (likely(!blk_queue_dying(q))) { 753 __blk_get_queue(q); 754 return true; 755 } 756 757 return false; 758 } 759 EXPORT_SYMBOL(blk_get_queue); 760 761 static inline void blk_free_request(struct request_list *rl, struct request *rq) 762 { 763 if (rq->cmd_flags & REQ_ELVPRIV) { 764 elv_put_request(rl->q, rq); 765 if (rq->elv.icq) 766 put_io_context(rq->elv.icq->ioc); 767 } 768 769 mempool_free(rq, rl->rq_pool); 770 } 771 772 /* 773 * ioc_batching returns true if the ioc is a valid batching request and 774 * should be given priority access to a request. 775 */ 776 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 777 { 778 if (!ioc) 779 return 0; 780 781 /* 782 * Make sure the process is able to allocate at least 1 request 783 * even if the batch times out, otherwise we could theoretically 784 * lose wakeups. 785 */ 786 return ioc->nr_batch_requests == q->nr_batching || 787 (ioc->nr_batch_requests > 0 788 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 789 } 790 791 /* 792 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 793 * will cause the process to be a "batcher" on all queues in the system. This 794 * is the behaviour we want though - once it gets a wakeup it should be given 795 * a nice run. 796 */ 797 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 798 { 799 if (!ioc || ioc_batching(q, ioc)) 800 return; 801 802 ioc->nr_batch_requests = q->nr_batching; 803 ioc->last_waited = jiffies; 804 } 805 806 static void __freed_request(struct request_list *rl, int sync) 807 { 808 struct request_queue *q = rl->q; 809 810 /* 811 * bdi isn't aware of blkcg yet. As all async IOs end up root 812 * blkcg anyway, just use root blkcg state. 813 */ 814 if (rl == &q->root_rl && 815 rl->count[sync] < queue_congestion_off_threshold(q)) 816 blk_clear_queue_congested(q, sync); 817 818 if (rl->count[sync] + 1 <= q->nr_requests) { 819 if (waitqueue_active(&rl->wait[sync])) 820 wake_up(&rl->wait[sync]); 821 822 blk_clear_rl_full(rl, sync); 823 } 824 } 825 826 /* 827 * A request has just been released. Account for it, update the full and 828 * congestion status, wake up any waiters. Called under q->queue_lock. 829 */ 830 static void freed_request(struct request_list *rl, unsigned int flags) 831 { 832 struct request_queue *q = rl->q; 833 int sync = rw_is_sync(flags); 834 835 q->nr_rqs[sync]--; 836 rl->count[sync]--; 837 if (flags & REQ_ELVPRIV) 838 q->nr_rqs_elvpriv--; 839 840 __freed_request(rl, sync); 841 842 if (unlikely(rl->starved[sync ^ 1])) 843 __freed_request(rl, sync ^ 1); 844 } 845 846 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 847 { 848 struct request_list *rl; 849 850 spin_lock_irq(q->queue_lock); 851 q->nr_requests = nr; 852 blk_queue_congestion_threshold(q); 853 854 /* congestion isn't cgroup aware and follows root blkcg for now */ 855 rl = &q->root_rl; 856 857 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q)) 858 blk_set_queue_congested(q, BLK_RW_SYNC); 859 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q)) 860 blk_clear_queue_congested(q, BLK_RW_SYNC); 861 862 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q)) 863 blk_set_queue_congested(q, BLK_RW_ASYNC); 864 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q)) 865 blk_clear_queue_congested(q, BLK_RW_ASYNC); 866 867 blk_queue_for_each_rl(rl, q) { 868 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 869 blk_set_rl_full(rl, BLK_RW_SYNC); 870 } else { 871 blk_clear_rl_full(rl, BLK_RW_SYNC); 872 wake_up(&rl->wait[BLK_RW_SYNC]); 873 } 874 875 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 876 blk_set_rl_full(rl, BLK_RW_ASYNC); 877 } else { 878 blk_clear_rl_full(rl, BLK_RW_ASYNC); 879 wake_up(&rl->wait[BLK_RW_ASYNC]); 880 } 881 } 882 883 spin_unlock_irq(q->queue_lock); 884 return 0; 885 } 886 887 /* 888 * Determine if elevator data should be initialized when allocating the 889 * request associated with @bio. 890 */ 891 static bool blk_rq_should_init_elevator(struct bio *bio) 892 { 893 if (!bio) 894 return true; 895 896 /* 897 * Flush requests do not use the elevator so skip initialization. 898 * This allows a request to share the flush and elevator data. 899 */ 900 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 901 return false; 902 903 return true; 904 } 905 906 /** 907 * rq_ioc - determine io_context for request allocation 908 * @bio: request being allocated is for this bio (can be %NULL) 909 * 910 * Determine io_context to use for request allocation for @bio. May return 911 * %NULL if %current->io_context doesn't exist. 912 */ 913 static struct io_context *rq_ioc(struct bio *bio) 914 { 915 #ifdef CONFIG_BLK_CGROUP 916 if (bio && bio->bi_ioc) 917 return bio->bi_ioc; 918 #endif 919 return current->io_context; 920 } 921 922 /** 923 * __get_request - get a free request 924 * @rl: request list to allocate from 925 * @rw_flags: RW and SYNC flags 926 * @bio: bio to allocate request for (can be %NULL) 927 * @gfp_mask: allocation mask 928 * 929 * Get a free request from @q. This function may fail under memory 930 * pressure or if @q is dead. 931 * 932 * Must be callled with @q->queue_lock held and, 933 * Returns %NULL on failure, with @q->queue_lock held. 934 * Returns !%NULL on success, with @q->queue_lock *not held*. 935 */ 936 static struct request *__get_request(struct request_list *rl, int rw_flags, 937 struct bio *bio, gfp_t gfp_mask) 938 { 939 struct request_queue *q = rl->q; 940 struct request *rq; 941 struct elevator_type *et = q->elevator->type; 942 struct io_context *ioc = rq_ioc(bio); 943 struct io_cq *icq = NULL; 944 const bool is_sync = rw_is_sync(rw_flags) != 0; 945 int may_queue; 946 947 if (unlikely(blk_queue_dying(q))) 948 return NULL; 949 950 may_queue = elv_may_queue(q, rw_flags); 951 if (may_queue == ELV_MQUEUE_NO) 952 goto rq_starved; 953 954 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 955 if (rl->count[is_sync]+1 >= q->nr_requests) { 956 /* 957 * The queue will fill after this allocation, so set 958 * it as full, and mark this process as "batching". 959 * This process will be allowed to complete a batch of 960 * requests, others will be blocked. 961 */ 962 if (!blk_rl_full(rl, is_sync)) { 963 ioc_set_batching(q, ioc); 964 blk_set_rl_full(rl, is_sync); 965 } else { 966 if (may_queue != ELV_MQUEUE_MUST 967 && !ioc_batching(q, ioc)) { 968 /* 969 * The queue is full and the allocating 970 * process is not a "batcher", and not 971 * exempted by the IO scheduler 972 */ 973 return NULL; 974 } 975 } 976 } 977 /* 978 * bdi isn't aware of blkcg yet. As all async IOs end up 979 * root blkcg anyway, just use root blkcg state. 980 */ 981 if (rl == &q->root_rl) 982 blk_set_queue_congested(q, is_sync); 983 } 984 985 /* 986 * Only allow batching queuers to allocate up to 50% over the defined 987 * limit of requests, otherwise we could have thousands of requests 988 * allocated with any setting of ->nr_requests 989 */ 990 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 991 return NULL; 992 993 q->nr_rqs[is_sync]++; 994 rl->count[is_sync]++; 995 rl->starved[is_sync] = 0; 996 997 /* 998 * Decide whether the new request will be managed by elevator. If 999 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 1000 * prevent the current elevator from being destroyed until the new 1001 * request is freed. This guarantees icq's won't be destroyed and 1002 * makes creating new ones safe. 1003 * 1004 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1005 * it will be created after releasing queue_lock. 1006 */ 1007 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 1008 rw_flags |= REQ_ELVPRIV; 1009 q->nr_rqs_elvpriv++; 1010 if (et->icq_cache && ioc) 1011 icq = ioc_lookup_icq(ioc, q); 1012 } 1013 1014 if (blk_queue_io_stat(q)) 1015 rw_flags |= REQ_IO_STAT; 1016 spin_unlock_irq(q->queue_lock); 1017 1018 /* allocate and init request */ 1019 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1020 if (!rq) 1021 goto fail_alloc; 1022 1023 blk_rq_init(q, rq); 1024 blk_rq_set_rl(rq, rl); 1025 rq->cmd_flags = rw_flags | REQ_ALLOCED; 1026 1027 /* init elvpriv */ 1028 if (rw_flags & REQ_ELVPRIV) { 1029 if (unlikely(et->icq_cache && !icq)) { 1030 if (ioc) 1031 icq = ioc_create_icq(ioc, q, gfp_mask); 1032 if (!icq) 1033 goto fail_elvpriv; 1034 } 1035 1036 rq->elv.icq = icq; 1037 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1038 goto fail_elvpriv; 1039 1040 /* @rq->elv.icq holds io_context until @rq is freed */ 1041 if (icq) 1042 get_io_context(icq->ioc); 1043 } 1044 out: 1045 /* 1046 * ioc may be NULL here, and ioc_batching will be false. That's 1047 * OK, if the queue is under the request limit then requests need 1048 * not count toward the nr_batch_requests limit. There will always 1049 * be some limit enforced by BLK_BATCH_TIME. 1050 */ 1051 if (ioc_batching(q, ioc)) 1052 ioc->nr_batch_requests--; 1053 1054 trace_block_getrq(q, bio, rw_flags & 1); 1055 return rq; 1056 1057 fail_elvpriv: 1058 /* 1059 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1060 * and may fail indefinitely under memory pressure and thus 1061 * shouldn't stall IO. Treat this request as !elvpriv. This will 1062 * disturb iosched and blkcg but weird is bettern than dead. 1063 */ 1064 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n", 1065 dev_name(q->backing_dev_info.dev)); 1066 1067 rq->cmd_flags &= ~REQ_ELVPRIV; 1068 rq->elv.icq = NULL; 1069 1070 spin_lock_irq(q->queue_lock); 1071 q->nr_rqs_elvpriv--; 1072 spin_unlock_irq(q->queue_lock); 1073 goto out; 1074 1075 fail_alloc: 1076 /* 1077 * Allocation failed presumably due to memory. Undo anything we 1078 * might have messed up. 1079 * 1080 * Allocating task should really be put onto the front of the wait 1081 * queue, but this is pretty rare. 1082 */ 1083 spin_lock_irq(q->queue_lock); 1084 freed_request(rl, rw_flags); 1085 1086 /* 1087 * in the very unlikely event that allocation failed and no 1088 * requests for this direction was pending, mark us starved so that 1089 * freeing of a request in the other direction will notice 1090 * us. another possible fix would be to split the rq mempool into 1091 * READ and WRITE 1092 */ 1093 rq_starved: 1094 if (unlikely(rl->count[is_sync] == 0)) 1095 rl->starved[is_sync] = 1; 1096 return NULL; 1097 } 1098 1099 /** 1100 * get_request - get a free request 1101 * @q: request_queue to allocate request from 1102 * @rw_flags: RW and SYNC flags 1103 * @bio: bio to allocate request for (can be %NULL) 1104 * @gfp_mask: allocation mask 1105 * 1106 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1107 * function keeps retrying under memory pressure and fails iff @q is dead. 1108 * 1109 * Must be callled with @q->queue_lock held and, 1110 * Returns %NULL on failure, with @q->queue_lock held. 1111 * Returns !%NULL on success, with @q->queue_lock *not held*. 1112 */ 1113 static struct request *get_request(struct request_queue *q, int rw_flags, 1114 struct bio *bio, gfp_t gfp_mask) 1115 { 1116 const bool is_sync = rw_is_sync(rw_flags) != 0; 1117 DEFINE_WAIT(wait); 1118 struct request_list *rl; 1119 struct request *rq; 1120 1121 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1122 retry: 1123 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1124 if (rq) 1125 return rq; 1126 1127 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1128 blk_put_rl(rl); 1129 return NULL; 1130 } 1131 1132 /* wait on @rl and retry */ 1133 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1134 TASK_UNINTERRUPTIBLE); 1135 1136 trace_block_sleeprq(q, bio, rw_flags & 1); 1137 1138 spin_unlock_irq(q->queue_lock); 1139 io_schedule(); 1140 1141 /* 1142 * After sleeping, we become a "batching" process and will be able 1143 * to allocate at least one request, and up to a big batch of them 1144 * for a small period time. See ioc_batching, ioc_set_batching 1145 */ 1146 ioc_set_batching(q, current->io_context); 1147 1148 spin_lock_irq(q->queue_lock); 1149 finish_wait(&rl->wait[is_sync], &wait); 1150 1151 goto retry; 1152 } 1153 1154 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1155 gfp_t gfp_mask) 1156 { 1157 struct request *rq; 1158 1159 BUG_ON(rw != READ && rw != WRITE); 1160 1161 /* create ioc upfront */ 1162 create_io_context(gfp_mask, q->node); 1163 1164 spin_lock_irq(q->queue_lock); 1165 rq = get_request(q, rw, NULL, gfp_mask); 1166 if (!rq) 1167 spin_unlock_irq(q->queue_lock); 1168 /* q->queue_lock is unlocked at this point */ 1169 1170 return rq; 1171 } 1172 1173 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1174 { 1175 if (q->mq_ops) 1176 return blk_mq_alloc_request(q, rw, gfp_mask, false); 1177 else 1178 return blk_old_get_request(q, rw, gfp_mask); 1179 } 1180 EXPORT_SYMBOL(blk_get_request); 1181 1182 /** 1183 * blk_make_request - given a bio, allocate a corresponding struct request. 1184 * @q: target request queue 1185 * @bio: The bio describing the memory mappings that will be submitted for IO. 1186 * It may be a chained-bio properly constructed by block/bio layer. 1187 * @gfp_mask: gfp flags to be used for memory allocation 1188 * 1189 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1190 * type commands. Where the struct request needs to be farther initialized by 1191 * the caller. It is passed a &struct bio, which describes the memory info of 1192 * the I/O transfer. 1193 * 1194 * The caller of blk_make_request must make sure that bi_io_vec 1195 * are set to describe the memory buffers. That bio_data_dir() will return 1196 * the needed direction of the request. (And all bio's in the passed bio-chain 1197 * are properly set accordingly) 1198 * 1199 * If called under none-sleepable conditions, mapped bio buffers must not 1200 * need bouncing, by calling the appropriate masked or flagged allocator, 1201 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1202 * BUG. 1203 * 1204 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1205 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1206 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1207 * completion of a bio that hasn't been submitted yet, thus resulting in a 1208 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1209 * of bio_alloc(), as that avoids the mempool deadlock. 1210 * If possible a big IO should be split into smaller parts when allocation 1211 * fails. Partial allocation should not be an error, or you risk a live-lock. 1212 */ 1213 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1214 gfp_t gfp_mask) 1215 { 1216 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1217 1218 if (unlikely(!rq)) 1219 return ERR_PTR(-ENOMEM); 1220 1221 for_each_bio(bio) { 1222 struct bio *bounce_bio = bio; 1223 int ret; 1224 1225 blk_queue_bounce(q, &bounce_bio); 1226 ret = blk_rq_append_bio(q, rq, bounce_bio); 1227 if (unlikely(ret)) { 1228 blk_put_request(rq); 1229 return ERR_PTR(ret); 1230 } 1231 } 1232 1233 return rq; 1234 } 1235 EXPORT_SYMBOL(blk_make_request); 1236 1237 /** 1238 * blk_requeue_request - put a request back on queue 1239 * @q: request queue where request should be inserted 1240 * @rq: request to be inserted 1241 * 1242 * Description: 1243 * Drivers often keep queueing requests until the hardware cannot accept 1244 * more, when that condition happens we need to put the request back 1245 * on the queue. Must be called with queue lock held. 1246 */ 1247 void blk_requeue_request(struct request_queue *q, struct request *rq) 1248 { 1249 blk_delete_timer(rq); 1250 blk_clear_rq_complete(rq); 1251 trace_block_rq_requeue(q, rq); 1252 1253 if (blk_rq_tagged(rq)) 1254 blk_queue_end_tag(q, rq); 1255 1256 BUG_ON(blk_queued_rq(rq)); 1257 1258 elv_requeue_request(q, rq); 1259 } 1260 EXPORT_SYMBOL(blk_requeue_request); 1261 1262 static void add_acct_request(struct request_queue *q, struct request *rq, 1263 int where) 1264 { 1265 blk_account_io_start(rq, true); 1266 __elv_add_request(q, rq, where); 1267 } 1268 1269 static void part_round_stats_single(int cpu, struct hd_struct *part, 1270 unsigned long now) 1271 { 1272 int inflight; 1273 1274 if (now == part->stamp) 1275 return; 1276 1277 inflight = part_in_flight(part); 1278 if (inflight) { 1279 __part_stat_add(cpu, part, time_in_queue, 1280 inflight * (now - part->stamp)); 1281 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1282 } 1283 part->stamp = now; 1284 } 1285 1286 /** 1287 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1288 * @cpu: cpu number for stats access 1289 * @part: target partition 1290 * 1291 * The average IO queue length and utilisation statistics are maintained 1292 * by observing the current state of the queue length and the amount of 1293 * time it has been in this state for. 1294 * 1295 * Normally, that accounting is done on IO completion, but that can result 1296 * in more than a second's worth of IO being accounted for within any one 1297 * second, leading to >100% utilisation. To deal with that, we call this 1298 * function to do a round-off before returning the results when reading 1299 * /proc/diskstats. This accounts immediately for all queue usage up to 1300 * the current jiffies and restarts the counters again. 1301 */ 1302 void part_round_stats(int cpu, struct hd_struct *part) 1303 { 1304 unsigned long now = jiffies; 1305 1306 if (part->partno) 1307 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1308 part_round_stats_single(cpu, part, now); 1309 } 1310 EXPORT_SYMBOL_GPL(part_round_stats); 1311 1312 #ifdef CONFIG_PM_RUNTIME 1313 static void blk_pm_put_request(struct request *rq) 1314 { 1315 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1316 pm_runtime_mark_last_busy(rq->q->dev); 1317 } 1318 #else 1319 static inline void blk_pm_put_request(struct request *rq) {} 1320 #endif 1321 1322 /* 1323 * queue lock must be held 1324 */ 1325 void __blk_put_request(struct request_queue *q, struct request *req) 1326 { 1327 if (unlikely(!q)) 1328 return; 1329 1330 if (q->mq_ops) { 1331 blk_mq_free_request(req); 1332 return; 1333 } 1334 1335 blk_pm_put_request(req); 1336 1337 elv_completed_request(q, req); 1338 1339 /* this is a bio leak */ 1340 WARN_ON(req->bio != NULL); 1341 1342 /* 1343 * Request may not have originated from ll_rw_blk. if not, 1344 * it didn't come out of our reserved rq pools 1345 */ 1346 if (req->cmd_flags & REQ_ALLOCED) { 1347 unsigned int flags = req->cmd_flags; 1348 struct request_list *rl = blk_rq_rl(req); 1349 1350 BUG_ON(!list_empty(&req->queuelist)); 1351 BUG_ON(ELV_ON_HASH(req)); 1352 1353 blk_free_request(rl, req); 1354 freed_request(rl, flags); 1355 blk_put_rl(rl); 1356 } 1357 } 1358 EXPORT_SYMBOL_GPL(__blk_put_request); 1359 1360 void blk_put_request(struct request *req) 1361 { 1362 struct request_queue *q = req->q; 1363 1364 if (q->mq_ops) 1365 blk_mq_free_request(req); 1366 else { 1367 unsigned long flags; 1368 1369 spin_lock_irqsave(q->queue_lock, flags); 1370 __blk_put_request(q, req); 1371 spin_unlock_irqrestore(q->queue_lock, flags); 1372 } 1373 } 1374 EXPORT_SYMBOL(blk_put_request); 1375 1376 /** 1377 * blk_add_request_payload - add a payload to a request 1378 * @rq: request to update 1379 * @page: page backing the payload 1380 * @len: length of the payload. 1381 * 1382 * This allows to later add a payload to an already submitted request by 1383 * a block driver. The driver needs to take care of freeing the payload 1384 * itself. 1385 * 1386 * Note that this is a quite horrible hack and nothing but handling of 1387 * discard requests should ever use it. 1388 */ 1389 void blk_add_request_payload(struct request *rq, struct page *page, 1390 unsigned int len) 1391 { 1392 struct bio *bio = rq->bio; 1393 1394 bio->bi_io_vec->bv_page = page; 1395 bio->bi_io_vec->bv_offset = 0; 1396 bio->bi_io_vec->bv_len = len; 1397 1398 bio->bi_iter.bi_size = len; 1399 bio->bi_vcnt = 1; 1400 bio->bi_phys_segments = 1; 1401 1402 rq->__data_len = rq->resid_len = len; 1403 rq->nr_phys_segments = 1; 1404 } 1405 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1406 1407 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1408 struct bio *bio) 1409 { 1410 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1411 1412 if (!ll_back_merge_fn(q, req, bio)) 1413 return false; 1414 1415 trace_block_bio_backmerge(q, req, bio); 1416 1417 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1418 blk_rq_set_mixed_merge(req); 1419 1420 req->biotail->bi_next = bio; 1421 req->biotail = bio; 1422 req->__data_len += bio->bi_iter.bi_size; 1423 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1424 1425 blk_account_io_start(req, false); 1426 return true; 1427 } 1428 1429 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1430 struct bio *bio) 1431 { 1432 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1433 1434 if (!ll_front_merge_fn(q, req, bio)) 1435 return false; 1436 1437 trace_block_bio_frontmerge(q, req, bio); 1438 1439 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1440 blk_rq_set_mixed_merge(req); 1441 1442 bio->bi_next = req->bio; 1443 req->bio = bio; 1444 1445 req->__sector = bio->bi_iter.bi_sector; 1446 req->__data_len += bio->bi_iter.bi_size; 1447 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1448 1449 blk_account_io_start(req, false); 1450 return true; 1451 } 1452 1453 /** 1454 * blk_attempt_plug_merge - try to merge with %current's plugged list 1455 * @q: request_queue new bio is being queued at 1456 * @bio: new bio being queued 1457 * @request_count: out parameter for number of traversed plugged requests 1458 * 1459 * Determine whether @bio being queued on @q can be merged with a request 1460 * on %current's plugged list. Returns %true if merge was successful, 1461 * otherwise %false. 1462 * 1463 * Plugging coalesces IOs from the same issuer for the same purpose without 1464 * going through @q->queue_lock. As such it's more of an issuing mechanism 1465 * than scheduling, and the request, while may have elvpriv data, is not 1466 * added on the elevator at this point. In addition, we don't have 1467 * reliable access to the elevator outside queue lock. Only check basic 1468 * merging parameters without querying the elevator. 1469 * 1470 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1471 */ 1472 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1473 unsigned int *request_count) 1474 { 1475 struct blk_plug *plug; 1476 struct request *rq; 1477 bool ret = false; 1478 struct list_head *plug_list; 1479 1480 plug = current->plug; 1481 if (!plug) 1482 goto out; 1483 *request_count = 0; 1484 1485 if (q->mq_ops) 1486 plug_list = &plug->mq_list; 1487 else 1488 plug_list = &plug->list; 1489 1490 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1491 int el_ret; 1492 1493 if (rq->q == q) 1494 (*request_count)++; 1495 1496 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1497 continue; 1498 1499 el_ret = blk_try_merge(rq, bio); 1500 if (el_ret == ELEVATOR_BACK_MERGE) { 1501 ret = bio_attempt_back_merge(q, rq, bio); 1502 if (ret) 1503 break; 1504 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1505 ret = bio_attempt_front_merge(q, rq, bio); 1506 if (ret) 1507 break; 1508 } 1509 } 1510 out: 1511 return ret; 1512 } 1513 1514 void init_request_from_bio(struct request *req, struct bio *bio) 1515 { 1516 req->cmd_type = REQ_TYPE_FS; 1517 1518 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1519 if (bio->bi_rw & REQ_RAHEAD) 1520 req->cmd_flags |= REQ_FAILFAST_MASK; 1521 1522 req->errors = 0; 1523 req->__sector = bio->bi_iter.bi_sector; 1524 req->ioprio = bio_prio(bio); 1525 blk_rq_bio_prep(req->q, req, bio); 1526 } 1527 1528 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1529 { 1530 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1531 struct blk_plug *plug; 1532 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1533 struct request *req; 1534 unsigned int request_count = 0; 1535 1536 /* 1537 * low level driver can indicate that it wants pages above a 1538 * certain limit bounced to low memory (ie for highmem, or even 1539 * ISA dma in theory) 1540 */ 1541 blk_queue_bounce(q, &bio); 1542 1543 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1544 bio_endio(bio, -EIO); 1545 return; 1546 } 1547 1548 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1549 spin_lock_irq(q->queue_lock); 1550 where = ELEVATOR_INSERT_FLUSH; 1551 goto get_rq; 1552 } 1553 1554 /* 1555 * Check if we can merge with the plugged list before grabbing 1556 * any locks. 1557 */ 1558 if (!blk_queue_nomerges(q) && 1559 blk_attempt_plug_merge(q, bio, &request_count)) 1560 return; 1561 1562 spin_lock_irq(q->queue_lock); 1563 1564 el_ret = elv_merge(q, &req, bio); 1565 if (el_ret == ELEVATOR_BACK_MERGE) { 1566 if (bio_attempt_back_merge(q, req, bio)) { 1567 elv_bio_merged(q, req, bio); 1568 if (!attempt_back_merge(q, req)) 1569 elv_merged_request(q, req, el_ret); 1570 goto out_unlock; 1571 } 1572 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1573 if (bio_attempt_front_merge(q, req, bio)) { 1574 elv_bio_merged(q, req, bio); 1575 if (!attempt_front_merge(q, req)) 1576 elv_merged_request(q, req, el_ret); 1577 goto out_unlock; 1578 } 1579 } 1580 1581 get_rq: 1582 /* 1583 * This sync check and mask will be re-done in init_request_from_bio(), 1584 * but we need to set it earlier to expose the sync flag to the 1585 * rq allocator and io schedulers. 1586 */ 1587 rw_flags = bio_data_dir(bio); 1588 if (sync) 1589 rw_flags |= REQ_SYNC; 1590 1591 /* 1592 * Grab a free request. This is might sleep but can not fail. 1593 * Returns with the queue unlocked. 1594 */ 1595 req = get_request(q, rw_flags, bio, GFP_NOIO); 1596 if (unlikely(!req)) { 1597 bio_endio(bio, -ENODEV); /* @q is dead */ 1598 goto out_unlock; 1599 } 1600 1601 /* 1602 * After dropping the lock and possibly sleeping here, our request 1603 * may now be mergeable after it had proven unmergeable (above). 1604 * We don't worry about that case for efficiency. It won't happen 1605 * often, and the elevators are able to handle it. 1606 */ 1607 init_request_from_bio(req, bio); 1608 1609 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1610 req->cpu = raw_smp_processor_id(); 1611 1612 plug = current->plug; 1613 if (plug) { 1614 /* 1615 * If this is the first request added after a plug, fire 1616 * of a plug trace. 1617 */ 1618 if (!request_count) 1619 trace_block_plug(q); 1620 else { 1621 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1622 blk_flush_plug_list(plug, false); 1623 trace_block_plug(q); 1624 } 1625 } 1626 list_add_tail(&req->queuelist, &plug->list); 1627 blk_account_io_start(req, true); 1628 } else { 1629 spin_lock_irq(q->queue_lock); 1630 add_acct_request(q, req, where); 1631 __blk_run_queue(q); 1632 out_unlock: 1633 spin_unlock_irq(q->queue_lock); 1634 } 1635 } 1636 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1637 1638 /* 1639 * If bio->bi_dev is a partition, remap the location 1640 */ 1641 static inline void blk_partition_remap(struct bio *bio) 1642 { 1643 struct block_device *bdev = bio->bi_bdev; 1644 1645 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1646 struct hd_struct *p = bdev->bd_part; 1647 1648 bio->bi_iter.bi_sector += p->start_sect; 1649 bio->bi_bdev = bdev->bd_contains; 1650 1651 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1652 bdev->bd_dev, 1653 bio->bi_iter.bi_sector - p->start_sect); 1654 } 1655 } 1656 1657 static void handle_bad_sector(struct bio *bio) 1658 { 1659 char b[BDEVNAME_SIZE]; 1660 1661 printk(KERN_INFO "attempt to access beyond end of device\n"); 1662 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1663 bdevname(bio->bi_bdev, b), 1664 bio->bi_rw, 1665 (unsigned long long)bio_end_sector(bio), 1666 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1667 1668 set_bit(BIO_EOF, &bio->bi_flags); 1669 } 1670 1671 #ifdef CONFIG_FAIL_MAKE_REQUEST 1672 1673 static DECLARE_FAULT_ATTR(fail_make_request); 1674 1675 static int __init setup_fail_make_request(char *str) 1676 { 1677 return setup_fault_attr(&fail_make_request, str); 1678 } 1679 __setup("fail_make_request=", setup_fail_make_request); 1680 1681 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1682 { 1683 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1684 } 1685 1686 static int __init fail_make_request_debugfs(void) 1687 { 1688 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1689 NULL, &fail_make_request); 1690 1691 return PTR_ERR_OR_ZERO(dir); 1692 } 1693 1694 late_initcall(fail_make_request_debugfs); 1695 1696 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1697 1698 static inline bool should_fail_request(struct hd_struct *part, 1699 unsigned int bytes) 1700 { 1701 return false; 1702 } 1703 1704 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1705 1706 /* 1707 * Check whether this bio extends beyond the end of the device. 1708 */ 1709 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1710 { 1711 sector_t maxsector; 1712 1713 if (!nr_sectors) 1714 return 0; 1715 1716 /* Test device or partition size, when known. */ 1717 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1718 if (maxsector) { 1719 sector_t sector = bio->bi_iter.bi_sector; 1720 1721 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1722 /* 1723 * This may well happen - the kernel calls bread() 1724 * without checking the size of the device, e.g., when 1725 * mounting a device. 1726 */ 1727 handle_bad_sector(bio); 1728 return 1; 1729 } 1730 } 1731 1732 return 0; 1733 } 1734 1735 static noinline_for_stack bool 1736 generic_make_request_checks(struct bio *bio) 1737 { 1738 struct request_queue *q; 1739 int nr_sectors = bio_sectors(bio); 1740 int err = -EIO; 1741 char b[BDEVNAME_SIZE]; 1742 struct hd_struct *part; 1743 1744 might_sleep(); 1745 1746 if (bio_check_eod(bio, nr_sectors)) 1747 goto end_io; 1748 1749 q = bdev_get_queue(bio->bi_bdev); 1750 if (unlikely(!q)) { 1751 printk(KERN_ERR 1752 "generic_make_request: Trying to access " 1753 "nonexistent block-device %s (%Lu)\n", 1754 bdevname(bio->bi_bdev, b), 1755 (long long) bio->bi_iter.bi_sector); 1756 goto end_io; 1757 } 1758 1759 if (likely(bio_is_rw(bio) && 1760 nr_sectors > queue_max_hw_sectors(q))) { 1761 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1762 bdevname(bio->bi_bdev, b), 1763 bio_sectors(bio), 1764 queue_max_hw_sectors(q)); 1765 goto end_io; 1766 } 1767 1768 part = bio->bi_bdev->bd_part; 1769 if (should_fail_request(part, bio->bi_iter.bi_size) || 1770 should_fail_request(&part_to_disk(part)->part0, 1771 bio->bi_iter.bi_size)) 1772 goto end_io; 1773 1774 /* 1775 * If this device has partitions, remap block n 1776 * of partition p to block n+start(p) of the disk. 1777 */ 1778 blk_partition_remap(bio); 1779 1780 if (bio_check_eod(bio, nr_sectors)) 1781 goto end_io; 1782 1783 /* 1784 * Filter flush bio's early so that make_request based 1785 * drivers without flush support don't have to worry 1786 * about them. 1787 */ 1788 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1789 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1790 if (!nr_sectors) { 1791 err = 0; 1792 goto end_io; 1793 } 1794 } 1795 1796 if ((bio->bi_rw & REQ_DISCARD) && 1797 (!blk_queue_discard(q) || 1798 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1799 err = -EOPNOTSUPP; 1800 goto end_io; 1801 } 1802 1803 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1804 err = -EOPNOTSUPP; 1805 goto end_io; 1806 } 1807 1808 /* 1809 * Various block parts want %current->io_context and lazy ioc 1810 * allocation ends up trading a lot of pain for a small amount of 1811 * memory. Just allocate it upfront. This may fail and block 1812 * layer knows how to live with it. 1813 */ 1814 create_io_context(GFP_ATOMIC, q->node); 1815 1816 if (blk_throtl_bio(q, bio)) 1817 return false; /* throttled, will be resubmitted later */ 1818 1819 trace_block_bio_queue(q, bio); 1820 return true; 1821 1822 end_io: 1823 bio_endio(bio, err); 1824 return false; 1825 } 1826 1827 /** 1828 * generic_make_request - hand a buffer to its device driver for I/O 1829 * @bio: The bio describing the location in memory and on the device. 1830 * 1831 * generic_make_request() is used to make I/O requests of block 1832 * devices. It is passed a &struct bio, which describes the I/O that needs 1833 * to be done. 1834 * 1835 * generic_make_request() does not return any status. The 1836 * success/failure status of the request, along with notification of 1837 * completion, is delivered asynchronously through the bio->bi_end_io 1838 * function described (one day) else where. 1839 * 1840 * The caller of generic_make_request must make sure that bi_io_vec 1841 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1842 * set to describe the device address, and the 1843 * bi_end_io and optionally bi_private are set to describe how 1844 * completion notification should be signaled. 1845 * 1846 * generic_make_request and the drivers it calls may use bi_next if this 1847 * bio happens to be merged with someone else, and may resubmit the bio to 1848 * a lower device by calling into generic_make_request recursively, which 1849 * means the bio should NOT be touched after the call to ->make_request_fn. 1850 */ 1851 void generic_make_request(struct bio *bio) 1852 { 1853 struct bio_list bio_list_on_stack; 1854 1855 if (!generic_make_request_checks(bio)) 1856 return; 1857 1858 /* 1859 * We only want one ->make_request_fn to be active at a time, else 1860 * stack usage with stacked devices could be a problem. So use 1861 * current->bio_list to keep a list of requests submited by a 1862 * make_request_fn function. current->bio_list is also used as a 1863 * flag to say if generic_make_request is currently active in this 1864 * task or not. If it is NULL, then no make_request is active. If 1865 * it is non-NULL, then a make_request is active, and new requests 1866 * should be added at the tail 1867 */ 1868 if (current->bio_list) { 1869 bio_list_add(current->bio_list, bio); 1870 return; 1871 } 1872 1873 /* following loop may be a bit non-obvious, and so deserves some 1874 * explanation. 1875 * Before entering the loop, bio->bi_next is NULL (as all callers 1876 * ensure that) so we have a list with a single bio. 1877 * We pretend that we have just taken it off a longer list, so 1878 * we assign bio_list to a pointer to the bio_list_on_stack, 1879 * thus initialising the bio_list of new bios to be 1880 * added. ->make_request() may indeed add some more bios 1881 * through a recursive call to generic_make_request. If it 1882 * did, we find a non-NULL value in bio_list and re-enter the loop 1883 * from the top. In this case we really did just take the bio 1884 * of the top of the list (no pretending) and so remove it from 1885 * bio_list, and call into ->make_request() again. 1886 */ 1887 BUG_ON(bio->bi_next); 1888 bio_list_init(&bio_list_on_stack); 1889 current->bio_list = &bio_list_on_stack; 1890 do { 1891 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1892 1893 q->make_request_fn(q, bio); 1894 1895 bio = bio_list_pop(current->bio_list); 1896 } while (bio); 1897 current->bio_list = NULL; /* deactivate */ 1898 } 1899 EXPORT_SYMBOL(generic_make_request); 1900 1901 /** 1902 * submit_bio - submit a bio to the block device layer for I/O 1903 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1904 * @bio: The &struct bio which describes the I/O 1905 * 1906 * submit_bio() is very similar in purpose to generic_make_request(), and 1907 * uses that function to do most of the work. Both are fairly rough 1908 * interfaces; @bio must be presetup and ready for I/O. 1909 * 1910 */ 1911 void submit_bio(int rw, struct bio *bio) 1912 { 1913 bio->bi_rw |= rw; 1914 1915 /* 1916 * If it's a regular read/write or a barrier with data attached, 1917 * go through the normal accounting stuff before submission. 1918 */ 1919 if (bio_has_data(bio)) { 1920 unsigned int count; 1921 1922 if (unlikely(rw & REQ_WRITE_SAME)) 1923 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 1924 else 1925 count = bio_sectors(bio); 1926 1927 if (rw & WRITE) { 1928 count_vm_events(PGPGOUT, count); 1929 } else { 1930 task_io_account_read(bio->bi_iter.bi_size); 1931 count_vm_events(PGPGIN, count); 1932 } 1933 1934 if (unlikely(block_dump)) { 1935 char b[BDEVNAME_SIZE]; 1936 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1937 current->comm, task_pid_nr(current), 1938 (rw & WRITE) ? "WRITE" : "READ", 1939 (unsigned long long)bio->bi_iter.bi_sector, 1940 bdevname(bio->bi_bdev, b), 1941 count); 1942 } 1943 } 1944 1945 generic_make_request(bio); 1946 } 1947 EXPORT_SYMBOL(submit_bio); 1948 1949 /** 1950 * blk_rq_check_limits - Helper function to check a request for the queue limit 1951 * @q: the queue 1952 * @rq: the request being checked 1953 * 1954 * Description: 1955 * @rq may have been made based on weaker limitations of upper-level queues 1956 * in request stacking drivers, and it may violate the limitation of @q. 1957 * Since the block layer and the underlying device driver trust @rq 1958 * after it is inserted to @q, it should be checked against @q before 1959 * the insertion using this generic function. 1960 * 1961 * This function should also be useful for request stacking drivers 1962 * in some cases below, so export this function. 1963 * Request stacking drivers like request-based dm may change the queue 1964 * limits while requests are in the queue (e.g. dm's table swapping). 1965 * Such request stacking drivers should check those requests against 1966 * the new queue limits again when they dispatch those requests, 1967 * although such checkings are also done against the old queue limits 1968 * when submitting requests. 1969 */ 1970 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1971 { 1972 if (!rq_mergeable(rq)) 1973 return 0; 1974 1975 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 1976 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1977 return -EIO; 1978 } 1979 1980 /* 1981 * queue's settings related to segment counting like q->bounce_pfn 1982 * may differ from that of other stacking queues. 1983 * Recalculate it to check the request correctly on this queue's 1984 * limitation. 1985 */ 1986 blk_recalc_rq_segments(rq); 1987 if (rq->nr_phys_segments > queue_max_segments(q)) { 1988 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1989 return -EIO; 1990 } 1991 1992 return 0; 1993 } 1994 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1995 1996 /** 1997 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1998 * @q: the queue to submit the request 1999 * @rq: the request being queued 2000 */ 2001 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2002 { 2003 unsigned long flags; 2004 int where = ELEVATOR_INSERT_BACK; 2005 2006 if (blk_rq_check_limits(q, rq)) 2007 return -EIO; 2008 2009 if (rq->rq_disk && 2010 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2011 return -EIO; 2012 2013 spin_lock_irqsave(q->queue_lock, flags); 2014 if (unlikely(blk_queue_dying(q))) { 2015 spin_unlock_irqrestore(q->queue_lock, flags); 2016 return -ENODEV; 2017 } 2018 2019 /* 2020 * Submitting request must be dequeued before calling this function 2021 * because it will be linked to another request_queue 2022 */ 2023 BUG_ON(blk_queued_rq(rq)); 2024 2025 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 2026 where = ELEVATOR_INSERT_FLUSH; 2027 2028 add_acct_request(q, rq, where); 2029 if (where == ELEVATOR_INSERT_FLUSH) 2030 __blk_run_queue(q); 2031 spin_unlock_irqrestore(q->queue_lock, flags); 2032 2033 return 0; 2034 } 2035 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2036 2037 /** 2038 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2039 * @rq: request to examine 2040 * 2041 * Description: 2042 * A request could be merge of IOs which require different failure 2043 * handling. This function determines the number of bytes which 2044 * can be failed from the beginning of the request without 2045 * crossing into area which need to be retried further. 2046 * 2047 * Return: 2048 * The number of bytes to fail. 2049 * 2050 * Context: 2051 * queue_lock must be held. 2052 */ 2053 unsigned int blk_rq_err_bytes(const struct request *rq) 2054 { 2055 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2056 unsigned int bytes = 0; 2057 struct bio *bio; 2058 2059 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2060 return blk_rq_bytes(rq); 2061 2062 /* 2063 * Currently the only 'mixing' which can happen is between 2064 * different fastfail types. We can safely fail portions 2065 * which have all the failfast bits that the first one has - 2066 * the ones which are at least as eager to fail as the first 2067 * one. 2068 */ 2069 for (bio = rq->bio; bio; bio = bio->bi_next) { 2070 if ((bio->bi_rw & ff) != ff) 2071 break; 2072 bytes += bio->bi_iter.bi_size; 2073 } 2074 2075 /* this could lead to infinite loop */ 2076 BUG_ON(blk_rq_bytes(rq) && !bytes); 2077 return bytes; 2078 } 2079 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2080 2081 void blk_account_io_completion(struct request *req, unsigned int bytes) 2082 { 2083 if (blk_do_io_stat(req)) { 2084 const int rw = rq_data_dir(req); 2085 struct hd_struct *part; 2086 int cpu; 2087 2088 cpu = part_stat_lock(); 2089 part = req->part; 2090 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2091 part_stat_unlock(); 2092 } 2093 } 2094 2095 void blk_account_io_done(struct request *req) 2096 { 2097 /* 2098 * Account IO completion. flush_rq isn't accounted as a 2099 * normal IO on queueing nor completion. Accounting the 2100 * containing request is enough. 2101 */ 2102 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2103 unsigned long duration = jiffies - req->start_time; 2104 const int rw = rq_data_dir(req); 2105 struct hd_struct *part; 2106 int cpu; 2107 2108 cpu = part_stat_lock(); 2109 part = req->part; 2110 2111 part_stat_inc(cpu, part, ios[rw]); 2112 part_stat_add(cpu, part, ticks[rw], duration); 2113 part_round_stats(cpu, part); 2114 part_dec_in_flight(part, rw); 2115 2116 hd_struct_put(part); 2117 part_stat_unlock(); 2118 } 2119 } 2120 2121 #ifdef CONFIG_PM_RUNTIME 2122 /* 2123 * Don't process normal requests when queue is suspended 2124 * or in the process of suspending/resuming 2125 */ 2126 static struct request *blk_pm_peek_request(struct request_queue *q, 2127 struct request *rq) 2128 { 2129 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2130 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2131 return NULL; 2132 else 2133 return rq; 2134 } 2135 #else 2136 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2137 struct request *rq) 2138 { 2139 return rq; 2140 } 2141 #endif 2142 2143 void blk_account_io_start(struct request *rq, bool new_io) 2144 { 2145 struct hd_struct *part; 2146 int rw = rq_data_dir(rq); 2147 int cpu; 2148 2149 if (!blk_do_io_stat(rq)) 2150 return; 2151 2152 cpu = part_stat_lock(); 2153 2154 if (!new_io) { 2155 part = rq->part; 2156 part_stat_inc(cpu, part, merges[rw]); 2157 } else { 2158 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2159 if (!hd_struct_try_get(part)) { 2160 /* 2161 * The partition is already being removed, 2162 * the request will be accounted on the disk only 2163 * 2164 * We take a reference on disk->part0 although that 2165 * partition will never be deleted, so we can treat 2166 * it as any other partition. 2167 */ 2168 part = &rq->rq_disk->part0; 2169 hd_struct_get(part); 2170 } 2171 part_round_stats(cpu, part); 2172 part_inc_in_flight(part, rw); 2173 rq->part = part; 2174 } 2175 2176 part_stat_unlock(); 2177 } 2178 2179 /** 2180 * blk_peek_request - peek at the top of a request queue 2181 * @q: request queue to peek at 2182 * 2183 * Description: 2184 * Return the request at the top of @q. The returned request 2185 * should be started using blk_start_request() before LLD starts 2186 * processing it. 2187 * 2188 * Return: 2189 * Pointer to the request at the top of @q if available. Null 2190 * otherwise. 2191 * 2192 * Context: 2193 * queue_lock must be held. 2194 */ 2195 struct request *blk_peek_request(struct request_queue *q) 2196 { 2197 struct request *rq; 2198 int ret; 2199 2200 while ((rq = __elv_next_request(q)) != NULL) { 2201 2202 rq = blk_pm_peek_request(q, rq); 2203 if (!rq) 2204 break; 2205 2206 if (!(rq->cmd_flags & REQ_STARTED)) { 2207 /* 2208 * This is the first time the device driver 2209 * sees this request (possibly after 2210 * requeueing). Notify IO scheduler. 2211 */ 2212 if (rq->cmd_flags & REQ_SORTED) 2213 elv_activate_rq(q, rq); 2214 2215 /* 2216 * just mark as started even if we don't start 2217 * it, a request that has been delayed should 2218 * not be passed by new incoming requests 2219 */ 2220 rq->cmd_flags |= REQ_STARTED; 2221 trace_block_rq_issue(q, rq); 2222 } 2223 2224 if (!q->boundary_rq || q->boundary_rq == rq) { 2225 q->end_sector = rq_end_sector(rq); 2226 q->boundary_rq = NULL; 2227 } 2228 2229 if (rq->cmd_flags & REQ_DONTPREP) 2230 break; 2231 2232 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2233 /* 2234 * make sure space for the drain appears we 2235 * know we can do this because max_hw_segments 2236 * has been adjusted to be one fewer than the 2237 * device can handle 2238 */ 2239 rq->nr_phys_segments++; 2240 } 2241 2242 if (!q->prep_rq_fn) 2243 break; 2244 2245 ret = q->prep_rq_fn(q, rq); 2246 if (ret == BLKPREP_OK) { 2247 break; 2248 } else if (ret == BLKPREP_DEFER) { 2249 /* 2250 * the request may have been (partially) prepped. 2251 * we need to keep this request in the front to 2252 * avoid resource deadlock. REQ_STARTED will 2253 * prevent other fs requests from passing this one. 2254 */ 2255 if (q->dma_drain_size && blk_rq_bytes(rq) && 2256 !(rq->cmd_flags & REQ_DONTPREP)) { 2257 /* 2258 * remove the space for the drain we added 2259 * so that we don't add it again 2260 */ 2261 --rq->nr_phys_segments; 2262 } 2263 2264 rq = NULL; 2265 break; 2266 } else if (ret == BLKPREP_KILL) { 2267 rq->cmd_flags |= REQ_QUIET; 2268 /* 2269 * Mark this request as started so we don't trigger 2270 * any debug logic in the end I/O path. 2271 */ 2272 blk_start_request(rq); 2273 __blk_end_request_all(rq, -EIO); 2274 } else { 2275 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2276 break; 2277 } 2278 } 2279 2280 return rq; 2281 } 2282 EXPORT_SYMBOL(blk_peek_request); 2283 2284 void blk_dequeue_request(struct request *rq) 2285 { 2286 struct request_queue *q = rq->q; 2287 2288 BUG_ON(list_empty(&rq->queuelist)); 2289 BUG_ON(ELV_ON_HASH(rq)); 2290 2291 list_del_init(&rq->queuelist); 2292 2293 /* 2294 * the time frame between a request being removed from the lists 2295 * and to it is freed is accounted as io that is in progress at 2296 * the driver side. 2297 */ 2298 if (blk_account_rq(rq)) { 2299 q->in_flight[rq_is_sync(rq)]++; 2300 set_io_start_time_ns(rq); 2301 } 2302 } 2303 2304 /** 2305 * blk_start_request - start request processing on the driver 2306 * @req: request to dequeue 2307 * 2308 * Description: 2309 * Dequeue @req and start timeout timer on it. This hands off the 2310 * request to the driver. 2311 * 2312 * Block internal functions which don't want to start timer should 2313 * call blk_dequeue_request(). 2314 * 2315 * Context: 2316 * queue_lock must be held. 2317 */ 2318 void blk_start_request(struct request *req) 2319 { 2320 blk_dequeue_request(req); 2321 2322 /* 2323 * We are now handing the request to the hardware, initialize 2324 * resid_len to full count and add the timeout handler. 2325 */ 2326 req->resid_len = blk_rq_bytes(req); 2327 if (unlikely(blk_bidi_rq(req))) 2328 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2329 2330 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2331 blk_add_timer(req); 2332 } 2333 EXPORT_SYMBOL(blk_start_request); 2334 2335 /** 2336 * blk_fetch_request - fetch a request from a request queue 2337 * @q: request queue to fetch a request from 2338 * 2339 * Description: 2340 * Return the request at the top of @q. The request is started on 2341 * return and LLD can start processing it immediately. 2342 * 2343 * Return: 2344 * Pointer to the request at the top of @q if available. Null 2345 * otherwise. 2346 * 2347 * Context: 2348 * queue_lock must be held. 2349 */ 2350 struct request *blk_fetch_request(struct request_queue *q) 2351 { 2352 struct request *rq; 2353 2354 rq = blk_peek_request(q); 2355 if (rq) 2356 blk_start_request(rq); 2357 return rq; 2358 } 2359 EXPORT_SYMBOL(blk_fetch_request); 2360 2361 /** 2362 * blk_update_request - Special helper function for request stacking drivers 2363 * @req: the request being processed 2364 * @error: %0 for success, < %0 for error 2365 * @nr_bytes: number of bytes to complete @req 2366 * 2367 * Description: 2368 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2369 * the request structure even if @req doesn't have leftover. 2370 * If @req has leftover, sets it up for the next range of segments. 2371 * 2372 * This special helper function is only for request stacking drivers 2373 * (e.g. request-based dm) so that they can handle partial completion. 2374 * Actual device drivers should use blk_end_request instead. 2375 * 2376 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2377 * %false return from this function. 2378 * 2379 * Return: 2380 * %false - this request doesn't have any more data 2381 * %true - this request has more data 2382 **/ 2383 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2384 { 2385 int total_bytes; 2386 2387 if (!req->bio) 2388 return false; 2389 2390 trace_block_rq_complete(req->q, req, nr_bytes); 2391 2392 /* 2393 * For fs requests, rq is just carrier of independent bio's 2394 * and each partial completion should be handled separately. 2395 * Reset per-request error on each partial completion. 2396 * 2397 * TODO: tj: This is too subtle. It would be better to let 2398 * low level drivers do what they see fit. 2399 */ 2400 if (req->cmd_type == REQ_TYPE_FS) 2401 req->errors = 0; 2402 2403 if (error && req->cmd_type == REQ_TYPE_FS && 2404 !(req->cmd_flags & REQ_QUIET)) { 2405 char *error_type; 2406 2407 switch (error) { 2408 case -ENOLINK: 2409 error_type = "recoverable transport"; 2410 break; 2411 case -EREMOTEIO: 2412 error_type = "critical target"; 2413 break; 2414 case -EBADE: 2415 error_type = "critical nexus"; 2416 break; 2417 case -ETIMEDOUT: 2418 error_type = "timeout"; 2419 break; 2420 case -ENOSPC: 2421 error_type = "critical space allocation"; 2422 break; 2423 case -ENODATA: 2424 error_type = "critical medium"; 2425 break; 2426 case -EIO: 2427 default: 2428 error_type = "I/O"; 2429 break; 2430 } 2431 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2432 error_type, req->rq_disk ? 2433 req->rq_disk->disk_name : "?", 2434 (unsigned long long)blk_rq_pos(req)); 2435 2436 } 2437 2438 blk_account_io_completion(req, nr_bytes); 2439 2440 total_bytes = 0; 2441 while (req->bio) { 2442 struct bio *bio = req->bio; 2443 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2444 2445 if (bio_bytes == bio->bi_iter.bi_size) 2446 req->bio = bio->bi_next; 2447 2448 req_bio_endio(req, bio, bio_bytes, error); 2449 2450 total_bytes += bio_bytes; 2451 nr_bytes -= bio_bytes; 2452 2453 if (!nr_bytes) 2454 break; 2455 } 2456 2457 /* 2458 * completely done 2459 */ 2460 if (!req->bio) { 2461 /* 2462 * Reset counters so that the request stacking driver 2463 * can find how many bytes remain in the request 2464 * later. 2465 */ 2466 req->__data_len = 0; 2467 return false; 2468 } 2469 2470 req->__data_len -= total_bytes; 2471 2472 /* update sector only for requests with clear definition of sector */ 2473 if (req->cmd_type == REQ_TYPE_FS) 2474 req->__sector += total_bytes >> 9; 2475 2476 /* mixed attributes always follow the first bio */ 2477 if (req->cmd_flags & REQ_MIXED_MERGE) { 2478 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2479 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2480 } 2481 2482 /* 2483 * If total number of sectors is less than the first segment 2484 * size, something has gone terribly wrong. 2485 */ 2486 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2487 blk_dump_rq_flags(req, "request botched"); 2488 req->__data_len = blk_rq_cur_bytes(req); 2489 } 2490 2491 /* recalculate the number of segments */ 2492 blk_recalc_rq_segments(req); 2493 2494 return true; 2495 } 2496 EXPORT_SYMBOL_GPL(blk_update_request); 2497 2498 static bool blk_update_bidi_request(struct request *rq, int error, 2499 unsigned int nr_bytes, 2500 unsigned int bidi_bytes) 2501 { 2502 if (blk_update_request(rq, error, nr_bytes)) 2503 return true; 2504 2505 /* Bidi request must be completed as a whole */ 2506 if (unlikely(blk_bidi_rq(rq)) && 2507 blk_update_request(rq->next_rq, error, bidi_bytes)) 2508 return true; 2509 2510 if (blk_queue_add_random(rq->q)) 2511 add_disk_randomness(rq->rq_disk); 2512 2513 return false; 2514 } 2515 2516 /** 2517 * blk_unprep_request - unprepare a request 2518 * @req: the request 2519 * 2520 * This function makes a request ready for complete resubmission (or 2521 * completion). It happens only after all error handling is complete, 2522 * so represents the appropriate moment to deallocate any resources 2523 * that were allocated to the request in the prep_rq_fn. The queue 2524 * lock is held when calling this. 2525 */ 2526 void blk_unprep_request(struct request *req) 2527 { 2528 struct request_queue *q = req->q; 2529 2530 req->cmd_flags &= ~REQ_DONTPREP; 2531 if (q->unprep_rq_fn) 2532 q->unprep_rq_fn(q, req); 2533 } 2534 EXPORT_SYMBOL_GPL(blk_unprep_request); 2535 2536 /* 2537 * queue lock must be held 2538 */ 2539 void blk_finish_request(struct request *req, int error) 2540 { 2541 if (blk_rq_tagged(req)) 2542 blk_queue_end_tag(req->q, req); 2543 2544 BUG_ON(blk_queued_rq(req)); 2545 2546 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2547 laptop_io_completion(&req->q->backing_dev_info); 2548 2549 blk_delete_timer(req); 2550 2551 if (req->cmd_flags & REQ_DONTPREP) 2552 blk_unprep_request(req); 2553 2554 blk_account_io_done(req); 2555 2556 if (req->end_io) 2557 req->end_io(req, error); 2558 else { 2559 if (blk_bidi_rq(req)) 2560 __blk_put_request(req->next_rq->q, req->next_rq); 2561 2562 __blk_put_request(req->q, req); 2563 } 2564 } 2565 EXPORT_SYMBOL(blk_finish_request); 2566 2567 /** 2568 * blk_end_bidi_request - Complete a bidi request 2569 * @rq: the request to complete 2570 * @error: %0 for success, < %0 for error 2571 * @nr_bytes: number of bytes to complete @rq 2572 * @bidi_bytes: number of bytes to complete @rq->next_rq 2573 * 2574 * Description: 2575 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2576 * Drivers that supports bidi can safely call this member for any 2577 * type of request, bidi or uni. In the later case @bidi_bytes is 2578 * just ignored. 2579 * 2580 * Return: 2581 * %false - we are done with this request 2582 * %true - still buffers pending for this request 2583 **/ 2584 static bool blk_end_bidi_request(struct request *rq, int error, 2585 unsigned int nr_bytes, unsigned int bidi_bytes) 2586 { 2587 struct request_queue *q = rq->q; 2588 unsigned long flags; 2589 2590 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2591 return true; 2592 2593 spin_lock_irqsave(q->queue_lock, flags); 2594 blk_finish_request(rq, error); 2595 spin_unlock_irqrestore(q->queue_lock, flags); 2596 2597 return false; 2598 } 2599 2600 /** 2601 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2602 * @rq: the request to complete 2603 * @error: %0 for success, < %0 for error 2604 * @nr_bytes: number of bytes to complete @rq 2605 * @bidi_bytes: number of bytes to complete @rq->next_rq 2606 * 2607 * Description: 2608 * Identical to blk_end_bidi_request() except that queue lock is 2609 * assumed to be locked on entry and remains so on return. 2610 * 2611 * Return: 2612 * %false - we are done with this request 2613 * %true - still buffers pending for this request 2614 **/ 2615 bool __blk_end_bidi_request(struct request *rq, int error, 2616 unsigned int nr_bytes, unsigned int bidi_bytes) 2617 { 2618 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2619 return true; 2620 2621 blk_finish_request(rq, error); 2622 2623 return false; 2624 } 2625 2626 /** 2627 * blk_end_request - Helper function for drivers to complete the request. 2628 * @rq: the request being processed 2629 * @error: %0 for success, < %0 for error 2630 * @nr_bytes: number of bytes to complete 2631 * 2632 * Description: 2633 * Ends I/O on a number of bytes attached to @rq. 2634 * If @rq has leftover, sets it up for the next range of segments. 2635 * 2636 * Return: 2637 * %false - we are done with this request 2638 * %true - still buffers pending for this request 2639 **/ 2640 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2641 { 2642 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2643 } 2644 EXPORT_SYMBOL(blk_end_request); 2645 2646 /** 2647 * blk_end_request_all - Helper function for drives to finish the request. 2648 * @rq: the request to finish 2649 * @error: %0 for success, < %0 for error 2650 * 2651 * Description: 2652 * Completely finish @rq. 2653 */ 2654 void blk_end_request_all(struct request *rq, int error) 2655 { 2656 bool pending; 2657 unsigned int bidi_bytes = 0; 2658 2659 if (unlikely(blk_bidi_rq(rq))) 2660 bidi_bytes = blk_rq_bytes(rq->next_rq); 2661 2662 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2663 BUG_ON(pending); 2664 } 2665 EXPORT_SYMBOL(blk_end_request_all); 2666 2667 /** 2668 * blk_end_request_cur - Helper function to finish the current request chunk. 2669 * @rq: the request to finish the current chunk for 2670 * @error: %0 for success, < %0 for error 2671 * 2672 * Description: 2673 * Complete the current consecutively mapped chunk from @rq. 2674 * 2675 * Return: 2676 * %false - we are done with this request 2677 * %true - still buffers pending for this request 2678 */ 2679 bool blk_end_request_cur(struct request *rq, int error) 2680 { 2681 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2682 } 2683 EXPORT_SYMBOL(blk_end_request_cur); 2684 2685 /** 2686 * blk_end_request_err - Finish a request till the next failure boundary. 2687 * @rq: the request to finish till the next failure boundary for 2688 * @error: must be negative errno 2689 * 2690 * Description: 2691 * Complete @rq till the next failure boundary. 2692 * 2693 * Return: 2694 * %false - we are done with this request 2695 * %true - still buffers pending for this request 2696 */ 2697 bool blk_end_request_err(struct request *rq, int error) 2698 { 2699 WARN_ON(error >= 0); 2700 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2701 } 2702 EXPORT_SYMBOL_GPL(blk_end_request_err); 2703 2704 /** 2705 * __blk_end_request - Helper function for drivers to complete the request. 2706 * @rq: the request being processed 2707 * @error: %0 for success, < %0 for error 2708 * @nr_bytes: number of bytes to complete 2709 * 2710 * Description: 2711 * Must be called with queue lock held unlike blk_end_request(). 2712 * 2713 * Return: 2714 * %false - we are done with this request 2715 * %true - still buffers pending for this request 2716 **/ 2717 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2718 { 2719 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2720 } 2721 EXPORT_SYMBOL(__blk_end_request); 2722 2723 /** 2724 * __blk_end_request_all - Helper function for drives to finish the request. 2725 * @rq: the request to finish 2726 * @error: %0 for success, < %0 for error 2727 * 2728 * Description: 2729 * Completely finish @rq. Must be called with queue lock held. 2730 */ 2731 void __blk_end_request_all(struct request *rq, int error) 2732 { 2733 bool pending; 2734 unsigned int bidi_bytes = 0; 2735 2736 if (unlikely(blk_bidi_rq(rq))) 2737 bidi_bytes = blk_rq_bytes(rq->next_rq); 2738 2739 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2740 BUG_ON(pending); 2741 } 2742 EXPORT_SYMBOL(__blk_end_request_all); 2743 2744 /** 2745 * __blk_end_request_cur - Helper function to finish the current request chunk. 2746 * @rq: the request to finish the current chunk for 2747 * @error: %0 for success, < %0 for error 2748 * 2749 * Description: 2750 * Complete the current consecutively mapped chunk from @rq. Must 2751 * be called with queue lock held. 2752 * 2753 * Return: 2754 * %false - we are done with this request 2755 * %true - still buffers pending for this request 2756 */ 2757 bool __blk_end_request_cur(struct request *rq, int error) 2758 { 2759 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2760 } 2761 EXPORT_SYMBOL(__blk_end_request_cur); 2762 2763 /** 2764 * __blk_end_request_err - Finish a request till the next failure boundary. 2765 * @rq: the request to finish till the next failure boundary for 2766 * @error: must be negative errno 2767 * 2768 * Description: 2769 * Complete @rq till the next failure boundary. Must be called 2770 * with queue lock held. 2771 * 2772 * Return: 2773 * %false - we are done with this request 2774 * %true - still buffers pending for this request 2775 */ 2776 bool __blk_end_request_err(struct request *rq, int error) 2777 { 2778 WARN_ON(error >= 0); 2779 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2780 } 2781 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2782 2783 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2784 struct bio *bio) 2785 { 2786 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2787 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2788 2789 if (bio_has_data(bio)) 2790 rq->nr_phys_segments = bio_phys_segments(q, bio); 2791 2792 rq->__data_len = bio->bi_iter.bi_size; 2793 rq->bio = rq->biotail = bio; 2794 2795 if (bio->bi_bdev) 2796 rq->rq_disk = bio->bi_bdev->bd_disk; 2797 } 2798 2799 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2800 /** 2801 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2802 * @rq: the request to be flushed 2803 * 2804 * Description: 2805 * Flush all pages in @rq. 2806 */ 2807 void rq_flush_dcache_pages(struct request *rq) 2808 { 2809 struct req_iterator iter; 2810 struct bio_vec bvec; 2811 2812 rq_for_each_segment(bvec, rq, iter) 2813 flush_dcache_page(bvec.bv_page); 2814 } 2815 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2816 #endif 2817 2818 /** 2819 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2820 * @q : the queue of the device being checked 2821 * 2822 * Description: 2823 * Check if underlying low-level drivers of a device are busy. 2824 * If the drivers want to export their busy state, they must set own 2825 * exporting function using blk_queue_lld_busy() first. 2826 * 2827 * Basically, this function is used only by request stacking drivers 2828 * to stop dispatching requests to underlying devices when underlying 2829 * devices are busy. This behavior helps more I/O merging on the queue 2830 * of the request stacking driver and prevents I/O throughput regression 2831 * on burst I/O load. 2832 * 2833 * Return: 2834 * 0 - Not busy (The request stacking driver should dispatch request) 2835 * 1 - Busy (The request stacking driver should stop dispatching request) 2836 */ 2837 int blk_lld_busy(struct request_queue *q) 2838 { 2839 if (q->lld_busy_fn) 2840 return q->lld_busy_fn(q); 2841 2842 return 0; 2843 } 2844 EXPORT_SYMBOL_GPL(blk_lld_busy); 2845 2846 /** 2847 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2848 * @rq: the clone request to be cleaned up 2849 * 2850 * Description: 2851 * Free all bios in @rq for a cloned request. 2852 */ 2853 void blk_rq_unprep_clone(struct request *rq) 2854 { 2855 struct bio *bio; 2856 2857 while ((bio = rq->bio) != NULL) { 2858 rq->bio = bio->bi_next; 2859 2860 bio_put(bio); 2861 } 2862 } 2863 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2864 2865 /* 2866 * Copy attributes of the original request to the clone request. 2867 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 2868 */ 2869 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2870 { 2871 dst->cpu = src->cpu; 2872 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2873 dst->cmd_type = src->cmd_type; 2874 dst->__sector = blk_rq_pos(src); 2875 dst->__data_len = blk_rq_bytes(src); 2876 dst->nr_phys_segments = src->nr_phys_segments; 2877 dst->ioprio = src->ioprio; 2878 dst->extra_len = src->extra_len; 2879 } 2880 2881 /** 2882 * blk_rq_prep_clone - Helper function to setup clone request 2883 * @rq: the request to be setup 2884 * @rq_src: original request to be cloned 2885 * @bs: bio_set that bios for clone are allocated from 2886 * @gfp_mask: memory allocation mask for bio 2887 * @bio_ctr: setup function to be called for each clone bio. 2888 * Returns %0 for success, non %0 for failure. 2889 * @data: private data to be passed to @bio_ctr 2890 * 2891 * Description: 2892 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2893 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 2894 * are not copied, and copying such parts is the caller's responsibility. 2895 * Also, pages which the original bios are pointing to are not copied 2896 * and the cloned bios just point same pages. 2897 * So cloned bios must be completed before original bios, which means 2898 * the caller must complete @rq before @rq_src. 2899 */ 2900 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2901 struct bio_set *bs, gfp_t gfp_mask, 2902 int (*bio_ctr)(struct bio *, struct bio *, void *), 2903 void *data) 2904 { 2905 struct bio *bio, *bio_src; 2906 2907 if (!bs) 2908 bs = fs_bio_set; 2909 2910 blk_rq_init(NULL, rq); 2911 2912 __rq_for_each_bio(bio_src, rq_src) { 2913 bio = bio_clone_bioset(bio_src, gfp_mask, bs); 2914 if (!bio) 2915 goto free_and_out; 2916 2917 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2918 goto free_and_out; 2919 2920 if (rq->bio) { 2921 rq->biotail->bi_next = bio; 2922 rq->biotail = bio; 2923 } else 2924 rq->bio = rq->biotail = bio; 2925 } 2926 2927 __blk_rq_prep_clone(rq, rq_src); 2928 2929 return 0; 2930 2931 free_and_out: 2932 if (bio) 2933 bio_put(bio); 2934 blk_rq_unprep_clone(rq); 2935 2936 return -ENOMEM; 2937 } 2938 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2939 2940 int kblockd_schedule_work(struct work_struct *work) 2941 { 2942 return queue_work(kblockd_workqueue, work); 2943 } 2944 EXPORT_SYMBOL(kblockd_schedule_work); 2945 2946 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 2947 unsigned long delay) 2948 { 2949 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2950 } 2951 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2952 2953 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 2954 unsigned long delay) 2955 { 2956 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 2957 } 2958 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 2959 2960 /** 2961 * blk_start_plug - initialize blk_plug and track it inside the task_struct 2962 * @plug: The &struct blk_plug that needs to be initialized 2963 * 2964 * Description: 2965 * Tracking blk_plug inside the task_struct will help with auto-flushing the 2966 * pending I/O should the task end up blocking between blk_start_plug() and 2967 * blk_finish_plug(). This is important from a performance perspective, but 2968 * also ensures that we don't deadlock. For instance, if the task is blocking 2969 * for a memory allocation, memory reclaim could end up wanting to free a 2970 * page belonging to that request that is currently residing in our private 2971 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 2972 * this kind of deadlock. 2973 */ 2974 void blk_start_plug(struct blk_plug *plug) 2975 { 2976 struct task_struct *tsk = current; 2977 2978 INIT_LIST_HEAD(&plug->list); 2979 INIT_LIST_HEAD(&plug->mq_list); 2980 INIT_LIST_HEAD(&plug->cb_list); 2981 2982 /* 2983 * If this is a nested plug, don't actually assign it. It will be 2984 * flushed on its own. 2985 */ 2986 if (!tsk->plug) { 2987 /* 2988 * Store ordering should not be needed here, since a potential 2989 * preempt will imply a full memory barrier 2990 */ 2991 tsk->plug = plug; 2992 } 2993 } 2994 EXPORT_SYMBOL(blk_start_plug); 2995 2996 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2997 { 2998 struct request *rqa = container_of(a, struct request, queuelist); 2999 struct request *rqb = container_of(b, struct request, queuelist); 3000 3001 return !(rqa->q < rqb->q || 3002 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3003 } 3004 3005 /* 3006 * If 'from_schedule' is true, then postpone the dispatch of requests 3007 * until a safe kblockd context. We due this to avoid accidental big 3008 * additional stack usage in driver dispatch, in places where the originally 3009 * plugger did not intend it. 3010 */ 3011 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3012 bool from_schedule) 3013 __releases(q->queue_lock) 3014 { 3015 trace_block_unplug(q, depth, !from_schedule); 3016 3017 if (from_schedule) 3018 blk_run_queue_async(q); 3019 else 3020 __blk_run_queue(q); 3021 spin_unlock(q->queue_lock); 3022 } 3023 3024 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3025 { 3026 LIST_HEAD(callbacks); 3027 3028 while (!list_empty(&plug->cb_list)) { 3029 list_splice_init(&plug->cb_list, &callbacks); 3030 3031 while (!list_empty(&callbacks)) { 3032 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3033 struct blk_plug_cb, 3034 list); 3035 list_del(&cb->list); 3036 cb->callback(cb, from_schedule); 3037 } 3038 } 3039 } 3040 3041 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3042 int size) 3043 { 3044 struct blk_plug *plug = current->plug; 3045 struct blk_plug_cb *cb; 3046 3047 if (!plug) 3048 return NULL; 3049 3050 list_for_each_entry(cb, &plug->cb_list, list) 3051 if (cb->callback == unplug && cb->data == data) 3052 return cb; 3053 3054 /* Not currently on the callback list */ 3055 BUG_ON(size < sizeof(*cb)); 3056 cb = kzalloc(size, GFP_ATOMIC); 3057 if (cb) { 3058 cb->data = data; 3059 cb->callback = unplug; 3060 list_add(&cb->list, &plug->cb_list); 3061 } 3062 return cb; 3063 } 3064 EXPORT_SYMBOL(blk_check_plugged); 3065 3066 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3067 { 3068 struct request_queue *q; 3069 unsigned long flags; 3070 struct request *rq; 3071 LIST_HEAD(list); 3072 unsigned int depth; 3073 3074 flush_plug_callbacks(plug, from_schedule); 3075 3076 if (!list_empty(&plug->mq_list)) 3077 blk_mq_flush_plug_list(plug, from_schedule); 3078 3079 if (list_empty(&plug->list)) 3080 return; 3081 3082 list_splice_init(&plug->list, &list); 3083 3084 list_sort(NULL, &list, plug_rq_cmp); 3085 3086 q = NULL; 3087 depth = 0; 3088 3089 /* 3090 * Save and disable interrupts here, to avoid doing it for every 3091 * queue lock we have to take. 3092 */ 3093 local_irq_save(flags); 3094 while (!list_empty(&list)) { 3095 rq = list_entry_rq(list.next); 3096 list_del_init(&rq->queuelist); 3097 BUG_ON(!rq->q); 3098 if (rq->q != q) { 3099 /* 3100 * This drops the queue lock 3101 */ 3102 if (q) 3103 queue_unplugged(q, depth, from_schedule); 3104 q = rq->q; 3105 depth = 0; 3106 spin_lock(q->queue_lock); 3107 } 3108 3109 /* 3110 * Short-circuit if @q is dead 3111 */ 3112 if (unlikely(blk_queue_dying(q))) { 3113 __blk_end_request_all(rq, -ENODEV); 3114 continue; 3115 } 3116 3117 /* 3118 * rq is already accounted, so use raw insert 3119 */ 3120 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3121 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3122 else 3123 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3124 3125 depth++; 3126 } 3127 3128 /* 3129 * This drops the queue lock 3130 */ 3131 if (q) 3132 queue_unplugged(q, depth, from_schedule); 3133 3134 local_irq_restore(flags); 3135 } 3136 3137 void blk_finish_plug(struct blk_plug *plug) 3138 { 3139 blk_flush_plug_list(plug, false); 3140 3141 if (plug == current->plug) 3142 current->plug = NULL; 3143 } 3144 EXPORT_SYMBOL(blk_finish_plug); 3145 3146 #ifdef CONFIG_PM_RUNTIME 3147 /** 3148 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3149 * @q: the queue of the device 3150 * @dev: the device the queue belongs to 3151 * 3152 * Description: 3153 * Initialize runtime-PM-related fields for @q and start auto suspend for 3154 * @dev. Drivers that want to take advantage of request-based runtime PM 3155 * should call this function after @dev has been initialized, and its 3156 * request queue @q has been allocated, and runtime PM for it can not happen 3157 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3158 * cases, driver should call this function before any I/O has taken place. 3159 * 3160 * This function takes care of setting up using auto suspend for the device, 3161 * the autosuspend delay is set to -1 to make runtime suspend impossible 3162 * until an updated value is either set by user or by driver. Drivers do 3163 * not need to touch other autosuspend settings. 3164 * 3165 * The block layer runtime PM is request based, so only works for drivers 3166 * that use request as their IO unit instead of those directly use bio's. 3167 */ 3168 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3169 { 3170 q->dev = dev; 3171 q->rpm_status = RPM_ACTIVE; 3172 pm_runtime_set_autosuspend_delay(q->dev, -1); 3173 pm_runtime_use_autosuspend(q->dev); 3174 } 3175 EXPORT_SYMBOL(blk_pm_runtime_init); 3176 3177 /** 3178 * blk_pre_runtime_suspend - Pre runtime suspend check 3179 * @q: the queue of the device 3180 * 3181 * Description: 3182 * This function will check if runtime suspend is allowed for the device 3183 * by examining if there are any requests pending in the queue. If there 3184 * are requests pending, the device can not be runtime suspended; otherwise, 3185 * the queue's status will be updated to SUSPENDING and the driver can 3186 * proceed to suspend the device. 3187 * 3188 * For the not allowed case, we mark last busy for the device so that 3189 * runtime PM core will try to autosuspend it some time later. 3190 * 3191 * This function should be called near the start of the device's 3192 * runtime_suspend callback. 3193 * 3194 * Return: 3195 * 0 - OK to runtime suspend the device 3196 * -EBUSY - Device should not be runtime suspended 3197 */ 3198 int blk_pre_runtime_suspend(struct request_queue *q) 3199 { 3200 int ret = 0; 3201 3202 spin_lock_irq(q->queue_lock); 3203 if (q->nr_pending) { 3204 ret = -EBUSY; 3205 pm_runtime_mark_last_busy(q->dev); 3206 } else { 3207 q->rpm_status = RPM_SUSPENDING; 3208 } 3209 spin_unlock_irq(q->queue_lock); 3210 return ret; 3211 } 3212 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3213 3214 /** 3215 * blk_post_runtime_suspend - Post runtime suspend processing 3216 * @q: the queue of the device 3217 * @err: return value of the device's runtime_suspend function 3218 * 3219 * Description: 3220 * Update the queue's runtime status according to the return value of the 3221 * device's runtime suspend function and mark last busy for the device so 3222 * that PM core will try to auto suspend the device at a later time. 3223 * 3224 * This function should be called near the end of the device's 3225 * runtime_suspend callback. 3226 */ 3227 void blk_post_runtime_suspend(struct request_queue *q, int err) 3228 { 3229 spin_lock_irq(q->queue_lock); 3230 if (!err) { 3231 q->rpm_status = RPM_SUSPENDED; 3232 } else { 3233 q->rpm_status = RPM_ACTIVE; 3234 pm_runtime_mark_last_busy(q->dev); 3235 } 3236 spin_unlock_irq(q->queue_lock); 3237 } 3238 EXPORT_SYMBOL(blk_post_runtime_suspend); 3239 3240 /** 3241 * blk_pre_runtime_resume - Pre runtime resume processing 3242 * @q: the queue of the device 3243 * 3244 * Description: 3245 * Update the queue's runtime status to RESUMING in preparation for the 3246 * runtime resume of the device. 3247 * 3248 * This function should be called near the start of the device's 3249 * runtime_resume callback. 3250 */ 3251 void blk_pre_runtime_resume(struct request_queue *q) 3252 { 3253 spin_lock_irq(q->queue_lock); 3254 q->rpm_status = RPM_RESUMING; 3255 spin_unlock_irq(q->queue_lock); 3256 } 3257 EXPORT_SYMBOL(blk_pre_runtime_resume); 3258 3259 /** 3260 * blk_post_runtime_resume - Post runtime resume processing 3261 * @q: the queue of the device 3262 * @err: return value of the device's runtime_resume function 3263 * 3264 * Description: 3265 * Update the queue's runtime status according to the return value of the 3266 * device's runtime_resume function. If it is successfully resumed, process 3267 * the requests that are queued into the device's queue when it is resuming 3268 * and then mark last busy and initiate autosuspend for it. 3269 * 3270 * This function should be called near the end of the device's 3271 * runtime_resume callback. 3272 */ 3273 void blk_post_runtime_resume(struct request_queue *q, int err) 3274 { 3275 spin_lock_irq(q->queue_lock); 3276 if (!err) { 3277 q->rpm_status = RPM_ACTIVE; 3278 __blk_run_queue(q); 3279 pm_runtime_mark_last_busy(q->dev); 3280 pm_request_autosuspend(q->dev); 3281 } else { 3282 q->rpm_status = RPM_SUSPENDED; 3283 } 3284 spin_unlock_irq(q->queue_lock); 3285 } 3286 EXPORT_SYMBOL(blk_post_runtime_resume); 3287 #endif 3288 3289 int __init blk_dev_init(void) 3290 { 3291 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3292 sizeof(((struct request *)0)->cmd_flags)); 3293 3294 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3295 kblockd_workqueue = alloc_workqueue("kblockd", 3296 WQ_MEM_RECLAIM | WQ_HIGHPRI | 3297 WQ_POWER_EFFICIENT, 0); 3298 if (!kblockd_workqueue) 3299 panic("Failed to create kblockd\n"); 3300 3301 request_cachep = kmem_cache_create("blkdev_requests", 3302 sizeof(struct request), 0, SLAB_PANIC, NULL); 3303 3304 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3305 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3306 3307 return 0; 3308 } 3309