xref: /linux/block/blk-core.c (revision c5aec4c76af1a2d89ee2f2d4d5463b2ad2d85de5)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38 
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
47 
48 DEFINE_IDA(blk_queue_ida);
49 
50 /*
51  * For the allocated request tables
52  */
53 struct kmem_cache *request_cachep = NULL;
54 
55 /*
56  * For queue allocation
57  */
58 struct kmem_cache *blk_requestq_cachep;
59 
60 /*
61  * Controlling structure to kblockd
62  */
63 static struct workqueue_struct *kblockd_workqueue;
64 
65 void blk_queue_congestion_threshold(struct request_queue *q)
66 {
67 	int nr;
68 
69 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 	if (nr > q->nr_requests)
71 		nr = q->nr_requests;
72 	q->nr_congestion_on = nr;
73 
74 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 	if (nr < 1)
76 		nr = 1;
77 	q->nr_congestion_off = nr;
78 }
79 
80 /**
81  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82  * @bdev:	device
83  *
84  * Locates the passed device's request queue and returns the address of its
85  * backing_dev_info
86  *
87  * Will return NULL if the request queue cannot be located.
88  */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 	struct backing_dev_info *ret = NULL;
92 	struct request_queue *q = bdev_get_queue(bdev);
93 
94 	if (q)
95 		ret = &q->backing_dev_info;
96 	return ret;
97 }
98 EXPORT_SYMBOL(blk_get_backing_dev_info);
99 
100 void blk_rq_init(struct request_queue *q, struct request *rq)
101 {
102 	memset(rq, 0, sizeof(*rq));
103 
104 	INIT_LIST_HEAD(&rq->queuelist);
105 	INIT_LIST_HEAD(&rq->timeout_list);
106 	rq->cpu = -1;
107 	rq->q = q;
108 	rq->__sector = (sector_t) -1;
109 	INIT_HLIST_NODE(&rq->hash);
110 	RB_CLEAR_NODE(&rq->rb_node);
111 	rq->cmd = rq->__cmd;
112 	rq->cmd_len = BLK_MAX_CDB;
113 	rq->tag = -1;
114 	rq->start_time = jiffies;
115 	set_start_time_ns(rq);
116 	rq->part = NULL;
117 }
118 EXPORT_SYMBOL(blk_rq_init);
119 
120 static void req_bio_endio(struct request *rq, struct bio *bio,
121 			  unsigned int nbytes, int error)
122 {
123 	if (error)
124 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 		error = -EIO;
127 
128 	if (unlikely(rq->cmd_flags & REQ_QUIET))
129 		set_bit(BIO_QUIET, &bio->bi_flags);
130 
131 	bio_advance(bio, nbytes);
132 
133 	/* don't actually finish bio if it's part of flush sequence */
134 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
135 		bio_endio(bio, error);
136 }
137 
138 void blk_dump_rq_flags(struct request *rq, char *msg)
139 {
140 	int bit;
141 
142 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
143 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
144 		(unsigned long long) rq->cmd_flags);
145 
146 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
147 	       (unsigned long long)blk_rq_pos(rq),
148 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
149 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
150 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
151 
152 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
153 		printk(KERN_INFO "  cdb: ");
154 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
155 			printk("%02x ", rq->cmd[bit]);
156 		printk("\n");
157 	}
158 }
159 EXPORT_SYMBOL(blk_dump_rq_flags);
160 
161 static void blk_delay_work(struct work_struct *work)
162 {
163 	struct request_queue *q;
164 
165 	q = container_of(work, struct request_queue, delay_work.work);
166 	spin_lock_irq(q->queue_lock);
167 	__blk_run_queue(q);
168 	spin_unlock_irq(q->queue_lock);
169 }
170 
171 /**
172  * blk_delay_queue - restart queueing after defined interval
173  * @q:		The &struct request_queue in question
174  * @msecs:	Delay in msecs
175  *
176  * Description:
177  *   Sometimes queueing needs to be postponed for a little while, to allow
178  *   resources to come back. This function will make sure that queueing is
179  *   restarted around the specified time. Queue lock must be held.
180  */
181 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
182 {
183 	if (likely(!blk_queue_dead(q)))
184 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 				   msecs_to_jiffies(msecs));
186 }
187 EXPORT_SYMBOL(blk_delay_queue);
188 
189 /**
190  * blk_start_queue - restart a previously stopped queue
191  * @q:    The &struct request_queue in question
192  *
193  * Description:
194  *   blk_start_queue() will clear the stop flag on the queue, and call
195  *   the request_fn for the queue if it was in a stopped state when
196  *   entered. Also see blk_stop_queue(). Queue lock must be held.
197  **/
198 void blk_start_queue(struct request_queue *q)
199 {
200 	WARN_ON(!irqs_disabled());
201 
202 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
203 	__blk_run_queue(q);
204 }
205 EXPORT_SYMBOL(blk_start_queue);
206 
207 /**
208  * blk_stop_queue - stop a queue
209  * @q:    The &struct request_queue in question
210  *
211  * Description:
212  *   The Linux block layer assumes that a block driver will consume all
213  *   entries on the request queue when the request_fn strategy is called.
214  *   Often this will not happen, because of hardware limitations (queue
215  *   depth settings). If a device driver gets a 'queue full' response,
216  *   or if it simply chooses not to queue more I/O at one point, it can
217  *   call this function to prevent the request_fn from being called until
218  *   the driver has signalled it's ready to go again. This happens by calling
219  *   blk_start_queue() to restart queue operations. Queue lock must be held.
220  **/
221 void blk_stop_queue(struct request_queue *q)
222 {
223 	cancel_delayed_work(&q->delay_work);
224 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
225 }
226 EXPORT_SYMBOL(blk_stop_queue);
227 
228 /**
229  * blk_sync_queue - cancel any pending callbacks on a queue
230  * @q: the queue
231  *
232  * Description:
233  *     The block layer may perform asynchronous callback activity
234  *     on a queue, such as calling the unplug function after a timeout.
235  *     A block device may call blk_sync_queue to ensure that any
236  *     such activity is cancelled, thus allowing it to release resources
237  *     that the callbacks might use. The caller must already have made sure
238  *     that its ->make_request_fn will not re-add plugging prior to calling
239  *     this function.
240  *
241  *     This function does not cancel any asynchronous activity arising
242  *     out of elevator or throttling code. That would require elevaotor_exit()
243  *     and blkcg_exit_queue() to be called with queue lock initialized.
244  *
245  */
246 void blk_sync_queue(struct request_queue *q)
247 {
248 	del_timer_sync(&q->timeout);
249 
250 	if (q->mq_ops) {
251 		struct blk_mq_hw_ctx *hctx;
252 		int i;
253 
254 		queue_for_each_hw_ctx(q, hctx, i) {
255 			cancel_delayed_work_sync(&hctx->run_work);
256 			cancel_delayed_work_sync(&hctx->delay_work);
257 		}
258 	} else {
259 		cancel_delayed_work_sync(&q->delay_work);
260 	}
261 }
262 EXPORT_SYMBOL(blk_sync_queue);
263 
264 /**
265  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
266  * @q:	The queue to run
267  *
268  * Description:
269  *    Invoke request handling on a queue if there are any pending requests.
270  *    May be used to restart request handling after a request has completed.
271  *    This variant runs the queue whether or not the queue has been
272  *    stopped. Must be called with the queue lock held and interrupts
273  *    disabled. See also @blk_run_queue.
274  */
275 inline void __blk_run_queue_uncond(struct request_queue *q)
276 {
277 	if (unlikely(blk_queue_dead(q)))
278 		return;
279 
280 	/*
281 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
282 	 * the queue lock internally. As a result multiple threads may be
283 	 * running such a request function concurrently. Keep track of the
284 	 * number of active request_fn invocations such that blk_drain_queue()
285 	 * can wait until all these request_fn calls have finished.
286 	 */
287 	q->request_fn_active++;
288 	q->request_fn(q);
289 	q->request_fn_active--;
290 }
291 
292 /**
293  * __blk_run_queue - run a single device queue
294  * @q:	The queue to run
295  *
296  * Description:
297  *    See @blk_run_queue. This variant must be called with the queue lock
298  *    held and interrupts disabled.
299  */
300 void __blk_run_queue(struct request_queue *q)
301 {
302 	if (unlikely(blk_queue_stopped(q)))
303 		return;
304 
305 	__blk_run_queue_uncond(q);
306 }
307 EXPORT_SYMBOL(__blk_run_queue);
308 
309 /**
310  * blk_run_queue_async - run a single device queue in workqueue context
311  * @q:	The queue to run
312  *
313  * Description:
314  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
315  *    of us. The caller must hold the queue lock.
316  */
317 void blk_run_queue_async(struct request_queue *q)
318 {
319 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
320 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
321 }
322 EXPORT_SYMBOL(blk_run_queue_async);
323 
324 /**
325  * blk_run_queue - run a single device queue
326  * @q: The queue to run
327  *
328  * Description:
329  *    Invoke request handling on this queue, if it has pending work to do.
330  *    May be used to restart queueing when a request has completed.
331  */
332 void blk_run_queue(struct request_queue *q)
333 {
334 	unsigned long flags;
335 
336 	spin_lock_irqsave(q->queue_lock, flags);
337 	__blk_run_queue(q);
338 	spin_unlock_irqrestore(q->queue_lock, flags);
339 }
340 EXPORT_SYMBOL(blk_run_queue);
341 
342 void blk_put_queue(struct request_queue *q)
343 {
344 	kobject_put(&q->kobj);
345 }
346 EXPORT_SYMBOL(blk_put_queue);
347 
348 /**
349  * __blk_drain_queue - drain requests from request_queue
350  * @q: queue to drain
351  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
352  *
353  * Drain requests from @q.  If @drain_all is set, all requests are drained.
354  * If not, only ELVPRIV requests are drained.  The caller is responsible
355  * for ensuring that no new requests which need to be drained are queued.
356  */
357 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
358 	__releases(q->queue_lock)
359 	__acquires(q->queue_lock)
360 {
361 	int i;
362 
363 	lockdep_assert_held(q->queue_lock);
364 
365 	while (true) {
366 		bool drain = false;
367 
368 		/*
369 		 * The caller might be trying to drain @q before its
370 		 * elevator is initialized.
371 		 */
372 		if (q->elevator)
373 			elv_drain_elevator(q);
374 
375 		blkcg_drain_queue(q);
376 
377 		/*
378 		 * This function might be called on a queue which failed
379 		 * driver init after queue creation or is not yet fully
380 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
381 		 * in such cases.  Kick queue iff dispatch queue has
382 		 * something on it and @q has request_fn set.
383 		 */
384 		if (!list_empty(&q->queue_head) && q->request_fn)
385 			__blk_run_queue(q);
386 
387 		drain |= q->nr_rqs_elvpriv;
388 		drain |= q->request_fn_active;
389 
390 		/*
391 		 * Unfortunately, requests are queued at and tracked from
392 		 * multiple places and there's no single counter which can
393 		 * be drained.  Check all the queues and counters.
394 		 */
395 		if (drain_all) {
396 			drain |= !list_empty(&q->queue_head);
397 			for (i = 0; i < 2; i++) {
398 				drain |= q->nr_rqs[i];
399 				drain |= q->in_flight[i];
400 				drain |= !list_empty(&q->flush_queue[i]);
401 			}
402 		}
403 
404 		if (!drain)
405 			break;
406 
407 		spin_unlock_irq(q->queue_lock);
408 
409 		msleep(10);
410 
411 		spin_lock_irq(q->queue_lock);
412 	}
413 
414 	/*
415 	 * With queue marked dead, any woken up waiter will fail the
416 	 * allocation path, so the wakeup chaining is lost and we're
417 	 * left with hung waiters. We need to wake up those waiters.
418 	 */
419 	if (q->request_fn) {
420 		struct request_list *rl;
421 
422 		blk_queue_for_each_rl(rl, q)
423 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
424 				wake_up_all(&rl->wait[i]);
425 	}
426 }
427 
428 /**
429  * blk_queue_bypass_start - enter queue bypass mode
430  * @q: queue of interest
431  *
432  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
433  * function makes @q enter bypass mode and drains all requests which were
434  * throttled or issued before.  On return, it's guaranteed that no request
435  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
436  * inside queue or RCU read lock.
437  */
438 void blk_queue_bypass_start(struct request_queue *q)
439 {
440 	bool drain;
441 
442 	spin_lock_irq(q->queue_lock);
443 	drain = !q->bypass_depth++;
444 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
445 	spin_unlock_irq(q->queue_lock);
446 
447 	if (drain) {
448 		spin_lock_irq(q->queue_lock);
449 		__blk_drain_queue(q, false);
450 		spin_unlock_irq(q->queue_lock);
451 
452 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
453 		synchronize_rcu();
454 	}
455 }
456 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457 
458 /**
459  * blk_queue_bypass_end - leave queue bypass mode
460  * @q: queue of interest
461  *
462  * Leave bypass mode and restore the normal queueing behavior.
463  */
464 void blk_queue_bypass_end(struct request_queue *q)
465 {
466 	spin_lock_irq(q->queue_lock);
467 	if (!--q->bypass_depth)
468 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
469 	WARN_ON_ONCE(q->bypass_depth < 0);
470 	spin_unlock_irq(q->queue_lock);
471 }
472 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473 
474 /**
475  * blk_cleanup_queue - shutdown a request queue
476  * @q: request queue to shutdown
477  *
478  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
479  * put it.  All future requests will be failed immediately with -ENODEV.
480  */
481 void blk_cleanup_queue(struct request_queue *q)
482 {
483 	spinlock_t *lock = q->queue_lock;
484 
485 	/* mark @q DYING, no new request or merges will be allowed afterwards */
486 	mutex_lock(&q->sysfs_lock);
487 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
488 	spin_lock_irq(lock);
489 
490 	/*
491 	 * A dying queue is permanently in bypass mode till released.  Note
492 	 * that, unlike blk_queue_bypass_start(), we aren't performing
493 	 * synchronize_rcu() after entering bypass mode to avoid the delay
494 	 * as some drivers create and destroy a lot of queues while
495 	 * probing.  This is still safe because blk_release_queue() will be
496 	 * called only after the queue refcnt drops to zero and nothing,
497 	 * RCU or not, would be traversing the queue by then.
498 	 */
499 	q->bypass_depth++;
500 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
501 
502 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
503 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
504 	queue_flag_set(QUEUE_FLAG_DYING, q);
505 	spin_unlock_irq(lock);
506 	mutex_unlock(&q->sysfs_lock);
507 
508 	/*
509 	 * Drain all requests queued before DYING marking. Set DEAD flag to
510 	 * prevent that q->request_fn() gets invoked after draining finished.
511 	 */
512 	if (q->mq_ops) {
513 		blk_mq_drain_queue(q);
514 		spin_lock_irq(lock);
515 	} else {
516 		spin_lock_irq(lock);
517 		__blk_drain_queue(q, true);
518 	}
519 	queue_flag_set(QUEUE_FLAG_DEAD, q);
520 	spin_unlock_irq(lock);
521 
522 	/* @q won't process any more request, flush async actions */
523 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
524 	blk_sync_queue(q);
525 
526 	spin_lock_irq(lock);
527 	if (q->queue_lock != &q->__queue_lock)
528 		q->queue_lock = &q->__queue_lock;
529 	spin_unlock_irq(lock);
530 
531 	/* @q is and will stay empty, shutdown and put */
532 	blk_put_queue(q);
533 }
534 EXPORT_SYMBOL(blk_cleanup_queue);
535 
536 int blk_init_rl(struct request_list *rl, struct request_queue *q,
537 		gfp_t gfp_mask)
538 {
539 	if (unlikely(rl->rq_pool))
540 		return 0;
541 
542 	rl->q = q;
543 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
544 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
545 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
546 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
547 
548 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
549 					  mempool_free_slab, request_cachep,
550 					  gfp_mask, q->node);
551 	if (!rl->rq_pool)
552 		return -ENOMEM;
553 
554 	return 0;
555 }
556 
557 void blk_exit_rl(struct request_list *rl)
558 {
559 	if (rl->rq_pool)
560 		mempool_destroy(rl->rq_pool);
561 }
562 
563 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
564 {
565 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
566 }
567 EXPORT_SYMBOL(blk_alloc_queue);
568 
569 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
570 {
571 	struct request_queue *q;
572 	int err;
573 
574 	q = kmem_cache_alloc_node(blk_requestq_cachep,
575 				gfp_mask | __GFP_ZERO, node_id);
576 	if (!q)
577 		return NULL;
578 
579 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
580 	if (q->id < 0)
581 		goto fail_q;
582 
583 	q->backing_dev_info.ra_pages =
584 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
585 	q->backing_dev_info.state = 0;
586 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
587 	q->backing_dev_info.name = "block";
588 	q->node = node_id;
589 
590 	err = bdi_init(&q->backing_dev_info);
591 	if (err)
592 		goto fail_id;
593 
594 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
595 		    laptop_mode_timer_fn, (unsigned long) q);
596 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
597 	INIT_LIST_HEAD(&q->queue_head);
598 	INIT_LIST_HEAD(&q->timeout_list);
599 	INIT_LIST_HEAD(&q->icq_list);
600 #ifdef CONFIG_BLK_CGROUP
601 	INIT_LIST_HEAD(&q->blkg_list);
602 #endif
603 	INIT_LIST_HEAD(&q->flush_queue[0]);
604 	INIT_LIST_HEAD(&q->flush_queue[1]);
605 	INIT_LIST_HEAD(&q->flush_data_in_flight);
606 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
607 
608 	kobject_init(&q->kobj, &blk_queue_ktype);
609 
610 	mutex_init(&q->sysfs_lock);
611 	spin_lock_init(&q->__queue_lock);
612 
613 	/*
614 	 * By default initialize queue_lock to internal lock and driver can
615 	 * override it later if need be.
616 	 */
617 	q->queue_lock = &q->__queue_lock;
618 
619 	/*
620 	 * A queue starts its life with bypass turned on to avoid
621 	 * unnecessary bypass on/off overhead and nasty surprises during
622 	 * init.  The initial bypass will be finished when the queue is
623 	 * registered by blk_register_queue().
624 	 */
625 	q->bypass_depth = 1;
626 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
627 
628 	init_waitqueue_head(&q->mq_freeze_wq);
629 
630 	if (blkcg_init_queue(q))
631 		goto fail_bdi;
632 
633 	return q;
634 
635 fail_bdi:
636 	bdi_destroy(&q->backing_dev_info);
637 fail_id:
638 	ida_simple_remove(&blk_queue_ida, q->id);
639 fail_q:
640 	kmem_cache_free(blk_requestq_cachep, q);
641 	return NULL;
642 }
643 EXPORT_SYMBOL(blk_alloc_queue_node);
644 
645 /**
646  * blk_init_queue  - prepare a request queue for use with a block device
647  * @rfn:  The function to be called to process requests that have been
648  *        placed on the queue.
649  * @lock: Request queue spin lock
650  *
651  * Description:
652  *    If a block device wishes to use the standard request handling procedures,
653  *    which sorts requests and coalesces adjacent requests, then it must
654  *    call blk_init_queue().  The function @rfn will be called when there
655  *    are requests on the queue that need to be processed.  If the device
656  *    supports plugging, then @rfn may not be called immediately when requests
657  *    are available on the queue, but may be called at some time later instead.
658  *    Plugged queues are generally unplugged when a buffer belonging to one
659  *    of the requests on the queue is needed, or due to memory pressure.
660  *
661  *    @rfn is not required, or even expected, to remove all requests off the
662  *    queue, but only as many as it can handle at a time.  If it does leave
663  *    requests on the queue, it is responsible for arranging that the requests
664  *    get dealt with eventually.
665  *
666  *    The queue spin lock must be held while manipulating the requests on the
667  *    request queue; this lock will be taken also from interrupt context, so irq
668  *    disabling is needed for it.
669  *
670  *    Function returns a pointer to the initialized request queue, or %NULL if
671  *    it didn't succeed.
672  *
673  * Note:
674  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
675  *    when the block device is deactivated (such as at module unload).
676  **/
677 
678 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
679 {
680 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
681 }
682 EXPORT_SYMBOL(blk_init_queue);
683 
684 struct request_queue *
685 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
686 {
687 	struct request_queue *uninit_q, *q;
688 
689 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
690 	if (!uninit_q)
691 		return NULL;
692 
693 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
694 	if (!q)
695 		blk_cleanup_queue(uninit_q);
696 
697 	return q;
698 }
699 EXPORT_SYMBOL(blk_init_queue_node);
700 
701 struct request_queue *
702 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
703 			 spinlock_t *lock)
704 {
705 	if (!q)
706 		return NULL;
707 
708 	q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
709 	if (!q->flush_rq)
710 		return NULL;
711 
712 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
713 		goto fail;
714 
715 	q->request_fn		= rfn;
716 	q->prep_rq_fn		= NULL;
717 	q->unprep_rq_fn		= NULL;
718 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
719 
720 	/* Override internal queue lock with supplied lock pointer */
721 	if (lock)
722 		q->queue_lock		= lock;
723 
724 	/*
725 	 * This also sets hw/phys segments, boundary and size
726 	 */
727 	blk_queue_make_request(q, blk_queue_bio);
728 
729 	q->sg_reserved_size = INT_MAX;
730 
731 	/* Protect q->elevator from elevator_change */
732 	mutex_lock(&q->sysfs_lock);
733 
734 	/* init elevator */
735 	if (elevator_init(q, NULL)) {
736 		mutex_unlock(&q->sysfs_lock);
737 		goto fail;
738 	}
739 
740 	mutex_unlock(&q->sysfs_lock);
741 
742 	return q;
743 
744 fail:
745 	kfree(q->flush_rq);
746 	return NULL;
747 }
748 EXPORT_SYMBOL(blk_init_allocated_queue);
749 
750 bool blk_get_queue(struct request_queue *q)
751 {
752 	if (likely(!blk_queue_dying(q))) {
753 		__blk_get_queue(q);
754 		return true;
755 	}
756 
757 	return false;
758 }
759 EXPORT_SYMBOL(blk_get_queue);
760 
761 static inline void blk_free_request(struct request_list *rl, struct request *rq)
762 {
763 	if (rq->cmd_flags & REQ_ELVPRIV) {
764 		elv_put_request(rl->q, rq);
765 		if (rq->elv.icq)
766 			put_io_context(rq->elv.icq->ioc);
767 	}
768 
769 	mempool_free(rq, rl->rq_pool);
770 }
771 
772 /*
773  * ioc_batching returns true if the ioc is a valid batching request and
774  * should be given priority access to a request.
775  */
776 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
777 {
778 	if (!ioc)
779 		return 0;
780 
781 	/*
782 	 * Make sure the process is able to allocate at least 1 request
783 	 * even if the batch times out, otherwise we could theoretically
784 	 * lose wakeups.
785 	 */
786 	return ioc->nr_batch_requests == q->nr_batching ||
787 		(ioc->nr_batch_requests > 0
788 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
789 }
790 
791 /*
792  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
793  * will cause the process to be a "batcher" on all queues in the system. This
794  * is the behaviour we want though - once it gets a wakeup it should be given
795  * a nice run.
796  */
797 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
798 {
799 	if (!ioc || ioc_batching(q, ioc))
800 		return;
801 
802 	ioc->nr_batch_requests = q->nr_batching;
803 	ioc->last_waited = jiffies;
804 }
805 
806 static void __freed_request(struct request_list *rl, int sync)
807 {
808 	struct request_queue *q = rl->q;
809 
810 	/*
811 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
812 	 * blkcg anyway, just use root blkcg state.
813 	 */
814 	if (rl == &q->root_rl &&
815 	    rl->count[sync] < queue_congestion_off_threshold(q))
816 		blk_clear_queue_congested(q, sync);
817 
818 	if (rl->count[sync] + 1 <= q->nr_requests) {
819 		if (waitqueue_active(&rl->wait[sync]))
820 			wake_up(&rl->wait[sync]);
821 
822 		blk_clear_rl_full(rl, sync);
823 	}
824 }
825 
826 /*
827  * A request has just been released.  Account for it, update the full and
828  * congestion status, wake up any waiters.   Called under q->queue_lock.
829  */
830 static void freed_request(struct request_list *rl, unsigned int flags)
831 {
832 	struct request_queue *q = rl->q;
833 	int sync = rw_is_sync(flags);
834 
835 	q->nr_rqs[sync]--;
836 	rl->count[sync]--;
837 	if (flags & REQ_ELVPRIV)
838 		q->nr_rqs_elvpriv--;
839 
840 	__freed_request(rl, sync);
841 
842 	if (unlikely(rl->starved[sync ^ 1]))
843 		__freed_request(rl, sync ^ 1);
844 }
845 
846 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
847 {
848 	struct request_list *rl;
849 
850 	spin_lock_irq(q->queue_lock);
851 	q->nr_requests = nr;
852 	blk_queue_congestion_threshold(q);
853 
854 	/* congestion isn't cgroup aware and follows root blkcg for now */
855 	rl = &q->root_rl;
856 
857 	if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
858 		blk_set_queue_congested(q, BLK_RW_SYNC);
859 	else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
860 		blk_clear_queue_congested(q, BLK_RW_SYNC);
861 
862 	if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
863 		blk_set_queue_congested(q, BLK_RW_ASYNC);
864 	else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
865 		blk_clear_queue_congested(q, BLK_RW_ASYNC);
866 
867 	blk_queue_for_each_rl(rl, q) {
868 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
869 			blk_set_rl_full(rl, BLK_RW_SYNC);
870 		} else {
871 			blk_clear_rl_full(rl, BLK_RW_SYNC);
872 			wake_up(&rl->wait[BLK_RW_SYNC]);
873 		}
874 
875 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
876 			blk_set_rl_full(rl, BLK_RW_ASYNC);
877 		} else {
878 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
879 			wake_up(&rl->wait[BLK_RW_ASYNC]);
880 		}
881 	}
882 
883 	spin_unlock_irq(q->queue_lock);
884 	return 0;
885 }
886 
887 /*
888  * Determine if elevator data should be initialized when allocating the
889  * request associated with @bio.
890  */
891 static bool blk_rq_should_init_elevator(struct bio *bio)
892 {
893 	if (!bio)
894 		return true;
895 
896 	/*
897 	 * Flush requests do not use the elevator so skip initialization.
898 	 * This allows a request to share the flush and elevator data.
899 	 */
900 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
901 		return false;
902 
903 	return true;
904 }
905 
906 /**
907  * rq_ioc - determine io_context for request allocation
908  * @bio: request being allocated is for this bio (can be %NULL)
909  *
910  * Determine io_context to use for request allocation for @bio.  May return
911  * %NULL if %current->io_context doesn't exist.
912  */
913 static struct io_context *rq_ioc(struct bio *bio)
914 {
915 #ifdef CONFIG_BLK_CGROUP
916 	if (bio && bio->bi_ioc)
917 		return bio->bi_ioc;
918 #endif
919 	return current->io_context;
920 }
921 
922 /**
923  * __get_request - get a free request
924  * @rl: request list to allocate from
925  * @rw_flags: RW and SYNC flags
926  * @bio: bio to allocate request for (can be %NULL)
927  * @gfp_mask: allocation mask
928  *
929  * Get a free request from @q.  This function may fail under memory
930  * pressure or if @q is dead.
931  *
932  * Must be callled with @q->queue_lock held and,
933  * Returns %NULL on failure, with @q->queue_lock held.
934  * Returns !%NULL on success, with @q->queue_lock *not held*.
935  */
936 static struct request *__get_request(struct request_list *rl, int rw_flags,
937 				     struct bio *bio, gfp_t gfp_mask)
938 {
939 	struct request_queue *q = rl->q;
940 	struct request *rq;
941 	struct elevator_type *et = q->elevator->type;
942 	struct io_context *ioc = rq_ioc(bio);
943 	struct io_cq *icq = NULL;
944 	const bool is_sync = rw_is_sync(rw_flags) != 0;
945 	int may_queue;
946 
947 	if (unlikely(blk_queue_dying(q)))
948 		return NULL;
949 
950 	may_queue = elv_may_queue(q, rw_flags);
951 	if (may_queue == ELV_MQUEUE_NO)
952 		goto rq_starved;
953 
954 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
955 		if (rl->count[is_sync]+1 >= q->nr_requests) {
956 			/*
957 			 * The queue will fill after this allocation, so set
958 			 * it as full, and mark this process as "batching".
959 			 * This process will be allowed to complete a batch of
960 			 * requests, others will be blocked.
961 			 */
962 			if (!blk_rl_full(rl, is_sync)) {
963 				ioc_set_batching(q, ioc);
964 				blk_set_rl_full(rl, is_sync);
965 			} else {
966 				if (may_queue != ELV_MQUEUE_MUST
967 						&& !ioc_batching(q, ioc)) {
968 					/*
969 					 * The queue is full and the allocating
970 					 * process is not a "batcher", and not
971 					 * exempted by the IO scheduler
972 					 */
973 					return NULL;
974 				}
975 			}
976 		}
977 		/*
978 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
979 		 * root blkcg anyway, just use root blkcg state.
980 		 */
981 		if (rl == &q->root_rl)
982 			blk_set_queue_congested(q, is_sync);
983 	}
984 
985 	/*
986 	 * Only allow batching queuers to allocate up to 50% over the defined
987 	 * limit of requests, otherwise we could have thousands of requests
988 	 * allocated with any setting of ->nr_requests
989 	 */
990 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
991 		return NULL;
992 
993 	q->nr_rqs[is_sync]++;
994 	rl->count[is_sync]++;
995 	rl->starved[is_sync] = 0;
996 
997 	/*
998 	 * Decide whether the new request will be managed by elevator.  If
999 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1000 	 * prevent the current elevator from being destroyed until the new
1001 	 * request is freed.  This guarantees icq's won't be destroyed and
1002 	 * makes creating new ones safe.
1003 	 *
1004 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1005 	 * it will be created after releasing queue_lock.
1006 	 */
1007 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1008 		rw_flags |= REQ_ELVPRIV;
1009 		q->nr_rqs_elvpriv++;
1010 		if (et->icq_cache && ioc)
1011 			icq = ioc_lookup_icq(ioc, q);
1012 	}
1013 
1014 	if (blk_queue_io_stat(q))
1015 		rw_flags |= REQ_IO_STAT;
1016 	spin_unlock_irq(q->queue_lock);
1017 
1018 	/* allocate and init request */
1019 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1020 	if (!rq)
1021 		goto fail_alloc;
1022 
1023 	blk_rq_init(q, rq);
1024 	blk_rq_set_rl(rq, rl);
1025 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1026 
1027 	/* init elvpriv */
1028 	if (rw_flags & REQ_ELVPRIV) {
1029 		if (unlikely(et->icq_cache && !icq)) {
1030 			if (ioc)
1031 				icq = ioc_create_icq(ioc, q, gfp_mask);
1032 			if (!icq)
1033 				goto fail_elvpriv;
1034 		}
1035 
1036 		rq->elv.icq = icq;
1037 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1038 			goto fail_elvpriv;
1039 
1040 		/* @rq->elv.icq holds io_context until @rq is freed */
1041 		if (icq)
1042 			get_io_context(icq->ioc);
1043 	}
1044 out:
1045 	/*
1046 	 * ioc may be NULL here, and ioc_batching will be false. That's
1047 	 * OK, if the queue is under the request limit then requests need
1048 	 * not count toward the nr_batch_requests limit. There will always
1049 	 * be some limit enforced by BLK_BATCH_TIME.
1050 	 */
1051 	if (ioc_batching(q, ioc))
1052 		ioc->nr_batch_requests--;
1053 
1054 	trace_block_getrq(q, bio, rw_flags & 1);
1055 	return rq;
1056 
1057 fail_elvpriv:
1058 	/*
1059 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1060 	 * and may fail indefinitely under memory pressure and thus
1061 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1062 	 * disturb iosched and blkcg but weird is bettern than dead.
1063 	 */
1064 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1065 			   dev_name(q->backing_dev_info.dev));
1066 
1067 	rq->cmd_flags &= ~REQ_ELVPRIV;
1068 	rq->elv.icq = NULL;
1069 
1070 	spin_lock_irq(q->queue_lock);
1071 	q->nr_rqs_elvpriv--;
1072 	spin_unlock_irq(q->queue_lock);
1073 	goto out;
1074 
1075 fail_alloc:
1076 	/*
1077 	 * Allocation failed presumably due to memory. Undo anything we
1078 	 * might have messed up.
1079 	 *
1080 	 * Allocating task should really be put onto the front of the wait
1081 	 * queue, but this is pretty rare.
1082 	 */
1083 	spin_lock_irq(q->queue_lock);
1084 	freed_request(rl, rw_flags);
1085 
1086 	/*
1087 	 * in the very unlikely event that allocation failed and no
1088 	 * requests for this direction was pending, mark us starved so that
1089 	 * freeing of a request in the other direction will notice
1090 	 * us. another possible fix would be to split the rq mempool into
1091 	 * READ and WRITE
1092 	 */
1093 rq_starved:
1094 	if (unlikely(rl->count[is_sync] == 0))
1095 		rl->starved[is_sync] = 1;
1096 	return NULL;
1097 }
1098 
1099 /**
1100  * get_request - get a free request
1101  * @q: request_queue to allocate request from
1102  * @rw_flags: RW and SYNC flags
1103  * @bio: bio to allocate request for (can be %NULL)
1104  * @gfp_mask: allocation mask
1105  *
1106  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1107  * function keeps retrying under memory pressure and fails iff @q is dead.
1108  *
1109  * Must be callled with @q->queue_lock held and,
1110  * Returns %NULL on failure, with @q->queue_lock held.
1111  * Returns !%NULL on success, with @q->queue_lock *not held*.
1112  */
1113 static struct request *get_request(struct request_queue *q, int rw_flags,
1114 				   struct bio *bio, gfp_t gfp_mask)
1115 {
1116 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1117 	DEFINE_WAIT(wait);
1118 	struct request_list *rl;
1119 	struct request *rq;
1120 
1121 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1122 retry:
1123 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1124 	if (rq)
1125 		return rq;
1126 
1127 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1128 		blk_put_rl(rl);
1129 		return NULL;
1130 	}
1131 
1132 	/* wait on @rl and retry */
1133 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1134 				  TASK_UNINTERRUPTIBLE);
1135 
1136 	trace_block_sleeprq(q, bio, rw_flags & 1);
1137 
1138 	spin_unlock_irq(q->queue_lock);
1139 	io_schedule();
1140 
1141 	/*
1142 	 * After sleeping, we become a "batching" process and will be able
1143 	 * to allocate at least one request, and up to a big batch of them
1144 	 * for a small period time.  See ioc_batching, ioc_set_batching
1145 	 */
1146 	ioc_set_batching(q, current->io_context);
1147 
1148 	spin_lock_irq(q->queue_lock);
1149 	finish_wait(&rl->wait[is_sync], &wait);
1150 
1151 	goto retry;
1152 }
1153 
1154 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1155 		gfp_t gfp_mask)
1156 {
1157 	struct request *rq;
1158 
1159 	BUG_ON(rw != READ && rw != WRITE);
1160 
1161 	/* create ioc upfront */
1162 	create_io_context(gfp_mask, q->node);
1163 
1164 	spin_lock_irq(q->queue_lock);
1165 	rq = get_request(q, rw, NULL, gfp_mask);
1166 	if (!rq)
1167 		spin_unlock_irq(q->queue_lock);
1168 	/* q->queue_lock is unlocked at this point */
1169 
1170 	return rq;
1171 }
1172 
1173 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1174 {
1175 	if (q->mq_ops)
1176 		return blk_mq_alloc_request(q, rw, gfp_mask, false);
1177 	else
1178 		return blk_old_get_request(q, rw, gfp_mask);
1179 }
1180 EXPORT_SYMBOL(blk_get_request);
1181 
1182 /**
1183  * blk_make_request - given a bio, allocate a corresponding struct request.
1184  * @q: target request queue
1185  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1186  *        It may be a chained-bio properly constructed by block/bio layer.
1187  * @gfp_mask: gfp flags to be used for memory allocation
1188  *
1189  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1190  * type commands. Where the struct request needs to be farther initialized by
1191  * the caller. It is passed a &struct bio, which describes the memory info of
1192  * the I/O transfer.
1193  *
1194  * The caller of blk_make_request must make sure that bi_io_vec
1195  * are set to describe the memory buffers. That bio_data_dir() will return
1196  * the needed direction of the request. (And all bio's in the passed bio-chain
1197  * are properly set accordingly)
1198  *
1199  * If called under none-sleepable conditions, mapped bio buffers must not
1200  * need bouncing, by calling the appropriate masked or flagged allocator,
1201  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1202  * BUG.
1203  *
1204  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1205  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1206  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1207  * completion of a bio that hasn't been submitted yet, thus resulting in a
1208  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1209  * of bio_alloc(), as that avoids the mempool deadlock.
1210  * If possible a big IO should be split into smaller parts when allocation
1211  * fails. Partial allocation should not be an error, or you risk a live-lock.
1212  */
1213 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1214 				 gfp_t gfp_mask)
1215 {
1216 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1217 
1218 	if (unlikely(!rq))
1219 		return ERR_PTR(-ENOMEM);
1220 
1221 	for_each_bio(bio) {
1222 		struct bio *bounce_bio = bio;
1223 		int ret;
1224 
1225 		blk_queue_bounce(q, &bounce_bio);
1226 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1227 		if (unlikely(ret)) {
1228 			blk_put_request(rq);
1229 			return ERR_PTR(ret);
1230 		}
1231 	}
1232 
1233 	return rq;
1234 }
1235 EXPORT_SYMBOL(blk_make_request);
1236 
1237 /**
1238  * blk_requeue_request - put a request back on queue
1239  * @q:		request queue where request should be inserted
1240  * @rq:		request to be inserted
1241  *
1242  * Description:
1243  *    Drivers often keep queueing requests until the hardware cannot accept
1244  *    more, when that condition happens we need to put the request back
1245  *    on the queue. Must be called with queue lock held.
1246  */
1247 void blk_requeue_request(struct request_queue *q, struct request *rq)
1248 {
1249 	blk_delete_timer(rq);
1250 	blk_clear_rq_complete(rq);
1251 	trace_block_rq_requeue(q, rq);
1252 
1253 	if (blk_rq_tagged(rq))
1254 		blk_queue_end_tag(q, rq);
1255 
1256 	BUG_ON(blk_queued_rq(rq));
1257 
1258 	elv_requeue_request(q, rq);
1259 }
1260 EXPORT_SYMBOL(blk_requeue_request);
1261 
1262 static void add_acct_request(struct request_queue *q, struct request *rq,
1263 			     int where)
1264 {
1265 	blk_account_io_start(rq, true);
1266 	__elv_add_request(q, rq, where);
1267 }
1268 
1269 static void part_round_stats_single(int cpu, struct hd_struct *part,
1270 				    unsigned long now)
1271 {
1272 	int inflight;
1273 
1274 	if (now == part->stamp)
1275 		return;
1276 
1277 	inflight = part_in_flight(part);
1278 	if (inflight) {
1279 		__part_stat_add(cpu, part, time_in_queue,
1280 				inflight * (now - part->stamp));
1281 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1282 	}
1283 	part->stamp = now;
1284 }
1285 
1286 /**
1287  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1288  * @cpu: cpu number for stats access
1289  * @part: target partition
1290  *
1291  * The average IO queue length and utilisation statistics are maintained
1292  * by observing the current state of the queue length and the amount of
1293  * time it has been in this state for.
1294  *
1295  * Normally, that accounting is done on IO completion, but that can result
1296  * in more than a second's worth of IO being accounted for within any one
1297  * second, leading to >100% utilisation.  To deal with that, we call this
1298  * function to do a round-off before returning the results when reading
1299  * /proc/diskstats.  This accounts immediately for all queue usage up to
1300  * the current jiffies and restarts the counters again.
1301  */
1302 void part_round_stats(int cpu, struct hd_struct *part)
1303 {
1304 	unsigned long now = jiffies;
1305 
1306 	if (part->partno)
1307 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1308 	part_round_stats_single(cpu, part, now);
1309 }
1310 EXPORT_SYMBOL_GPL(part_round_stats);
1311 
1312 #ifdef CONFIG_PM_RUNTIME
1313 static void blk_pm_put_request(struct request *rq)
1314 {
1315 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1316 		pm_runtime_mark_last_busy(rq->q->dev);
1317 }
1318 #else
1319 static inline void blk_pm_put_request(struct request *rq) {}
1320 #endif
1321 
1322 /*
1323  * queue lock must be held
1324  */
1325 void __blk_put_request(struct request_queue *q, struct request *req)
1326 {
1327 	if (unlikely(!q))
1328 		return;
1329 
1330 	if (q->mq_ops) {
1331 		blk_mq_free_request(req);
1332 		return;
1333 	}
1334 
1335 	blk_pm_put_request(req);
1336 
1337 	elv_completed_request(q, req);
1338 
1339 	/* this is a bio leak */
1340 	WARN_ON(req->bio != NULL);
1341 
1342 	/*
1343 	 * Request may not have originated from ll_rw_blk. if not,
1344 	 * it didn't come out of our reserved rq pools
1345 	 */
1346 	if (req->cmd_flags & REQ_ALLOCED) {
1347 		unsigned int flags = req->cmd_flags;
1348 		struct request_list *rl = blk_rq_rl(req);
1349 
1350 		BUG_ON(!list_empty(&req->queuelist));
1351 		BUG_ON(ELV_ON_HASH(req));
1352 
1353 		blk_free_request(rl, req);
1354 		freed_request(rl, flags);
1355 		blk_put_rl(rl);
1356 	}
1357 }
1358 EXPORT_SYMBOL_GPL(__blk_put_request);
1359 
1360 void blk_put_request(struct request *req)
1361 {
1362 	struct request_queue *q = req->q;
1363 
1364 	if (q->mq_ops)
1365 		blk_mq_free_request(req);
1366 	else {
1367 		unsigned long flags;
1368 
1369 		spin_lock_irqsave(q->queue_lock, flags);
1370 		__blk_put_request(q, req);
1371 		spin_unlock_irqrestore(q->queue_lock, flags);
1372 	}
1373 }
1374 EXPORT_SYMBOL(blk_put_request);
1375 
1376 /**
1377  * blk_add_request_payload - add a payload to a request
1378  * @rq: request to update
1379  * @page: page backing the payload
1380  * @len: length of the payload.
1381  *
1382  * This allows to later add a payload to an already submitted request by
1383  * a block driver.  The driver needs to take care of freeing the payload
1384  * itself.
1385  *
1386  * Note that this is a quite horrible hack and nothing but handling of
1387  * discard requests should ever use it.
1388  */
1389 void blk_add_request_payload(struct request *rq, struct page *page,
1390 		unsigned int len)
1391 {
1392 	struct bio *bio = rq->bio;
1393 
1394 	bio->bi_io_vec->bv_page = page;
1395 	bio->bi_io_vec->bv_offset = 0;
1396 	bio->bi_io_vec->bv_len = len;
1397 
1398 	bio->bi_iter.bi_size = len;
1399 	bio->bi_vcnt = 1;
1400 	bio->bi_phys_segments = 1;
1401 
1402 	rq->__data_len = rq->resid_len = len;
1403 	rq->nr_phys_segments = 1;
1404 }
1405 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1406 
1407 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1408 			    struct bio *bio)
1409 {
1410 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1411 
1412 	if (!ll_back_merge_fn(q, req, bio))
1413 		return false;
1414 
1415 	trace_block_bio_backmerge(q, req, bio);
1416 
1417 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1418 		blk_rq_set_mixed_merge(req);
1419 
1420 	req->biotail->bi_next = bio;
1421 	req->biotail = bio;
1422 	req->__data_len += bio->bi_iter.bi_size;
1423 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1424 
1425 	blk_account_io_start(req, false);
1426 	return true;
1427 }
1428 
1429 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1430 			     struct bio *bio)
1431 {
1432 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1433 
1434 	if (!ll_front_merge_fn(q, req, bio))
1435 		return false;
1436 
1437 	trace_block_bio_frontmerge(q, req, bio);
1438 
1439 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1440 		blk_rq_set_mixed_merge(req);
1441 
1442 	bio->bi_next = req->bio;
1443 	req->bio = bio;
1444 
1445 	req->__sector = bio->bi_iter.bi_sector;
1446 	req->__data_len += bio->bi_iter.bi_size;
1447 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1448 
1449 	blk_account_io_start(req, false);
1450 	return true;
1451 }
1452 
1453 /**
1454  * blk_attempt_plug_merge - try to merge with %current's plugged list
1455  * @q: request_queue new bio is being queued at
1456  * @bio: new bio being queued
1457  * @request_count: out parameter for number of traversed plugged requests
1458  *
1459  * Determine whether @bio being queued on @q can be merged with a request
1460  * on %current's plugged list.  Returns %true if merge was successful,
1461  * otherwise %false.
1462  *
1463  * Plugging coalesces IOs from the same issuer for the same purpose without
1464  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1465  * than scheduling, and the request, while may have elvpriv data, is not
1466  * added on the elevator at this point.  In addition, we don't have
1467  * reliable access to the elevator outside queue lock.  Only check basic
1468  * merging parameters without querying the elevator.
1469  *
1470  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1471  */
1472 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1473 			    unsigned int *request_count)
1474 {
1475 	struct blk_plug *plug;
1476 	struct request *rq;
1477 	bool ret = false;
1478 	struct list_head *plug_list;
1479 
1480 	plug = current->plug;
1481 	if (!plug)
1482 		goto out;
1483 	*request_count = 0;
1484 
1485 	if (q->mq_ops)
1486 		plug_list = &plug->mq_list;
1487 	else
1488 		plug_list = &plug->list;
1489 
1490 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1491 		int el_ret;
1492 
1493 		if (rq->q == q)
1494 			(*request_count)++;
1495 
1496 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1497 			continue;
1498 
1499 		el_ret = blk_try_merge(rq, bio);
1500 		if (el_ret == ELEVATOR_BACK_MERGE) {
1501 			ret = bio_attempt_back_merge(q, rq, bio);
1502 			if (ret)
1503 				break;
1504 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1505 			ret = bio_attempt_front_merge(q, rq, bio);
1506 			if (ret)
1507 				break;
1508 		}
1509 	}
1510 out:
1511 	return ret;
1512 }
1513 
1514 void init_request_from_bio(struct request *req, struct bio *bio)
1515 {
1516 	req->cmd_type = REQ_TYPE_FS;
1517 
1518 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1519 	if (bio->bi_rw & REQ_RAHEAD)
1520 		req->cmd_flags |= REQ_FAILFAST_MASK;
1521 
1522 	req->errors = 0;
1523 	req->__sector = bio->bi_iter.bi_sector;
1524 	req->ioprio = bio_prio(bio);
1525 	blk_rq_bio_prep(req->q, req, bio);
1526 }
1527 
1528 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1529 {
1530 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1531 	struct blk_plug *plug;
1532 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1533 	struct request *req;
1534 	unsigned int request_count = 0;
1535 
1536 	/*
1537 	 * low level driver can indicate that it wants pages above a
1538 	 * certain limit bounced to low memory (ie for highmem, or even
1539 	 * ISA dma in theory)
1540 	 */
1541 	blk_queue_bounce(q, &bio);
1542 
1543 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1544 		bio_endio(bio, -EIO);
1545 		return;
1546 	}
1547 
1548 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1549 		spin_lock_irq(q->queue_lock);
1550 		where = ELEVATOR_INSERT_FLUSH;
1551 		goto get_rq;
1552 	}
1553 
1554 	/*
1555 	 * Check if we can merge with the plugged list before grabbing
1556 	 * any locks.
1557 	 */
1558 	if (!blk_queue_nomerges(q) &&
1559 	    blk_attempt_plug_merge(q, bio, &request_count))
1560 		return;
1561 
1562 	spin_lock_irq(q->queue_lock);
1563 
1564 	el_ret = elv_merge(q, &req, bio);
1565 	if (el_ret == ELEVATOR_BACK_MERGE) {
1566 		if (bio_attempt_back_merge(q, req, bio)) {
1567 			elv_bio_merged(q, req, bio);
1568 			if (!attempt_back_merge(q, req))
1569 				elv_merged_request(q, req, el_ret);
1570 			goto out_unlock;
1571 		}
1572 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1573 		if (bio_attempt_front_merge(q, req, bio)) {
1574 			elv_bio_merged(q, req, bio);
1575 			if (!attempt_front_merge(q, req))
1576 				elv_merged_request(q, req, el_ret);
1577 			goto out_unlock;
1578 		}
1579 	}
1580 
1581 get_rq:
1582 	/*
1583 	 * This sync check and mask will be re-done in init_request_from_bio(),
1584 	 * but we need to set it earlier to expose the sync flag to the
1585 	 * rq allocator and io schedulers.
1586 	 */
1587 	rw_flags = bio_data_dir(bio);
1588 	if (sync)
1589 		rw_flags |= REQ_SYNC;
1590 
1591 	/*
1592 	 * Grab a free request. This is might sleep but can not fail.
1593 	 * Returns with the queue unlocked.
1594 	 */
1595 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1596 	if (unlikely(!req)) {
1597 		bio_endio(bio, -ENODEV);	/* @q is dead */
1598 		goto out_unlock;
1599 	}
1600 
1601 	/*
1602 	 * After dropping the lock and possibly sleeping here, our request
1603 	 * may now be mergeable after it had proven unmergeable (above).
1604 	 * We don't worry about that case for efficiency. It won't happen
1605 	 * often, and the elevators are able to handle it.
1606 	 */
1607 	init_request_from_bio(req, bio);
1608 
1609 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1610 		req->cpu = raw_smp_processor_id();
1611 
1612 	plug = current->plug;
1613 	if (plug) {
1614 		/*
1615 		 * If this is the first request added after a plug, fire
1616 		 * of a plug trace.
1617 		 */
1618 		if (!request_count)
1619 			trace_block_plug(q);
1620 		else {
1621 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1622 				blk_flush_plug_list(plug, false);
1623 				trace_block_plug(q);
1624 			}
1625 		}
1626 		list_add_tail(&req->queuelist, &plug->list);
1627 		blk_account_io_start(req, true);
1628 	} else {
1629 		spin_lock_irq(q->queue_lock);
1630 		add_acct_request(q, req, where);
1631 		__blk_run_queue(q);
1632 out_unlock:
1633 		spin_unlock_irq(q->queue_lock);
1634 	}
1635 }
1636 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1637 
1638 /*
1639  * If bio->bi_dev is a partition, remap the location
1640  */
1641 static inline void blk_partition_remap(struct bio *bio)
1642 {
1643 	struct block_device *bdev = bio->bi_bdev;
1644 
1645 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1646 		struct hd_struct *p = bdev->bd_part;
1647 
1648 		bio->bi_iter.bi_sector += p->start_sect;
1649 		bio->bi_bdev = bdev->bd_contains;
1650 
1651 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1652 				      bdev->bd_dev,
1653 				      bio->bi_iter.bi_sector - p->start_sect);
1654 	}
1655 }
1656 
1657 static void handle_bad_sector(struct bio *bio)
1658 {
1659 	char b[BDEVNAME_SIZE];
1660 
1661 	printk(KERN_INFO "attempt to access beyond end of device\n");
1662 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1663 			bdevname(bio->bi_bdev, b),
1664 			bio->bi_rw,
1665 			(unsigned long long)bio_end_sector(bio),
1666 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1667 
1668 	set_bit(BIO_EOF, &bio->bi_flags);
1669 }
1670 
1671 #ifdef CONFIG_FAIL_MAKE_REQUEST
1672 
1673 static DECLARE_FAULT_ATTR(fail_make_request);
1674 
1675 static int __init setup_fail_make_request(char *str)
1676 {
1677 	return setup_fault_attr(&fail_make_request, str);
1678 }
1679 __setup("fail_make_request=", setup_fail_make_request);
1680 
1681 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1682 {
1683 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1684 }
1685 
1686 static int __init fail_make_request_debugfs(void)
1687 {
1688 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1689 						NULL, &fail_make_request);
1690 
1691 	return PTR_ERR_OR_ZERO(dir);
1692 }
1693 
1694 late_initcall(fail_make_request_debugfs);
1695 
1696 #else /* CONFIG_FAIL_MAKE_REQUEST */
1697 
1698 static inline bool should_fail_request(struct hd_struct *part,
1699 					unsigned int bytes)
1700 {
1701 	return false;
1702 }
1703 
1704 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1705 
1706 /*
1707  * Check whether this bio extends beyond the end of the device.
1708  */
1709 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1710 {
1711 	sector_t maxsector;
1712 
1713 	if (!nr_sectors)
1714 		return 0;
1715 
1716 	/* Test device or partition size, when known. */
1717 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1718 	if (maxsector) {
1719 		sector_t sector = bio->bi_iter.bi_sector;
1720 
1721 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1722 			/*
1723 			 * This may well happen - the kernel calls bread()
1724 			 * without checking the size of the device, e.g., when
1725 			 * mounting a device.
1726 			 */
1727 			handle_bad_sector(bio);
1728 			return 1;
1729 		}
1730 	}
1731 
1732 	return 0;
1733 }
1734 
1735 static noinline_for_stack bool
1736 generic_make_request_checks(struct bio *bio)
1737 {
1738 	struct request_queue *q;
1739 	int nr_sectors = bio_sectors(bio);
1740 	int err = -EIO;
1741 	char b[BDEVNAME_SIZE];
1742 	struct hd_struct *part;
1743 
1744 	might_sleep();
1745 
1746 	if (bio_check_eod(bio, nr_sectors))
1747 		goto end_io;
1748 
1749 	q = bdev_get_queue(bio->bi_bdev);
1750 	if (unlikely(!q)) {
1751 		printk(KERN_ERR
1752 		       "generic_make_request: Trying to access "
1753 			"nonexistent block-device %s (%Lu)\n",
1754 			bdevname(bio->bi_bdev, b),
1755 			(long long) bio->bi_iter.bi_sector);
1756 		goto end_io;
1757 	}
1758 
1759 	if (likely(bio_is_rw(bio) &&
1760 		   nr_sectors > queue_max_hw_sectors(q))) {
1761 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1762 		       bdevname(bio->bi_bdev, b),
1763 		       bio_sectors(bio),
1764 		       queue_max_hw_sectors(q));
1765 		goto end_io;
1766 	}
1767 
1768 	part = bio->bi_bdev->bd_part;
1769 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1770 	    should_fail_request(&part_to_disk(part)->part0,
1771 				bio->bi_iter.bi_size))
1772 		goto end_io;
1773 
1774 	/*
1775 	 * If this device has partitions, remap block n
1776 	 * of partition p to block n+start(p) of the disk.
1777 	 */
1778 	blk_partition_remap(bio);
1779 
1780 	if (bio_check_eod(bio, nr_sectors))
1781 		goto end_io;
1782 
1783 	/*
1784 	 * Filter flush bio's early so that make_request based
1785 	 * drivers without flush support don't have to worry
1786 	 * about them.
1787 	 */
1788 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1789 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1790 		if (!nr_sectors) {
1791 			err = 0;
1792 			goto end_io;
1793 		}
1794 	}
1795 
1796 	if ((bio->bi_rw & REQ_DISCARD) &&
1797 	    (!blk_queue_discard(q) ||
1798 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1799 		err = -EOPNOTSUPP;
1800 		goto end_io;
1801 	}
1802 
1803 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1804 		err = -EOPNOTSUPP;
1805 		goto end_io;
1806 	}
1807 
1808 	/*
1809 	 * Various block parts want %current->io_context and lazy ioc
1810 	 * allocation ends up trading a lot of pain for a small amount of
1811 	 * memory.  Just allocate it upfront.  This may fail and block
1812 	 * layer knows how to live with it.
1813 	 */
1814 	create_io_context(GFP_ATOMIC, q->node);
1815 
1816 	if (blk_throtl_bio(q, bio))
1817 		return false;	/* throttled, will be resubmitted later */
1818 
1819 	trace_block_bio_queue(q, bio);
1820 	return true;
1821 
1822 end_io:
1823 	bio_endio(bio, err);
1824 	return false;
1825 }
1826 
1827 /**
1828  * generic_make_request - hand a buffer to its device driver for I/O
1829  * @bio:  The bio describing the location in memory and on the device.
1830  *
1831  * generic_make_request() is used to make I/O requests of block
1832  * devices. It is passed a &struct bio, which describes the I/O that needs
1833  * to be done.
1834  *
1835  * generic_make_request() does not return any status.  The
1836  * success/failure status of the request, along with notification of
1837  * completion, is delivered asynchronously through the bio->bi_end_io
1838  * function described (one day) else where.
1839  *
1840  * The caller of generic_make_request must make sure that bi_io_vec
1841  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1842  * set to describe the device address, and the
1843  * bi_end_io and optionally bi_private are set to describe how
1844  * completion notification should be signaled.
1845  *
1846  * generic_make_request and the drivers it calls may use bi_next if this
1847  * bio happens to be merged with someone else, and may resubmit the bio to
1848  * a lower device by calling into generic_make_request recursively, which
1849  * means the bio should NOT be touched after the call to ->make_request_fn.
1850  */
1851 void generic_make_request(struct bio *bio)
1852 {
1853 	struct bio_list bio_list_on_stack;
1854 
1855 	if (!generic_make_request_checks(bio))
1856 		return;
1857 
1858 	/*
1859 	 * We only want one ->make_request_fn to be active at a time, else
1860 	 * stack usage with stacked devices could be a problem.  So use
1861 	 * current->bio_list to keep a list of requests submited by a
1862 	 * make_request_fn function.  current->bio_list is also used as a
1863 	 * flag to say if generic_make_request is currently active in this
1864 	 * task or not.  If it is NULL, then no make_request is active.  If
1865 	 * it is non-NULL, then a make_request is active, and new requests
1866 	 * should be added at the tail
1867 	 */
1868 	if (current->bio_list) {
1869 		bio_list_add(current->bio_list, bio);
1870 		return;
1871 	}
1872 
1873 	/* following loop may be a bit non-obvious, and so deserves some
1874 	 * explanation.
1875 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1876 	 * ensure that) so we have a list with a single bio.
1877 	 * We pretend that we have just taken it off a longer list, so
1878 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1879 	 * thus initialising the bio_list of new bios to be
1880 	 * added.  ->make_request() may indeed add some more bios
1881 	 * through a recursive call to generic_make_request.  If it
1882 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1883 	 * from the top.  In this case we really did just take the bio
1884 	 * of the top of the list (no pretending) and so remove it from
1885 	 * bio_list, and call into ->make_request() again.
1886 	 */
1887 	BUG_ON(bio->bi_next);
1888 	bio_list_init(&bio_list_on_stack);
1889 	current->bio_list = &bio_list_on_stack;
1890 	do {
1891 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1892 
1893 		q->make_request_fn(q, bio);
1894 
1895 		bio = bio_list_pop(current->bio_list);
1896 	} while (bio);
1897 	current->bio_list = NULL; /* deactivate */
1898 }
1899 EXPORT_SYMBOL(generic_make_request);
1900 
1901 /**
1902  * submit_bio - submit a bio to the block device layer for I/O
1903  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1904  * @bio: The &struct bio which describes the I/O
1905  *
1906  * submit_bio() is very similar in purpose to generic_make_request(), and
1907  * uses that function to do most of the work. Both are fairly rough
1908  * interfaces; @bio must be presetup and ready for I/O.
1909  *
1910  */
1911 void submit_bio(int rw, struct bio *bio)
1912 {
1913 	bio->bi_rw |= rw;
1914 
1915 	/*
1916 	 * If it's a regular read/write or a barrier with data attached,
1917 	 * go through the normal accounting stuff before submission.
1918 	 */
1919 	if (bio_has_data(bio)) {
1920 		unsigned int count;
1921 
1922 		if (unlikely(rw & REQ_WRITE_SAME))
1923 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1924 		else
1925 			count = bio_sectors(bio);
1926 
1927 		if (rw & WRITE) {
1928 			count_vm_events(PGPGOUT, count);
1929 		} else {
1930 			task_io_account_read(bio->bi_iter.bi_size);
1931 			count_vm_events(PGPGIN, count);
1932 		}
1933 
1934 		if (unlikely(block_dump)) {
1935 			char b[BDEVNAME_SIZE];
1936 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1937 			current->comm, task_pid_nr(current),
1938 				(rw & WRITE) ? "WRITE" : "READ",
1939 				(unsigned long long)bio->bi_iter.bi_sector,
1940 				bdevname(bio->bi_bdev, b),
1941 				count);
1942 		}
1943 	}
1944 
1945 	generic_make_request(bio);
1946 }
1947 EXPORT_SYMBOL(submit_bio);
1948 
1949 /**
1950  * blk_rq_check_limits - Helper function to check a request for the queue limit
1951  * @q:  the queue
1952  * @rq: the request being checked
1953  *
1954  * Description:
1955  *    @rq may have been made based on weaker limitations of upper-level queues
1956  *    in request stacking drivers, and it may violate the limitation of @q.
1957  *    Since the block layer and the underlying device driver trust @rq
1958  *    after it is inserted to @q, it should be checked against @q before
1959  *    the insertion using this generic function.
1960  *
1961  *    This function should also be useful for request stacking drivers
1962  *    in some cases below, so export this function.
1963  *    Request stacking drivers like request-based dm may change the queue
1964  *    limits while requests are in the queue (e.g. dm's table swapping).
1965  *    Such request stacking drivers should check those requests against
1966  *    the new queue limits again when they dispatch those requests,
1967  *    although such checkings are also done against the old queue limits
1968  *    when submitting requests.
1969  */
1970 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1971 {
1972 	if (!rq_mergeable(rq))
1973 		return 0;
1974 
1975 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1976 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1977 		return -EIO;
1978 	}
1979 
1980 	/*
1981 	 * queue's settings related to segment counting like q->bounce_pfn
1982 	 * may differ from that of other stacking queues.
1983 	 * Recalculate it to check the request correctly on this queue's
1984 	 * limitation.
1985 	 */
1986 	blk_recalc_rq_segments(rq);
1987 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1988 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1989 		return -EIO;
1990 	}
1991 
1992 	return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1995 
1996 /**
1997  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1998  * @q:  the queue to submit the request
1999  * @rq: the request being queued
2000  */
2001 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2002 {
2003 	unsigned long flags;
2004 	int where = ELEVATOR_INSERT_BACK;
2005 
2006 	if (blk_rq_check_limits(q, rq))
2007 		return -EIO;
2008 
2009 	if (rq->rq_disk &&
2010 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2011 		return -EIO;
2012 
2013 	spin_lock_irqsave(q->queue_lock, flags);
2014 	if (unlikely(blk_queue_dying(q))) {
2015 		spin_unlock_irqrestore(q->queue_lock, flags);
2016 		return -ENODEV;
2017 	}
2018 
2019 	/*
2020 	 * Submitting request must be dequeued before calling this function
2021 	 * because it will be linked to another request_queue
2022 	 */
2023 	BUG_ON(blk_queued_rq(rq));
2024 
2025 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2026 		where = ELEVATOR_INSERT_FLUSH;
2027 
2028 	add_acct_request(q, rq, where);
2029 	if (where == ELEVATOR_INSERT_FLUSH)
2030 		__blk_run_queue(q);
2031 	spin_unlock_irqrestore(q->queue_lock, flags);
2032 
2033 	return 0;
2034 }
2035 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2036 
2037 /**
2038  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2039  * @rq: request to examine
2040  *
2041  * Description:
2042  *     A request could be merge of IOs which require different failure
2043  *     handling.  This function determines the number of bytes which
2044  *     can be failed from the beginning of the request without
2045  *     crossing into area which need to be retried further.
2046  *
2047  * Return:
2048  *     The number of bytes to fail.
2049  *
2050  * Context:
2051  *     queue_lock must be held.
2052  */
2053 unsigned int blk_rq_err_bytes(const struct request *rq)
2054 {
2055 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2056 	unsigned int bytes = 0;
2057 	struct bio *bio;
2058 
2059 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2060 		return blk_rq_bytes(rq);
2061 
2062 	/*
2063 	 * Currently the only 'mixing' which can happen is between
2064 	 * different fastfail types.  We can safely fail portions
2065 	 * which have all the failfast bits that the first one has -
2066 	 * the ones which are at least as eager to fail as the first
2067 	 * one.
2068 	 */
2069 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2070 		if ((bio->bi_rw & ff) != ff)
2071 			break;
2072 		bytes += bio->bi_iter.bi_size;
2073 	}
2074 
2075 	/* this could lead to infinite loop */
2076 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2077 	return bytes;
2078 }
2079 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2080 
2081 void blk_account_io_completion(struct request *req, unsigned int bytes)
2082 {
2083 	if (blk_do_io_stat(req)) {
2084 		const int rw = rq_data_dir(req);
2085 		struct hd_struct *part;
2086 		int cpu;
2087 
2088 		cpu = part_stat_lock();
2089 		part = req->part;
2090 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2091 		part_stat_unlock();
2092 	}
2093 }
2094 
2095 void blk_account_io_done(struct request *req)
2096 {
2097 	/*
2098 	 * Account IO completion.  flush_rq isn't accounted as a
2099 	 * normal IO on queueing nor completion.  Accounting the
2100 	 * containing request is enough.
2101 	 */
2102 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2103 		unsigned long duration = jiffies - req->start_time;
2104 		const int rw = rq_data_dir(req);
2105 		struct hd_struct *part;
2106 		int cpu;
2107 
2108 		cpu = part_stat_lock();
2109 		part = req->part;
2110 
2111 		part_stat_inc(cpu, part, ios[rw]);
2112 		part_stat_add(cpu, part, ticks[rw], duration);
2113 		part_round_stats(cpu, part);
2114 		part_dec_in_flight(part, rw);
2115 
2116 		hd_struct_put(part);
2117 		part_stat_unlock();
2118 	}
2119 }
2120 
2121 #ifdef CONFIG_PM_RUNTIME
2122 /*
2123  * Don't process normal requests when queue is suspended
2124  * or in the process of suspending/resuming
2125  */
2126 static struct request *blk_pm_peek_request(struct request_queue *q,
2127 					   struct request *rq)
2128 {
2129 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2130 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2131 		return NULL;
2132 	else
2133 		return rq;
2134 }
2135 #else
2136 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2137 						  struct request *rq)
2138 {
2139 	return rq;
2140 }
2141 #endif
2142 
2143 void blk_account_io_start(struct request *rq, bool new_io)
2144 {
2145 	struct hd_struct *part;
2146 	int rw = rq_data_dir(rq);
2147 	int cpu;
2148 
2149 	if (!blk_do_io_stat(rq))
2150 		return;
2151 
2152 	cpu = part_stat_lock();
2153 
2154 	if (!new_io) {
2155 		part = rq->part;
2156 		part_stat_inc(cpu, part, merges[rw]);
2157 	} else {
2158 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2159 		if (!hd_struct_try_get(part)) {
2160 			/*
2161 			 * The partition is already being removed,
2162 			 * the request will be accounted on the disk only
2163 			 *
2164 			 * We take a reference on disk->part0 although that
2165 			 * partition will never be deleted, so we can treat
2166 			 * it as any other partition.
2167 			 */
2168 			part = &rq->rq_disk->part0;
2169 			hd_struct_get(part);
2170 		}
2171 		part_round_stats(cpu, part);
2172 		part_inc_in_flight(part, rw);
2173 		rq->part = part;
2174 	}
2175 
2176 	part_stat_unlock();
2177 }
2178 
2179 /**
2180  * blk_peek_request - peek at the top of a request queue
2181  * @q: request queue to peek at
2182  *
2183  * Description:
2184  *     Return the request at the top of @q.  The returned request
2185  *     should be started using blk_start_request() before LLD starts
2186  *     processing it.
2187  *
2188  * Return:
2189  *     Pointer to the request at the top of @q if available.  Null
2190  *     otherwise.
2191  *
2192  * Context:
2193  *     queue_lock must be held.
2194  */
2195 struct request *blk_peek_request(struct request_queue *q)
2196 {
2197 	struct request *rq;
2198 	int ret;
2199 
2200 	while ((rq = __elv_next_request(q)) != NULL) {
2201 
2202 		rq = blk_pm_peek_request(q, rq);
2203 		if (!rq)
2204 			break;
2205 
2206 		if (!(rq->cmd_flags & REQ_STARTED)) {
2207 			/*
2208 			 * This is the first time the device driver
2209 			 * sees this request (possibly after
2210 			 * requeueing).  Notify IO scheduler.
2211 			 */
2212 			if (rq->cmd_flags & REQ_SORTED)
2213 				elv_activate_rq(q, rq);
2214 
2215 			/*
2216 			 * just mark as started even if we don't start
2217 			 * it, a request that has been delayed should
2218 			 * not be passed by new incoming requests
2219 			 */
2220 			rq->cmd_flags |= REQ_STARTED;
2221 			trace_block_rq_issue(q, rq);
2222 		}
2223 
2224 		if (!q->boundary_rq || q->boundary_rq == rq) {
2225 			q->end_sector = rq_end_sector(rq);
2226 			q->boundary_rq = NULL;
2227 		}
2228 
2229 		if (rq->cmd_flags & REQ_DONTPREP)
2230 			break;
2231 
2232 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2233 			/*
2234 			 * make sure space for the drain appears we
2235 			 * know we can do this because max_hw_segments
2236 			 * has been adjusted to be one fewer than the
2237 			 * device can handle
2238 			 */
2239 			rq->nr_phys_segments++;
2240 		}
2241 
2242 		if (!q->prep_rq_fn)
2243 			break;
2244 
2245 		ret = q->prep_rq_fn(q, rq);
2246 		if (ret == BLKPREP_OK) {
2247 			break;
2248 		} else if (ret == BLKPREP_DEFER) {
2249 			/*
2250 			 * the request may have been (partially) prepped.
2251 			 * we need to keep this request in the front to
2252 			 * avoid resource deadlock.  REQ_STARTED will
2253 			 * prevent other fs requests from passing this one.
2254 			 */
2255 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2256 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2257 				/*
2258 				 * remove the space for the drain we added
2259 				 * so that we don't add it again
2260 				 */
2261 				--rq->nr_phys_segments;
2262 			}
2263 
2264 			rq = NULL;
2265 			break;
2266 		} else if (ret == BLKPREP_KILL) {
2267 			rq->cmd_flags |= REQ_QUIET;
2268 			/*
2269 			 * Mark this request as started so we don't trigger
2270 			 * any debug logic in the end I/O path.
2271 			 */
2272 			blk_start_request(rq);
2273 			__blk_end_request_all(rq, -EIO);
2274 		} else {
2275 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2276 			break;
2277 		}
2278 	}
2279 
2280 	return rq;
2281 }
2282 EXPORT_SYMBOL(blk_peek_request);
2283 
2284 void blk_dequeue_request(struct request *rq)
2285 {
2286 	struct request_queue *q = rq->q;
2287 
2288 	BUG_ON(list_empty(&rq->queuelist));
2289 	BUG_ON(ELV_ON_HASH(rq));
2290 
2291 	list_del_init(&rq->queuelist);
2292 
2293 	/*
2294 	 * the time frame between a request being removed from the lists
2295 	 * and to it is freed is accounted as io that is in progress at
2296 	 * the driver side.
2297 	 */
2298 	if (blk_account_rq(rq)) {
2299 		q->in_flight[rq_is_sync(rq)]++;
2300 		set_io_start_time_ns(rq);
2301 	}
2302 }
2303 
2304 /**
2305  * blk_start_request - start request processing on the driver
2306  * @req: request to dequeue
2307  *
2308  * Description:
2309  *     Dequeue @req and start timeout timer on it.  This hands off the
2310  *     request to the driver.
2311  *
2312  *     Block internal functions which don't want to start timer should
2313  *     call blk_dequeue_request().
2314  *
2315  * Context:
2316  *     queue_lock must be held.
2317  */
2318 void blk_start_request(struct request *req)
2319 {
2320 	blk_dequeue_request(req);
2321 
2322 	/*
2323 	 * We are now handing the request to the hardware, initialize
2324 	 * resid_len to full count and add the timeout handler.
2325 	 */
2326 	req->resid_len = blk_rq_bytes(req);
2327 	if (unlikely(blk_bidi_rq(req)))
2328 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2329 
2330 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2331 	blk_add_timer(req);
2332 }
2333 EXPORT_SYMBOL(blk_start_request);
2334 
2335 /**
2336  * blk_fetch_request - fetch a request from a request queue
2337  * @q: request queue to fetch a request from
2338  *
2339  * Description:
2340  *     Return the request at the top of @q.  The request is started on
2341  *     return and LLD can start processing it immediately.
2342  *
2343  * Return:
2344  *     Pointer to the request at the top of @q if available.  Null
2345  *     otherwise.
2346  *
2347  * Context:
2348  *     queue_lock must be held.
2349  */
2350 struct request *blk_fetch_request(struct request_queue *q)
2351 {
2352 	struct request *rq;
2353 
2354 	rq = blk_peek_request(q);
2355 	if (rq)
2356 		blk_start_request(rq);
2357 	return rq;
2358 }
2359 EXPORT_SYMBOL(blk_fetch_request);
2360 
2361 /**
2362  * blk_update_request - Special helper function for request stacking drivers
2363  * @req:      the request being processed
2364  * @error:    %0 for success, < %0 for error
2365  * @nr_bytes: number of bytes to complete @req
2366  *
2367  * Description:
2368  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2369  *     the request structure even if @req doesn't have leftover.
2370  *     If @req has leftover, sets it up for the next range of segments.
2371  *
2372  *     This special helper function is only for request stacking drivers
2373  *     (e.g. request-based dm) so that they can handle partial completion.
2374  *     Actual device drivers should use blk_end_request instead.
2375  *
2376  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2377  *     %false return from this function.
2378  *
2379  * Return:
2380  *     %false - this request doesn't have any more data
2381  *     %true  - this request has more data
2382  **/
2383 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2384 {
2385 	int total_bytes;
2386 
2387 	if (!req->bio)
2388 		return false;
2389 
2390 	trace_block_rq_complete(req->q, req, nr_bytes);
2391 
2392 	/*
2393 	 * For fs requests, rq is just carrier of independent bio's
2394 	 * and each partial completion should be handled separately.
2395 	 * Reset per-request error on each partial completion.
2396 	 *
2397 	 * TODO: tj: This is too subtle.  It would be better to let
2398 	 * low level drivers do what they see fit.
2399 	 */
2400 	if (req->cmd_type == REQ_TYPE_FS)
2401 		req->errors = 0;
2402 
2403 	if (error && req->cmd_type == REQ_TYPE_FS &&
2404 	    !(req->cmd_flags & REQ_QUIET)) {
2405 		char *error_type;
2406 
2407 		switch (error) {
2408 		case -ENOLINK:
2409 			error_type = "recoverable transport";
2410 			break;
2411 		case -EREMOTEIO:
2412 			error_type = "critical target";
2413 			break;
2414 		case -EBADE:
2415 			error_type = "critical nexus";
2416 			break;
2417 		case -ETIMEDOUT:
2418 			error_type = "timeout";
2419 			break;
2420 		case -ENOSPC:
2421 			error_type = "critical space allocation";
2422 			break;
2423 		case -ENODATA:
2424 			error_type = "critical medium";
2425 			break;
2426 		case -EIO:
2427 		default:
2428 			error_type = "I/O";
2429 			break;
2430 		}
2431 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2432 				   error_type, req->rq_disk ?
2433 				   req->rq_disk->disk_name : "?",
2434 				   (unsigned long long)blk_rq_pos(req));
2435 
2436 	}
2437 
2438 	blk_account_io_completion(req, nr_bytes);
2439 
2440 	total_bytes = 0;
2441 	while (req->bio) {
2442 		struct bio *bio = req->bio;
2443 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2444 
2445 		if (bio_bytes == bio->bi_iter.bi_size)
2446 			req->bio = bio->bi_next;
2447 
2448 		req_bio_endio(req, bio, bio_bytes, error);
2449 
2450 		total_bytes += bio_bytes;
2451 		nr_bytes -= bio_bytes;
2452 
2453 		if (!nr_bytes)
2454 			break;
2455 	}
2456 
2457 	/*
2458 	 * completely done
2459 	 */
2460 	if (!req->bio) {
2461 		/*
2462 		 * Reset counters so that the request stacking driver
2463 		 * can find how many bytes remain in the request
2464 		 * later.
2465 		 */
2466 		req->__data_len = 0;
2467 		return false;
2468 	}
2469 
2470 	req->__data_len -= total_bytes;
2471 
2472 	/* update sector only for requests with clear definition of sector */
2473 	if (req->cmd_type == REQ_TYPE_FS)
2474 		req->__sector += total_bytes >> 9;
2475 
2476 	/* mixed attributes always follow the first bio */
2477 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2478 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2479 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2480 	}
2481 
2482 	/*
2483 	 * If total number of sectors is less than the first segment
2484 	 * size, something has gone terribly wrong.
2485 	 */
2486 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2487 		blk_dump_rq_flags(req, "request botched");
2488 		req->__data_len = blk_rq_cur_bytes(req);
2489 	}
2490 
2491 	/* recalculate the number of segments */
2492 	blk_recalc_rq_segments(req);
2493 
2494 	return true;
2495 }
2496 EXPORT_SYMBOL_GPL(blk_update_request);
2497 
2498 static bool blk_update_bidi_request(struct request *rq, int error,
2499 				    unsigned int nr_bytes,
2500 				    unsigned int bidi_bytes)
2501 {
2502 	if (blk_update_request(rq, error, nr_bytes))
2503 		return true;
2504 
2505 	/* Bidi request must be completed as a whole */
2506 	if (unlikely(blk_bidi_rq(rq)) &&
2507 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2508 		return true;
2509 
2510 	if (blk_queue_add_random(rq->q))
2511 		add_disk_randomness(rq->rq_disk);
2512 
2513 	return false;
2514 }
2515 
2516 /**
2517  * blk_unprep_request - unprepare a request
2518  * @req:	the request
2519  *
2520  * This function makes a request ready for complete resubmission (or
2521  * completion).  It happens only after all error handling is complete,
2522  * so represents the appropriate moment to deallocate any resources
2523  * that were allocated to the request in the prep_rq_fn.  The queue
2524  * lock is held when calling this.
2525  */
2526 void blk_unprep_request(struct request *req)
2527 {
2528 	struct request_queue *q = req->q;
2529 
2530 	req->cmd_flags &= ~REQ_DONTPREP;
2531 	if (q->unprep_rq_fn)
2532 		q->unprep_rq_fn(q, req);
2533 }
2534 EXPORT_SYMBOL_GPL(blk_unprep_request);
2535 
2536 /*
2537  * queue lock must be held
2538  */
2539 void blk_finish_request(struct request *req, int error)
2540 {
2541 	if (blk_rq_tagged(req))
2542 		blk_queue_end_tag(req->q, req);
2543 
2544 	BUG_ON(blk_queued_rq(req));
2545 
2546 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2547 		laptop_io_completion(&req->q->backing_dev_info);
2548 
2549 	blk_delete_timer(req);
2550 
2551 	if (req->cmd_flags & REQ_DONTPREP)
2552 		blk_unprep_request(req);
2553 
2554 	blk_account_io_done(req);
2555 
2556 	if (req->end_io)
2557 		req->end_io(req, error);
2558 	else {
2559 		if (blk_bidi_rq(req))
2560 			__blk_put_request(req->next_rq->q, req->next_rq);
2561 
2562 		__blk_put_request(req->q, req);
2563 	}
2564 }
2565 EXPORT_SYMBOL(blk_finish_request);
2566 
2567 /**
2568  * blk_end_bidi_request - Complete a bidi request
2569  * @rq:         the request to complete
2570  * @error:      %0 for success, < %0 for error
2571  * @nr_bytes:   number of bytes to complete @rq
2572  * @bidi_bytes: number of bytes to complete @rq->next_rq
2573  *
2574  * Description:
2575  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2576  *     Drivers that supports bidi can safely call this member for any
2577  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2578  *     just ignored.
2579  *
2580  * Return:
2581  *     %false - we are done with this request
2582  *     %true  - still buffers pending for this request
2583  **/
2584 static bool blk_end_bidi_request(struct request *rq, int error,
2585 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2586 {
2587 	struct request_queue *q = rq->q;
2588 	unsigned long flags;
2589 
2590 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2591 		return true;
2592 
2593 	spin_lock_irqsave(q->queue_lock, flags);
2594 	blk_finish_request(rq, error);
2595 	spin_unlock_irqrestore(q->queue_lock, flags);
2596 
2597 	return false;
2598 }
2599 
2600 /**
2601  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2602  * @rq:         the request to complete
2603  * @error:      %0 for success, < %0 for error
2604  * @nr_bytes:   number of bytes to complete @rq
2605  * @bidi_bytes: number of bytes to complete @rq->next_rq
2606  *
2607  * Description:
2608  *     Identical to blk_end_bidi_request() except that queue lock is
2609  *     assumed to be locked on entry and remains so on return.
2610  *
2611  * Return:
2612  *     %false - we are done with this request
2613  *     %true  - still buffers pending for this request
2614  **/
2615 bool __blk_end_bidi_request(struct request *rq, int error,
2616 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2617 {
2618 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2619 		return true;
2620 
2621 	blk_finish_request(rq, error);
2622 
2623 	return false;
2624 }
2625 
2626 /**
2627  * blk_end_request - Helper function for drivers to complete the request.
2628  * @rq:       the request being processed
2629  * @error:    %0 for success, < %0 for error
2630  * @nr_bytes: number of bytes to complete
2631  *
2632  * Description:
2633  *     Ends I/O on a number of bytes attached to @rq.
2634  *     If @rq has leftover, sets it up for the next range of segments.
2635  *
2636  * Return:
2637  *     %false - we are done with this request
2638  *     %true  - still buffers pending for this request
2639  **/
2640 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2641 {
2642 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2643 }
2644 EXPORT_SYMBOL(blk_end_request);
2645 
2646 /**
2647  * blk_end_request_all - Helper function for drives to finish the request.
2648  * @rq: the request to finish
2649  * @error: %0 for success, < %0 for error
2650  *
2651  * Description:
2652  *     Completely finish @rq.
2653  */
2654 void blk_end_request_all(struct request *rq, int error)
2655 {
2656 	bool pending;
2657 	unsigned int bidi_bytes = 0;
2658 
2659 	if (unlikely(blk_bidi_rq(rq)))
2660 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2661 
2662 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2663 	BUG_ON(pending);
2664 }
2665 EXPORT_SYMBOL(blk_end_request_all);
2666 
2667 /**
2668  * blk_end_request_cur - Helper function to finish the current request chunk.
2669  * @rq: the request to finish the current chunk for
2670  * @error: %0 for success, < %0 for error
2671  *
2672  * Description:
2673  *     Complete the current consecutively mapped chunk from @rq.
2674  *
2675  * Return:
2676  *     %false - we are done with this request
2677  *     %true  - still buffers pending for this request
2678  */
2679 bool blk_end_request_cur(struct request *rq, int error)
2680 {
2681 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2682 }
2683 EXPORT_SYMBOL(blk_end_request_cur);
2684 
2685 /**
2686  * blk_end_request_err - Finish a request till the next failure boundary.
2687  * @rq: the request to finish till the next failure boundary for
2688  * @error: must be negative errno
2689  *
2690  * Description:
2691  *     Complete @rq till the next failure boundary.
2692  *
2693  * Return:
2694  *     %false - we are done with this request
2695  *     %true  - still buffers pending for this request
2696  */
2697 bool blk_end_request_err(struct request *rq, int error)
2698 {
2699 	WARN_ON(error >= 0);
2700 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2701 }
2702 EXPORT_SYMBOL_GPL(blk_end_request_err);
2703 
2704 /**
2705  * __blk_end_request - Helper function for drivers to complete the request.
2706  * @rq:       the request being processed
2707  * @error:    %0 for success, < %0 for error
2708  * @nr_bytes: number of bytes to complete
2709  *
2710  * Description:
2711  *     Must be called with queue lock held unlike blk_end_request().
2712  *
2713  * Return:
2714  *     %false - we are done with this request
2715  *     %true  - still buffers pending for this request
2716  **/
2717 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2718 {
2719 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2720 }
2721 EXPORT_SYMBOL(__blk_end_request);
2722 
2723 /**
2724  * __blk_end_request_all - Helper function for drives to finish the request.
2725  * @rq: the request to finish
2726  * @error: %0 for success, < %0 for error
2727  *
2728  * Description:
2729  *     Completely finish @rq.  Must be called with queue lock held.
2730  */
2731 void __blk_end_request_all(struct request *rq, int error)
2732 {
2733 	bool pending;
2734 	unsigned int bidi_bytes = 0;
2735 
2736 	if (unlikely(blk_bidi_rq(rq)))
2737 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2738 
2739 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2740 	BUG_ON(pending);
2741 }
2742 EXPORT_SYMBOL(__blk_end_request_all);
2743 
2744 /**
2745  * __blk_end_request_cur - Helper function to finish the current request chunk.
2746  * @rq: the request to finish the current chunk for
2747  * @error: %0 for success, < %0 for error
2748  *
2749  * Description:
2750  *     Complete the current consecutively mapped chunk from @rq.  Must
2751  *     be called with queue lock held.
2752  *
2753  * Return:
2754  *     %false - we are done with this request
2755  *     %true  - still buffers pending for this request
2756  */
2757 bool __blk_end_request_cur(struct request *rq, int error)
2758 {
2759 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2760 }
2761 EXPORT_SYMBOL(__blk_end_request_cur);
2762 
2763 /**
2764  * __blk_end_request_err - Finish a request till the next failure boundary.
2765  * @rq: the request to finish till the next failure boundary for
2766  * @error: must be negative errno
2767  *
2768  * Description:
2769  *     Complete @rq till the next failure boundary.  Must be called
2770  *     with queue lock held.
2771  *
2772  * Return:
2773  *     %false - we are done with this request
2774  *     %true  - still buffers pending for this request
2775  */
2776 bool __blk_end_request_err(struct request *rq, int error)
2777 {
2778 	WARN_ON(error >= 0);
2779 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2780 }
2781 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2782 
2783 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2784 		     struct bio *bio)
2785 {
2786 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2787 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2788 
2789 	if (bio_has_data(bio))
2790 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2791 
2792 	rq->__data_len = bio->bi_iter.bi_size;
2793 	rq->bio = rq->biotail = bio;
2794 
2795 	if (bio->bi_bdev)
2796 		rq->rq_disk = bio->bi_bdev->bd_disk;
2797 }
2798 
2799 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2800 /**
2801  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2802  * @rq: the request to be flushed
2803  *
2804  * Description:
2805  *     Flush all pages in @rq.
2806  */
2807 void rq_flush_dcache_pages(struct request *rq)
2808 {
2809 	struct req_iterator iter;
2810 	struct bio_vec bvec;
2811 
2812 	rq_for_each_segment(bvec, rq, iter)
2813 		flush_dcache_page(bvec.bv_page);
2814 }
2815 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2816 #endif
2817 
2818 /**
2819  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2820  * @q : the queue of the device being checked
2821  *
2822  * Description:
2823  *    Check if underlying low-level drivers of a device are busy.
2824  *    If the drivers want to export their busy state, they must set own
2825  *    exporting function using blk_queue_lld_busy() first.
2826  *
2827  *    Basically, this function is used only by request stacking drivers
2828  *    to stop dispatching requests to underlying devices when underlying
2829  *    devices are busy.  This behavior helps more I/O merging on the queue
2830  *    of the request stacking driver and prevents I/O throughput regression
2831  *    on burst I/O load.
2832  *
2833  * Return:
2834  *    0 - Not busy (The request stacking driver should dispatch request)
2835  *    1 - Busy (The request stacking driver should stop dispatching request)
2836  */
2837 int blk_lld_busy(struct request_queue *q)
2838 {
2839 	if (q->lld_busy_fn)
2840 		return q->lld_busy_fn(q);
2841 
2842 	return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(blk_lld_busy);
2845 
2846 /**
2847  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2848  * @rq: the clone request to be cleaned up
2849  *
2850  * Description:
2851  *     Free all bios in @rq for a cloned request.
2852  */
2853 void blk_rq_unprep_clone(struct request *rq)
2854 {
2855 	struct bio *bio;
2856 
2857 	while ((bio = rq->bio) != NULL) {
2858 		rq->bio = bio->bi_next;
2859 
2860 		bio_put(bio);
2861 	}
2862 }
2863 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2864 
2865 /*
2866  * Copy attributes of the original request to the clone request.
2867  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2868  */
2869 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2870 {
2871 	dst->cpu = src->cpu;
2872 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2873 	dst->cmd_type = src->cmd_type;
2874 	dst->__sector = blk_rq_pos(src);
2875 	dst->__data_len = blk_rq_bytes(src);
2876 	dst->nr_phys_segments = src->nr_phys_segments;
2877 	dst->ioprio = src->ioprio;
2878 	dst->extra_len = src->extra_len;
2879 }
2880 
2881 /**
2882  * blk_rq_prep_clone - Helper function to setup clone request
2883  * @rq: the request to be setup
2884  * @rq_src: original request to be cloned
2885  * @bs: bio_set that bios for clone are allocated from
2886  * @gfp_mask: memory allocation mask for bio
2887  * @bio_ctr: setup function to be called for each clone bio.
2888  *           Returns %0 for success, non %0 for failure.
2889  * @data: private data to be passed to @bio_ctr
2890  *
2891  * Description:
2892  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2893  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2894  *     are not copied, and copying such parts is the caller's responsibility.
2895  *     Also, pages which the original bios are pointing to are not copied
2896  *     and the cloned bios just point same pages.
2897  *     So cloned bios must be completed before original bios, which means
2898  *     the caller must complete @rq before @rq_src.
2899  */
2900 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2901 		      struct bio_set *bs, gfp_t gfp_mask,
2902 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2903 		      void *data)
2904 {
2905 	struct bio *bio, *bio_src;
2906 
2907 	if (!bs)
2908 		bs = fs_bio_set;
2909 
2910 	blk_rq_init(NULL, rq);
2911 
2912 	__rq_for_each_bio(bio_src, rq_src) {
2913 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2914 		if (!bio)
2915 			goto free_and_out;
2916 
2917 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2918 			goto free_and_out;
2919 
2920 		if (rq->bio) {
2921 			rq->biotail->bi_next = bio;
2922 			rq->biotail = bio;
2923 		} else
2924 			rq->bio = rq->biotail = bio;
2925 	}
2926 
2927 	__blk_rq_prep_clone(rq, rq_src);
2928 
2929 	return 0;
2930 
2931 free_and_out:
2932 	if (bio)
2933 		bio_put(bio);
2934 	blk_rq_unprep_clone(rq);
2935 
2936 	return -ENOMEM;
2937 }
2938 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2939 
2940 int kblockd_schedule_work(struct work_struct *work)
2941 {
2942 	return queue_work(kblockd_workqueue, work);
2943 }
2944 EXPORT_SYMBOL(kblockd_schedule_work);
2945 
2946 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2947 				  unsigned long delay)
2948 {
2949 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2950 }
2951 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2952 
2953 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2954 				     unsigned long delay)
2955 {
2956 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2957 }
2958 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2959 
2960 /**
2961  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2962  * @plug:	The &struct blk_plug that needs to be initialized
2963  *
2964  * Description:
2965  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2966  *   pending I/O should the task end up blocking between blk_start_plug() and
2967  *   blk_finish_plug(). This is important from a performance perspective, but
2968  *   also ensures that we don't deadlock. For instance, if the task is blocking
2969  *   for a memory allocation, memory reclaim could end up wanting to free a
2970  *   page belonging to that request that is currently residing in our private
2971  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2972  *   this kind of deadlock.
2973  */
2974 void blk_start_plug(struct blk_plug *plug)
2975 {
2976 	struct task_struct *tsk = current;
2977 
2978 	INIT_LIST_HEAD(&plug->list);
2979 	INIT_LIST_HEAD(&plug->mq_list);
2980 	INIT_LIST_HEAD(&plug->cb_list);
2981 
2982 	/*
2983 	 * If this is a nested plug, don't actually assign it. It will be
2984 	 * flushed on its own.
2985 	 */
2986 	if (!tsk->plug) {
2987 		/*
2988 		 * Store ordering should not be needed here, since a potential
2989 		 * preempt will imply a full memory barrier
2990 		 */
2991 		tsk->plug = plug;
2992 	}
2993 }
2994 EXPORT_SYMBOL(blk_start_plug);
2995 
2996 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2997 {
2998 	struct request *rqa = container_of(a, struct request, queuelist);
2999 	struct request *rqb = container_of(b, struct request, queuelist);
3000 
3001 	return !(rqa->q < rqb->q ||
3002 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3003 }
3004 
3005 /*
3006  * If 'from_schedule' is true, then postpone the dispatch of requests
3007  * until a safe kblockd context. We due this to avoid accidental big
3008  * additional stack usage in driver dispatch, in places where the originally
3009  * plugger did not intend it.
3010  */
3011 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3012 			    bool from_schedule)
3013 	__releases(q->queue_lock)
3014 {
3015 	trace_block_unplug(q, depth, !from_schedule);
3016 
3017 	if (from_schedule)
3018 		blk_run_queue_async(q);
3019 	else
3020 		__blk_run_queue(q);
3021 	spin_unlock(q->queue_lock);
3022 }
3023 
3024 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3025 {
3026 	LIST_HEAD(callbacks);
3027 
3028 	while (!list_empty(&plug->cb_list)) {
3029 		list_splice_init(&plug->cb_list, &callbacks);
3030 
3031 		while (!list_empty(&callbacks)) {
3032 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3033 							  struct blk_plug_cb,
3034 							  list);
3035 			list_del(&cb->list);
3036 			cb->callback(cb, from_schedule);
3037 		}
3038 	}
3039 }
3040 
3041 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3042 				      int size)
3043 {
3044 	struct blk_plug *plug = current->plug;
3045 	struct blk_plug_cb *cb;
3046 
3047 	if (!plug)
3048 		return NULL;
3049 
3050 	list_for_each_entry(cb, &plug->cb_list, list)
3051 		if (cb->callback == unplug && cb->data == data)
3052 			return cb;
3053 
3054 	/* Not currently on the callback list */
3055 	BUG_ON(size < sizeof(*cb));
3056 	cb = kzalloc(size, GFP_ATOMIC);
3057 	if (cb) {
3058 		cb->data = data;
3059 		cb->callback = unplug;
3060 		list_add(&cb->list, &plug->cb_list);
3061 	}
3062 	return cb;
3063 }
3064 EXPORT_SYMBOL(blk_check_plugged);
3065 
3066 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3067 {
3068 	struct request_queue *q;
3069 	unsigned long flags;
3070 	struct request *rq;
3071 	LIST_HEAD(list);
3072 	unsigned int depth;
3073 
3074 	flush_plug_callbacks(plug, from_schedule);
3075 
3076 	if (!list_empty(&plug->mq_list))
3077 		blk_mq_flush_plug_list(plug, from_schedule);
3078 
3079 	if (list_empty(&plug->list))
3080 		return;
3081 
3082 	list_splice_init(&plug->list, &list);
3083 
3084 	list_sort(NULL, &list, plug_rq_cmp);
3085 
3086 	q = NULL;
3087 	depth = 0;
3088 
3089 	/*
3090 	 * Save and disable interrupts here, to avoid doing it for every
3091 	 * queue lock we have to take.
3092 	 */
3093 	local_irq_save(flags);
3094 	while (!list_empty(&list)) {
3095 		rq = list_entry_rq(list.next);
3096 		list_del_init(&rq->queuelist);
3097 		BUG_ON(!rq->q);
3098 		if (rq->q != q) {
3099 			/*
3100 			 * This drops the queue lock
3101 			 */
3102 			if (q)
3103 				queue_unplugged(q, depth, from_schedule);
3104 			q = rq->q;
3105 			depth = 0;
3106 			spin_lock(q->queue_lock);
3107 		}
3108 
3109 		/*
3110 		 * Short-circuit if @q is dead
3111 		 */
3112 		if (unlikely(blk_queue_dying(q))) {
3113 			__blk_end_request_all(rq, -ENODEV);
3114 			continue;
3115 		}
3116 
3117 		/*
3118 		 * rq is already accounted, so use raw insert
3119 		 */
3120 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3121 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3122 		else
3123 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3124 
3125 		depth++;
3126 	}
3127 
3128 	/*
3129 	 * This drops the queue lock
3130 	 */
3131 	if (q)
3132 		queue_unplugged(q, depth, from_schedule);
3133 
3134 	local_irq_restore(flags);
3135 }
3136 
3137 void blk_finish_plug(struct blk_plug *plug)
3138 {
3139 	blk_flush_plug_list(plug, false);
3140 
3141 	if (plug == current->plug)
3142 		current->plug = NULL;
3143 }
3144 EXPORT_SYMBOL(blk_finish_plug);
3145 
3146 #ifdef CONFIG_PM_RUNTIME
3147 /**
3148  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3149  * @q: the queue of the device
3150  * @dev: the device the queue belongs to
3151  *
3152  * Description:
3153  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3154  *    @dev. Drivers that want to take advantage of request-based runtime PM
3155  *    should call this function after @dev has been initialized, and its
3156  *    request queue @q has been allocated, and runtime PM for it can not happen
3157  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3158  *    cases, driver should call this function before any I/O has taken place.
3159  *
3160  *    This function takes care of setting up using auto suspend for the device,
3161  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3162  *    until an updated value is either set by user or by driver. Drivers do
3163  *    not need to touch other autosuspend settings.
3164  *
3165  *    The block layer runtime PM is request based, so only works for drivers
3166  *    that use request as their IO unit instead of those directly use bio's.
3167  */
3168 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3169 {
3170 	q->dev = dev;
3171 	q->rpm_status = RPM_ACTIVE;
3172 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3173 	pm_runtime_use_autosuspend(q->dev);
3174 }
3175 EXPORT_SYMBOL(blk_pm_runtime_init);
3176 
3177 /**
3178  * blk_pre_runtime_suspend - Pre runtime suspend check
3179  * @q: the queue of the device
3180  *
3181  * Description:
3182  *    This function will check if runtime suspend is allowed for the device
3183  *    by examining if there are any requests pending in the queue. If there
3184  *    are requests pending, the device can not be runtime suspended; otherwise,
3185  *    the queue's status will be updated to SUSPENDING and the driver can
3186  *    proceed to suspend the device.
3187  *
3188  *    For the not allowed case, we mark last busy for the device so that
3189  *    runtime PM core will try to autosuspend it some time later.
3190  *
3191  *    This function should be called near the start of the device's
3192  *    runtime_suspend callback.
3193  *
3194  * Return:
3195  *    0		- OK to runtime suspend the device
3196  *    -EBUSY	- Device should not be runtime suspended
3197  */
3198 int blk_pre_runtime_suspend(struct request_queue *q)
3199 {
3200 	int ret = 0;
3201 
3202 	spin_lock_irq(q->queue_lock);
3203 	if (q->nr_pending) {
3204 		ret = -EBUSY;
3205 		pm_runtime_mark_last_busy(q->dev);
3206 	} else {
3207 		q->rpm_status = RPM_SUSPENDING;
3208 	}
3209 	spin_unlock_irq(q->queue_lock);
3210 	return ret;
3211 }
3212 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3213 
3214 /**
3215  * blk_post_runtime_suspend - Post runtime suspend processing
3216  * @q: the queue of the device
3217  * @err: return value of the device's runtime_suspend function
3218  *
3219  * Description:
3220  *    Update the queue's runtime status according to the return value of the
3221  *    device's runtime suspend function and mark last busy for the device so
3222  *    that PM core will try to auto suspend the device at a later time.
3223  *
3224  *    This function should be called near the end of the device's
3225  *    runtime_suspend callback.
3226  */
3227 void blk_post_runtime_suspend(struct request_queue *q, int err)
3228 {
3229 	spin_lock_irq(q->queue_lock);
3230 	if (!err) {
3231 		q->rpm_status = RPM_SUSPENDED;
3232 	} else {
3233 		q->rpm_status = RPM_ACTIVE;
3234 		pm_runtime_mark_last_busy(q->dev);
3235 	}
3236 	spin_unlock_irq(q->queue_lock);
3237 }
3238 EXPORT_SYMBOL(blk_post_runtime_suspend);
3239 
3240 /**
3241  * blk_pre_runtime_resume - Pre runtime resume processing
3242  * @q: the queue of the device
3243  *
3244  * Description:
3245  *    Update the queue's runtime status to RESUMING in preparation for the
3246  *    runtime resume of the device.
3247  *
3248  *    This function should be called near the start of the device's
3249  *    runtime_resume callback.
3250  */
3251 void blk_pre_runtime_resume(struct request_queue *q)
3252 {
3253 	spin_lock_irq(q->queue_lock);
3254 	q->rpm_status = RPM_RESUMING;
3255 	spin_unlock_irq(q->queue_lock);
3256 }
3257 EXPORT_SYMBOL(blk_pre_runtime_resume);
3258 
3259 /**
3260  * blk_post_runtime_resume - Post runtime resume processing
3261  * @q: the queue of the device
3262  * @err: return value of the device's runtime_resume function
3263  *
3264  * Description:
3265  *    Update the queue's runtime status according to the return value of the
3266  *    device's runtime_resume function. If it is successfully resumed, process
3267  *    the requests that are queued into the device's queue when it is resuming
3268  *    and then mark last busy and initiate autosuspend for it.
3269  *
3270  *    This function should be called near the end of the device's
3271  *    runtime_resume callback.
3272  */
3273 void blk_post_runtime_resume(struct request_queue *q, int err)
3274 {
3275 	spin_lock_irq(q->queue_lock);
3276 	if (!err) {
3277 		q->rpm_status = RPM_ACTIVE;
3278 		__blk_run_queue(q);
3279 		pm_runtime_mark_last_busy(q->dev);
3280 		pm_request_autosuspend(q->dev);
3281 	} else {
3282 		q->rpm_status = RPM_SUSPENDED;
3283 	}
3284 	spin_unlock_irq(q->queue_lock);
3285 }
3286 EXPORT_SYMBOL(blk_post_runtime_resume);
3287 #endif
3288 
3289 int __init blk_dev_init(void)
3290 {
3291 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3292 			sizeof(((struct request *)0)->cmd_flags));
3293 
3294 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3295 	kblockd_workqueue = alloc_workqueue("kblockd",
3296 					    WQ_MEM_RECLAIM | WQ_HIGHPRI |
3297 					    WQ_POWER_EFFICIENT, 0);
3298 	if (!kblockd_workqueue)
3299 		panic("Failed to create kblockd\n");
3300 
3301 	request_cachep = kmem_cache_create("blkdev_requests",
3302 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3303 
3304 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3305 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3306 
3307 	return 0;
3308 }
3309