1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/interrupt.h> 30 #include <linux/cpu.h> 31 #include <linux/blktrace_api.h> 32 #include <linux/fault-inject.h> 33 34 #include "blk.h" 35 36 static int __make_request(struct request_queue *q, struct bio *bio); 37 38 /* 39 * For the allocated request tables 40 */ 41 static struct kmem_cache *request_cachep; 42 43 /* 44 * For queue allocation 45 */ 46 struct kmem_cache *blk_requestq_cachep; 47 48 /* 49 * Controlling structure to kblockd 50 */ 51 static struct workqueue_struct *kblockd_workqueue; 52 53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done); 54 55 static void drive_stat_acct(struct request *rq, int new_io) 56 { 57 struct hd_struct *part; 58 int rw = rq_data_dir(rq); 59 60 if (!blk_fs_request(rq) || !rq->rq_disk) 61 return; 62 63 part = get_part(rq->rq_disk, rq->sector); 64 if (!new_io) 65 __all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector); 66 else { 67 disk_round_stats(rq->rq_disk); 68 rq->rq_disk->in_flight++; 69 if (part) { 70 part_round_stats(part); 71 part->in_flight++; 72 } 73 } 74 } 75 76 void blk_queue_congestion_threshold(struct request_queue *q) 77 { 78 int nr; 79 80 nr = q->nr_requests - (q->nr_requests / 8) + 1; 81 if (nr > q->nr_requests) 82 nr = q->nr_requests; 83 q->nr_congestion_on = nr; 84 85 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 86 if (nr < 1) 87 nr = 1; 88 q->nr_congestion_off = nr; 89 } 90 91 /** 92 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 93 * @bdev: device 94 * 95 * Locates the passed device's request queue and returns the address of its 96 * backing_dev_info 97 * 98 * Will return NULL if the request queue cannot be located. 99 */ 100 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 101 { 102 struct backing_dev_info *ret = NULL; 103 struct request_queue *q = bdev_get_queue(bdev); 104 105 if (q) 106 ret = &q->backing_dev_info; 107 return ret; 108 } 109 EXPORT_SYMBOL(blk_get_backing_dev_info); 110 111 void blk_rq_init(struct request_queue *q, struct request *rq) 112 { 113 memset(rq, 0, sizeof(*rq)); 114 115 INIT_LIST_HEAD(&rq->queuelist); 116 INIT_LIST_HEAD(&rq->donelist); 117 rq->q = q; 118 rq->sector = rq->hard_sector = (sector_t) -1; 119 INIT_HLIST_NODE(&rq->hash); 120 RB_CLEAR_NODE(&rq->rb_node); 121 rq->cmd = rq->__cmd; 122 rq->tag = -1; 123 rq->ref_count = 1; 124 } 125 EXPORT_SYMBOL(blk_rq_init); 126 127 static void req_bio_endio(struct request *rq, struct bio *bio, 128 unsigned int nbytes, int error) 129 { 130 struct request_queue *q = rq->q; 131 132 if (&q->bar_rq != rq) { 133 if (error) 134 clear_bit(BIO_UPTODATE, &bio->bi_flags); 135 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 136 error = -EIO; 137 138 if (unlikely(nbytes > bio->bi_size)) { 139 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 140 __func__, nbytes, bio->bi_size); 141 nbytes = bio->bi_size; 142 } 143 144 bio->bi_size -= nbytes; 145 bio->bi_sector += (nbytes >> 9); 146 147 if (bio_integrity(bio)) 148 bio_integrity_advance(bio, nbytes); 149 150 if (bio->bi_size == 0) 151 bio_endio(bio, error); 152 } else { 153 154 /* 155 * Okay, this is the barrier request in progress, just 156 * record the error; 157 */ 158 if (error && !q->orderr) 159 q->orderr = error; 160 } 161 } 162 163 void blk_dump_rq_flags(struct request *rq, char *msg) 164 { 165 int bit; 166 167 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 168 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 169 rq->cmd_flags); 170 171 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n", 172 (unsigned long long)rq->sector, 173 rq->nr_sectors, 174 rq->current_nr_sectors); 175 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n", 176 rq->bio, rq->biotail, 177 rq->buffer, rq->data, 178 rq->data_len); 179 180 if (blk_pc_request(rq)) { 181 printk(KERN_INFO " cdb: "); 182 for (bit = 0; bit < BLK_MAX_CDB; bit++) 183 printk("%02x ", rq->cmd[bit]); 184 printk("\n"); 185 } 186 } 187 EXPORT_SYMBOL(blk_dump_rq_flags); 188 189 /* 190 * "plug" the device if there are no outstanding requests: this will 191 * force the transfer to start only after we have put all the requests 192 * on the list. 193 * 194 * This is called with interrupts off and no requests on the queue and 195 * with the queue lock held. 196 */ 197 void blk_plug_device(struct request_queue *q) 198 { 199 WARN_ON(!irqs_disabled()); 200 201 /* 202 * don't plug a stopped queue, it must be paired with blk_start_queue() 203 * which will restart the queueing 204 */ 205 if (blk_queue_stopped(q)) 206 return; 207 208 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 209 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 210 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG); 211 } 212 } 213 EXPORT_SYMBOL(blk_plug_device); 214 215 /** 216 * blk_plug_device_unlocked - plug a device without queue lock held 217 * @q: The &struct request_queue to plug 218 * 219 * Description: 220 * Like @blk_plug_device(), but grabs the queue lock and disables 221 * interrupts. 222 **/ 223 void blk_plug_device_unlocked(struct request_queue *q) 224 { 225 unsigned long flags; 226 227 spin_lock_irqsave(q->queue_lock, flags); 228 blk_plug_device(q); 229 spin_unlock_irqrestore(q->queue_lock, flags); 230 } 231 EXPORT_SYMBOL(blk_plug_device_unlocked); 232 233 /* 234 * remove the queue from the plugged list, if present. called with 235 * queue lock held and interrupts disabled. 236 */ 237 int blk_remove_plug(struct request_queue *q) 238 { 239 WARN_ON(!irqs_disabled()); 240 241 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 242 return 0; 243 244 del_timer(&q->unplug_timer); 245 return 1; 246 } 247 EXPORT_SYMBOL(blk_remove_plug); 248 249 /* 250 * remove the plug and let it rip.. 251 */ 252 void __generic_unplug_device(struct request_queue *q) 253 { 254 if (unlikely(blk_queue_stopped(q))) 255 return; 256 257 if (!blk_remove_plug(q)) 258 return; 259 260 q->request_fn(q); 261 } 262 EXPORT_SYMBOL(__generic_unplug_device); 263 264 /** 265 * generic_unplug_device - fire a request queue 266 * @q: The &struct request_queue in question 267 * 268 * Description: 269 * Linux uses plugging to build bigger requests queues before letting 270 * the device have at them. If a queue is plugged, the I/O scheduler 271 * is still adding and merging requests on the queue. Once the queue 272 * gets unplugged, the request_fn defined for the queue is invoked and 273 * transfers started. 274 **/ 275 void generic_unplug_device(struct request_queue *q) 276 { 277 if (blk_queue_plugged(q)) { 278 spin_lock_irq(q->queue_lock); 279 __generic_unplug_device(q); 280 spin_unlock_irq(q->queue_lock); 281 } 282 } 283 EXPORT_SYMBOL(generic_unplug_device); 284 285 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 286 struct page *page) 287 { 288 struct request_queue *q = bdi->unplug_io_data; 289 290 blk_unplug(q); 291 } 292 293 void blk_unplug_work(struct work_struct *work) 294 { 295 struct request_queue *q = 296 container_of(work, struct request_queue, unplug_work); 297 298 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 299 q->rq.count[READ] + q->rq.count[WRITE]); 300 301 q->unplug_fn(q); 302 } 303 304 void blk_unplug_timeout(unsigned long data) 305 { 306 struct request_queue *q = (struct request_queue *)data; 307 308 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL, 309 q->rq.count[READ] + q->rq.count[WRITE]); 310 311 kblockd_schedule_work(&q->unplug_work); 312 } 313 314 void blk_unplug(struct request_queue *q) 315 { 316 /* 317 * devices don't necessarily have an ->unplug_fn defined 318 */ 319 if (q->unplug_fn) { 320 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 321 q->rq.count[READ] + q->rq.count[WRITE]); 322 323 q->unplug_fn(q); 324 } 325 } 326 EXPORT_SYMBOL(blk_unplug); 327 328 /** 329 * blk_start_queue - restart a previously stopped queue 330 * @q: The &struct request_queue in question 331 * 332 * Description: 333 * blk_start_queue() will clear the stop flag on the queue, and call 334 * the request_fn for the queue if it was in a stopped state when 335 * entered. Also see blk_stop_queue(). Queue lock must be held. 336 **/ 337 void blk_start_queue(struct request_queue *q) 338 { 339 WARN_ON(!irqs_disabled()); 340 341 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 342 343 /* 344 * one level of recursion is ok and is much faster than kicking 345 * the unplug handling 346 */ 347 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 348 q->request_fn(q); 349 queue_flag_clear(QUEUE_FLAG_REENTER, q); 350 } else { 351 blk_plug_device(q); 352 kblockd_schedule_work(&q->unplug_work); 353 } 354 } 355 EXPORT_SYMBOL(blk_start_queue); 356 357 /** 358 * blk_stop_queue - stop a queue 359 * @q: The &struct request_queue in question 360 * 361 * Description: 362 * The Linux block layer assumes that a block driver will consume all 363 * entries on the request queue when the request_fn strategy is called. 364 * Often this will not happen, because of hardware limitations (queue 365 * depth settings). If a device driver gets a 'queue full' response, 366 * or if it simply chooses not to queue more I/O at one point, it can 367 * call this function to prevent the request_fn from being called until 368 * the driver has signalled it's ready to go again. This happens by calling 369 * blk_start_queue() to restart queue operations. Queue lock must be held. 370 **/ 371 void blk_stop_queue(struct request_queue *q) 372 { 373 blk_remove_plug(q); 374 queue_flag_set(QUEUE_FLAG_STOPPED, q); 375 } 376 EXPORT_SYMBOL(blk_stop_queue); 377 378 /** 379 * blk_sync_queue - cancel any pending callbacks on a queue 380 * @q: the queue 381 * 382 * Description: 383 * The block layer may perform asynchronous callback activity 384 * on a queue, such as calling the unplug function after a timeout. 385 * A block device may call blk_sync_queue to ensure that any 386 * such activity is cancelled, thus allowing it to release resources 387 * that the callbacks might use. The caller must already have made sure 388 * that its ->make_request_fn will not re-add plugging prior to calling 389 * this function. 390 * 391 */ 392 void blk_sync_queue(struct request_queue *q) 393 { 394 del_timer_sync(&q->unplug_timer); 395 kblockd_flush_work(&q->unplug_work); 396 } 397 EXPORT_SYMBOL(blk_sync_queue); 398 399 /** 400 * blk_run_queue - run a single device queue 401 * @q: The queue to run 402 */ 403 void __blk_run_queue(struct request_queue *q) 404 { 405 blk_remove_plug(q); 406 407 /* 408 * Only recurse once to avoid overrunning the stack, let the unplug 409 * handling reinvoke the handler shortly if we already got there. 410 */ 411 if (!elv_queue_empty(q)) { 412 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 413 q->request_fn(q); 414 queue_flag_clear(QUEUE_FLAG_REENTER, q); 415 } else { 416 blk_plug_device(q); 417 kblockd_schedule_work(&q->unplug_work); 418 } 419 } 420 } 421 EXPORT_SYMBOL(__blk_run_queue); 422 423 /** 424 * blk_run_queue - run a single device queue 425 * @q: The queue to run 426 */ 427 void blk_run_queue(struct request_queue *q) 428 { 429 unsigned long flags; 430 431 spin_lock_irqsave(q->queue_lock, flags); 432 __blk_run_queue(q); 433 spin_unlock_irqrestore(q->queue_lock, flags); 434 } 435 EXPORT_SYMBOL(blk_run_queue); 436 437 void blk_put_queue(struct request_queue *q) 438 { 439 kobject_put(&q->kobj); 440 } 441 442 void blk_cleanup_queue(struct request_queue *q) 443 { 444 mutex_lock(&q->sysfs_lock); 445 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 446 mutex_unlock(&q->sysfs_lock); 447 448 if (q->elevator) 449 elevator_exit(q->elevator); 450 451 blk_put_queue(q); 452 } 453 EXPORT_SYMBOL(blk_cleanup_queue); 454 455 static int blk_init_free_list(struct request_queue *q) 456 { 457 struct request_list *rl = &q->rq; 458 459 rl->count[READ] = rl->count[WRITE] = 0; 460 rl->starved[READ] = rl->starved[WRITE] = 0; 461 rl->elvpriv = 0; 462 init_waitqueue_head(&rl->wait[READ]); 463 init_waitqueue_head(&rl->wait[WRITE]); 464 465 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 466 mempool_free_slab, request_cachep, q->node); 467 468 if (!rl->rq_pool) 469 return -ENOMEM; 470 471 return 0; 472 } 473 474 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 475 { 476 return blk_alloc_queue_node(gfp_mask, -1); 477 } 478 EXPORT_SYMBOL(blk_alloc_queue); 479 480 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 481 { 482 struct request_queue *q; 483 int err; 484 485 q = kmem_cache_alloc_node(blk_requestq_cachep, 486 gfp_mask | __GFP_ZERO, node_id); 487 if (!q) 488 return NULL; 489 490 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 491 q->backing_dev_info.unplug_io_data = q; 492 err = bdi_init(&q->backing_dev_info); 493 if (err) { 494 kmem_cache_free(blk_requestq_cachep, q); 495 return NULL; 496 } 497 498 init_timer(&q->unplug_timer); 499 500 kobject_init(&q->kobj, &blk_queue_ktype); 501 502 mutex_init(&q->sysfs_lock); 503 spin_lock_init(&q->__queue_lock); 504 505 return q; 506 } 507 EXPORT_SYMBOL(blk_alloc_queue_node); 508 509 /** 510 * blk_init_queue - prepare a request queue for use with a block device 511 * @rfn: The function to be called to process requests that have been 512 * placed on the queue. 513 * @lock: Request queue spin lock 514 * 515 * Description: 516 * If a block device wishes to use the standard request handling procedures, 517 * which sorts requests and coalesces adjacent requests, then it must 518 * call blk_init_queue(). The function @rfn will be called when there 519 * are requests on the queue that need to be processed. If the device 520 * supports plugging, then @rfn may not be called immediately when requests 521 * are available on the queue, but may be called at some time later instead. 522 * Plugged queues are generally unplugged when a buffer belonging to one 523 * of the requests on the queue is needed, or due to memory pressure. 524 * 525 * @rfn is not required, or even expected, to remove all requests off the 526 * queue, but only as many as it can handle at a time. If it does leave 527 * requests on the queue, it is responsible for arranging that the requests 528 * get dealt with eventually. 529 * 530 * The queue spin lock must be held while manipulating the requests on the 531 * request queue; this lock will be taken also from interrupt context, so irq 532 * disabling is needed for it. 533 * 534 * Function returns a pointer to the initialized request queue, or NULL if 535 * it didn't succeed. 536 * 537 * Note: 538 * blk_init_queue() must be paired with a blk_cleanup_queue() call 539 * when the block device is deactivated (such as at module unload). 540 **/ 541 542 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 543 { 544 return blk_init_queue_node(rfn, lock, -1); 545 } 546 EXPORT_SYMBOL(blk_init_queue); 547 548 struct request_queue * 549 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 550 { 551 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 552 553 if (!q) 554 return NULL; 555 556 q->node = node_id; 557 if (blk_init_free_list(q)) { 558 kmem_cache_free(blk_requestq_cachep, q); 559 return NULL; 560 } 561 562 /* 563 * if caller didn't supply a lock, they get per-queue locking with 564 * our embedded lock 565 */ 566 if (!lock) 567 lock = &q->__queue_lock; 568 569 q->request_fn = rfn; 570 q->prep_rq_fn = NULL; 571 q->unplug_fn = generic_unplug_device; 572 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER); 573 q->queue_lock = lock; 574 575 blk_queue_segment_boundary(q, 0xffffffff); 576 577 blk_queue_make_request(q, __make_request); 578 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); 579 580 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 581 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 582 583 q->sg_reserved_size = INT_MAX; 584 585 blk_set_cmd_filter_defaults(&q->cmd_filter); 586 587 /* 588 * all done 589 */ 590 if (!elevator_init(q, NULL)) { 591 blk_queue_congestion_threshold(q); 592 return q; 593 } 594 595 blk_put_queue(q); 596 return NULL; 597 } 598 EXPORT_SYMBOL(blk_init_queue_node); 599 600 int blk_get_queue(struct request_queue *q) 601 { 602 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 603 kobject_get(&q->kobj); 604 return 0; 605 } 606 607 return 1; 608 } 609 610 static inline void blk_free_request(struct request_queue *q, struct request *rq) 611 { 612 if (rq->cmd_flags & REQ_ELVPRIV) 613 elv_put_request(q, rq); 614 mempool_free(rq, q->rq.rq_pool); 615 } 616 617 static struct request * 618 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask) 619 { 620 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 621 622 if (!rq) 623 return NULL; 624 625 blk_rq_init(q, rq); 626 627 /* 628 * first three bits are identical in rq->cmd_flags and bio->bi_rw, 629 * see bio.h and blkdev.h 630 */ 631 rq->cmd_flags = rw | REQ_ALLOCED; 632 633 if (priv) { 634 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 635 mempool_free(rq, q->rq.rq_pool); 636 return NULL; 637 } 638 rq->cmd_flags |= REQ_ELVPRIV; 639 } 640 641 return rq; 642 } 643 644 /* 645 * ioc_batching returns true if the ioc is a valid batching request and 646 * should be given priority access to a request. 647 */ 648 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 649 { 650 if (!ioc) 651 return 0; 652 653 /* 654 * Make sure the process is able to allocate at least 1 request 655 * even if the batch times out, otherwise we could theoretically 656 * lose wakeups. 657 */ 658 return ioc->nr_batch_requests == q->nr_batching || 659 (ioc->nr_batch_requests > 0 660 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 661 } 662 663 /* 664 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 665 * will cause the process to be a "batcher" on all queues in the system. This 666 * is the behaviour we want though - once it gets a wakeup it should be given 667 * a nice run. 668 */ 669 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 670 { 671 if (!ioc || ioc_batching(q, ioc)) 672 return; 673 674 ioc->nr_batch_requests = q->nr_batching; 675 ioc->last_waited = jiffies; 676 } 677 678 static void __freed_request(struct request_queue *q, int rw) 679 { 680 struct request_list *rl = &q->rq; 681 682 if (rl->count[rw] < queue_congestion_off_threshold(q)) 683 blk_clear_queue_congested(q, rw); 684 685 if (rl->count[rw] + 1 <= q->nr_requests) { 686 if (waitqueue_active(&rl->wait[rw])) 687 wake_up(&rl->wait[rw]); 688 689 blk_clear_queue_full(q, rw); 690 } 691 } 692 693 /* 694 * A request has just been released. Account for it, update the full and 695 * congestion status, wake up any waiters. Called under q->queue_lock. 696 */ 697 static void freed_request(struct request_queue *q, int rw, int priv) 698 { 699 struct request_list *rl = &q->rq; 700 701 rl->count[rw]--; 702 if (priv) 703 rl->elvpriv--; 704 705 __freed_request(q, rw); 706 707 if (unlikely(rl->starved[rw ^ 1])) 708 __freed_request(q, rw ^ 1); 709 } 710 711 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist) 712 /* 713 * Get a free request, queue_lock must be held. 714 * Returns NULL on failure, with queue_lock held. 715 * Returns !NULL on success, with queue_lock *not held*. 716 */ 717 static struct request *get_request(struct request_queue *q, int rw_flags, 718 struct bio *bio, gfp_t gfp_mask) 719 { 720 struct request *rq = NULL; 721 struct request_list *rl = &q->rq; 722 struct io_context *ioc = NULL; 723 const int rw = rw_flags & 0x01; 724 int may_queue, priv; 725 726 may_queue = elv_may_queue(q, rw_flags); 727 if (may_queue == ELV_MQUEUE_NO) 728 goto rq_starved; 729 730 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) { 731 if (rl->count[rw]+1 >= q->nr_requests) { 732 ioc = current_io_context(GFP_ATOMIC, q->node); 733 /* 734 * The queue will fill after this allocation, so set 735 * it as full, and mark this process as "batching". 736 * This process will be allowed to complete a batch of 737 * requests, others will be blocked. 738 */ 739 if (!blk_queue_full(q, rw)) { 740 ioc_set_batching(q, ioc); 741 blk_set_queue_full(q, rw); 742 } else { 743 if (may_queue != ELV_MQUEUE_MUST 744 && !ioc_batching(q, ioc)) { 745 /* 746 * The queue is full and the allocating 747 * process is not a "batcher", and not 748 * exempted by the IO scheduler 749 */ 750 goto out; 751 } 752 } 753 } 754 blk_set_queue_congested(q, rw); 755 } 756 757 /* 758 * Only allow batching queuers to allocate up to 50% over the defined 759 * limit of requests, otherwise we could have thousands of requests 760 * allocated with any setting of ->nr_requests 761 */ 762 if (rl->count[rw] >= (3 * q->nr_requests / 2)) 763 goto out; 764 765 rl->count[rw]++; 766 rl->starved[rw] = 0; 767 768 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 769 if (priv) 770 rl->elvpriv++; 771 772 spin_unlock_irq(q->queue_lock); 773 774 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 775 if (unlikely(!rq)) { 776 /* 777 * Allocation failed presumably due to memory. Undo anything 778 * we might have messed up. 779 * 780 * Allocating task should really be put onto the front of the 781 * wait queue, but this is pretty rare. 782 */ 783 spin_lock_irq(q->queue_lock); 784 freed_request(q, rw, priv); 785 786 /* 787 * in the very unlikely event that allocation failed and no 788 * requests for this direction was pending, mark us starved 789 * so that freeing of a request in the other direction will 790 * notice us. another possible fix would be to split the 791 * rq mempool into READ and WRITE 792 */ 793 rq_starved: 794 if (unlikely(rl->count[rw] == 0)) 795 rl->starved[rw] = 1; 796 797 goto out; 798 } 799 800 /* 801 * ioc may be NULL here, and ioc_batching will be false. That's 802 * OK, if the queue is under the request limit then requests need 803 * not count toward the nr_batch_requests limit. There will always 804 * be some limit enforced by BLK_BATCH_TIME. 805 */ 806 if (ioc_batching(q, ioc)) 807 ioc->nr_batch_requests--; 808 809 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ); 810 out: 811 return rq; 812 } 813 814 /* 815 * No available requests for this queue, unplug the device and wait for some 816 * requests to become available. 817 * 818 * Called with q->queue_lock held, and returns with it unlocked. 819 */ 820 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 821 struct bio *bio) 822 { 823 const int rw = rw_flags & 0x01; 824 struct request *rq; 825 826 rq = get_request(q, rw_flags, bio, GFP_NOIO); 827 while (!rq) { 828 DEFINE_WAIT(wait); 829 struct io_context *ioc; 830 struct request_list *rl = &q->rq; 831 832 prepare_to_wait_exclusive(&rl->wait[rw], &wait, 833 TASK_UNINTERRUPTIBLE); 834 835 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ); 836 837 __generic_unplug_device(q); 838 spin_unlock_irq(q->queue_lock); 839 io_schedule(); 840 841 /* 842 * After sleeping, we become a "batching" process and 843 * will be able to allocate at least one request, and 844 * up to a big batch of them for a small period time. 845 * See ioc_batching, ioc_set_batching 846 */ 847 ioc = current_io_context(GFP_NOIO, q->node); 848 ioc_set_batching(q, ioc); 849 850 spin_lock_irq(q->queue_lock); 851 finish_wait(&rl->wait[rw], &wait); 852 853 rq = get_request(q, rw_flags, bio, GFP_NOIO); 854 }; 855 856 return rq; 857 } 858 859 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 860 { 861 struct request *rq; 862 863 BUG_ON(rw != READ && rw != WRITE); 864 865 spin_lock_irq(q->queue_lock); 866 if (gfp_mask & __GFP_WAIT) { 867 rq = get_request_wait(q, rw, NULL); 868 } else { 869 rq = get_request(q, rw, NULL, gfp_mask); 870 if (!rq) 871 spin_unlock_irq(q->queue_lock); 872 } 873 /* q->queue_lock is unlocked at this point */ 874 875 return rq; 876 } 877 EXPORT_SYMBOL(blk_get_request); 878 879 /** 880 * blk_start_queueing - initiate dispatch of requests to device 881 * @q: request queue to kick into gear 882 * 883 * This is basically a helper to remove the need to know whether a queue 884 * is plugged or not if someone just wants to initiate dispatch of requests 885 * for this queue. 886 * 887 * The queue lock must be held with interrupts disabled. 888 */ 889 void blk_start_queueing(struct request_queue *q) 890 { 891 if (!blk_queue_plugged(q)) 892 q->request_fn(q); 893 else 894 __generic_unplug_device(q); 895 } 896 EXPORT_SYMBOL(blk_start_queueing); 897 898 /** 899 * blk_requeue_request - put a request back on queue 900 * @q: request queue where request should be inserted 901 * @rq: request to be inserted 902 * 903 * Description: 904 * Drivers often keep queueing requests until the hardware cannot accept 905 * more, when that condition happens we need to put the request back 906 * on the queue. Must be called with queue lock held. 907 */ 908 void blk_requeue_request(struct request_queue *q, struct request *rq) 909 { 910 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE); 911 912 if (blk_rq_tagged(rq)) 913 blk_queue_end_tag(q, rq); 914 915 elv_requeue_request(q, rq); 916 } 917 EXPORT_SYMBOL(blk_requeue_request); 918 919 /** 920 * blk_insert_request - insert a special request in to a request queue 921 * @q: request queue where request should be inserted 922 * @rq: request to be inserted 923 * @at_head: insert request at head or tail of queue 924 * @data: private data 925 * 926 * Description: 927 * Many block devices need to execute commands asynchronously, so they don't 928 * block the whole kernel from preemption during request execution. This is 929 * accomplished normally by inserting aritficial requests tagged as 930 * REQ_SPECIAL in to the corresponding request queue, and letting them be 931 * scheduled for actual execution by the request queue. 932 * 933 * We have the option of inserting the head or the tail of the queue. 934 * Typically we use the tail for new ioctls and so forth. We use the head 935 * of the queue for things like a QUEUE_FULL message from a device, or a 936 * host that is unable to accept a particular command. 937 */ 938 void blk_insert_request(struct request_queue *q, struct request *rq, 939 int at_head, void *data) 940 { 941 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 942 unsigned long flags; 943 944 /* 945 * tell I/O scheduler that this isn't a regular read/write (ie it 946 * must not attempt merges on this) and that it acts as a soft 947 * barrier 948 */ 949 rq->cmd_type = REQ_TYPE_SPECIAL; 950 rq->cmd_flags |= REQ_SOFTBARRIER; 951 952 rq->special = data; 953 954 spin_lock_irqsave(q->queue_lock, flags); 955 956 /* 957 * If command is tagged, release the tag 958 */ 959 if (blk_rq_tagged(rq)) 960 blk_queue_end_tag(q, rq); 961 962 drive_stat_acct(rq, 1); 963 __elv_add_request(q, rq, where, 0); 964 blk_start_queueing(q); 965 spin_unlock_irqrestore(q->queue_lock, flags); 966 } 967 EXPORT_SYMBOL(blk_insert_request); 968 969 /* 970 * add-request adds a request to the linked list. 971 * queue lock is held and interrupts disabled, as we muck with the 972 * request queue list. 973 */ 974 static inline void add_request(struct request_queue *q, struct request *req) 975 { 976 drive_stat_acct(req, 1); 977 978 /* 979 * elevator indicated where it wants this request to be 980 * inserted at elevator_merge time 981 */ 982 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 983 } 984 985 /* 986 * disk_round_stats() - Round off the performance stats on a struct 987 * disk_stats. 988 * 989 * The average IO queue length and utilisation statistics are maintained 990 * by observing the current state of the queue length and the amount of 991 * time it has been in this state for. 992 * 993 * Normally, that accounting is done on IO completion, but that can result 994 * in more than a second's worth of IO being accounted for within any one 995 * second, leading to >100% utilisation. To deal with that, we call this 996 * function to do a round-off before returning the results when reading 997 * /proc/diskstats. This accounts immediately for all queue usage up to 998 * the current jiffies and restarts the counters again. 999 */ 1000 void disk_round_stats(struct gendisk *disk) 1001 { 1002 unsigned long now = jiffies; 1003 1004 if (now == disk->stamp) 1005 return; 1006 1007 if (disk->in_flight) { 1008 __disk_stat_add(disk, time_in_queue, 1009 disk->in_flight * (now - disk->stamp)); 1010 __disk_stat_add(disk, io_ticks, (now - disk->stamp)); 1011 } 1012 disk->stamp = now; 1013 } 1014 EXPORT_SYMBOL_GPL(disk_round_stats); 1015 1016 void part_round_stats(struct hd_struct *part) 1017 { 1018 unsigned long now = jiffies; 1019 1020 if (now == part->stamp) 1021 return; 1022 1023 if (part->in_flight) { 1024 __part_stat_add(part, time_in_queue, 1025 part->in_flight * (now - part->stamp)); 1026 __part_stat_add(part, io_ticks, (now - part->stamp)); 1027 } 1028 part->stamp = now; 1029 } 1030 1031 /* 1032 * queue lock must be held 1033 */ 1034 void __blk_put_request(struct request_queue *q, struct request *req) 1035 { 1036 if (unlikely(!q)) 1037 return; 1038 if (unlikely(--req->ref_count)) 1039 return; 1040 1041 elv_completed_request(q, req); 1042 1043 /* 1044 * Request may not have originated from ll_rw_blk. if not, 1045 * it didn't come out of our reserved rq pools 1046 */ 1047 if (req->cmd_flags & REQ_ALLOCED) { 1048 int rw = rq_data_dir(req); 1049 int priv = req->cmd_flags & REQ_ELVPRIV; 1050 1051 BUG_ON(!list_empty(&req->queuelist)); 1052 BUG_ON(!hlist_unhashed(&req->hash)); 1053 1054 blk_free_request(q, req); 1055 freed_request(q, rw, priv); 1056 } 1057 } 1058 EXPORT_SYMBOL_GPL(__blk_put_request); 1059 1060 void blk_put_request(struct request *req) 1061 { 1062 unsigned long flags; 1063 struct request_queue *q = req->q; 1064 1065 spin_lock_irqsave(q->queue_lock, flags); 1066 __blk_put_request(q, req); 1067 spin_unlock_irqrestore(q->queue_lock, flags); 1068 } 1069 EXPORT_SYMBOL(blk_put_request); 1070 1071 void init_request_from_bio(struct request *req, struct bio *bio) 1072 { 1073 req->cmd_type = REQ_TYPE_FS; 1074 1075 /* 1076 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1077 */ 1078 if (bio_rw_ahead(bio) || bio_failfast(bio)) 1079 req->cmd_flags |= REQ_FAILFAST; 1080 1081 /* 1082 * REQ_BARRIER implies no merging, but lets make it explicit 1083 */ 1084 if (unlikely(bio_barrier(bio))) 1085 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE); 1086 1087 if (bio_sync(bio)) 1088 req->cmd_flags |= REQ_RW_SYNC; 1089 if (bio_rw_meta(bio)) 1090 req->cmd_flags |= REQ_RW_META; 1091 1092 req->errors = 0; 1093 req->hard_sector = req->sector = bio->bi_sector; 1094 req->ioprio = bio_prio(bio); 1095 req->start_time = jiffies; 1096 blk_rq_bio_prep(req->q, req, bio); 1097 } 1098 1099 static int __make_request(struct request_queue *q, struct bio *bio) 1100 { 1101 struct request *req; 1102 int el_ret, nr_sectors, barrier, err; 1103 const unsigned short prio = bio_prio(bio); 1104 const int sync = bio_sync(bio); 1105 int rw_flags; 1106 1107 nr_sectors = bio_sectors(bio); 1108 1109 /* 1110 * low level driver can indicate that it wants pages above a 1111 * certain limit bounced to low memory (ie for highmem, or even 1112 * ISA dma in theory) 1113 */ 1114 blk_queue_bounce(q, &bio); 1115 1116 barrier = bio_barrier(bio); 1117 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) { 1118 err = -EOPNOTSUPP; 1119 goto end_io; 1120 } 1121 1122 spin_lock_irq(q->queue_lock); 1123 1124 if (unlikely(barrier) || elv_queue_empty(q)) 1125 goto get_rq; 1126 1127 el_ret = elv_merge(q, &req, bio); 1128 switch (el_ret) { 1129 case ELEVATOR_BACK_MERGE: 1130 BUG_ON(!rq_mergeable(req)); 1131 1132 if (!ll_back_merge_fn(q, req, bio)) 1133 break; 1134 1135 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE); 1136 1137 req->biotail->bi_next = bio; 1138 req->biotail = bio; 1139 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1140 req->ioprio = ioprio_best(req->ioprio, prio); 1141 drive_stat_acct(req, 0); 1142 if (!attempt_back_merge(q, req)) 1143 elv_merged_request(q, req, el_ret); 1144 goto out; 1145 1146 case ELEVATOR_FRONT_MERGE: 1147 BUG_ON(!rq_mergeable(req)); 1148 1149 if (!ll_front_merge_fn(q, req, bio)) 1150 break; 1151 1152 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE); 1153 1154 bio->bi_next = req->bio; 1155 req->bio = bio; 1156 1157 /* 1158 * may not be valid. if the low level driver said 1159 * it didn't need a bounce buffer then it better 1160 * not touch req->buffer either... 1161 */ 1162 req->buffer = bio_data(bio); 1163 req->current_nr_sectors = bio_cur_sectors(bio); 1164 req->hard_cur_sectors = req->current_nr_sectors; 1165 req->sector = req->hard_sector = bio->bi_sector; 1166 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1167 req->ioprio = ioprio_best(req->ioprio, prio); 1168 drive_stat_acct(req, 0); 1169 if (!attempt_front_merge(q, req)) 1170 elv_merged_request(q, req, el_ret); 1171 goto out; 1172 1173 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1174 default: 1175 ; 1176 } 1177 1178 get_rq: 1179 /* 1180 * This sync check and mask will be re-done in init_request_from_bio(), 1181 * but we need to set it earlier to expose the sync flag to the 1182 * rq allocator and io schedulers. 1183 */ 1184 rw_flags = bio_data_dir(bio); 1185 if (sync) 1186 rw_flags |= REQ_RW_SYNC; 1187 1188 /* 1189 * Grab a free request. This is might sleep but can not fail. 1190 * Returns with the queue unlocked. 1191 */ 1192 req = get_request_wait(q, rw_flags, bio); 1193 1194 /* 1195 * After dropping the lock and possibly sleeping here, our request 1196 * may now be mergeable after it had proven unmergeable (above). 1197 * We don't worry about that case for efficiency. It won't happen 1198 * often, and the elevators are able to handle it. 1199 */ 1200 init_request_from_bio(req, bio); 1201 1202 spin_lock_irq(q->queue_lock); 1203 if (elv_queue_empty(q)) 1204 blk_plug_device(q); 1205 add_request(q, req); 1206 out: 1207 if (sync) 1208 __generic_unplug_device(q); 1209 1210 spin_unlock_irq(q->queue_lock); 1211 return 0; 1212 1213 end_io: 1214 bio_endio(bio, err); 1215 return 0; 1216 } 1217 1218 /* 1219 * If bio->bi_dev is a partition, remap the location 1220 */ 1221 static inline void blk_partition_remap(struct bio *bio) 1222 { 1223 struct block_device *bdev = bio->bi_bdev; 1224 1225 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1226 struct hd_struct *p = bdev->bd_part; 1227 1228 bio->bi_sector += p->start_sect; 1229 bio->bi_bdev = bdev->bd_contains; 1230 1231 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio, 1232 bdev->bd_dev, bio->bi_sector, 1233 bio->bi_sector - p->start_sect); 1234 } 1235 } 1236 1237 static void handle_bad_sector(struct bio *bio) 1238 { 1239 char b[BDEVNAME_SIZE]; 1240 1241 printk(KERN_INFO "attempt to access beyond end of device\n"); 1242 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1243 bdevname(bio->bi_bdev, b), 1244 bio->bi_rw, 1245 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1246 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1247 1248 set_bit(BIO_EOF, &bio->bi_flags); 1249 } 1250 1251 #ifdef CONFIG_FAIL_MAKE_REQUEST 1252 1253 static DECLARE_FAULT_ATTR(fail_make_request); 1254 1255 static int __init setup_fail_make_request(char *str) 1256 { 1257 return setup_fault_attr(&fail_make_request, str); 1258 } 1259 __setup("fail_make_request=", setup_fail_make_request); 1260 1261 static int should_fail_request(struct bio *bio) 1262 { 1263 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) || 1264 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail)) 1265 return should_fail(&fail_make_request, bio->bi_size); 1266 1267 return 0; 1268 } 1269 1270 static int __init fail_make_request_debugfs(void) 1271 { 1272 return init_fault_attr_dentries(&fail_make_request, 1273 "fail_make_request"); 1274 } 1275 1276 late_initcall(fail_make_request_debugfs); 1277 1278 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1279 1280 static inline int should_fail_request(struct bio *bio) 1281 { 1282 return 0; 1283 } 1284 1285 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1286 1287 /* 1288 * Check whether this bio extends beyond the end of the device. 1289 */ 1290 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1291 { 1292 sector_t maxsector; 1293 1294 if (!nr_sectors) 1295 return 0; 1296 1297 /* Test device or partition size, when known. */ 1298 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1299 if (maxsector) { 1300 sector_t sector = bio->bi_sector; 1301 1302 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1303 /* 1304 * This may well happen - the kernel calls bread() 1305 * without checking the size of the device, e.g., when 1306 * mounting a device. 1307 */ 1308 handle_bad_sector(bio); 1309 return 1; 1310 } 1311 } 1312 1313 return 0; 1314 } 1315 1316 /** 1317 * generic_make_request: hand a buffer to its device driver for I/O 1318 * @bio: The bio describing the location in memory and on the device. 1319 * 1320 * generic_make_request() is used to make I/O requests of block 1321 * devices. It is passed a &struct bio, which describes the I/O that needs 1322 * to be done. 1323 * 1324 * generic_make_request() does not return any status. The 1325 * success/failure status of the request, along with notification of 1326 * completion, is delivered asynchronously through the bio->bi_end_io 1327 * function described (one day) else where. 1328 * 1329 * The caller of generic_make_request must make sure that bi_io_vec 1330 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1331 * set to describe the device address, and the 1332 * bi_end_io and optionally bi_private are set to describe how 1333 * completion notification should be signaled. 1334 * 1335 * generic_make_request and the drivers it calls may use bi_next if this 1336 * bio happens to be merged with someone else, and may change bi_dev and 1337 * bi_sector for remaps as it sees fit. So the values of these fields 1338 * should NOT be depended on after the call to generic_make_request. 1339 */ 1340 static inline void __generic_make_request(struct bio *bio) 1341 { 1342 struct request_queue *q; 1343 sector_t old_sector; 1344 int ret, nr_sectors = bio_sectors(bio); 1345 dev_t old_dev; 1346 int err = -EIO; 1347 1348 might_sleep(); 1349 1350 if (bio_check_eod(bio, nr_sectors)) 1351 goto end_io; 1352 1353 /* 1354 * Resolve the mapping until finished. (drivers are 1355 * still free to implement/resolve their own stacking 1356 * by explicitly returning 0) 1357 * 1358 * NOTE: we don't repeat the blk_size check for each new device. 1359 * Stacking drivers are expected to know what they are doing. 1360 */ 1361 old_sector = -1; 1362 old_dev = 0; 1363 do { 1364 char b[BDEVNAME_SIZE]; 1365 1366 q = bdev_get_queue(bio->bi_bdev); 1367 if (!q) { 1368 printk(KERN_ERR 1369 "generic_make_request: Trying to access " 1370 "nonexistent block-device %s (%Lu)\n", 1371 bdevname(bio->bi_bdev, b), 1372 (long long) bio->bi_sector); 1373 end_io: 1374 bio_endio(bio, err); 1375 break; 1376 } 1377 1378 if (unlikely(nr_sectors > q->max_hw_sectors)) { 1379 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1380 bdevname(bio->bi_bdev, b), 1381 bio_sectors(bio), 1382 q->max_hw_sectors); 1383 goto end_io; 1384 } 1385 1386 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1387 goto end_io; 1388 1389 if (should_fail_request(bio)) 1390 goto end_io; 1391 1392 /* 1393 * If this device has partitions, remap block n 1394 * of partition p to block n+start(p) of the disk. 1395 */ 1396 blk_partition_remap(bio); 1397 1398 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1399 goto end_io; 1400 1401 if (old_sector != -1) 1402 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector, 1403 old_sector); 1404 1405 blk_add_trace_bio(q, bio, BLK_TA_QUEUE); 1406 1407 old_sector = bio->bi_sector; 1408 old_dev = bio->bi_bdev->bd_dev; 1409 1410 if (bio_check_eod(bio, nr_sectors)) 1411 goto end_io; 1412 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) { 1413 err = -EOPNOTSUPP; 1414 goto end_io; 1415 } 1416 1417 ret = q->make_request_fn(q, bio); 1418 } while (ret); 1419 } 1420 1421 /* 1422 * We only want one ->make_request_fn to be active at a time, 1423 * else stack usage with stacked devices could be a problem. 1424 * So use current->bio_{list,tail} to keep a list of requests 1425 * submited by a make_request_fn function. 1426 * current->bio_tail is also used as a flag to say if 1427 * generic_make_request is currently active in this task or not. 1428 * If it is NULL, then no make_request is active. If it is non-NULL, 1429 * then a make_request is active, and new requests should be added 1430 * at the tail 1431 */ 1432 void generic_make_request(struct bio *bio) 1433 { 1434 if (current->bio_tail) { 1435 /* make_request is active */ 1436 *(current->bio_tail) = bio; 1437 bio->bi_next = NULL; 1438 current->bio_tail = &bio->bi_next; 1439 return; 1440 } 1441 /* following loop may be a bit non-obvious, and so deserves some 1442 * explanation. 1443 * Before entering the loop, bio->bi_next is NULL (as all callers 1444 * ensure that) so we have a list with a single bio. 1445 * We pretend that we have just taken it off a longer list, so 1446 * we assign bio_list to the next (which is NULL) and bio_tail 1447 * to &bio_list, thus initialising the bio_list of new bios to be 1448 * added. __generic_make_request may indeed add some more bios 1449 * through a recursive call to generic_make_request. If it 1450 * did, we find a non-NULL value in bio_list and re-enter the loop 1451 * from the top. In this case we really did just take the bio 1452 * of the top of the list (no pretending) and so fixup bio_list and 1453 * bio_tail or bi_next, and call into __generic_make_request again. 1454 * 1455 * The loop was structured like this to make only one call to 1456 * __generic_make_request (which is important as it is large and 1457 * inlined) and to keep the structure simple. 1458 */ 1459 BUG_ON(bio->bi_next); 1460 do { 1461 current->bio_list = bio->bi_next; 1462 if (bio->bi_next == NULL) 1463 current->bio_tail = ¤t->bio_list; 1464 else 1465 bio->bi_next = NULL; 1466 __generic_make_request(bio); 1467 bio = current->bio_list; 1468 } while (bio); 1469 current->bio_tail = NULL; /* deactivate */ 1470 } 1471 EXPORT_SYMBOL(generic_make_request); 1472 1473 /** 1474 * submit_bio: submit a bio to the block device layer for I/O 1475 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1476 * @bio: The &struct bio which describes the I/O 1477 * 1478 * submit_bio() is very similar in purpose to generic_make_request(), and 1479 * uses that function to do most of the work. Both are fairly rough 1480 * interfaces, @bio must be presetup and ready for I/O. 1481 * 1482 */ 1483 void submit_bio(int rw, struct bio *bio) 1484 { 1485 int count = bio_sectors(bio); 1486 1487 bio->bi_rw |= rw; 1488 1489 /* 1490 * If it's a regular read/write or a barrier with data attached, 1491 * go through the normal accounting stuff before submission. 1492 */ 1493 if (!bio_empty_barrier(bio)) { 1494 1495 BIO_BUG_ON(!bio->bi_size); 1496 BIO_BUG_ON(!bio->bi_io_vec); 1497 1498 if (rw & WRITE) { 1499 count_vm_events(PGPGOUT, count); 1500 } else { 1501 task_io_account_read(bio->bi_size); 1502 count_vm_events(PGPGIN, count); 1503 } 1504 1505 if (unlikely(block_dump)) { 1506 char b[BDEVNAME_SIZE]; 1507 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1508 current->comm, task_pid_nr(current), 1509 (rw & WRITE) ? "WRITE" : "READ", 1510 (unsigned long long)bio->bi_sector, 1511 bdevname(bio->bi_bdev, b)); 1512 } 1513 } 1514 1515 generic_make_request(bio); 1516 } 1517 EXPORT_SYMBOL(submit_bio); 1518 1519 /** 1520 * __end_that_request_first - end I/O on a request 1521 * @req: the request being processed 1522 * @error: 0 for success, < 0 for error 1523 * @nr_bytes: number of bytes to complete 1524 * 1525 * Description: 1526 * Ends I/O on a number of bytes attached to @req, and sets it up 1527 * for the next range of segments (if any) in the cluster. 1528 * 1529 * Return: 1530 * 0 - we are done with this request, call end_that_request_last() 1531 * 1 - still buffers pending for this request 1532 **/ 1533 static int __end_that_request_first(struct request *req, int error, 1534 int nr_bytes) 1535 { 1536 int total_bytes, bio_nbytes, next_idx = 0; 1537 struct bio *bio; 1538 1539 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE); 1540 1541 /* 1542 * for a REQ_BLOCK_PC request, we want to carry any eventual 1543 * sense key with us all the way through 1544 */ 1545 if (!blk_pc_request(req)) 1546 req->errors = 0; 1547 1548 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1549 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1550 req->rq_disk ? req->rq_disk->disk_name : "?", 1551 (unsigned long long)req->sector); 1552 } 1553 1554 if (blk_fs_request(req) && req->rq_disk) { 1555 struct hd_struct *part = get_part(req->rq_disk, req->sector); 1556 const int rw = rq_data_dir(req); 1557 1558 all_stat_add(req->rq_disk, part, sectors[rw], 1559 nr_bytes >> 9, req->sector); 1560 } 1561 1562 total_bytes = bio_nbytes = 0; 1563 while ((bio = req->bio) != NULL) { 1564 int nbytes; 1565 1566 /* 1567 * For an empty barrier request, the low level driver must 1568 * store a potential error location in ->sector. We pass 1569 * that back up in ->bi_sector. 1570 */ 1571 if (blk_empty_barrier(req)) 1572 bio->bi_sector = req->sector; 1573 1574 if (nr_bytes >= bio->bi_size) { 1575 req->bio = bio->bi_next; 1576 nbytes = bio->bi_size; 1577 req_bio_endio(req, bio, nbytes, error); 1578 next_idx = 0; 1579 bio_nbytes = 0; 1580 } else { 1581 int idx = bio->bi_idx + next_idx; 1582 1583 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { 1584 blk_dump_rq_flags(req, "__end_that"); 1585 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1586 __func__, bio->bi_idx, bio->bi_vcnt); 1587 break; 1588 } 1589 1590 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1591 BIO_BUG_ON(nbytes > bio->bi_size); 1592 1593 /* 1594 * not a complete bvec done 1595 */ 1596 if (unlikely(nbytes > nr_bytes)) { 1597 bio_nbytes += nr_bytes; 1598 total_bytes += nr_bytes; 1599 break; 1600 } 1601 1602 /* 1603 * advance to the next vector 1604 */ 1605 next_idx++; 1606 bio_nbytes += nbytes; 1607 } 1608 1609 total_bytes += nbytes; 1610 nr_bytes -= nbytes; 1611 1612 bio = req->bio; 1613 if (bio) { 1614 /* 1615 * end more in this run, or just return 'not-done' 1616 */ 1617 if (unlikely(nr_bytes <= 0)) 1618 break; 1619 } 1620 } 1621 1622 /* 1623 * completely done 1624 */ 1625 if (!req->bio) 1626 return 0; 1627 1628 /* 1629 * if the request wasn't completed, update state 1630 */ 1631 if (bio_nbytes) { 1632 req_bio_endio(req, bio, bio_nbytes, error); 1633 bio->bi_idx += next_idx; 1634 bio_iovec(bio)->bv_offset += nr_bytes; 1635 bio_iovec(bio)->bv_len -= nr_bytes; 1636 } 1637 1638 blk_recalc_rq_sectors(req, total_bytes >> 9); 1639 blk_recalc_rq_segments(req); 1640 return 1; 1641 } 1642 1643 /* 1644 * splice the completion data to a local structure and hand off to 1645 * process_completion_queue() to complete the requests 1646 */ 1647 static void blk_done_softirq(struct softirq_action *h) 1648 { 1649 struct list_head *cpu_list, local_list; 1650 1651 local_irq_disable(); 1652 cpu_list = &__get_cpu_var(blk_cpu_done); 1653 list_replace_init(cpu_list, &local_list); 1654 local_irq_enable(); 1655 1656 while (!list_empty(&local_list)) { 1657 struct request *rq; 1658 1659 rq = list_entry(local_list.next, struct request, donelist); 1660 list_del_init(&rq->donelist); 1661 rq->q->softirq_done_fn(rq); 1662 } 1663 } 1664 1665 static int __cpuinit blk_cpu_notify(struct notifier_block *self, 1666 unsigned long action, void *hcpu) 1667 { 1668 /* 1669 * If a CPU goes away, splice its entries to the current CPU 1670 * and trigger a run of the softirq 1671 */ 1672 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1673 int cpu = (unsigned long) hcpu; 1674 1675 local_irq_disable(); 1676 list_splice_init(&per_cpu(blk_cpu_done, cpu), 1677 &__get_cpu_var(blk_cpu_done)); 1678 raise_softirq_irqoff(BLOCK_SOFTIRQ); 1679 local_irq_enable(); 1680 } 1681 1682 return NOTIFY_OK; 1683 } 1684 1685 1686 static struct notifier_block blk_cpu_notifier __cpuinitdata = { 1687 .notifier_call = blk_cpu_notify, 1688 }; 1689 1690 /** 1691 * blk_complete_request - end I/O on a request 1692 * @req: the request being processed 1693 * 1694 * Description: 1695 * Ends all I/O on a request. It does not handle partial completions, 1696 * unless the driver actually implements this in its completion callback 1697 * through requeueing. The actual completion happens out-of-order, 1698 * through a softirq handler. The user must have registered a completion 1699 * callback through blk_queue_softirq_done(). 1700 **/ 1701 1702 void blk_complete_request(struct request *req) 1703 { 1704 struct list_head *cpu_list; 1705 unsigned long flags; 1706 1707 BUG_ON(!req->q->softirq_done_fn); 1708 1709 local_irq_save(flags); 1710 1711 cpu_list = &__get_cpu_var(blk_cpu_done); 1712 list_add_tail(&req->donelist, cpu_list); 1713 raise_softirq_irqoff(BLOCK_SOFTIRQ); 1714 1715 local_irq_restore(flags); 1716 } 1717 EXPORT_SYMBOL(blk_complete_request); 1718 1719 /* 1720 * queue lock must be held 1721 */ 1722 static void end_that_request_last(struct request *req, int error) 1723 { 1724 struct gendisk *disk = req->rq_disk; 1725 1726 if (blk_rq_tagged(req)) 1727 blk_queue_end_tag(req->q, req); 1728 1729 if (blk_queued_rq(req)) 1730 blkdev_dequeue_request(req); 1731 1732 if (unlikely(laptop_mode) && blk_fs_request(req)) 1733 laptop_io_completion(); 1734 1735 /* 1736 * Account IO completion. bar_rq isn't accounted as a normal 1737 * IO on queueing nor completion. Accounting the containing 1738 * request is enough. 1739 */ 1740 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) { 1741 unsigned long duration = jiffies - req->start_time; 1742 const int rw = rq_data_dir(req); 1743 struct hd_struct *part = get_part(disk, req->sector); 1744 1745 __all_stat_inc(disk, part, ios[rw], req->sector); 1746 __all_stat_add(disk, part, ticks[rw], duration, req->sector); 1747 disk_round_stats(disk); 1748 disk->in_flight--; 1749 if (part) { 1750 part_round_stats(part); 1751 part->in_flight--; 1752 } 1753 } 1754 1755 if (req->end_io) 1756 req->end_io(req, error); 1757 else { 1758 if (blk_bidi_rq(req)) 1759 __blk_put_request(req->next_rq->q, req->next_rq); 1760 1761 __blk_put_request(req->q, req); 1762 } 1763 } 1764 1765 static inline void __end_request(struct request *rq, int uptodate, 1766 unsigned int nr_bytes) 1767 { 1768 int error = 0; 1769 1770 if (uptodate <= 0) 1771 error = uptodate ? uptodate : -EIO; 1772 1773 __blk_end_request(rq, error, nr_bytes); 1774 } 1775 1776 /** 1777 * blk_rq_bytes - Returns bytes left to complete in the entire request 1778 * @rq: the request being processed 1779 **/ 1780 unsigned int blk_rq_bytes(struct request *rq) 1781 { 1782 if (blk_fs_request(rq)) 1783 return rq->hard_nr_sectors << 9; 1784 1785 return rq->data_len; 1786 } 1787 EXPORT_SYMBOL_GPL(blk_rq_bytes); 1788 1789 /** 1790 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment 1791 * @rq: the request being processed 1792 **/ 1793 unsigned int blk_rq_cur_bytes(struct request *rq) 1794 { 1795 if (blk_fs_request(rq)) 1796 return rq->current_nr_sectors << 9; 1797 1798 if (rq->bio) 1799 return rq->bio->bi_size; 1800 1801 return rq->data_len; 1802 } 1803 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes); 1804 1805 /** 1806 * end_queued_request - end all I/O on a queued request 1807 * @rq: the request being processed 1808 * @uptodate: error value or 0/1 uptodate flag 1809 * 1810 * Description: 1811 * Ends all I/O on a request, and removes it from the block layer queues. 1812 * Not suitable for normal IO completion, unless the driver still has 1813 * the request attached to the block layer. 1814 * 1815 **/ 1816 void end_queued_request(struct request *rq, int uptodate) 1817 { 1818 __end_request(rq, uptodate, blk_rq_bytes(rq)); 1819 } 1820 EXPORT_SYMBOL(end_queued_request); 1821 1822 /** 1823 * end_dequeued_request - end all I/O on a dequeued request 1824 * @rq: the request being processed 1825 * @uptodate: error value or 0/1 uptodate flag 1826 * 1827 * Description: 1828 * Ends all I/O on a request. The request must already have been 1829 * dequeued using blkdev_dequeue_request(), as is normally the case 1830 * for most drivers. 1831 * 1832 **/ 1833 void end_dequeued_request(struct request *rq, int uptodate) 1834 { 1835 __end_request(rq, uptodate, blk_rq_bytes(rq)); 1836 } 1837 EXPORT_SYMBOL(end_dequeued_request); 1838 1839 1840 /** 1841 * end_request - end I/O on the current segment of the request 1842 * @req: the request being processed 1843 * @uptodate: error value or 0/1 uptodate flag 1844 * 1845 * Description: 1846 * Ends I/O on the current segment of a request. If that is the only 1847 * remaining segment, the request is also completed and freed. 1848 * 1849 * This is a remnant of how older block drivers handled IO completions. 1850 * Modern drivers typically end IO on the full request in one go, unless 1851 * they have a residual value to account for. For that case this function 1852 * isn't really useful, unless the residual just happens to be the 1853 * full current segment. In other words, don't use this function in new 1854 * code. Either use end_request_completely(), or the 1855 * end_that_request_chunk() (along with end_that_request_last()) for 1856 * partial completions. 1857 * 1858 **/ 1859 void end_request(struct request *req, int uptodate) 1860 { 1861 __end_request(req, uptodate, req->hard_cur_sectors << 9); 1862 } 1863 EXPORT_SYMBOL(end_request); 1864 1865 /** 1866 * blk_end_io - Generic end_io function to complete a request. 1867 * @rq: the request being processed 1868 * @error: 0 for success, < 0 for error 1869 * @nr_bytes: number of bytes to complete @rq 1870 * @bidi_bytes: number of bytes to complete @rq->next_rq 1871 * @drv_callback: function called between completion of bios in the request 1872 * and completion of the request. 1873 * If the callback returns non 0, this helper returns without 1874 * completion of the request. 1875 * 1876 * Description: 1877 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1878 * If @rq has leftover, sets it up for the next range of segments. 1879 * 1880 * Return: 1881 * 0 - we are done with this request 1882 * 1 - this request is not freed yet, it still has pending buffers. 1883 **/ 1884 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes, 1885 unsigned int bidi_bytes, 1886 int (drv_callback)(struct request *)) 1887 { 1888 struct request_queue *q = rq->q; 1889 unsigned long flags = 0UL; 1890 1891 if (blk_fs_request(rq) || blk_pc_request(rq)) { 1892 if (__end_that_request_first(rq, error, nr_bytes)) 1893 return 1; 1894 1895 /* Bidi request must be completed as a whole */ 1896 if (blk_bidi_rq(rq) && 1897 __end_that_request_first(rq->next_rq, error, bidi_bytes)) 1898 return 1; 1899 } 1900 1901 /* Special feature for tricky drivers */ 1902 if (drv_callback && drv_callback(rq)) 1903 return 1; 1904 1905 add_disk_randomness(rq->rq_disk); 1906 1907 spin_lock_irqsave(q->queue_lock, flags); 1908 end_that_request_last(rq, error); 1909 spin_unlock_irqrestore(q->queue_lock, flags); 1910 1911 return 0; 1912 } 1913 1914 /** 1915 * blk_end_request - Helper function for drivers to complete the request. 1916 * @rq: the request being processed 1917 * @error: 0 for success, < 0 for error 1918 * @nr_bytes: number of bytes to complete 1919 * 1920 * Description: 1921 * Ends I/O on a number of bytes attached to @rq. 1922 * If @rq has leftover, sets it up for the next range of segments. 1923 * 1924 * Return: 1925 * 0 - we are done with this request 1926 * 1 - still buffers pending for this request 1927 **/ 1928 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1929 { 1930 return blk_end_io(rq, error, nr_bytes, 0, NULL); 1931 } 1932 EXPORT_SYMBOL_GPL(blk_end_request); 1933 1934 /** 1935 * __blk_end_request - Helper function for drivers to complete the request. 1936 * @rq: the request being processed 1937 * @error: 0 for success, < 0 for error 1938 * @nr_bytes: number of bytes to complete 1939 * 1940 * Description: 1941 * Must be called with queue lock held unlike blk_end_request(). 1942 * 1943 * Return: 1944 * 0 - we are done with this request 1945 * 1 - still buffers pending for this request 1946 **/ 1947 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1948 { 1949 if (blk_fs_request(rq) || blk_pc_request(rq)) { 1950 if (__end_that_request_first(rq, error, nr_bytes)) 1951 return 1; 1952 } 1953 1954 add_disk_randomness(rq->rq_disk); 1955 1956 end_that_request_last(rq, error); 1957 1958 return 0; 1959 } 1960 EXPORT_SYMBOL_GPL(__blk_end_request); 1961 1962 /** 1963 * blk_end_bidi_request - Helper function for drivers to complete bidi request. 1964 * @rq: the bidi request being processed 1965 * @error: 0 for success, < 0 for error 1966 * @nr_bytes: number of bytes to complete @rq 1967 * @bidi_bytes: number of bytes to complete @rq->next_rq 1968 * 1969 * Description: 1970 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1971 * 1972 * Return: 1973 * 0 - we are done with this request 1974 * 1 - still buffers pending for this request 1975 **/ 1976 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes, 1977 unsigned int bidi_bytes) 1978 { 1979 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL); 1980 } 1981 EXPORT_SYMBOL_GPL(blk_end_bidi_request); 1982 1983 /** 1984 * blk_end_request_callback - Special helper function for tricky drivers 1985 * @rq: the request being processed 1986 * @error: 0 for success, < 0 for error 1987 * @nr_bytes: number of bytes to complete 1988 * @drv_callback: function called between completion of bios in the request 1989 * and completion of the request. 1990 * If the callback returns non 0, this helper returns without 1991 * completion of the request. 1992 * 1993 * Description: 1994 * Ends I/O on a number of bytes attached to @rq. 1995 * If @rq has leftover, sets it up for the next range of segments. 1996 * 1997 * This special helper function is used only for existing tricky drivers. 1998 * (e.g. cdrom_newpc_intr() of ide-cd) 1999 * This interface will be removed when such drivers are rewritten. 2000 * Don't use this interface in other places anymore. 2001 * 2002 * Return: 2003 * 0 - we are done with this request 2004 * 1 - this request is not freed yet. 2005 * this request still has pending buffers or 2006 * the driver doesn't want to finish this request yet. 2007 **/ 2008 int blk_end_request_callback(struct request *rq, int error, 2009 unsigned int nr_bytes, 2010 int (drv_callback)(struct request *)) 2011 { 2012 return blk_end_io(rq, error, nr_bytes, 0, drv_callback); 2013 } 2014 EXPORT_SYMBOL_GPL(blk_end_request_callback); 2015 2016 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2017 struct bio *bio) 2018 { 2019 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */ 2020 rq->cmd_flags |= (bio->bi_rw & 3); 2021 2022 rq->nr_phys_segments = bio_phys_segments(q, bio); 2023 rq->nr_hw_segments = bio_hw_segments(q, bio); 2024 rq->current_nr_sectors = bio_cur_sectors(bio); 2025 rq->hard_cur_sectors = rq->current_nr_sectors; 2026 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); 2027 rq->buffer = bio_data(bio); 2028 rq->data_len = bio->bi_size; 2029 2030 rq->bio = rq->biotail = bio; 2031 2032 if (bio->bi_bdev) 2033 rq->rq_disk = bio->bi_bdev->bd_disk; 2034 } 2035 2036 int kblockd_schedule_work(struct work_struct *work) 2037 { 2038 return queue_work(kblockd_workqueue, work); 2039 } 2040 EXPORT_SYMBOL(kblockd_schedule_work); 2041 2042 void kblockd_flush_work(struct work_struct *work) 2043 { 2044 cancel_work_sync(work); 2045 } 2046 EXPORT_SYMBOL(kblockd_flush_work); 2047 2048 int __init blk_dev_init(void) 2049 { 2050 int i; 2051 2052 kblockd_workqueue = create_workqueue("kblockd"); 2053 if (!kblockd_workqueue) 2054 panic("Failed to create kblockd\n"); 2055 2056 request_cachep = kmem_cache_create("blkdev_requests", 2057 sizeof(struct request), 0, SLAB_PANIC, NULL); 2058 2059 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2060 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2061 2062 for_each_possible_cpu(i) 2063 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i)); 2064 2065 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 2066 register_hotcpu_notifier(&blk_cpu_notifier); 2067 2068 return 0; 2069 } 2070 2071