xref: /linux/block/blk-core.c (revision c0c9209ddd96bc4f1d70a8b9958710671e076080)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33 
34 #include "blk.h"
35 
36 static int __make_request(struct request_queue *q, struct bio *bio);
37 
38 /*
39  * For the allocated request tables
40  */
41 static struct kmem_cache *request_cachep;
42 
43 /*
44  * For queue allocation
45  */
46 struct kmem_cache *blk_requestq_cachep;
47 
48 /*
49  * Controlling structure to kblockd
50  */
51 static struct workqueue_struct *kblockd_workqueue;
52 
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54 
55 static void drive_stat_acct(struct request *rq, int new_io)
56 {
57 	struct hd_struct *part;
58 	int rw = rq_data_dir(rq);
59 
60 	if (!blk_fs_request(rq) || !rq->rq_disk)
61 		return;
62 
63 	part = get_part(rq->rq_disk, rq->sector);
64 	if (!new_io)
65 		__all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector);
66 	else {
67 		disk_round_stats(rq->rq_disk);
68 		rq->rq_disk->in_flight++;
69 		if (part) {
70 			part_round_stats(part);
71 			part->in_flight++;
72 		}
73 	}
74 }
75 
76 void blk_queue_congestion_threshold(struct request_queue *q)
77 {
78 	int nr;
79 
80 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
81 	if (nr > q->nr_requests)
82 		nr = q->nr_requests;
83 	q->nr_congestion_on = nr;
84 
85 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
86 	if (nr < 1)
87 		nr = 1;
88 	q->nr_congestion_off = nr;
89 }
90 
91 /**
92  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
93  * @bdev:	device
94  *
95  * Locates the passed device's request queue and returns the address of its
96  * backing_dev_info
97  *
98  * Will return NULL if the request queue cannot be located.
99  */
100 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
101 {
102 	struct backing_dev_info *ret = NULL;
103 	struct request_queue *q = bdev_get_queue(bdev);
104 
105 	if (q)
106 		ret = &q->backing_dev_info;
107 	return ret;
108 }
109 EXPORT_SYMBOL(blk_get_backing_dev_info);
110 
111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 	memset(rq, 0, sizeof(*rq));
114 
115 	INIT_LIST_HEAD(&rq->queuelist);
116 	INIT_LIST_HEAD(&rq->donelist);
117 	rq->q = q;
118 	rq->sector = rq->hard_sector = (sector_t) -1;
119 	INIT_HLIST_NODE(&rq->hash);
120 	RB_CLEAR_NODE(&rq->rb_node);
121 	rq->cmd = rq->__cmd;
122 	rq->tag = -1;
123 	rq->ref_count = 1;
124 }
125 EXPORT_SYMBOL(blk_rq_init);
126 
127 static void req_bio_endio(struct request *rq, struct bio *bio,
128 			  unsigned int nbytes, int error)
129 {
130 	struct request_queue *q = rq->q;
131 
132 	if (&q->bar_rq != rq) {
133 		if (error)
134 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
135 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
136 			error = -EIO;
137 
138 		if (unlikely(nbytes > bio->bi_size)) {
139 			printk(KERN_ERR "%s: want %u bytes done, %u left\n",
140 			       __func__, nbytes, bio->bi_size);
141 			nbytes = bio->bi_size;
142 		}
143 
144 		bio->bi_size -= nbytes;
145 		bio->bi_sector += (nbytes >> 9);
146 
147 		if (bio_integrity(bio))
148 			bio_integrity_advance(bio, nbytes);
149 
150 		if (bio->bi_size == 0)
151 			bio_endio(bio, error);
152 	} else {
153 
154 		/*
155 		 * Okay, this is the barrier request in progress, just
156 		 * record the error;
157 		 */
158 		if (error && !q->orderr)
159 			q->orderr = error;
160 	}
161 }
162 
163 void blk_dump_rq_flags(struct request *rq, char *msg)
164 {
165 	int bit;
166 
167 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
168 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
169 		rq->cmd_flags);
170 
171 	printk(KERN_INFO "  sector %llu, nr/cnr %lu/%u\n",
172 						(unsigned long long)rq->sector,
173 						rq->nr_sectors,
174 						rq->current_nr_sectors);
175 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, data %p, len %u\n",
176 						rq->bio, rq->biotail,
177 						rq->buffer, rq->data,
178 						rq->data_len);
179 
180 	if (blk_pc_request(rq)) {
181 		printk(KERN_INFO "  cdb: ");
182 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
183 			printk("%02x ", rq->cmd[bit]);
184 		printk("\n");
185 	}
186 }
187 EXPORT_SYMBOL(blk_dump_rq_flags);
188 
189 /*
190  * "plug" the device if there are no outstanding requests: this will
191  * force the transfer to start only after we have put all the requests
192  * on the list.
193  *
194  * This is called with interrupts off and no requests on the queue and
195  * with the queue lock held.
196  */
197 void blk_plug_device(struct request_queue *q)
198 {
199 	WARN_ON(!irqs_disabled());
200 
201 	/*
202 	 * don't plug a stopped queue, it must be paired with blk_start_queue()
203 	 * which will restart the queueing
204 	 */
205 	if (blk_queue_stopped(q))
206 		return;
207 
208 	if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
209 		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
210 		blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
211 	}
212 }
213 EXPORT_SYMBOL(blk_plug_device);
214 
215 /**
216  * blk_plug_device_unlocked - plug a device without queue lock held
217  * @q:    The &struct request_queue to plug
218  *
219  * Description:
220  *   Like @blk_plug_device(), but grabs the queue lock and disables
221  *   interrupts.
222  **/
223 void blk_plug_device_unlocked(struct request_queue *q)
224 {
225 	unsigned long flags;
226 
227 	spin_lock_irqsave(q->queue_lock, flags);
228 	blk_plug_device(q);
229 	spin_unlock_irqrestore(q->queue_lock, flags);
230 }
231 EXPORT_SYMBOL(blk_plug_device_unlocked);
232 
233 /*
234  * remove the queue from the plugged list, if present. called with
235  * queue lock held and interrupts disabled.
236  */
237 int blk_remove_plug(struct request_queue *q)
238 {
239 	WARN_ON(!irqs_disabled());
240 
241 	if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
242 		return 0;
243 
244 	del_timer(&q->unplug_timer);
245 	return 1;
246 }
247 EXPORT_SYMBOL(blk_remove_plug);
248 
249 /*
250  * remove the plug and let it rip..
251  */
252 void __generic_unplug_device(struct request_queue *q)
253 {
254 	if (unlikely(blk_queue_stopped(q)))
255 		return;
256 
257 	if (!blk_remove_plug(q))
258 		return;
259 
260 	q->request_fn(q);
261 }
262 EXPORT_SYMBOL(__generic_unplug_device);
263 
264 /**
265  * generic_unplug_device - fire a request queue
266  * @q:    The &struct request_queue in question
267  *
268  * Description:
269  *   Linux uses plugging to build bigger requests queues before letting
270  *   the device have at them. If a queue is plugged, the I/O scheduler
271  *   is still adding and merging requests on the queue. Once the queue
272  *   gets unplugged, the request_fn defined for the queue is invoked and
273  *   transfers started.
274  **/
275 void generic_unplug_device(struct request_queue *q)
276 {
277 	if (blk_queue_plugged(q)) {
278 		spin_lock_irq(q->queue_lock);
279 		__generic_unplug_device(q);
280 		spin_unlock_irq(q->queue_lock);
281 	}
282 }
283 EXPORT_SYMBOL(generic_unplug_device);
284 
285 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
286 				   struct page *page)
287 {
288 	struct request_queue *q = bdi->unplug_io_data;
289 
290 	blk_unplug(q);
291 }
292 
293 void blk_unplug_work(struct work_struct *work)
294 {
295 	struct request_queue *q =
296 		container_of(work, struct request_queue, unplug_work);
297 
298 	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
299 				q->rq.count[READ] + q->rq.count[WRITE]);
300 
301 	q->unplug_fn(q);
302 }
303 
304 void blk_unplug_timeout(unsigned long data)
305 {
306 	struct request_queue *q = (struct request_queue *)data;
307 
308 	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
309 				q->rq.count[READ] + q->rq.count[WRITE]);
310 
311 	kblockd_schedule_work(&q->unplug_work);
312 }
313 
314 void blk_unplug(struct request_queue *q)
315 {
316 	/*
317 	 * devices don't necessarily have an ->unplug_fn defined
318 	 */
319 	if (q->unplug_fn) {
320 		blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
321 					q->rq.count[READ] + q->rq.count[WRITE]);
322 
323 		q->unplug_fn(q);
324 	}
325 }
326 EXPORT_SYMBOL(blk_unplug);
327 
328 /**
329  * blk_start_queue - restart a previously stopped queue
330  * @q:    The &struct request_queue in question
331  *
332  * Description:
333  *   blk_start_queue() will clear the stop flag on the queue, and call
334  *   the request_fn for the queue if it was in a stopped state when
335  *   entered. Also see blk_stop_queue(). Queue lock must be held.
336  **/
337 void blk_start_queue(struct request_queue *q)
338 {
339 	WARN_ON(!irqs_disabled());
340 
341 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
342 
343 	/*
344 	 * one level of recursion is ok and is much faster than kicking
345 	 * the unplug handling
346 	 */
347 	if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
348 		q->request_fn(q);
349 		queue_flag_clear(QUEUE_FLAG_REENTER, q);
350 	} else {
351 		blk_plug_device(q);
352 		kblockd_schedule_work(&q->unplug_work);
353 	}
354 }
355 EXPORT_SYMBOL(blk_start_queue);
356 
357 /**
358  * blk_stop_queue - stop a queue
359  * @q:    The &struct request_queue in question
360  *
361  * Description:
362  *   The Linux block layer assumes that a block driver will consume all
363  *   entries on the request queue when the request_fn strategy is called.
364  *   Often this will not happen, because of hardware limitations (queue
365  *   depth settings). If a device driver gets a 'queue full' response,
366  *   or if it simply chooses not to queue more I/O at one point, it can
367  *   call this function to prevent the request_fn from being called until
368  *   the driver has signalled it's ready to go again. This happens by calling
369  *   blk_start_queue() to restart queue operations. Queue lock must be held.
370  **/
371 void blk_stop_queue(struct request_queue *q)
372 {
373 	blk_remove_plug(q);
374 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
375 }
376 EXPORT_SYMBOL(blk_stop_queue);
377 
378 /**
379  * blk_sync_queue - cancel any pending callbacks on a queue
380  * @q: the queue
381  *
382  * Description:
383  *     The block layer may perform asynchronous callback activity
384  *     on a queue, such as calling the unplug function after a timeout.
385  *     A block device may call blk_sync_queue to ensure that any
386  *     such activity is cancelled, thus allowing it to release resources
387  *     that the callbacks might use. The caller must already have made sure
388  *     that its ->make_request_fn will not re-add plugging prior to calling
389  *     this function.
390  *
391  */
392 void blk_sync_queue(struct request_queue *q)
393 {
394 	del_timer_sync(&q->unplug_timer);
395 	kblockd_flush_work(&q->unplug_work);
396 }
397 EXPORT_SYMBOL(blk_sync_queue);
398 
399 /**
400  * blk_run_queue - run a single device queue
401  * @q:	The queue to run
402  */
403 void __blk_run_queue(struct request_queue *q)
404 {
405 	blk_remove_plug(q);
406 
407 	/*
408 	 * Only recurse once to avoid overrunning the stack, let the unplug
409 	 * handling reinvoke the handler shortly if we already got there.
410 	 */
411 	if (!elv_queue_empty(q)) {
412 		if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
413 			q->request_fn(q);
414 			queue_flag_clear(QUEUE_FLAG_REENTER, q);
415 		} else {
416 			blk_plug_device(q);
417 			kblockd_schedule_work(&q->unplug_work);
418 		}
419 	}
420 }
421 EXPORT_SYMBOL(__blk_run_queue);
422 
423 /**
424  * blk_run_queue - run a single device queue
425  * @q: The queue to run
426  */
427 void blk_run_queue(struct request_queue *q)
428 {
429 	unsigned long flags;
430 
431 	spin_lock_irqsave(q->queue_lock, flags);
432 	__blk_run_queue(q);
433 	spin_unlock_irqrestore(q->queue_lock, flags);
434 }
435 EXPORT_SYMBOL(blk_run_queue);
436 
437 void blk_put_queue(struct request_queue *q)
438 {
439 	kobject_put(&q->kobj);
440 }
441 
442 void blk_cleanup_queue(struct request_queue *q)
443 {
444 	mutex_lock(&q->sysfs_lock);
445 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
446 	mutex_unlock(&q->sysfs_lock);
447 
448 	if (q->elevator)
449 		elevator_exit(q->elevator);
450 
451 	blk_put_queue(q);
452 }
453 EXPORT_SYMBOL(blk_cleanup_queue);
454 
455 static int blk_init_free_list(struct request_queue *q)
456 {
457 	struct request_list *rl = &q->rq;
458 
459 	rl->count[READ] = rl->count[WRITE] = 0;
460 	rl->starved[READ] = rl->starved[WRITE] = 0;
461 	rl->elvpriv = 0;
462 	init_waitqueue_head(&rl->wait[READ]);
463 	init_waitqueue_head(&rl->wait[WRITE]);
464 
465 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
466 				mempool_free_slab, request_cachep, q->node);
467 
468 	if (!rl->rq_pool)
469 		return -ENOMEM;
470 
471 	return 0;
472 }
473 
474 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
475 {
476 	return blk_alloc_queue_node(gfp_mask, -1);
477 }
478 EXPORT_SYMBOL(blk_alloc_queue);
479 
480 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
481 {
482 	struct request_queue *q;
483 	int err;
484 
485 	q = kmem_cache_alloc_node(blk_requestq_cachep,
486 				gfp_mask | __GFP_ZERO, node_id);
487 	if (!q)
488 		return NULL;
489 
490 	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
491 	q->backing_dev_info.unplug_io_data = q;
492 	err = bdi_init(&q->backing_dev_info);
493 	if (err) {
494 		kmem_cache_free(blk_requestq_cachep, q);
495 		return NULL;
496 	}
497 
498 	init_timer(&q->unplug_timer);
499 
500 	kobject_init(&q->kobj, &blk_queue_ktype);
501 
502 	mutex_init(&q->sysfs_lock);
503 	spin_lock_init(&q->__queue_lock);
504 
505 	return q;
506 }
507 EXPORT_SYMBOL(blk_alloc_queue_node);
508 
509 /**
510  * blk_init_queue  - prepare a request queue for use with a block device
511  * @rfn:  The function to be called to process requests that have been
512  *        placed on the queue.
513  * @lock: Request queue spin lock
514  *
515  * Description:
516  *    If a block device wishes to use the standard request handling procedures,
517  *    which sorts requests and coalesces adjacent requests, then it must
518  *    call blk_init_queue().  The function @rfn will be called when there
519  *    are requests on the queue that need to be processed.  If the device
520  *    supports plugging, then @rfn may not be called immediately when requests
521  *    are available on the queue, but may be called at some time later instead.
522  *    Plugged queues are generally unplugged when a buffer belonging to one
523  *    of the requests on the queue is needed, or due to memory pressure.
524  *
525  *    @rfn is not required, or even expected, to remove all requests off the
526  *    queue, but only as many as it can handle at a time.  If it does leave
527  *    requests on the queue, it is responsible for arranging that the requests
528  *    get dealt with eventually.
529  *
530  *    The queue spin lock must be held while manipulating the requests on the
531  *    request queue; this lock will be taken also from interrupt context, so irq
532  *    disabling is needed for it.
533  *
534  *    Function returns a pointer to the initialized request queue, or NULL if
535  *    it didn't succeed.
536  *
537  * Note:
538  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
539  *    when the block device is deactivated (such as at module unload).
540  **/
541 
542 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
543 {
544 	return blk_init_queue_node(rfn, lock, -1);
545 }
546 EXPORT_SYMBOL(blk_init_queue);
547 
548 struct request_queue *
549 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
550 {
551 	struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
552 
553 	if (!q)
554 		return NULL;
555 
556 	q->node = node_id;
557 	if (blk_init_free_list(q)) {
558 		kmem_cache_free(blk_requestq_cachep, q);
559 		return NULL;
560 	}
561 
562 	/*
563 	 * if caller didn't supply a lock, they get per-queue locking with
564 	 * our embedded lock
565 	 */
566 	if (!lock)
567 		lock = &q->__queue_lock;
568 
569 	q->request_fn		= rfn;
570 	q->prep_rq_fn		= NULL;
571 	q->unplug_fn		= generic_unplug_device;
572 	q->queue_flags		= (1 << QUEUE_FLAG_CLUSTER);
573 	q->queue_lock		= lock;
574 
575 	blk_queue_segment_boundary(q, 0xffffffff);
576 
577 	blk_queue_make_request(q, __make_request);
578 	blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
579 
580 	blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
581 	blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
582 
583 	q->sg_reserved_size = INT_MAX;
584 
585 	blk_set_cmd_filter_defaults(&q->cmd_filter);
586 
587 	/*
588 	 * all done
589 	 */
590 	if (!elevator_init(q, NULL)) {
591 		blk_queue_congestion_threshold(q);
592 		return q;
593 	}
594 
595 	blk_put_queue(q);
596 	return NULL;
597 }
598 EXPORT_SYMBOL(blk_init_queue_node);
599 
600 int blk_get_queue(struct request_queue *q)
601 {
602 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
603 		kobject_get(&q->kobj);
604 		return 0;
605 	}
606 
607 	return 1;
608 }
609 
610 static inline void blk_free_request(struct request_queue *q, struct request *rq)
611 {
612 	if (rq->cmd_flags & REQ_ELVPRIV)
613 		elv_put_request(q, rq);
614 	mempool_free(rq, q->rq.rq_pool);
615 }
616 
617 static struct request *
618 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
619 {
620 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
621 
622 	if (!rq)
623 		return NULL;
624 
625 	blk_rq_init(q, rq);
626 
627 	/*
628 	 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
629 	 * see bio.h and blkdev.h
630 	 */
631 	rq->cmd_flags = rw | REQ_ALLOCED;
632 
633 	if (priv) {
634 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
635 			mempool_free(rq, q->rq.rq_pool);
636 			return NULL;
637 		}
638 		rq->cmd_flags |= REQ_ELVPRIV;
639 	}
640 
641 	return rq;
642 }
643 
644 /*
645  * ioc_batching returns true if the ioc is a valid batching request and
646  * should be given priority access to a request.
647  */
648 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
649 {
650 	if (!ioc)
651 		return 0;
652 
653 	/*
654 	 * Make sure the process is able to allocate at least 1 request
655 	 * even if the batch times out, otherwise we could theoretically
656 	 * lose wakeups.
657 	 */
658 	return ioc->nr_batch_requests == q->nr_batching ||
659 		(ioc->nr_batch_requests > 0
660 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
661 }
662 
663 /*
664  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
665  * will cause the process to be a "batcher" on all queues in the system. This
666  * is the behaviour we want though - once it gets a wakeup it should be given
667  * a nice run.
668  */
669 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
670 {
671 	if (!ioc || ioc_batching(q, ioc))
672 		return;
673 
674 	ioc->nr_batch_requests = q->nr_batching;
675 	ioc->last_waited = jiffies;
676 }
677 
678 static void __freed_request(struct request_queue *q, int rw)
679 {
680 	struct request_list *rl = &q->rq;
681 
682 	if (rl->count[rw] < queue_congestion_off_threshold(q))
683 		blk_clear_queue_congested(q, rw);
684 
685 	if (rl->count[rw] + 1 <= q->nr_requests) {
686 		if (waitqueue_active(&rl->wait[rw]))
687 			wake_up(&rl->wait[rw]);
688 
689 		blk_clear_queue_full(q, rw);
690 	}
691 }
692 
693 /*
694  * A request has just been released.  Account for it, update the full and
695  * congestion status, wake up any waiters.   Called under q->queue_lock.
696  */
697 static void freed_request(struct request_queue *q, int rw, int priv)
698 {
699 	struct request_list *rl = &q->rq;
700 
701 	rl->count[rw]--;
702 	if (priv)
703 		rl->elvpriv--;
704 
705 	__freed_request(q, rw);
706 
707 	if (unlikely(rl->starved[rw ^ 1]))
708 		__freed_request(q, rw ^ 1);
709 }
710 
711 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
712 /*
713  * Get a free request, queue_lock must be held.
714  * Returns NULL on failure, with queue_lock held.
715  * Returns !NULL on success, with queue_lock *not held*.
716  */
717 static struct request *get_request(struct request_queue *q, int rw_flags,
718 				   struct bio *bio, gfp_t gfp_mask)
719 {
720 	struct request *rq = NULL;
721 	struct request_list *rl = &q->rq;
722 	struct io_context *ioc = NULL;
723 	const int rw = rw_flags & 0x01;
724 	int may_queue, priv;
725 
726 	may_queue = elv_may_queue(q, rw_flags);
727 	if (may_queue == ELV_MQUEUE_NO)
728 		goto rq_starved;
729 
730 	if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
731 		if (rl->count[rw]+1 >= q->nr_requests) {
732 			ioc = current_io_context(GFP_ATOMIC, q->node);
733 			/*
734 			 * The queue will fill after this allocation, so set
735 			 * it as full, and mark this process as "batching".
736 			 * This process will be allowed to complete a batch of
737 			 * requests, others will be blocked.
738 			 */
739 			if (!blk_queue_full(q, rw)) {
740 				ioc_set_batching(q, ioc);
741 				blk_set_queue_full(q, rw);
742 			} else {
743 				if (may_queue != ELV_MQUEUE_MUST
744 						&& !ioc_batching(q, ioc)) {
745 					/*
746 					 * The queue is full and the allocating
747 					 * process is not a "batcher", and not
748 					 * exempted by the IO scheduler
749 					 */
750 					goto out;
751 				}
752 			}
753 		}
754 		blk_set_queue_congested(q, rw);
755 	}
756 
757 	/*
758 	 * Only allow batching queuers to allocate up to 50% over the defined
759 	 * limit of requests, otherwise we could have thousands of requests
760 	 * allocated with any setting of ->nr_requests
761 	 */
762 	if (rl->count[rw] >= (3 * q->nr_requests / 2))
763 		goto out;
764 
765 	rl->count[rw]++;
766 	rl->starved[rw] = 0;
767 
768 	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
769 	if (priv)
770 		rl->elvpriv++;
771 
772 	spin_unlock_irq(q->queue_lock);
773 
774 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
775 	if (unlikely(!rq)) {
776 		/*
777 		 * Allocation failed presumably due to memory. Undo anything
778 		 * we might have messed up.
779 		 *
780 		 * Allocating task should really be put onto the front of the
781 		 * wait queue, but this is pretty rare.
782 		 */
783 		spin_lock_irq(q->queue_lock);
784 		freed_request(q, rw, priv);
785 
786 		/*
787 		 * in the very unlikely event that allocation failed and no
788 		 * requests for this direction was pending, mark us starved
789 		 * so that freeing of a request in the other direction will
790 		 * notice us. another possible fix would be to split the
791 		 * rq mempool into READ and WRITE
792 		 */
793 rq_starved:
794 		if (unlikely(rl->count[rw] == 0))
795 			rl->starved[rw] = 1;
796 
797 		goto out;
798 	}
799 
800 	/*
801 	 * ioc may be NULL here, and ioc_batching will be false. That's
802 	 * OK, if the queue is under the request limit then requests need
803 	 * not count toward the nr_batch_requests limit. There will always
804 	 * be some limit enforced by BLK_BATCH_TIME.
805 	 */
806 	if (ioc_batching(q, ioc))
807 		ioc->nr_batch_requests--;
808 
809 	blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
810 out:
811 	return rq;
812 }
813 
814 /*
815  * No available requests for this queue, unplug the device and wait for some
816  * requests to become available.
817  *
818  * Called with q->queue_lock held, and returns with it unlocked.
819  */
820 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
821 					struct bio *bio)
822 {
823 	const int rw = rw_flags & 0x01;
824 	struct request *rq;
825 
826 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
827 	while (!rq) {
828 		DEFINE_WAIT(wait);
829 		struct io_context *ioc;
830 		struct request_list *rl = &q->rq;
831 
832 		prepare_to_wait_exclusive(&rl->wait[rw], &wait,
833 				TASK_UNINTERRUPTIBLE);
834 
835 		blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
836 
837 		__generic_unplug_device(q);
838 		spin_unlock_irq(q->queue_lock);
839 		io_schedule();
840 
841 		/*
842 		 * After sleeping, we become a "batching" process and
843 		 * will be able to allocate at least one request, and
844 		 * up to a big batch of them for a small period time.
845 		 * See ioc_batching, ioc_set_batching
846 		 */
847 		ioc = current_io_context(GFP_NOIO, q->node);
848 		ioc_set_batching(q, ioc);
849 
850 		spin_lock_irq(q->queue_lock);
851 		finish_wait(&rl->wait[rw], &wait);
852 
853 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
854 	};
855 
856 	return rq;
857 }
858 
859 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
860 {
861 	struct request *rq;
862 
863 	BUG_ON(rw != READ && rw != WRITE);
864 
865 	spin_lock_irq(q->queue_lock);
866 	if (gfp_mask & __GFP_WAIT) {
867 		rq = get_request_wait(q, rw, NULL);
868 	} else {
869 		rq = get_request(q, rw, NULL, gfp_mask);
870 		if (!rq)
871 			spin_unlock_irq(q->queue_lock);
872 	}
873 	/* q->queue_lock is unlocked at this point */
874 
875 	return rq;
876 }
877 EXPORT_SYMBOL(blk_get_request);
878 
879 /**
880  * blk_start_queueing - initiate dispatch of requests to device
881  * @q:		request queue to kick into gear
882  *
883  * This is basically a helper to remove the need to know whether a queue
884  * is plugged or not if someone just wants to initiate dispatch of requests
885  * for this queue.
886  *
887  * The queue lock must be held with interrupts disabled.
888  */
889 void blk_start_queueing(struct request_queue *q)
890 {
891 	if (!blk_queue_plugged(q))
892 		q->request_fn(q);
893 	else
894 		__generic_unplug_device(q);
895 }
896 EXPORT_SYMBOL(blk_start_queueing);
897 
898 /**
899  * blk_requeue_request - put a request back on queue
900  * @q:		request queue where request should be inserted
901  * @rq:		request to be inserted
902  *
903  * Description:
904  *    Drivers often keep queueing requests until the hardware cannot accept
905  *    more, when that condition happens we need to put the request back
906  *    on the queue. Must be called with queue lock held.
907  */
908 void blk_requeue_request(struct request_queue *q, struct request *rq)
909 {
910 	blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
911 
912 	if (blk_rq_tagged(rq))
913 		blk_queue_end_tag(q, rq);
914 
915 	elv_requeue_request(q, rq);
916 }
917 EXPORT_SYMBOL(blk_requeue_request);
918 
919 /**
920  * blk_insert_request - insert a special request in to a request queue
921  * @q:		request queue where request should be inserted
922  * @rq:		request to be inserted
923  * @at_head:	insert request at head or tail of queue
924  * @data:	private data
925  *
926  * Description:
927  *    Many block devices need to execute commands asynchronously, so they don't
928  *    block the whole kernel from preemption during request execution.  This is
929  *    accomplished normally by inserting aritficial requests tagged as
930  *    REQ_SPECIAL in to the corresponding request queue, and letting them be
931  *    scheduled for actual execution by the request queue.
932  *
933  *    We have the option of inserting the head or the tail of the queue.
934  *    Typically we use the tail for new ioctls and so forth.  We use the head
935  *    of the queue for things like a QUEUE_FULL message from a device, or a
936  *    host that is unable to accept a particular command.
937  */
938 void blk_insert_request(struct request_queue *q, struct request *rq,
939 			int at_head, void *data)
940 {
941 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
942 	unsigned long flags;
943 
944 	/*
945 	 * tell I/O scheduler that this isn't a regular read/write (ie it
946 	 * must not attempt merges on this) and that it acts as a soft
947 	 * barrier
948 	 */
949 	rq->cmd_type = REQ_TYPE_SPECIAL;
950 	rq->cmd_flags |= REQ_SOFTBARRIER;
951 
952 	rq->special = data;
953 
954 	spin_lock_irqsave(q->queue_lock, flags);
955 
956 	/*
957 	 * If command is tagged, release the tag
958 	 */
959 	if (blk_rq_tagged(rq))
960 		blk_queue_end_tag(q, rq);
961 
962 	drive_stat_acct(rq, 1);
963 	__elv_add_request(q, rq, where, 0);
964 	blk_start_queueing(q);
965 	spin_unlock_irqrestore(q->queue_lock, flags);
966 }
967 EXPORT_SYMBOL(blk_insert_request);
968 
969 /*
970  * add-request adds a request to the linked list.
971  * queue lock is held and interrupts disabled, as we muck with the
972  * request queue list.
973  */
974 static inline void add_request(struct request_queue *q, struct request *req)
975 {
976 	drive_stat_acct(req, 1);
977 
978 	/*
979 	 * elevator indicated where it wants this request to be
980 	 * inserted at elevator_merge time
981 	 */
982 	__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
983 }
984 
985 /*
986  * disk_round_stats()	- Round off the performance stats on a struct
987  * disk_stats.
988  *
989  * The average IO queue length and utilisation statistics are maintained
990  * by observing the current state of the queue length and the amount of
991  * time it has been in this state for.
992  *
993  * Normally, that accounting is done on IO completion, but that can result
994  * in more than a second's worth of IO being accounted for within any one
995  * second, leading to >100% utilisation.  To deal with that, we call this
996  * function to do a round-off before returning the results when reading
997  * /proc/diskstats.  This accounts immediately for all queue usage up to
998  * the current jiffies and restarts the counters again.
999  */
1000 void disk_round_stats(struct gendisk *disk)
1001 {
1002 	unsigned long now = jiffies;
1003 
1004 	if (now == disk->stamp)
1005 		return;
1006 
1007 	if (disk->in_flight) {
1008 		__disk_stat_add(disk, time_in_queue,
1009 				disk->in_flight * (now - disk->stamp));
1010 		__disk_stat_add(disk, io_ticks, (now - disk->stamp));
1011 	}
1012 	disk->stamp = now;
1013 }
1014 EXPORT_SYMBOL_GPL(disk_round_stats);
1015 
1016 void part_round_stats(struct hd_struct *part)
1017 {
1018 	unsigned long now = jiffies;
1019 
1020 	if (now == part->stamp)
1021 		return;
1022 
1023 	if (part->in_flight) {
1024 		__part_stat_add(part, time_in_queue,
1025 				part->in_flight * (now - part->stamp));
1026 		__part_stat_add(part, io_ticks, (now - part->stamp));
1027 	}
1028 	part->stamp = now;
1029 }
1030 
1031 /*
1032  * queue lock must be held
1033  */
1034 void __blk_put_request(struct request_queue *q, struct request *req)
1035 {
1036 	if (unlikely(!q))
1037 		return;
1038 	if (unlikely(--req->ref_count))
1039 		return;
1040 
1041 	elv_completed_request(q, req);
1042 
1043 	/*
1044 	 * Request may not have originated from ll_rw_blk. if not,
1045 	 * it didn't come out of our reserved rq pools
1046 	 */
1047 	if (req->cmd_flags & REQ_ALLOCED) {
1048 		int rw = rq_data_dir(req);
1049 		int priv = req->cmd_flags & REQ_ELVPRIV;
1050 
1051 		BUG_ON(!list_empty(&req->queuelist));
1052 		BUG_ON(!hlist_unhashed(&req->hash));
1053 
1054 		blk_free_request(q, req);
1055 		freed_request(q, rw, priv);
1056 	}
1057 }
1058 EXPORT_SYMBOL_GPL(__blk_put_request);
1059 
1060 void blk_put_request(struct request *req)
1061 {
1062 	unsigned long flags;
1063 	struct request_queue *q = req->q;
1064 
1065 	spin_lock_irqsave(q->queue_lock, flags);
1066 	__blk_put_request(q, req);
1067 	spin_unlock_irqrestore(q->queue_lock, flags);
1068 }
1069 EXPORT_SYMBOL(blk_put_request);
1070 
1071 void init_request_from_bio(struct request *req, struct bio *bio)
1072 {
1073 	req->cmd_type = REQ_TYPE_FS;
1074 
1075 	/*
1076 	 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1077 	 */
1078 	if (bio_rw_ahead(bio) || bio_failfast(bio))
1079 		req->cmd_flags |= REQ_FAILFAST;
1080 
1081 	/*
1082 	 * REQ_BARRIER implies no merging, but lets make it explicit
1083 	 */
1084 	if (unlikely(bio_barrier(bio)))
1085 		req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1086 
1087 	if (bio_sync(bio))
1088 		req->cmd_flags |= REQ_RW_SYNC;
1089 	if (bio_rw_meta(bio))
1090 		req->cmd_flags |= REQ_RW_META;
1091 
1092 	req->errors = 0;
1093 	req->hard_sector = req->sector = bio->bi_sector;
1094 	req->ioprio = bio_prio(bio);
1095 	req->start_time = jiffies;
1096 	blk_rq_bio_prep(req->q, req, bio);
1097 }
1098 
1099 static int __make_request(struct request_queue *q, struct bio *bio)
1100 {
1101 	struct request *req;
1102 	int el_ret, nr_sectors, barrier, err;
1103 	const unsigned short prio = bio_prio(bio);
1104 	const int sync = bio_sync(bio);
1105 	int rw_flags;
1106 
1107 	nr_sectors = bio_sectors(bio);
1108 
1109 	/*
1110 	 * low level driver can indicate that it wants pages above a
1111 	 * certain limit bounced to low memory (ie for highmem, or even
1112 	 * ISA dma in theory)
1113 	 */
1114 	blk_queue_bounce(q, &bio);
1115 
1116 	barrier = bio_barrier(bio);
1117 	if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1118 		err = -EOPNOTSUPP;
1119 		goto end_io;
1120 	}
1121 
1122 	spin_lock_irq(q->queue_lock);
1123 
1124 	if (unlikely(barrier) || elv_queue_empty(q))
1125 		goto get_rq;
1126 
1127 	el_ret = elv_merge(q, &req, bio);
1128 	switch (el_ret) {
1129 	case ELEVATOR_BACK_MERGE:
1130 		BUG_ON(!rq_mergeable(req));
1131 
1132 		if (!ll_back_merge_fn(q, req, bio))
1133 			break;
1134 
1135 		blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1136 
1137 		req->biotail->bi_next = bio;
1138 		req->biotail = bio;
1139 		req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1140 		req->ioprio = ioprio_best(req->ioprio, prio);
1141 		drive_stat_acct(req, 0);
1142 		if (!attempt_back_merge(q, req))
1143 			elv_merged_request(q, req, el_ret);
1144 		goto out;
1145 
1146 	case ELEVATOR_FRONT_MERGE:
1147 		BUG_ON(!rq_mergeable(req));
1148 
1149 		if (!ll_front_merge_fn(q, req, bio))
1150 			break;
1151 
1152 		blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1153 
1154 		bio->bi_next = req->bio;
1155 		req->bio = bio;
1156 
1157 		/*
1158 		 * may not be valid. if the low level driver said
1159 		 * it didn't need a bounce buffer then it better
1160 		 * not touch req->buffer either...
1161 		 */
1162 		req->buffer = bio_data(bio);
1163 		req->current_nr_sectors = bio_cur_sectors(bio);
1164 		req->hard_cur_sectors = req->current_nr_sectors;
1165 		req->sector = req->hard_sector = bio->bi_sector;
1166 		req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1167 		req->ioprio = ioprio_best(req->ioprio, prio);
1168 		drive_stat_acct(req, 0);
1169 		if (!attempt_front_merge(q, req))
1170 			elv_merged_request(q, req, el_ret);
1171 		goto out;
1172 
1173 	/* ELV_NO_MERGE: elevator says don't/can't merge. */
1174 	default:
1175 		;
1176 	}
1177 
1178 get_rq:
1179 	/*
1180 	 * This sync check and mask will be re-done in init_request_from_bio(),
1181 	 * but we need to set it earlier to expose the sync flag to the
1182 	 * rq allocator and io schedulers.
1183 	 */
1184 	rw_flags = bio_data_dir(bio);
1185 	if (sync)
1186 		rw_flags |= REQ_RW_SYNC;
1187 
1188 	/*
1189 	 * Grab a free request. This is might sleep but can not fail.
1190 	 * Returns with the queue unlocked.
1191 	 */
1192 	req = get_request_wait(q, rw_flags, bio);
1193 
1194 	/*
1195 	 * After dropping the lock and possibly sleeping here, our request
1196 	 * may now be mergeable after it had proven unmergeable (above).
1197 	 * We don't worry about that case for efficiency. It won't happen
1198 	 * often, and the elevators are able to handle it.
1199 	 */
1200 	init_request_from_bio(req, bio);
1201 
1202 	spin_lock_irq(q->queue_lock);
1203 	if (elv_queue_empty(q))
1204 		blk_plug_device(q);
1205 	add_request(q, req);
1206 out:
1207 	if (sync)
1208 		__generic_unplug_device(q);
1209 
1210 	spin_unlock_irq(q->queue_lock);
1211 	return 0;
1212 
1213 end_io:
1214 	bio_endio(bio, err);
1215 	return 0;
1216 }
1217 
1218 /*
1219  * If bio->bi_dev is a partition, remap the location
1220  */
1221 static inline void blk_partition_remap(struct bio *bio)
1222 {
1223 	struct block_device *bdev = bio->bi_bdev;
1224 
1225 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1226 		struct hd_struct *p = bdev->bd_part;
1227 
1228 		bio->bi_sector += p->start_sect;
1229 		bio->bi_bdev = bdev->bd_contains;
1230 
1231 		blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1232 				    bdev->bd_dev, bio->bi_sector,
1233 				    bio->bi_sector - p->start_sect);
1234 	}
1235 }
1236 
1237 static void handle_bad_sector(struct bio *bio)
1238 {
1239 	char b[BDEVNAME_SIZE];
1240 
1241 	printk(KERN_INFO "attempt to access beyond end of device\n");
1242 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1243 			bdevname(bio->bi_bdev, b),
1244 			bio->bi_rw,
1245 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1246 			(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1247 
1248 	set_bit(BIO_EOF, &bio->bi_flags);
1249 }
1250 
1251 #ifdef CONFIG_FAIL_MAKE_REQUEST
1252 
1253 static DECLARE_FAULT_ATTR(fail_make_request);
1254 
1255 static int __init setup_fail_make_request(char *str)
1256 {
1257 	return setup_fault_attr(&fail_make_request, str);
1258 }
1259 __setup("fail_make_request=", setup_fail_make_request);
1260 
1261 static int should_fail_request(struct bio *bio)
1262 {
1263 	if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1264 	    (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1265 		return should_fail(&fail_make_request, bio->bi_size);
1266 
1267 	return 0;
1268 }
1269 
1270 static int __init fail_make_request_debugfs(void)
1271 {
1272 	return init_fault_attr_dentries(&fail_make_request,
1273 					"fail_make_request");
1274 }
1275 
1276 late_initcall(fail_make_request_debugfs);
1277 
1278 #else /* CONFIG_FAIL_MAKE_REQUEST */
1279 
1280 static inline int should_fail_request(struct bio *bio)
1281 {
1282 	return 0;
1283 }
1284 
1285 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1286 
1287 /*
1288  * Check whether this bio extends beyond the end of the device.
1289  */
1290 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1291 {
1292 	sector_t maxsector;
1293 
1294 	if (!nr_sectors)
1295 		return 0;
1296 
1297 	/* Test device or partition size, when known. */
1298 	maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1299 	if (maxsector) {
1300 		sector_t sector = bio->bi_sector;
1301 
1302 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1303 			/*
1304 			 * This may well happen - the kernel calls bread()
1305 			 * without checking the size of the device, e.g., when
1306 			 * mounting a device.
1307 			 */
1308 			handle_bad_sector(bio);
1309 			return 1;
1310 		}
1311 	}
1312 
1313 	return 0;
1314 }
1315 
1316 /**
1317  * generic_make_request: hand a buffer to its device driver for I/O
1318  * @bio:  The bio describing the location in memory and on the device.
1319  *
1320  * generic_make_request() is used to make I/O requests of block
1321  * devices. It is passed a &struct bio, which describes the I/O that needs
1322  * to be done.
1323  *
1324  * generic_make_request() does not return any status.  The
1325  * success/failure status of the request, along with notification of
1326  * completion, is delivered asynchronously through the bio->bi_end_io
1327  * function described (one day) else where.
1328  *
1329  * The caller of generic_make_request must make sure that bi_io_vec
1330  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1331  * set to describe the device address, and the
1332  * bi_end_io and optionally bi_private are set to describe how
1333  * completion notification should be signaled.
1334  *
1335  * generic_make_request and the drivers it calls may use bi_next if this
1336  * bio happens to be merged with someone else, and may change bi_dev and
1337  * bi_sector for remaps as it sees fit.  So the values of these fields
1338  * should NOT be depended on after the call to generic_make_request.
1339  */
1340 static inline void __generic_make_request(struct bio *bio)
1341 {
1342 	struct request_queue *q;
1343 	sector_t old_sector;
1344 	int ret, nr_sectors = bio_sectors(bio);
1345 	dev_t old_dev;
1346 	int err = -EIO;
1347 
1348 	might_sleep();
1349 
1350 	if (bio_check_eod(bio, nr_sectors))
1351 		goto end_io;
1352 
1353 	/*
1354 	 * Resolve the mapping until finished. (drivers are
1355 	 * still free to implement/resolve their own stacking
1356 	 * by explicitly returning 0)
1357 	 *
1358 	 * NOTE: we don't repeat the blk_size check for each new device.
1359 	 * Stacking drivers are expected to know what they are doing.
1360 	 */
1361 	old_sector = -1;
1362 	old_dev = 0;
1363 	do {
1364 		char b[BDEVNAME_SIZE];
1365 
1366 		q = bdev_get_queue(bio->bi_bdev);
1367 		if (!q) {
1368 			printk(KERN_ERR
1369 			       "generic_make_request: Trying to access "
1370 				"nonexistent block-device %s (%Lu)\n",
1371 				bdevname(bio->bi_bdev, b),
1372 				(long long) bio->bi_sector);
1373 end_io:
1374 			bio_endio(bio, err);
1375 			break;
1376 		}
1377 
1378 		if (unlikely(nr_sectors > q->max_hw_sectors)) {
1379 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1380 				bdevname(bio->bi_bdev, b),
1381 				bio_sectors(bio),
1382 				q->max_hw_sectors);
1383 			goto end_io;
1384 		}
1385 
1386 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1387 			goto end_io;
1388 
1389 		if (should_fail_request(bio))
1390 			goto end_io;
1391 
1392 		/*
1393 		 * If this device has partitions, remap block n
1394 		 * of partition p to block n+start(p) of the disk.
1395 		 */
1396 		blk_partition_remap(bio);
1397 
1398 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1399 			goto end_io;
1400 
1401 		if (old_sector != -1)
1402 			blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1403 					    old_sector);
1404 
1405 		blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1406 
1407 		old_sector = bio->bi_sector;
1408 		old_dev = bio->bi_bdev->bd_dev;
1409 
1410 		if (bio_check_eod(bio, nr_sectors))
1411 			goto end_io;
1412 		if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1413 			err = -EOPNOTSUPP;
1414 			goto end_io;
1415 		}
1416 
1417 		ret = q->make_request_fn(q, bio);
1418 	} while (ret);
1419 }
1420 
1421 /*
1422  * We only want one ->make_request_fn to be active at a time,
1423  * else stack usage with stacked devices could be a problem.
1424  * So use current->bio_{list,tail} to keep a list of requests
1425  * submited by a make_request_fn function.
1426  * current->bio_tail is also used as a flag to say if
1427  * generic_make_request is currently active in this task or not.
1428  * If it is NULL, then no make_request is active.  If it is non-NULL,
1429  * then a make_request is active, and new requests should be added
1430  * at the tail
1431  */
1432 void generic_make_request(struct bio *bio)
1433 {
1434 	if (current->bio_tail) {
1435 		/* make_request is active */
1436 		*(current->bio_tail) = bio;
1437 		bio->bi_next = NULL;
1438 		current->bio_tail = &bio->bi_next;
1439 		return;
1440 	}
1441 	/* following loop may be a bit non-obvious, and so deserves some
1442 	 * explanation.
1443 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1444 	 * ensure that) so we have a list with a single bio.
1445 	 * We pretend that we have just taken it off a longer list, so
1446 	 * we assign bio_list to the next (which is NULL) and bio_tail
1447 	 * to &bio_list, thus initialising the bio_list of new bios to be
1448 	 * added.  __generic_make_request may indeed add some more bios
1449 	 * through a recursive call to generic_make_request.  If it
1450 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1451 	 * from the top.  In this case we really did just take the bio
1452 	 * of the top of the list (no pretending) and so fixup bio_list and
1453 	 * bio_tail or bi_next, and call into __generic_make_request again.
1454 	 *
1455 	 * The loop was structured like this to make only one call to
1456 	 * __generic_make_request (which is important as it is large and
1457 	 * inlined) and to keep the structure simple.
1458 	 */
1459 	BUG_ON(bio->bi_next);
1460 	do {
1461 		current->bio_list = bio->bi_next;
1462 		if (bio->bi_next == NULL)
1463 			current->bio_tail = &current->bio_list;
1464 		else
1465 			bio->bi_next = NULL;
1466 		__generic_make_request(bio);
1467 		bio = current->bio_list;
1468 	} while (bio);
1469 	current->bio_tail = NULL; /* deactivate */
1470 }
1471 EXPORT_SYMBOL(generic_make_request);
1472 
1473 /**
1474  * submit_bio: submit a bio to the block device layer for I/O
1475  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1476  * @bio: The &struct bio which describes the I/O
1477  *
1478  * submit_bio() is very similar in purpose to generic_make_request(), and
1479  * uses that function to do most of the work. Both are fairly rough
1480  * interfaces, @bio must be presetup and ready for I/O.
1481  *
1482  */
1483 void submit_bio(int rw, struct bio *bio)
1484 {
1485 	int count = bio_sectors(bio);
1486 
1487 	bio->bi_rw |= rw;
1488 
1489 	/*
1490 	 * If it's a regular read/write or a barrier with data attached,
1491 	 * go through the normal accounting stuff before submission.
1492 	 */
1493 	if (!bio_empty_barrier(bio)) {
1494 
1495 		BIO_BUG_ON(!bio->bi_size);
1496 		BIO_BUG_ON(!bio->bi_io_vec);
1497 
1498 		if (rw & WRITE) {
1499 			count_vm_events(PGPGOUT, count);
1500 		} else {
1501 			task_io_account_read(bio->bi_size);
1502 			count_vm_events(PGPGIN, count);
1503 		}
1504 
1505 		if (unlikely(block_dump)) {
1506 			char b[BDEVNAME_SIZE];
1507 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1508 			current->comm, task_pid_nr(current),
1509 				(rw & WRITE) ? "WRITE" : "READ",
1510 				(unsigned long long)bio->bi_sector,
1511 				bdevname(bio->bi_bdev, b));
1512 		}
1513 	}
1514 
1515 	generic_make_request(bio);
1516 }
1517 EXPORT_SYMBOL(submit_bio);
1518 
1519 /**
1520  * __end_that_request_first - end I/O on a request
1521  * @req:      the request being processed
1522  * @error:    0 for success, < 0 for error
1523  * @nr_bytes: number of bytes to complete
1524  *
1525  * Description:
1526  *     Ends I/O on a number of bytes attached to @req, and sets it up
1527  *     for the next range of segments (if any) in the cluster.
1528  *
1529  * Return:
1530  *     0 - we are done with this request, call end_that_request_last()
1531  *     1 - still buffers pending for this request
1532  **/
1533 static int __end_that_request_first(struct request *req, int error,
1534 				    int nr_bytes)
1535 {
1536 	int total_bytes, bio_nbytes, next_idx = 0;
1537 	struct bio *bio;
1538 
1539 	blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1540 
1541 	/*
1542 	 * for a REQ_BLOCK_PC request, we want to carry any eventual
1543 	 * sense key with us all the way through
1544 	 */
1545 	if (!blk_pc_request(req))
1546 		req->errors = 0;
1547 
1548 	if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1549 		printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1550 				req->rq_disk ? req->rq_disk->disk_name : "?",
1551 				(unsigned long long)req->sector);
1552 	}
1553 
1554 	if (blk_fs_request(req) && req->rq_disk) {
1555 		struct hd_struct *part = get_part(req->rq_disk, req->sector);
1556 		const int rw = rq_data_dir(req);
1557 
1558 		all_stat_add(req->rq_disk, part, sectors[rw],
1559 				nr_bytes >> 9, req->sector);
1560 	}
1561 
1562 	total_bytes = bio_nbytes = 0;
1563 	while ((bio = req->bio) != NULL) {
1564 		int nbytes;
1565 
1566 		/*
1567 		 * For an empty barrier request, the low level driver must
1568 		 * store a potential error location in ->sector. We pass
1569 		 * that back up in ->bi_sector.
1570 		 */
1571 		if (blk_empty_barrier(req))
1572 			bio->bi_sector = req->sector;
1573 
1574 		if (nr_bytes >= bio->bi_size) {
1575 			req->bio = bio->bi_next;
1576 			nbytes = bio->bi_size;
1577 			req_bio_endio(req, bio, nbytes, error);
1578 			next_idx = 0;
1579 			bio_nbytes = 0;
1580 		} else {
1581 			int idx = bio->bi_idx + next_idx;
1582 
1583 			if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1584 				blk_dump_rq_flags(req, "__end_that");
1585 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1586 				       __func__, bio->bi_idx, bio->bi_vcnt);
1587 				break;
1588 			}
1589 
1590 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
1591 			BIO_BUG_ON(nbytes > bio->bi_size);
1592 
1593 			/*
1594 			 * not a complete bvec done
1595 			 */
1596 			if (unlikely(nbytes > nr_bytes)) {
1597 				bio_nbytes += nr_bytes;
1598 				total_bytes += nr_bytes;
1599 				break;
1600 			}
1601 
1602 			/*
1603 			 * advance to the next vector
1604 			 */
1605 			next_idx++;
1606 			bio_nbytes += nbytes;
1607 		}
1608 
1609 		total_bytes += nbytes;
1610 		nr_bytes -= nbytes;
1611 
1612 		bio = req->bio;
1613 		if (bio) {
1614 			/*
1615 			 * end more in this run, or just return 'not-done'
1616 			 */
1617 			if (unlikely(nr_bytes <= 0))
1618 				break;
1619 		}
1620 	}
1621 
1622 	/*
1623 	 * completely done
1624 	 */
1625 	if (!req->bio)
1626 		return 0;
1627 
1628 	/*
1629 	 * if the request wasn't completed, update state
1630 	 */
1631 	if (bio_nbytes) {
1632 		req_bio_endio(req, bio, bio_nbytes, error);
1633 		bio->bi_idx += next_idx;
1634 		bio_iovec(bio)->bv_offset += nr_bytes;
1635 		bio_iovec(bio)->bv_len -= nr_bytes;
1636 	}
1637 
1638 	blk_recalc_rq_sectors(req, total_bytes >> 9);
1639 	blk_recalc_rq_segments(req);
1640 	return 1;
1641 }
1642 
1643 /*
1644  * splice the completion data to a local structure and hand off to
1645  * process_completion_queue() to complete the requests
1646  */
1647 static void blk_done_softirq(struct softirq_action *h)
1648 {
1649 	struct list_head *cpu_list, local_list;
1650 
1651 	local_irq_disable();
1652 	cpu_list = &__get_cpu_var(blk_cpu_done);
1653 	list_replace_init(cpu_list, &local_list);
1654 	local_irq_enable();
1655 
1656 	while (!list_empty(&local_list)) {
1657 		struct request *rq;
1658 
1659 		rq = list_entry(local_list.next, struct request, donelist);
1660 		list_del_init(&rq->donelist);
1661 		rq->q->softirq_done_fn(rq);
1662 	}
1663 }
1664 
1665 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1666 				    unsigned long action, void *hcpu)
1667 {
1668 	/*
1669 	 * If a CPU goes away, splice its entries to the current CPU
1670 	 * and trigger a run of the softirq
1671 	 */
1672 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1673 		int cpu = (unsigned long) hcpu;
1674 
1675 		local_irq_disable();
1676 		list_splice_init(&per_cpu(blk_cpu_done, cpu),
1677 				 &__get_cpu_var(blk_cpu_done));
1678 		raise_softirq_irqoff(BLOCK_SOFTIRQ);
1679 		local_irq_enable();
1680 	}
1681 
1682 	return NOTIFY_OK;
1683 }
1684 
1685 
1686 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1687 	.notifier_call	= blk_cpu_notify,
1688 };
1689 
1690 /**
1691  * blk_complete_request - end I/O on a request
1692  * @req:      the request being processed
1693  *
1694  * Description:
1695  *     Ends all I/O on a request. It does not handle partial completions,
1696  *     unless the driver actually implements this in its completion callback
1697  *     through requeueing. The actual completion happens out-of-order,
1698  *     through a softirq handler. The user must have registered a completion
1699  *     callback through blk_queue_softirq_done().
1700  **/
1701 
1702 void blk_complete_request(struct request *req)
1703 {
1704 	struct list_head *cpu_list;
1705 	unsigned long flags;
1706 
1707 	BUG_ON(!req->q->softirq_done_fn);
1708 
1709 	local_irq_save(flags);
1710 
1711 	cpu_list = &__get_cpu_var(blk_cpu_done);
1712 	list_add_tail(&req->donelist, cpu_list);
1713 	raise_softirq_irqoff(BLOCK_SOFTIRQ);
1714 
1715 	local_irq_restore(flags);
1716 }
1717 EXPORT_SYMBOL(blk_complete_request);
1718 
1719 /*
1720  * queue lock must be held
1721  */
1722 static void end_that_request_last(struct request *req, int error)
1723 {
1724 	struct gendisk *disk = req->rq_disk;
1725 
1726 	if (blk_rq_tagged(req))
1727 		blk_queue_end_tag(req->q, req);
1728 
1729 	if (blk_queued_rq(req))
1730 		blkdev_dequeue_request(req);
1731 
1732 	if (unlikely(laptop_mode) && blk_fs_request(req))
1733 		laptop_io_completion();
1734 
1735 	/*
1736 	 * Account IO completion.  bar_rq isn't accounted as a normal
1737 	 * IO on queueing nor completion.  Accounting the containing
1738 	 * request is enough.
1739 	 */
1740 	if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1741 		unsigned long duration = jiffies - req->start_time;
1742 		const int rw = rq_data_dir(req);
1743 		struct hd_struct *part = get_part(disk, req->sector);
1744 
1745 		__all_stat_inc(disk, part, ios[rw], req->sector);
1746 		__all_stat_add(disk, part, ticks[rw], duration, req->sector);
1747 		disk_round_stats(disk);
1748 		disk->in_flight--;
1749 		if (part) {
1750 			part_round_stats(part);
1751 			part->in_flight--;
1752 		}
1753 	}
1754 
1755 	if (req->end_io)
1756 		req->end_io(req, error);
1757 	else {
1758 		if (blk_bidi_rq(req))
1759 			__blk_put_request(req->next_rq->q, req->next_rq);
1760 
1761 		__blk_put_request(req->q, req);
1762 	}
1763 }
1764 
1765 static inline void __end_request(struct request *rq, int uptodate,
1766 				 unsigned int nr_bytes)
1767 {
1768 	int error = 0;
1769 
1770 	if (uptodate <= 0)
1771 		error = uptodate ? uptodate : -EIO;
1772 
1773 	__blk_end_request(rq, error, nr_bytes);
1774 }
1775 
1776 /**
1777  * blk_rq_bytes - Returns bytes left to complete in the entire request
1778  * @rq: the request being processed
1779  **/
1780 unsigned int blk_rq_bytes(struct request *rq)
1781 {
1782 	if (blk_fs_request(rq))
1783 		return rq->hard_nr_sectors << 9;
1784 
1785 	return rq->data_len;
1786 }
1787 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1788 
1789 /**
1790  * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1791  * @rq: the request being processed
1792  **/
1793 unsigned int blk_rq_cur_bytes(struct request *rq)
1794 {
1795 	if (blk_fs_request(rq))
1796 		return rq->current_nr_sectors << 9;
1797 
1798 	if (rq->bio)
1799 		return rq->bio->bi_size;
1800 
1801 	return rq->data_len;
1802 }
1803 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1804 
1805 /**
1806  * end_queued_request - end all I/O on a queued request
1807  * @rq:		the request being processed
1808  * @uptodate:	error value or 0/1 uptodate flag
1809  *
1810  * Description:
1811  *     Ends all I/O on a request, and removes it from the block layer queues.
1812  *     Not suitable for normal IO completion, unless the driver still has
1813  *     the request attached to the block layer.
1814  *
1815  **/
1816 void end_queued_request(struct request *rq, int uptodate)
1817 {
1818 	__end_request(rq, uptodate, blk_rq_bytes(rq));
1819 }
1820 EXPORT_SYMBOL(end_queued_request);
1821 
1822 /**
1823  * end_dequeued_request - end all I/O on a dequeued request
1824  * @rq:		the request being processed
1825  * @uptodate:	error value or 0/1 uptodate flag
1826  *
1827  * Description:
1828  *     Ends all I/O on a request. The request must already have been
1829  *     dequeued using blkdev_dequeue_request(), as is normally the case
1830  *     for most drivers.
1831  *
1832  **/
1833 void end_dequeued_request(struct request *rq, int uptodate)
1834 {
1835 	__end_request(rq, uptodate, blk_rq_bytes(rq));
1836 }
1837 EXPORT_SYMBOL(end_dequeued_request);
1838 
1839 
1840 /**
1841  * end_request - end I/O on the current segment of the request
1842  * @req:	the request being processed
1843  * @uptodate:	error value or 0/1 uptodate flag
1844  *
1845  * Description:
1846  *     Ends I/O on the current segment of a request. If that is the only
1847  *     remaining segment, the request is also completed and freed.
1848  *
1849  *     This is a remnant of how older block drivers handled IO completions.
1850  *     Modern drivers typically end IO on the full request in one go, unless
1851  *     they have a residual value to account for. For that case this function
1852  *     isn't really useful, unless the residual just happens to be the
1853  *     full current segment. In other words, don't use this function in new
1854  *     code. Either use end_request_completely(), or the
1855  *     end_that_request_chunk() (along with end_that_request_last()) for
1856  *     partial completions.
1857  *
1858  **/
1859 void end_request(struct request *req, int uptodate)
1860 {
1861 	__end_request(req, uptodate, req->hard_cur_sectors << 9);
1862 }
1863 EXPORT_SYMBOL(end_request);
1864 
1865 /**
1866  * blk_end_io - Generic end_io function to complete a request.
1867  * @rq:           the request being processed
1868  * @error:        0 for success, < 0 for error
1869  * @nr_bytes:     number of bytes to complete @rq
1870  * @bidi_bytes:   number of bytes to complete @rq->next_rq
1871  * @drv_callback: function called between completion of bios in the request
1872  *                and completion of the request.
1873  *                If the callback returns non 0, this helper returns without
1874  *                completion of the request.
1875  *
1876  * Description:
1877  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1878  *     If @rq has leftover, sets it up for the next range of segments.
1879  *
1880  * Return:
1881  *     0 - we are done with this request
1882  *     1 - this request is not freed yet, it still has pending buffers.
1883  **/
1884 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1885 		      unsigned int bidi_bytes,
1886 		      int (drv_callback)(struct request *))
1887 {
1888 	struct request_queue *q = rq->q;
1889 	unsigned long flags = 0UL;
1890 
1891 	if (blk_fs_request(rq) || blk_pc_request(rq)) {
1892 		if (__end_that_request_first(rq, error, nr_bytes))
1893 			return 1;
1894 
1895 		/* Bidi request must be completed as a whole */
1896 		if (blk_bidi_rq(rq) &&
1897 		    __end_that_request_first(rq->next_rq, error, bidi_bytes))
1898 			return 1;
1899 	}
1900 
1901 	/* Special feature for tricky drivers */
1902 	if (drv_callback && drv_callback(rq))
1903 		return 1;
1904 
1905 	add_disk_randomness(rq->rq_disk);
1906 
1907 	spin_lock_irqsave(q->queue_lock, flags);
1908 	end_that_request_last(rq, error);
1909 	spin_unlock_irqrestore(q->queue_lock, flags);
1910 
1911 	return 0;
1912 }
1913 
1914 /**
1915  * blk_end_request - Helper function for drivers to complete the request.
1916  * @rq:       the request being processed
1917  * @error:    0 for success, < 0 for error
1918  * @nr_bytes: number of bytes to complete
1919  *
1920  * Description:
1921  *     Ends I/O on a number of bytes attached to @rq.
1922  *     If @rq has leftover, sets it up for the next range of segments.
1923  *
1924  * Return:
1925  *     0 - we are done with this request
1926  *     1 - still buffers pending for this request
1927  **/
1928 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1929 {
1930 	return blk_end_io(rq, error, nr_bytes, 0, NULL);
1931 }
1932 EXPORT_SYMBOL_GPL(blk_end_request);
1933 
1934 /**
1935  * __blk_end_request - Helper function for drivers to complete the request.
1936  * @rq:       the request being processed
1937  * @error:    0 for success, < 0 for error
1938  * @nr_bytes: number of bytes to complete
1939  *
1940  * Description:
1941  *     Must be called with queue lock held unlike blk_end_request().
1942  *
1943  * Return:
1944  *     0 - we are done with this request
1945  *     1 - still buffers pending for this request
1946  **/
1947 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1948 {
1949 	if (blk_fs_request(rq) || blk_pc_request(rq)) {
1950 		if (__end_that_request_first(rq, error, nr_bytes))
1951 			return 1;
1952 	}
1953 
1954 	add_disk_randomness(rq->rq_disk);
1955 
1956 	end_that_request_last(rq, error);
1957 
1958 	return 0;
1959 }
1960 EXPORT_SYMBOL_GPL(__blk_end_request);
1961 
1962 /**
1963  * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1964  * @rq:         the bidi request being processed
1965  * @error:      0 for success, < 0 for error
1966  * @nr_bytes:   number of bytes to complete @rq
1967  * @bidi_bytes: number of bytes to complete @rq->next_rq
1968  *
1969  * Description:
1970  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1971  *
1972  * Return:
1973  *     0 - we are done with this request
1974  *     1 - still buffers pending for this request
1975  **/
1976 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1977 			 unsigned int bidi_bytes)
1978 {
1979 	return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1980 }
1981 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1982 
1983 /**
1984  * blk_end_request_callback - Special helper function for tricky drivers
1985  * @rq:           the request being processed
1986  * @error:        0 for success, < 0 for error
1987  * @nr_bytes:     number of bytes to complete
1988  * @drv_callback: function called between completion of bios in the request
1989  *                and completion of the request.
1990  *                If the callback returns non 0, this helper returns without
1991  *                completion of the request.
1992  *
1993  * Description:
1994  *     Ends I/O on a number of bytes attached to @rq.
1995  *     If @rq has leftover, sets it up for the next range of segments.
1996  *
1997  *     This special helper function is used only for existing tricky drivers.
1998  *     (e.g. cdrom_newpc_intr() of ide-cd)
1999  *     This interface will be removed when such drivers are rewritten.
2000  *     Don't use this interface in other places anymore.
2001  *
2002  * Return:
2003  *     0 - we are done with this request
2004  *     1 - this request is not freed yet.
2005  *         this request still has pending buffers or
2006  *         the driver doesn't want to finish this request yet.
2007  **/
2008 int blk_end_request_callback(struct request *rq, int error,
2009 			     unsigned int nr_bytes,
2010 			     int (drv_callback)(struct request *))
2011 {
2012 	return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2013 }
2014 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2015 
2016 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2017 		     struct bio *bio)
2018 {
2019 	/* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2020 	rq->cmd_flags |= (bio->bi_rw & 3);
2021 
2022 	rq->nr_phys_segments = bio_phys_segments(q, bio);
2023 	rq->nr_hw_segments = bio_hw_segments(q, bio);
2024 	rq->current_nr_sectors = bio_cur_sectors(bio);
2025 	rq->hard_cur_sectors = rq->current_nr_sectors;
2026 	rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2027 	rq->buffer = bio_data(bio);
2028 	rq->data_len = bio->bi_size;
2029 
2030 	rq->bio = rq->biotail = bio;
2031 
2032 	if (bio->bi_bdev)
2033 		rq->rq_disk = bio->bi_bdev->bd_disk;
2034 }
2035 
2036 int kblockd_schedule_work(struct work_struct *work)
2037 {
2038 	return queue_work(kblockd_workqueue, work);
2039 }
2040 EXPORT_SYMBOL(kblockd_schedule_work);
2041 
2042 void kblockd_flush_work(struct work_struct *work)
2043 {
2044 	cancel_work_sync(work);
2045 }
2046 EXPORT_SYMBOL(kblockd_flush_work);
2047 
2048 int __init blk_dev_init(void)
2049 {
2050 	int i;
2051 
2052 	kblockd_workqueue = create_workqueue("kblockd");
2053 	if (!kblockd_workqueue)
2054 		panic("Failed to create kblockd\n");
2055 
2056 	request_cachep = kmem_cache_create("blkdev_requests",
2057 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2058 
2059 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2060 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2061 
2062 	for_each_possible_cpu(i)
2063 		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2064 
2065 	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
2066 	register_hotcpu_notifier(&blk_cpu_notifier);
2067 
2068 	return 0;
2069 }
2070 
2071