1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 #include <linux/bpf.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/block.h> 41 42 #include "blk.h" 43 #include "blk-mq.h" 44 #include "blk-mq-sched.h" 45 #include "blk-wbt.h" 46 47 #ifdef CONFIG_DEBUG_FS 48 struct dentry *blk_debugfs_root; 49 #endif 50 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 56 57 DEFINE_IDA(blk_queue_ida); 58 59 /* 60 * For the allocated request tables 61 */ 62 struct kmem_cache *request_cachep; 63 64 /* 65 * For queue allocation 66 */ 67 struct kmem_cache *blk_requestq_cachep; 68 69 /* 70 * Controlling structure to kblockd 71 */ 72 static struct workqueue_struct *kblockd_workqueue; 73 74 /** 75 * blk_queue_flag_set - atomically set a queue flag 76 * @flag: flag to be set 77 * @q: request queue 78 */ 79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 80 { 81 unsigned long flags; 82 83 spin_lock_irqsave(q->queue_lock, flags); 84 queue_flag_set(flag, q); 85 spin_unlock_irqrestore(q->queue_lock, flags); 86 } 87 EXPORT_SYMBOL(blk_queue_flag_set); 88 89 /** 90 * blk_queue_flag_clear - atomically clear a queue flag 91 * @flag: flag to be cleared 92 * @q: request queue 93 */ 94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 95 { 96 unsigned long flags; 97 98 spin_lock_irqsave(q->queue_lock, flags); 99 queue_flag_clear(flag, q); 100 spin_unlock_irqrestore(q->queue_lock, flags); 101 } 102 EXPORT_SYMBOL(blk_queue_flag_clear); 103 104 /** 105 * blk_queue_flag_test_and_set - atomically test and set a queue flag 106 * @flag: flag to be set 107 * @q: request queue 108 * 109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 110 * the flag was already set. 111 */ 112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 113 { 114 unsigned long flags; 115 bool res; 116 117 spin_lock_irqsave(q->queue_lock, flags); 118 res = queue_flag_test_and_set(flag, q); 119 spin_unlock_irqrestore(q->queue_lock, flags); 120 121 return res; 122 } 123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 124 125 /** 126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag 127 * @flag: flag to be cleared 128 * @q: request queue 129 * 130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 131 * the flag was set. 132 */ 133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q) 134 { 135 unsigned long flags; 136 bool res; 137 138 spin_lock_irqsave(q->queue_lock, flags); 139 res = queue_flag_test_and_clear(flag, q); 140 spin_unlock_irqrestore(q->queue_lock, flags); 141 142 return res; 143 } 144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear); 145 146 static void blk_clear_congested(struct request_list *rl, int sync) 147 { 148 #ifdef CONFIG_CGROUP_WRITEBACK 149 clear_wb_congested(rl->blkg->wb_congested, sync); 150 #else 151 /* 152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 153 * flip its congestion state for events on other blkcgs. 154 */ 155 if (rl == &rl->q->root_rl) 156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 157 #endif 158 } 159 160 static void blk_set_congested(struct request_list *rl, int sync) 161 { 162 #ifdef CONFIG_CGROUP_WRITEBACK 163 set_wb_congested(rl->blkg->wb_congested, sync); 164 #else 165 /* see blk_clear_congested() */ 166 if (rl == &rl->q->root_rl) 167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 168 #endif 169 } 170 171 void blk_queue_congestion_threshold(struct request_queue *q) 172 { 173 int nr; 174 175 nr = q->nr_requests - (q->nr_requests / 8) + 1; 176 if (nr > q->nr_requests) 177 nr = q->nr_requests; 178 q->nr_congestion_on = nr; 179 180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 181 if (nr < 1) 182 nr = 1; 183 q->nr_congestion_off = nr; 184 } 185 186 void blk_rq_init(struct request_queue *q, struct request *rq) 187 { 188 memset(rq, 0, sizeof(*rq)); 189 190 INIT_LIST_HEAD(&rq->queuelist); 191 INIT_LIST_HEAD(&rq->timeout_list); 192 rq->cpu = -1; 193 rq->q = q; 194 rq->__sector = (sector_t) -1; 195 INIT_HLIST_NODE(&rq->hash); 196 RB_CLEAR_NODE(&rq->rb_node); 197 rq->tag = -1; 198 rq->internal_tag = -1; 199 rq->start_time_ns = ktime_get_ns(); 200 rq->part = NULL; 201 } 202 EXPORT_SYMBOL(blk_rq_init); 203 204 static const struct { 205 int errno; 206 const char *name; 207 } blk_errors[] = { 208 [BLK_STS_OK] = { 0, "" }, 209 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 210 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 211 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 212 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 213 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 214 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 215 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 216 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 217 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 218 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 219 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 220 221 /* device mapper special case, should not leak out: */ 222 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 223 224 /* everything else not covered above: */ 225 [BLK_STS_IOERR] = { -EIO, "I/O" }, 226 }; 227 228 blk_status_t errno_to_blk_status(int errno) 229 { 230 int i; 231 232 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 233 if (blk_errors[i].errno == errno) 234 return (__force blk_status_t)i; 235 } 236 237 return BLK_STS_IOERR; 238 } 239 EXPORT_SYMBOL_GPL(errno_to_blk_status); 240 241 int blk_status_to_errno(blk_status_t status) 242 { 243 int idx = (__force int)status; 244 245 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 246 return -EIO; 247 return blk_errors[idx].errno; 248 } 249 EXPORT_SYMBOL_GPL(blk_status_to_errno); 250 251 static void print_req_error(struct request *req, blk_status_t status) 252 { 253 int idx = (__force int)status; 254 255 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 256 return; 257 258 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 259 __func__, blk_errors[idx].name, req->rq_disk ? 260 req->rq_disk->disk_name : "?", 261 (unsigned long long)blk_rq_pos(req)); 262 } 263 264 static void req_bio_endio(struct request *rq, struct bio *bio, 265 unsigned int nbytes, blk_status_t error) 266 { 267 if (error) 268 bio->bi_status = error; 269 270 if (unlikely(rq->rq_flags & RQF_QUIET)) 271 bio_set_flag(bio, BIO_QUIET); 272 273 bio_advance(bio, nbytes); 274 275 /* don't actually finish bio if it's part of flush sequence */ 276 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 277 bio_endio(bio); 278 } 279 280 void blk_dump_rq_flags(struct request *rq, char *msg) 281 { 282 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 283 rq->rq_disk ? rq->rq_disk->disk_name : "?", 284 (unsigned long long) rq->cmd_flags); 285 286 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 287 (unsigned long long)blk_rq_pos(rq), 288 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 289 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 290 rq->bio, rq->biotail, blk_rq_bytes(rq)); 291 } 292 EXPORT_SYMBOL(blk_dump_rq_flags); 293 294 static void blk_delay_work(struct work_struct *work) 295 { 296 struct request_queue *q; 297 298 q = container_of(work, struct request_queue, delay_work.work); 299 spin_lock_irq(q->queue_lock); 300 __blk_run_queue(q); 301 spin_unlock_irq(q->queue_lock); 302 } 303 304 /** 305 * blk_delay_queue - restart queueing after defined interval 306 * @q: The &struct request_queue in question 307 * @msecs: Delay in msecs 308 * 309 * Description: 310 * Sometimes queueing needs to be postponed for a little while, to allow 311 * resources to come back. This function will make sure that queueing is 312 * restarted around the specified time. 313 */ 314 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 315 { 316 lockdep_assert_held(q->queue_lock); 317 WARN_ON_ONCE(q->mq_ops); 318 319 if (likely(!blk_queue_dead(q))) 320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 321 msecs_to_jiffies(msecs)); 322 } 323 EXPORT_SYMBOL(blk_delay_queue); 324 325 /** 326 * blk_start_queue_async - asynchronously restart a previously stopped queue 327 * @q: The &struct request_queue in question 328 * 329 * Description: 330 * blk_start_queue_async() will clear the stop flag on the queue, and 331 * ensure that the request_fn for the queue is run from an async 332 * context. 333 **/ 334 void blk_start_queue_async(struct request_queue *q) 335 { 336 lockdep_assert_held(q->queue_lock); 337 WARN_ON_ONCE(q->mq_ops); 338 339 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 340 blk_run_queue_async(q); 341 } 342 EXPORT_SYMBOL(blk_start_queue_async); 343 344 /** 345 * blk_start_queue - restart a previously stopped queue 346 * @q: The &struct request_queue in question 347 * 348 * Description: 349 * blk_start_queue() will clear the stop flag on the queue, and call 350 * the request_fn for the queue if it was in a stopped state when 351 * entered. Also see blk_stop_queue(). 352 **/ 353 void blk_start_queue(struct request_queue *q) 354 { 355 lockdep_assert_held(q->queue_lock); 356 WARN_ON_ONCE(q->mq_ops); 357 358 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 359 __blk_run_queue(q); 360 } 361 EXPORT_SYMBOL(blk_start_queue); 362 363 /** 364 * blk_stop_queue - stop a queue 365 * @q: The &struct request_queue in question 366 * 367 * Description: 368 * The Linux block layer assumes that a block driver will consume all 369 * entries on the request queue when the request_fn strategy is called. 370 * Often this will not happen, because of hardware limitations (queue 371 * depth settings). If a device driver gets a 'queue full' response, 372 * or if it simply chooses not to queue more I/O at one point, it can 373 * call this function to prevent the request_fn from being called until 374 * the driver has signalled it's ready to go again. This happens by calling 375 * blk_start_queue() to restart queue operations. 376 **/ 377 void blk_stop_queue(struct request_queue *q) 378 { 379 lockdep_assert_held(q->queue_lock); 380 WARN_ON_ONCE(q->mq_ops); 381 382 cancel_delayed_work(&q->delay_work); 383 queue_flag_set(QUEUE_FLAG_STOPPED, q); 384 } 385 EXPORT_SYMBOL(blk_stop_queue); 386 387 /** 388 * blk_sync_queue - cancel any pending callbacks on a queue 389 * @q: the queue 390 * 391 * Description: 392 * The block layer may perform asynchronous callback activity 393 * on a queue, such as calling the unplug function after a timeout. 394 * A block device may call blk_sync_queue to ensure that any 395 * such activity is cancelled, thus allowing it to release resources 396 * that the callbacks might use. The caller must already have made sure 397 * that its ->make_request_fn will not re-add plugging prior to calling 398 * this function. 399 * 400 * This function does not cancel any asynchronous activity arising 401 * out of elevator or throttling code. That would require elevator_exit() 402 * and blkcg_exit_queue() to be called with queue lock initialized. 403 * 404 */ 405 void blk_sync_queue(struct request_queue *q) 406 { 407 del_timer_sync(&q->timeout); 408 cancel_work_sync(&q->timeout_work); 409 410 if (q->mq_ops) { 411 struct blk_mq_hw_ctx *hctx; 412 int i; 413 414 cancel_delayed_work_sync(&q->requeue_work); 415 queue_for_each_hw_ctx(q, hctx, i) 416 cancel_delayed_work_sync(&hctx->run_work); 417 } else { 418 cancel_delayed_work_sync(&q->delay_work); 419 } 420 } 421 EXPORT_SYMBOL(blk_sync_queue); 422 423 /** 424 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY 425 * @q: request queue pointer 426 * 427 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not 428 * set and 1 if the flag was already set. 429 */ 430 int blk_set_preempt_only(struct request_queue *q) 431 { 432 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q); 433 } 434 EXPORT_SYMBOL_GPL(blk_set_preempt_only); 435 436 void blk_clear_preempt_only(struct request_queue *q) 437 { 438 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q); 439 wake_up_all(&q->mq_freeze_wq); 440 } 441 EXPORT_SYMBOL_GPL(blk_clear_preempt_only); 442 443 /** 444 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 445 * @q: The queue to run 446 * 447 * Description: 448 * Invoke request handling on a queue if there are any pending requests. 449 * May be used to restart request handling after a request has completed. 450 * This variant runs the queue whether or not the queue has been 451 * stopped. Must be called with the queue lock held and interrupts 452 * disabled. See also @blk_run_queue. 453 */ 454 inline void __blk_run_queue_uncond(struct request_queue *q) 455 { 456 lockdep_assert_held(q->queue_lock); 457 WARN_ON_ONCE(q->mq_ops); 458 459 if (unlikely(blk_queue_dead(q))) 460 return; 461 462 /* 463 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 464 * the queue lock internally. As a result multiple threads may be 465 * running such a request function concurrently. Keep track of the 466 * number of active request_fn invocations such that blk_drain_queue() 467 * can wait until all these request_fn calls have finished. 468 */ 469 q->request_fn_active++; 470 q->request_fn(q); 471 q->request_fn_active--; 472 } 473 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 474 475 /** 476 * __blk_run_queue - run a single device queue 477 * @q: The queue to run 478 * 479 * Description: 480 * See @blk_run_queue. 481 */ 482 void __blk_run_queue(struct request_queue *q) 483 { 484 lockdep_assert_held(q->queue_lock); 485 WARN_ON_ONCE(q->mq_ops); 486 487 if (unlikely(blk_queue_stopped(q))) 488 return; 489 490 __blk_run_queue_uncond(q); 491 } 492 EXPORT_SYMBOL(__blk_run_queue); 493 494 /** 495 * blk_run_queue_async - run a single device queue in workqueue context 496 * @q: The queue to run 497 * 498 * Description: 499 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 500 * of us. 501 * 502 * Note: 503 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 504 * has canceled q->delay_work, callers must hold the queue lock to avoid 505 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 506 */ 507 void blk_run_queue_async(struct request_queue *q) 508 { 509 lockdep_assert_held(q->queue_lock); 510 WARN_ON_ONCE(q->mq_ops); 511 512 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 513 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 514 } 515 EXPORT_SYMBOL(blk_run_queue_async); 516 517 /** 518 * blk_run_queue - run a single device queue 519 * @q: The queue to run 520 * 521 * Description: 522 * Invoke request handling on this queue, if it has pending work to do. 523 * May be used to restart queueing when a request has completed. 524 */ 525 void blk_run_queue(struct request_queue *q) 526 { 527 unsigned long flags; 528 529 WARN_ON_ONCE(q->mq_ops); 530 531 spin_lock_irqsave(q->queue_lock, flags); 532 __blk_run_queue(q); 533 spin_unlock_irqrestore(q->queue_lock, flags); 534 } 535 EXPORT_SYMBOL(blk_run_queue); 536 537 void blk_put_queue(struct request_queue *q) 538 { 539 kobject_put(&q->kobj); 540 } 541 EXPORT_SYMBOL(blk_put_queue); 542 543 /** 544 * __blk_drain_queue - drain requests from request_queue 545 * @q: queue to drain 546 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 547 * 548 * Drain requests from @q. If @drain_all is set, all requests are drained. 549 * If not, only ELVPRIV requests are drained. The caller is responsible 550 * for ensuring that no new requests which need to be drained are queued. 551 */ 552 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 553 __releases(q->queue_lock) 554 __acquires(q->queue_lock) 555 { 556 int i; 557 558 lockdep_assert_held(q->queue_lock); 559 WARN_ON_ONCE(q->mq_ops); 560 561 while (true) { 562 bool drain = false; 563 564 /* 565 * The caller might be trying to drain @q before its 566 * elevator is initialized. 567 */ 568 if (q->elevator) 569 elv_drain_elevator(q); 570 571 blkcg_drain_queue(q); 572 573 /* 574 * This function might be called on a queue which failed 575 * driver init after queue creation or is not yet fully 576 * active yet. Some drivers (e.g. fd and loop) get unhappy 577 * in such cases. Kick queue iff dispatch queue has 578 * something on it and @q has request_fn set. 579 */ 580 if (!list_empty(&q->queue_head) && q->request_fn) 581 __blk_run_queue(q); 582 583 drain |= q->nr_rqs_elvpriv; 584 drain |= q->request_fn_active; 585 586 /* 587 * Unfortunately, requests are queued at and tracked from 588 * multiple places and there's no single counter which can 589 * be drained. Check all the queues and counters. 590 */ 591 if (drain_all) { 592 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 593 drain |= !list_empty(&q->queue_head); 594 for (i = 0; i < 2; i++) { 595 drain |= q->nr_rqs[i]; 596 drain |= q->in_flight[i]; 597 if (fq) 598 drain |= !list_empty(&fq->flush_queue[i]); 599 } 600 } 601 602 if (!drain) 603 break; 604 605 spin_unlock_irq(q->queue_lock); 606 607 msleep(10); 608 609 spin_lock_irq(q->queue_lock); 610 } 611 612 /* 613 * With queue marked dead, any woken up waiter will fail the 614 * allocation path, so the wakeup chaining is lost and we're 615 * left with hung waiters. We need to wake up those waiters. 616 */ 617 if (q->request_fn) { 618 struct request_list *rl; 619 620 blk_queue_for_each_rl(rl, q) 621 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 622 wake_up_all(&rl->wait[i]); 623 } 624 } 625 626 void blk_drain_queue(struct request_queue *q) 627 { 628 spin_lock_irq(q->queue_lock); 629 __blk_drain_queue(q, true); 630 spin_unlock_irq(q->queue_lock); 631 } 632 633 /** 634 * blk_queue_bypass_start - enter queue bypass mode 635 * @q: queue of interest 636 * 637 * In bypass mode, only the dispatch FIFO queue of @q is used. This 638 * function makes @q enter bypass mode and drains all requests which were 639 * throttled or issued before. On return, it's guaranteed that no request 640 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 641 * inside queue or RCU read lock. 642 */ 643 void blk_queue_bypass_start(struct request_queue *q) 644 { 645 WARN_ON_ONCE(q->mq_ops); 646 647 spin_lock_irq(q->queue_lock); 648 q->bypass_depth++; 649 queue_flag_set(QUEUE_FLAG_BYPASS, q); 650 spin_unlock_irq(q->queue_lock); 651 652 /* 653 * Queues start drained. Skip actual draining till init is 654 * complete. This avoids lenghty delays during queue init which 655 * can happen many times during boot. 656 */ 657 if (blk_queue_init_done(q)) { 658 spin_lock_irq(q->queue_lock); 659 __blk_drain_queue(q, false); 660 spin_unlock_irq(q->queue_lock); 661 662 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 663 synchronize_rcu(); 664 } 665 } 666 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 667 668 /** 669 * blk_queue_bypass_end - leave queue bypass mode 670 * @q: queue of interest 671 * 672 * Leave bypass mode and restore the normal queueing behavior. 673 * 674 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 675 * this function is called for both blk-sq and blk-mq queues. 676 */ 677 void blk_queue_bypass_end(struct request_queue *q) 678 { 679 spin_lock_irq(q->queue_lock); 680 if (!--q->bypass_depth) 681 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 682 WARN_ON_ONCE(q->bypass_depth < 0); 683 spin_unlock_irq(q->queue_lock); 684 } 685 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 686 687 void blk_set_queue_dying(struct request_queue *q) 688 { 689 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 690 691 /* 692 * When queue DYING flag is set, we need to block new req 693 * entering queue, so we call blk_freeze_queue_start() to 694 * prevent I/O from crossing blk_queue_enter(). 695 */ 696 blk_freeze_queue_start(q); 697 698 if (q->mq_ops) 699 blk_mq_wake_waiters(q); 700 else { 701 struct request_list *rl; 702 703 spin_lock_irq(q->queue_lock); 704 blk_queue_for_each_rl(rl, q) { 705 if (rl->rq_pool) { 706 wake_up_all(&rl->wait[BLK_RW_SYNC]); 707 wake_up_all(&rl->wait[BLK_RW_ASYNC]); 708 } 709 } 710 spin_unlock_irq(q->queue_lock); 711 } 712 713 /* Make blk_queue_enter() reexamine the DYING flag. */ 714 wake_up_all(&q->mq_freeze_wq); 715 } 716 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 717 718 /** 719 * blk_cleanup_queue - shutdown a request queue 720 * @q: request queue to shutdown 721 * 722 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 723 * put it. All future requests will be failed immediately with -ENODEV. 724 */ 725 void blk_cleanup_queue(struct request_queue *q) 726 { 727 spinlock_t *lock = q->queue_lock; 728 729 /* mark @q DYING, no new request or merges will be allowed afterwards */ 730 mutex_lock(&q->sysfs_lock); 731 blk_set_queue_dying(q); 732 spin_lock_irq(lock); 733 734 /* 735 * A dying queue is permanently in bypass mode till released. Note 736 * that, unlike blk_queue_bypass_start(), we aren't performing 737 * synchronize_rcu() after entering bypass mode to avoid the delay 738 * as some drivers create and destroy a lot of queues while 739 * probing. This is still safe because blk_release_queue() will be 740 * called only after the queue refcnt drops to zero and nothing, 741 * RCU or not, would be traversing the queue by then. 742 */ 743 q->bypass_depth++; 744 queue_flag_set(QUEUE_FLAG_BYPASS, q); 745 746 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 747 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 748 queue_flag_set(QUEUE_FLAG_DYING, q); 749 spin_unlock_irq(lock); 750 mutex_unlock(&q->sysfs_lock); 751 752 /* 753 * Drain all requests queued before DYING marking. Set DEAD flag to 754 * prevent that q->request_fn() gets invoked after draining finished. 755 */ 756 blk_freeze_queue(q); 757 spin_lock_irq(lock); 758 queue_flag_set(QUEUE_FLAG_DEAD, q); 759 spin_unlock_irq(lock); 760 761 /* 762 * make sure all in-progress dispatch are completed because 763 * blk_freeze_queue() can only complete all requests, and 764 * dispatch may still be in-progress since we dispatch requests 765 * from more than one contexts 766 */ 767 if (q->mq_ops) 768 blk_mq_quiesce_queue(q); 769 770 /* for synchronous bio-based driver finish in-flight integrity i/o */ 771 blk_flush_integrity(); 772 773 /* @q won't process any more request, flush async actions */ 774 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 775 blk_sync_queue(q); 776 777 /* 778 * I/O scheduler exit is only safe after the sysfs scheduler attribute 779 * has been removed. 780 */ 781 WARN_ON_ONCE(q->kobj.state_in_sysfs); 782 783 /* 784 * Since the I/O scheduler exit code may access cgroup information, 785 * perform I/O scheduler exit before disassociating from the block 786 * cgroup controller. 787 */ 788 if (q->elevator) { 789 ioc_clear_queue(q); 790 elevator_exit(q, q->elevator); 791 q->elevator = NULL; 792 } 793 794 /* 795 * Remove all references to @q from the block cgroup controller before 796 * restoring @q->queue_lock to avoid that restoring this pointer causes 797 * e.g. blkcg_print_blkgs() to crash. 798 */ 799 blkcg_exit_queue(q); 800 801 /* 802 * Since the cgroup code may dereference the @q->backing_dev_info 803 * pointer, only decrease its reference count after having removed the 804 * association with the block cgroup controller. 805 */ 806 bdi_put(q->backing_dev_info); 807 808 if (q->mq_ops) 809 blk_mq_free_queue(q); 810 percpu_ref_exit(&q->q_usage_counter); 811 812 spin_lock_irq(lock); 813 if (q->queue_lock != &q->__queue_lock) 814 q->queue_lock = &q->__queue_lock; 815 spin_unlock_irq(lock); 816 817 /* @q is and will stay empty, shutdown and put */ 818 blk_put_queue(q); 819 } 820 EXPORT_SYMBOL(blk_cleanup_queue); 821 822 /* Allocate memory local to the request queue */ 823 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 824 { 825 struct request_queue *q = data; 826 827 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 828 } 829 830 static void free_request_simple(void *element, void *data) 831 { 832 kmem_cache_free(request_cachep, element); 833 } 834 835 static void *alloc_request_size(gfp_t gfp_mask, void *data) 836 { 837 struct request_queue *q = data; 838 struct request *rq; 839 840 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 841 q->node); 842 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 843 kfree(rq); 844 rq = NULL; 845 } 846 return rq; 847 } 848 849 static void free_request_size(void *element, void *data) 850 { 851 struct request_queue *q = data; 852 853 if (q->exit_rq_fn) 854 q->exit_rq_fn(q, element); 855 kfree(element); 856 } 857 858 int blk_init_rl(struct request_list *rl, struct request_queue *q, 859 gfp_t gfp_mask) 860 { 861 if (unlikely(rl->rq_pool) || q->mq_ops) 862 return 0; 863 864 rl->q = q; 865 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 866 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 867 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 868 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 869 870 if (q->cmd_size) { 871 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 872 alloc_request_size, free_request_size, 873 q, gfp_mask, q->node); 874 } else { 875 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 876 alloc_request_simple, free_request_simple, 877 q, gfp_mask, q->node); 878 } 879 if (!rl->rq_pool) 880 return -ENOMEM; 881 882 if (rl != &q->root_rl) 883 WARN_ON_ONCE(!blk_get_queue(q)); 884 885 return 0; 886 } 887 888 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 889 { 890 if (rl->rq_pool) { 891 mempool_destroy(rl->rq_pool); 892 if (rl != &q->root_rl) 893 blk_put_queue(q); 894 } 895 } 896 897 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 898 { 899 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL); 900 } 901 EXPORT_SYMBOL(blk_alloc_queue); 902 903 /** 904 * blk_queue_enter() - try to increase q->q_usage_counter 905 * @q: request queue pointer 906 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 907 */ 908 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 909 { 910 const bool preempt = flags & BLK_MQ_REQ_PREEMPT; 911 912 while (true) { 913 bool success = false; 914 915 rcu_read_lock(); 916 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 917 /* 918 * The code that sets the PREEMPT_ONLY flag is 919 * responsible for ensuring that that flag is globally 920 * visible before the queue is unfrozen. 921 */ 922 if (preempt || !blk_queue_preempt_only(q)) { 923 success = true; 924 } else { 925 percpu_ref_put(&q->q_usage_counter); 926 } 927 } 928 rcu_read_unlock(); 929 930 if (success) 931 return 0; 932 933 if (flags & BLK_MQ_REQ_NOWAIT) 934 return -EBUSY; 935 936 /* 937 * read pair of barrier in blk_freeze_queue_start(), 938 * we need to order reading __PERCPU_REF_DEAD flag of 939 * .q_usage_counter and reading .mq_freeze_depth or 940 * queue dying flag, otherwise the following wait may 941 * never return if the two reads are reordered. 942 */ 943 smp_rmb(); 944 945 wait_event(q->mq_freeze_wq, 946 (atomic_read(&q->mq_freeze_depth) == 0 && 947 (preempt || !blk_queue_preempt_only(q))) || 948 blk_queue_dying(q)); 949 if (blk_queue_dying(q)) 950 return -ENODEV; 951 } 952 } 953 954 void blk_queue_exit(struct request_queue *q) 955 { 956 percpu_ref_put(&q->q_usage_counter); 957 } 958 959 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 960 { 961 struct request_queue *q = 962 container_of(ref, struct request_queue, q_usage_counter); 963 964 wake_up_all(&q->mq_freeze_wq); 965 } 966 967 static void blk_rq_timed_out_timer(struct timer_list *t) 968 { 969 struct request_queue *q = from_timer(q, t, timeout); 970 971 kblockd_schedule_work(&q->timeout_work); 972 } 973 974 /** 975 * blk_alloc_queue_node - allocate a request queue 976 * @gfp_mask: memory allocation flags 977 * @node_id: NUMA node to allocate memory from 978 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g. 979 * serialize calls to the legacy .request_fn() callback. Ignored for 980 * blk-mq request queues. 981 * 982 * Note: pass the queue lock as the third argument to this function instead of 983 * setting the queue lock pointer explicitly to avoid triggering a sporadic 984 * crash in the blkcg code. This function namely calls blkcg_init_queue() and 985 * the queue lock pointer must be set before blkcg_init_queue() is called. 986 */ 987 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id, 988 spinlock_t *lock) 989 { 990 struct request_queue *q; 991 int ret; 992 993 q = kmem_cache_alloc_node(blk_requestq_cachep, 994 gfp_mask | __GFP_ZERO, node_id); 995 if (!q) 996 return NULL; 997 998 INIT_LIST_HEAD(&q->queue_head); 999 q->last_merge = NULL; 1000 q->end_sector = 0; 1001 q->boundary_rq = NULL; 1002 1003 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 1004 if (q->id < 0) 1005 goto fail_q; 1006 1007 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 1008 if (ret) 1009 goto fail_id; 1010 1011 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 1012 if (!q->backing_dev_info) 1013 goto fail_split; 1014 1015 q->stats = blk_alloc_queue_stats(); 1016 if (!q->stats) 1017 goto fail_stats; 1018 1019 q->backing_dev_info->ra_pages = 1020 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 1021 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 1022 q->backing_dev_info->name = "block"; 1023 q->node = node_id; 1024 1025 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 1026 laptop_mode_timer_fn, 0); 1027 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 1028 INIT_WORK(&q->timeout_work, NULL); 1029 INIT_LIST_HEAD(&q->queue_head); 1030 INIT_LIST_HEAD(&q->timeout_list); 1031 INIT_LIST_HEAD(&q->icq_list); 1032 #ifdef CONFIG_BLK_CGROUP 1033 INIT_LIST_HEAD(&q->blkg_list); 1034 #endif 1035 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 1036 1037 kobject_init(&q->kobj, &blk_queue_ktype); 1038 1039 #ifdef CONFIG_BLK_DEV_IO_TRACE 1040 mutex_init(&q->blk_trace_mutex); 1041 #endif 1042 mutex_init(&q->sysfs_lock); 1043 spin_lock_init(&q->__queue_lock); 1044 1045 if (!q->mq_ops) 1046 q->queue_lock = lock ? : &q->__queue_lock; 1047 1048 /* 1049 * A queue starts its life with bypass turned on to avoid 1050 * unnecessary bypass on/off overhead and nasty surprises during 1051 * init. The initial bypass will be finished when the queue is 1052 * registered by blk_register_queue(). 1053 */ 1054 q->bypass_depth = 1; 1055 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q); 1056 1057 init_waitqueue_head(&q->mq_freeze_wq); 1058 1059 /* 1060 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1061 * See blk_register_queue() for details. 1062 */ 1063 if (percpu_ref_init(&q->q_usage_counter, 1064 blk_queue_usage_counter_release, 1065 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1066 goto fail_bdi; 1067 1068 if (blkcg_init_queue(q)) 1069 goto fail_ref; 1070 1071 return q; 1072 1073 fail_ref: 1074 percpu_ref_exit(&q->q_usage_counter); 1075 fail_bdi: 1076 blk_free_queue_stats(q->stats); 1077 fail_stats: 1078 bdi_put(q->backing_dev_info); 1079 fail_split: 1080 bioset_exit(&q->bio_split); 1081 fail_id: 1082 ida_simple_remove(&blk_queue_ida, q->id); 1083 fail_q: 1084 kmem_cache_free(blk_requestq_cachep, q); 1085 return NULL; 1086 } 1087 EXPORT_SYMBOL(blk_alloc_queue_node); 1088 1089 /** 1090 * blk_init_queue - prepare a request queue for use with a block device 1091 * @rfn: The function to be called to process requests that have been 1092 * placed on the queue. 1093 * @lock: Request queue spin lock 1094 * 1095 * Description: 1096 * If a block device wishes to use the standard request handling procedures, 1097 * which sorts requests and coalesces adjacent requests, then it must 1098 * call blk_init_queue(). The function @rfn will be called when there 1099 * are requests on the queue that need to be processed. If the device 1100 * supports plugging, then @rfn may not be called immediately when requests 1101 * are available on the queue, but may be called at some time later instead. 1102 * Plugged queues are generally unplugged when a buffer belonging to one 1103 * of the requests on the queue is needed, or due to memory pressure. 1104 * 1105 * @rfn is not required, or even expected, to remove all requests off the 1106 * queue, but only as many as it can handle at a time. If it does leave 1107 * requests on the queue, it is responsible for arranging that the requests 1108 * get dealt with eventually. 1109 * 1110 * The queue spin lock must be held while manipulating the requests on the 1111 * request queue; this lock will be taken also from interrupt context, so irq 1112 * disabling is needed for it. 1113 * 1114 * Function returns a pointer to the initialized request queue, or %NULL if 1115 * it didn't succeed. 1116 * 1117 * Note: 1118 * blk_init_queue() must be paired with a blk_cleanup_queue() call 1119 * when the block device is deactivated (such as at module unload). 1120 **/ 1121 1122 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 1123 { 1124 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 1125 } 1126 EXPORT_SYMBOL(blk_init_queue); 1127 1128 struct request_queue * 1129 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 1130 { 1131 struct request_queue *q; 1132 1133 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock); 1134 if (!q) 1135 return NULL; 1136 1137 q->request_fn = rfn; 1138 if (blk_init_allocated_queue(q) < 0) { 1139 blk_cleanup_queue(q); 1140 return NULL; 1141 } 1142 1143 return q; 1144 } 1145 EXPORT_SYMBOL(blk_init_queue_node); 1146 1147 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 1148 1149 1150 int blk_init_allocated_queue(struct request_queue *q) 1151 { 1152 WARN_ON_ONCE(q->mq_ops); 1153 1154 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 1155 if (!q->fq) 1156 return -ENOMEM; 1157 1158 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 1159 goto out_free_flush_queue; 1160 1161 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 1162 goto out_exit_flush_rq; 1163 1164 INIT_WORK(&q->timeout_work, blk_timeout_work); 1165 q->queue_flags |= QUEUE_FLAG_DEFAULT; 1166 1167 /* 1168 * This also sets hw/phys segments, boundary and size 1169 */ 1170 blk_queue_make_request(q, blk_queue_bio); 1171 1172 q->sg_reserved_size = INT_MAX; 1173 1174 if (elevator_init(q)) 1175 goto out_exit_flush_rq; 1176 return 0; 1177 1178 out_exit_flush_rq: 1179 if (q->exit_rq_fn) 1180 q->exit_rq_fn(q, q->fq->flush_rq); 1181 out_free_flush_queue: 1182 blk_free_flush_queue(q->fq); 1183 return -ENOMEM; 1184 } 1185 EXPORT_SYMBOL(blk_init_allocated_queue); 1186 1187 bool blk_get_queue(struct request_queue *q) 1188 { 1189 if (likely(!blk_queue_dying(q))) { 1190 __blk_get_queue(q); 1191 return true; 1192 } 1193 1194 return false; 1195 } 1196 EXPORT_SYMBOL(blk_get_queue); 1197 1198 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1199 { 1200 if (rq->rq_flags & RQF_ELVPRIV) { 1201 elv_put_request(rl->q, rq); 1202 if (rq->elv.icq) 1203 put_io_context(rq->elv.icq->ioc); 1204 } 1205 1206 mempool_free(rq, rl->rq_pool); 1207 } 1208 1209 /* 1210 * ioc_batching returns true if the ioc is a valid batching request and 1211 * should be given priority access to a request. 1212 */ 1213 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1214 { 1215 if (!ioc) 1216 return 0; 1217 1218 /* 1219 * Make sure the process is able to allocate at least 1 request 1220 * even if the batch times out, otherwise we could theoretically 1221 * lose wakeups. 1222 */ 1223 return ioc->nr_batch_requests == q->nr_batching || 1224 (ioc->nr_batch_requests > 0 1225 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1226 } 1227 1228 /* 1229 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1230 * will cause the process to be a "batcher" on all queues in the system. This 1231 * is the behaviour we want though - once it gets a wakeup it should be given 1232 * a nice run. 1233 */ 1234 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1235 { 1236 if (!ioc || ioc_batching(q, ioc)) 1237 return; 1238 1239 ioc->nr_batch_requests = q->nr_batching; 1240 ioc->last_waited = jiffies; 1241 } 1242 1243 static void __freed_request(struct request_list *rl, int sync) 1244 { 1245 struct request_queue *q = rl->q; 1246 1247 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1248 blk_clear_congested(rl, sync); 1249 1250 if (rl->count[sync] + 1 <= q->nr_requests) { 1251 if (waitqueue_active(&rl->wait[sync])) 1252 wake_up(&rl->wait[sync]); 1253 1254 blk_clear_rl_full(rl, sync); 1255 } 1256 } 1257 1258 /* 1259 * A request has just been released. Account for it, update the full and 1260 * congestion status, wake up any waiters. Called under q->queue_lock. 1261 */ 1262 static void freed_request(struct request_list *rl, bool sync, 1263 req_flags_t rq_flags) 1264 { 1265 struct request_queue *q = rl->q; 1266 1267 q->nr_rqs[sync]--; 1268 rl->count[sync]--; 1269 if (rq_flags & RQF_ELVPRIV) 1270 q->nr_rqs_elvpriv--; 1271 1272 __freed_request(rl, sync); 1273 1274 if (unlikely(rl->starved[sync ^ 1])) 1275 __freed_request(rl, sync ^ 1); 1276 } 1277 1278 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1279 { 1280 struct request_list *rl; 1281 int on_thresh, off_thresh; 1282 1283 WARN_ON_ONCE(q->mq_ops); 1284 1285 spin_lock_irq(q->queue_lock); 1286 q->nr_requests = nr; 1287 blk_queue_congestion_threshold(q); 1288 on_thresh = queue_congestion_on_threshold(q); 1289 off_thresh = queue_congestion_off_threshold(q); 1290 1291 blk_queue_for_each_rl(rl, q) { 1292 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1293 blk_set_congested(rl, BLK_RW_SYNC); 1294 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1295 blk_clear_congested(rl, BLK_RW_SYNC); 1296 1297 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1298 blk_set_congested(rl, BLK_RW_ASYNC); 1299 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1300 blk_clear_congested(rl, BLK_RW_ASYNC); 1301 1302 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1303 blk_set_rl_full(rl, BLK_RW_SYNC); 1304 } else { 1305 blk_clear_rl_full(rl, BLK_RW_SYNC); 1306 wake_up(&rl->wait[BLK_RW_SYNC]); 1307 } 1308 1309 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1310 blk_set_rl_full(rl, BLK_RW_ASYNC); 1311 } else { 1312 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1313 wake_up(&rl->wait[BLK_RW_ASYNC]); 1314 } 1315 } 1316 1317 spin_unlock_irq(q->queue_lock); 1318 return 0; 1319 } 1320 1321 /** 1322 * __get_request - get a free request 1323 * @rl: request list to allocate from 1324 * @op: operation and flags 1325 * @bio: bio to allocate request for (can be %NULL) 1326 * @flags: BLQ_MQ_REQ_* flags 1327 * @gfp_mask: allocator flags 1328 * 1329 * Get a free request from @q. This function may fail under memory 1330 * pressure or if @q is dead. 1331 * 1332 * Must be called with @q->queue_lock held and, 1333 * Returns ERR_PTR on failure, with @q->queue_lock held. 1334 * Returns request pointer on success, with @q->queue_lock *not held*. 1335 */ 1336 static struct request *__get_request(struct request_list *rl, unsigned int op, 1337 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask) 1338 { 1339 struct request_queue *q = rl->q; 1340 struct request *rq; 1341 struct elevator_type *et = q->elevator->type; 1342 struct io_context *ioc = rq_ioc(bio); 1343 struct io_cq *icq = NULL; 1344 const bool is_sync = op_is_sync(op); 1345 int may_queue; 1346 req_flags_t rq_flags = RQF_ALLOCED; 1347 1348 lockdep_assert_held(q->queue_lock); 1349 1350 if (unlikely(blk_queue_dying(q))) 1351 return ERR_PTR(-ENODEV); 1352 1353 may_queue = elv_may_queue(q, op); 1354 if (may_queue == ELV_MQUEUE_NO) 1355 goto rq_starved; 1356 1357 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1358 if (rl->count[is_sync]+1 >= q->nr_requests) { 1359 /* 1360 * The queue will fill after this allocation, so set 1361 * it as full, and mark this process as "batching". 1362 * This process will be allowed to complete a batch of 1363 * requests, others will be blocked. 1364 */ 1365 if (!blk_rl_full(rl, is_sync)) { 1366 ioc_set_batching(q, ioc); 1367 blk_set_rl_full(rl, is_sync); 1368 } else { 1369 if (may_queue != ELV_MQUEUE_MUST 1370 && !ioc_batching(q, ioc)) { 1371 /* 1372 * The queue is full and the allocating 1373 * process is not a "batcher", and not 1374 * exempted by the IO scheduler 1375 */ 1376 return ERR_PTR(-ENOMEM); 1377 } 1378 } 1379 } 1380 blk_set_congested(rl, is_sync); 1381 } 1382 1383 /* 1384 * Only allow batching queuers to allocate up to 50% over the defined 1385 * limit of requests, otherwise we could have thousands of requests 1386 * allocated with any setting of ->nr_requests 1387 */ 1388 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1389 return ERR_PTR(-ENOMEM); 1390 1391 q->nr_rqs[is_sync]++; 1392 rl->count[is_sync]++; 1393 rl->starved[is_sync] = 0; 1394 1395 /* 1396 * Decide whether the new request will be managed by elevator. If 1397 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1398 * prevent the current elevator from being destroyed until the new 1399 * request is freed. This guarantees icq's won't be destroyed and 1400 * makes creating new ones safe. 1401 * 1402 * Flush requests do not use the elevator so skip initialization. 1403 * This allows a request to share the flush and elevator data. 1404 * 1405 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1406 * it will be created after releasing queue_lock. 1407 */ 1408 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1409 rq_flags |= RQF_ELVPRIV; 1410 q->nr_rqs_elvpriv++; 1411 if (et->icq_cache && ioc) 1412 icq = ioc_lookup_icq(ioc, q); 1413 } 1414 1415 if (blk_queue_io_stat(q)) 1416 rq_flags |= RQF_IO_STAT; 1417 spin_unlock_irq(q->queue_lock); 1418 1419 /* allocate and init request */ 1420 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1421 if (!rq) 1422 goto fail_alloc; 1423 1424 blk_rq_init(q, rq); 1425 blk_rq_set_rl(rq, rl); 1426 rq->cmd_flags = op; 1427 rq->rq_flags = rq_flags; 1428 if (flags & BLK_MQ_REQ_PREEMPT) 1429 rq->rq_flags |= RQF_PREEMPT; 1430 1431 /* init elvpriv */ 1432 if (rq_flags & RQF_ELVPRIV) { 1433 if (unlikely(et->icq_cache && !icq)) { 1434 if (ioc) 1435 icq = ioc_create_icq(ioc, q, gfp_mask); 1436 if (!icq) 1437 goto fail_elvpriv; 1438 } 1439 1440 rq->elv.icq = icq; 1441 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1442 goto fail_elvpriv; 1443 1444 /* @rq->elv.icq holds io_context until @rq is freed */ 1445 if (icq) 1446 get_io_context(icq->ioc); 1447 } 1448 out: 1449 /* 1450 * ioc may be NULL here, and ioc_batching will be false. That's 1451 * OK, if the queue is under the request limit then requests need 1452 * not count toward the nr_batch_requests limit. There will always 1453 * be some limit enforced by BLK_BATCH_TIME. 1454 */ 1455 if (ioc_batching(q, ioc)) 1456 ioc->nr_batch_requests--; 1457 1458 trace_block_getrq(q, bio, op); 1459 return rq; 1460 1461 fail_elvpriv: 1462 /* 1463 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1464 * and may fail indefinitely under memory pressure and thus 1465 * shouldn't stall IO. Treat this request as !elvpriv. This will 1466 * disturb iosched and blkcg but weird is bettern than dead. 1467 */ 1468 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1469 __func__, dev_name(q->backing_dev_info->dev)); 1470 1471 rq->rq_flags &= ~RQF_ELVPRIV; 1472 rq->elv.icq = NULL; 1473 1474 spin_lock_irq(q->queue_lock); 1475 q->nr_rqs_elvpriv--; 1476 spin_unlock_irq(q->queue_lock); 1477 goto out; 1478 1479 fail_alloc: 1480 /* 1481 * Allocation failed presumably due to memory. Undo anything we 1482 * might have messed up. 1483 * 1484 * Allocating task should really be put onto the front of the wait 1485 * queue, but this is pretty rare. 1486 */ 1487 spin_lock_irq(q->queue_lock); 1488 freed_request(rl, is_sync, rq_flags); 1489 1490 /* 1491 * in the very unlikely event that allocation failed and no 1492 * requests for this direction was pending, mark us starved so that 1493 * freeing of a request in the other direction will notice 1494 * us. another possible fix would be to split the rq mempool into 1495 * READ and WRITE 1496 */ 1497 rq_starved: 1498 if (unlikely(rl->count[is_sync] == 0)) 1499 rl->starved[is_sync] = 1; 1500 return ERR_PTR(-ENOMEM); 1501 } 1502 1503 /** 1504 * get_request - get a free request 1505 * @q: request_queue to allocate request from 1506 * @op: operation and flags 1507 * @bio: bio to allocate request for (can be %NULL) 1508 * @flags: BLK_MQ_REQ_* flags. 1509 * @gfp: allocator flags 1510 * 1511 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags, 1512 * this function keeps retrying under memory pressure and fails iff @q is dead. 1513 * 1514 * Must be called with @q->queue_lock held and, 1515 * Returns ERR_PTR on failure, with @q->queue_lock held. 1516 * Returns request pointer on success, with @q->queue_lock *not held*. 1517 */ 1518 static struct request *get_request(struct request_queue *q, unsigned int op, 1519 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp) 1520 { 1521 const bool is_sync = op_is_sync(op); 1522 DEFINE_WAIT(wait); 1523 struct request_list *rl; 1524 struct request *rq; 1525 1526 lockdep_assert_held(q->queue_lock); 1527 WARN_ON_ONCE(q->mq_ops); 1528 1529 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1530 retry: 1531 rq = __get_request(rl, op, bio, flags, gfp); 1532 if (!IS_ERR(rq)) 1533 return rq; 1534 1535 if (op & REQ_NOWAIT) { 1536 blk_put_rl(rl); 1537 return ERR_PTR(-EAGAIN); 1538 } 1539 1540 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) { 1541 blk_put_rl(rl); 1542 return rq; 1543 } 1544 1545 /* wait on @rl and retry */ 1546 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1547 TASK_UNINTERRUPTIBLE); 1548 1549 trace_block_sleeprq(q, bio, op); 1550 1551 spin_unlock_irq(q->queue_lock); 1552 io_schedule(); 1553 1554 /* 1555 * After sleeping, we become a "batching" process and will be able 1556 * to allocate at least one request, and up to a big batch of them 1557 * for a small period time. See ioc_batching, ioc_set_batching 1558 */ 1559 ioc_set_batching(q, current->io_context); 1560 1561 spin_lock_irq(q->queue_lock); 1562 finish_wait(&rl->wait[is_sync], &wait); 1563 1564 goto retry; 1565 } 1566 1567 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */ 1568 static struct request *blk_old_get_request(struct request_queue *q, 1569 unsigned int op, blk_mq_req_flags_t flags) 1570 { 1571 struct request *rq; 1572 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO; 1573 int ret = 0; 1574 1575 WARN_ON_ONCE(q->mq_ops); 1576 1577 /* create ioc upfront */ 1578 create_io_context(gfp_mask, q->node); 1579 1580 ret = blk_queue_enter(q, flags); 1581 if (ret) 1582 return ERR_PTR(ret); 1583 spin_lock_irq(q->queue_lock); 1584 rq = get_request(q, op, NULL, flags, gfp_mask); 1585 if (IS_ERR(rq)) { 1586 spin_unlock_irq(q->queue_lock); 1587 blk_queue_exit(q); 1588 return rq; 1589 } 1590 1591 /* q->queue_lock is unlocked at this point */ 1592 rq->__data_len = 0; 1593 rq->__sector = (sector_t) -1; 1594 rq->bio = rq->biotail = NULL; 1595 return rq; 1596 } 1597 1598 /** 1599 * blk_get_request - allocate a request 1600 * @q: request queue to allocate a request for 1601 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 1602 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 1603 */ 1604 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1605 blk_mq_req_flags_t flags) 1606 { 1607 struct request *req; 1608 1609 WARN_ON_ONCE(op & REQ_NOWAIT); 1610 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 1611 1612 if (q->mq_ops) { 1613 req = blk_mq_alloc_request(q, op, flags); 1614 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1615 q->mq_ops->initialize_rq_fn(req); 1616 } else { 1617 req = blk_old_get_request(q, op, flags); 1618 if (!IS_ERR(req) && q->initialize_rq_fn) 1619 q->initialize_rq_fn(req); 1620 } 1621 1622 return req; 1623 } 1624 EXPORT_SYMBOL(blk_get_request); 1625 1626 /** 1627 * blk_requeue_request - put a request back on queue 1628 * @q: request queue where request should be inserted 1629 * @rq: request to be inserted 1630 * 1631 * Description: 1632 * Drivers often keep queueing requests until the hardware cannot accept 1633 * more, when that condition happens we need to put the request back 1634 * on the queue. Must be called with queue lock held. 1635 */ 1636 void blk_requeue_request(struct request_queue *q, struct request *rq) 1637 { 1638 lockdep_assert_held(q->queue_lock); 1639 WARN_ON_ONCE(q->mq_ops); 1640 1641 blk_delete_timer(rq); 1642 blk_clear_rq_complete(rq); 1643 trace_block_rq_requeue(q, rq); 1644 wbt_requeue(q->rq_wb, rq); 1645 1646 if (rq->rq_flags & RQF_QUEUED) 1647 blk_queue_end_tag(q, rq); 1648 1649 BUG_ON(blk_queued_rq(rq)); 1650 1651 elv_requeue_request(q, rq); 1652 } 1653 EXPORT_SYMBOL(blk_requeue_request); 1654 1655 static void add_acct_request(struct request_queue *q, struct request *rq, 1656 int where) 1657 { 1658 blk_account_io_start(rq, true); 1659 __elv_add_request(q, rq, where); 1660 } 1661 1662 static void part_round_stats_single(struct request_queue *q, int cpu, 1663 struct hd_struct *part, unsigned long now, 1664 unsigned int inflight) 1665 { 1666 if (inflight) { 1667 __part_stat_add(cpu, part, time_in_queue, 1668 inflight * (now - part->stamp)); 1669 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1670 } 1671 part->stamp = now; 1672 } 1673 1674 /** 1675 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1676 * @q: target block queue 1677 * @cpu: cpu number for stats access 1678 * @part: target partition 1679 * 1680 * The average IO queue length and utilisation statistics are maintained 1681 * by observing the current state of the queue length and the amount of 1682 * time it has been in this state for. 1683 * 1684 * Normally, that accounting is done on IO completion, but that can result 1685 * in more than a second's worth of IO being accounted for within any one 1686 * second, leading to >100% utilisation. To deal with that, we call this 1687 * function to do a round-off before returning the results when reading 1688 * /proc/diskstats. This accounts immediately for all queue usage up to 1689 * the current jiffies and restarts the counters again. 1690 */ 1691 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) 1692 { 1693 struct hd_struct *part2 = NULL; 1694 unsigned long now = jiffies; 1695 unsigned int inflight[2]; 1696 int stats = 0; 1697 1698 if (part->stamp != now) 1699 stats |= 1; 1700 1701 if (part->partno) { 1702 part2 = &part_to_disk(part)->part0; 1703 if (part2->stamp != now) 1704 stats |= 2; 1705 } 1706 1707 if (!stats) 1708 return; 1709 1710 part_in_flight(q, part, inflight); 1711 1712 if (stats & 2) 1713 part_round_stats_single(q, cpu, part2, now, inflight[1]); 1714 if (stats & 1) 1715 part_round_stats_single(q, cpu, part, now, inflight[0]); 1716 } 1717 EXPORT_SYMBOL_GPL(part_round_stats); 1718 1719 #ifdef CONFIG_PM 1720 static void blk_pm_put_request(struct request *rq) 1721 { 1722 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1723 pm_runtime_mark_last_busy(rq->q->dev); 1724 } 1725 #else 1726 static inline void blk_pm_put_request(struct request *rq) {} 1727 #endif 1728 1729 void __blk_put_request(struct request_queue *q, struct request *req) 1730 { 1731 req_flags_t rq_flags = req->rq_flags; 1732 1733 if (unlikely(!q)) 1734 return; 1735 1736 if (q->mq_ops) { 1737 blk_mq_free_request(req); 1738 return; 1739 } 1740 1741 lockdep_assert_held(q->queue_lock); 1742 1743 blk_req_zone_write_unlock(req); 1744 blk_pm_put_request(req); 1745 1746 elv_completed_request(q, req); 1747 1748 /* this is a bio leak */ 1749 WARN_ON(req->bio != NULL); 1750 1751 wbt_done(q->rq_wb, req); 1752 1753 /* 1754 * Request may not have originated from ll_rw_blk. if not, 1755 * it didn't come out of our reserved rq pools 1756 */ 1757 if (rq_flags & RQF_ALLOCED) { 1758 struct request_list *rl = blk_rq_rl(req); 1759 bool sync = op_is_sync(req->cmd_flags); 1760 1761 BUG_ON(!list_empty(&req->queuelist)); 1762 BUG_ON(ELV_ON_HASH(req)); 1763 1764 blk_free_request(rl, req); 1765 freed_request(rl, sync, rq_flags); 1766 blk_put_rl(rl); 1767 blk_queue_exit(q); 1768 } 1769 } 1770 EXPORT_SYMBOL_GPL(__blk_put_request); 1771 1772 void blk_put_request(struct request *req) 1773 { 1774 struct request_queue *q = req->q; 1775 1776 if (q->mq_ops) 1777 blk_mq_free_request(req); 1778 else { 1779 unsigned long flags; 1780 1781 spin_lock_irqsave(q->queue_lock, flags); 1782 __blk_put_request(q, req); 1783 spin_unlock_irqrestore(q->queue_lock, flags); 1784 } 1785 } 1786 EXPORT_SYMBOL(blk_put_request); 1787 1788 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1789 struct bio *bio) 1790 { 1791 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1792 1793 if (!ll_back_merge_fn(q, req, bio)) 1794 return false; 1795 1796 trace_block_bio_backmerge(q, req, bio); 1797 1798 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1799 blk_rq_set_mixed_merge(req); 1800 1801 req->biotail->bi_next = bio; 1802 req->biotail = bio; 1803 req->__data_len += bio->bi_iter.bi_size; 1804 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1805 1806 blk_account_io_start(req, false); 1807 return true; 1808 } 1809 1810 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1811 struct bio *bio) 1812 { 1813 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1814 1815 if (!ll_front_merge_fn(q, req, bio)) 1816 return false; 1817 1818 trace_block_bio_frontmerge(q, req, bio); 1819 1820 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1821 blk_rq_set_mixed_merge(req); 1822 1823 bio->bi_next = req->bio; 1824 req->bio = bio; 1825 1826 req->__sector = bio->bi_iter.bi_sector; 1827 req->__data_len += bio->bi_iter.bi_size; 1828 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1829 1830 blk_account_io_start(req, false); 1831 return true; 1832 } 1833 1834 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1835 struct bio *bio) 1836 { 1837 unsigned short segments = blk_rq_nr_discard_segments(req); 1838 1839 if (segments >= queue_max_discard_segments(q)) 1840 goto no_merge; 1841 if (blk_rq_sectors(req) + bio_sectors(bio) > 1842 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1843 goto no_merge; 1844 1845 req->biotail->bi_next = bio; 1846 req->biotail = bio; 1847 req->__data_len += bio->bi_iter.bi_size; 1848 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1849 req->nr_phys_segments = segments + 1; 1850 1851 blk_account_io_start(req, false); 1852 return true; 1853 no_merge: 1854 req_set_nomerge(q, req); 1855 return false; 1856 } 1857 1858 /** 1859 * blk_attempt_plug_merge - try to merge with %current's plugged list 1860 * @q: request_queue new bio is being queued at 1861 * @bio: new bio being queued 1862 * @request_count: out parameter for number of traversed plugged requests 1863 * @same_queue_rq: pointer to &struct request that gets filled in when 1864 * another request associated with @q is found on the plug list 1865 * (optional, may be %NULL) 1866 * 1867 * Determine whether @bio being queued on @q can be merged with a request 1868 * on %current's plugged list. Returns %true if merge was successful, 1869 * otherwise %false. 1870 * 1871 * Plugging coalesces IOs from the same issuer for the same purpose without 1872 * going through @q->queue_lock. As such it's more of an issuing mechanism 1873 * than scheduling, and the request, while may have elvpriv data, is not 1874 * added on the elevator at this point. In addition, we don't have 1875 * reliable access to the elevator outside queue lock. Only check basic 1876 * merging parameters without querying the elevator. 1877 * 1878 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1879 */ 1880 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1881 unsigned int *request_count, 1882 struct request **same_queue_rq) 1883 { 1884 struct blk_plug *plug; 1885 struct request *rq; 1886 struct list_head *plug_list; 1887 1888 plug = current->plug; 1889 if (!plug) 1890 return false; 1891 *request_count = 0; 1892 1893 if (q->mq_ops) 1894 plug_list = &plug->mq_list; 1895 else 1896 plug_list = &plug->list; 1897 1898 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1899 bool merged = false; 1900 1901 if (rq->q == q) { 1902 (*request_count)++; 1903 /* 1904 * Only blk-mq multiple hardware queues case checks the 1905 * rq in the same queue, there should be only one such 1906 * rq in a queue 1907 **/ 1908 if (same_queue_rq) 1909 *same_queue_rq = rq; 1910 } 1911 1912 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1913 continue; 1914 1915 switch (blk_try_merge(rq, bio)) { 1916 case ELEVATOR_BACK_MERGE: 1917 merged = bio_attempt_back_merge(q, rq, bio); 1918 break; 1919 case ELEVATOR_FRONT_MERGE: 1920 merged = bio_attempt_front_merge(q, rq, bio); 1921 break; 1922 case ELEVATOR_DISCARD_MERGE: 1923 merged = bio_attempt_discard_merge(q, rq, bio); 1924 break; 1925 default: 1926 break; 1927 } 1928 1929 if (merged) 1930 return true; 1931 } 1932 1933 return false; 1934 } 1935 1936 unsigned int blk_plug_queued_count(struct request_queue *q) 1937 { 1938 struct blk_plug *plug; 1939 struct request *rq; 1940 struct list_head *plug_list; 1941 unsigned int ret = 0; 1942 1943 plug = current->plug; 1944 if (!plug) 1945 goto out; 1946 1947 if (q->mq_ops) 1948 plug_list = &plug->mq_list; 1949 else 1950 plug_list = &plug->list; 1951 1952 list_for_each_entry(rq, plug_list, queuelist) { 1953 if (rq->q == q) 1954 ret++; 1955 } 1956 out: 1957 return ret; 1958 } 1959 1960 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1961 { 1962 struct io_context *ioc = rq_ioc(bio); 1963 1964 if (bio->bi_opf & REQ_RAHEAD) 1965 req->cmd_flags |= REQ_FAILFAST_MASK; 1966 1967 req->__sector = bio->bi_iter.bi_sector; 1968 if (ioprio_valid(bio_prio(bio))) 1969 req->ioprio = bio_prio(bio); 1970 else if (ioc) 1971 req->ioprio = ioc->ioprio; 1972 else 1973 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1974 req->write_hint = bio->bi_write_hint; 1975 blk_rq_bio_prep(req->q, req, bio); 1976 } 1977 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1978 1979 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1980 { 1981 struct blk_plug *plug; 1982 int where = ELEVATOR_INSERT_SORT; 1983 struct request *req, *free; 1984 unsigned int request_count = 0; 1985 unsigned int wb_acct; 1986 1987 /* 1988 * low level driver can indicate that it wants pages above a 1989 * certain limit bounced to low memory (ie for highmem, or even 1990 * ISA dma in theory) 1991 */ 1992 blk_queue_bounce(q, &bio); 1993 1994 blk_queue_split(q, &bio); 1995 1996 if (!bio_integrity_prep(bio)) 1997 return BLK_QC_T_NONE; 1998 1999 if (op_is_flush(bio->bi_opf)) { 2000 spin_lock_irq(q->queue_lock); 2001 where = ELEVATOR_INSERT_FLUSH; 2002 goto get_rq; 2003 } 2004 2005 /* 2006 * Check if we can merge with the plugged list before grabbing 2007 * any locks. 2008 */ 2009 if (!blk_queue_nomerges(q)) { 2010 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 2011 return BLK_QC_T_NONE; 2012 } else 2013 request_count = blk_plug_queued_count(q); 2014 2015 spin_lock_irq(q->queue_lock); 2016 2017 switch (elv_merge(q, &req, bio)) { 2018 case ELEVATOR_BACK_MERGE: 2019 if (!bio_attempt_back_merge(q, req, bio)) 2020 break; 2021 elv_bio_merged(q, req, bio); 2022 free = attempt_back_merge(q, req); 2023 if (free) 2024 __blk_put_request(q, free); 2025 else 2026 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 2027 goto out_unlock; 2028 case ELEVATOR_FRONT_MERGE: 2029 if (!bio_attempt_front_merge(q, req, bio)) 2030 break; 2031 elv_bio_merged(q, req, bio); 2032 free = attempt_front_merge(q, req); 2033 if (free) 2034 __blk_put_request(q, free); 2035 else 2036 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 2037 goto out_unlock; 2038 default: 2039 break; 2040 } 2041 2042 get_rq: 2043 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 2044 2045 /* 2046 * Grab a free request. This is might sleep but can not fail. 2047 * Returns with the queue unlocked. 2048 */ 2049 blk_queue_enter_live(q); 2050 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO); 2051 if (IS_ERR(req)) { 2052 blk_queue_exit(q); 2053 __wbt_done(q->rq_wb, wb_acct); 2054 if (PTR_ERR(req) == -ENOMEM) 2055 bio->bi_status = BLK_STS_RESOURCE; 2056 else 2057 bio->bi_status = BLK_STS_IOERR; 2058 bio_endio(bio); 2059 goto out_unlock; 2060 } 2061 2062 wbt_track(req, wb_acct); 2063 2064 /* 2065 * After dropping the lock and possibly sleeping here, our request 2066 * may now be mergeable after it had proven unmergeable (above). 2067 * We don't worry about that case for efficiency. It won't happen 2068 * often, and the elevators are able to handle it. 2069 */ 2070 blk_init_request_from_bio(req, bio); 2071 2072 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 2073 req->cpu = raw_smp_processor_id(); 2074 2075 plug = current->plug; 2076 if (plug) { 2077 /* 2078 * If this is the first request added after a plug, fire 2079 * of a plug trace. 2080 * 2081 * @request_count may become stale because of schedule 2082 * out, so check plug list again. 2083 */ 2084 if (!request_count || list_empty(&plug->list)) 2085 trace_block_plug(q); 2086 else { 2087 struct request *last = list_entry_rq(plug->list.prev); 2088 if (request_count >= BLK_MAX_REQUEST_COUNT || 2089 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 2090 blk_flush_plug_list(plug, false); 2091 trace_block_plug(q); 2092 } 2093 } 2094 list_add_tail(&req->queuelist, &plug->list); 2095 blk_account_io_start(req, true); 2096 } else { 2097 spin_lock_irq(q->queue_lock); 2098 add_acct_request(q, req, where); 2099 __blk_run_queue(q); 2100 out_unlock: 2101 spin_unlock_irq(q->queue_lock); 2102 } 2103 2104 return BLK_QC_T_NONE; 2105 } 2106 2107 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 2108 { 2109 char b[BDEVNAME_SIZE]; 2110 2111 printk(KERN_INFO "attempt to access beyond end of device\n"); 2112 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 2113 bio_devname(bio, b), bio->bi_opf, 2114 (unsigned long long)bio_end_sector(bio), 2115 (long long)maxsector); 2116 } 2117 2118 #ifdef CONFIG_FAIL_MAKE_REQUEST 2119 2120 static DECLARE_FAULT_ATTR(fail_make_request); 2121 2122 static int __init setup_fail_make_request(char *str) 2123 { 2124 return setup_fault_attr(&fail_make_request, str); 2125 } 2126 __setup("fail_make_request=", setup_fail_make_request); 2127 2128 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 2129 { 2130 return part->make_it_fail && should_fail(&fail_make_request, bytes); 2131 } 2132 2133 static int __init fail_make_request_debugfs(void) 2134 { 2135 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 2136 NULL, &fail_make_request); 2137 2138 return PTR_ERR_OR_ZERO(dir); 2139 } 2140 2141 late_initcall(fail_make_request_debugfs); 2142 2143 #else /* CONFIG_FAIL_MAKE_REQUEST */ 2144 2145 static inline bool should_fail_request(struct hd_struct *part, 2146 unsigned int bytes) 2147 { 2148 return false; 2149 } 2150 2151 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 2152 2153 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 2154 { 2155 if (part->policy && op_is_write(bio_op(bio))) { 2156 char b[BDEVNAME_SIZE]; 2157 2158 WARN_ONCE(1, 2159 "generic_make_request: Trying to write " 2160 "to read-only block-device %s (partno %d)\n", 2161 bio_devname(bio, b), part->partno); 2162 /* Older lvm-tools actually trigger this */ 2163 return false; 2164 } 2165 2166 return false; 2167 } 2168 2169 static noinline int should_fail_bio(struct bio *bio) 2170 { 2171 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 2172 return -EIO; 2173 return 0; 2174 } 2175 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 2176 2177 /* 2178 * Check whether this bio extends beyond the end of the device or partition. 2179 * This may well happen - the kernel calls bread() without checking the size of 2180 * the device, e.g., when mounting a file system. 2181 */ 2182 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 2183 { 2184 unsigned int nr_sectors = bio_sectors(bio); 2185 2186 if (nr_sectors && maxsector && 2187 (nr_sectors > maxsector || 2188 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 2189 handle_bad_sector(bio, maxsector); 2190 return -EIO; 2191 } 2192 return 0; 2193 } 2194 2195 /* 2196 * Remap block n of partition p to block n+start(p) of the disk. 2197 */ 2198 static inline int blk_partition_remap(struct bio *bio) 2199 { 2200 struct hd_struct *p; 2201 int ret = -EIO; 2202 2203 rcu_read_lock(); 2204 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 2205 if (unlikely(!p)) 2206 goto out; 2207 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 2208 goto out; 2209 if (unlikely(bio_check_ro(bio, p))) 2210 goto out; 2211 2212 /* 2213 * Zone reset does not include bi_size so bio_sectors() is always 0. 2214 * Include a test for the reset op code and perform the remap if needed. 2215 */ 2216 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { 2217 if (bio_check_eod(bio, part_nr_sects_read(p))) 2218 goto out; 2219 bio->bi_iter.bi_sector += p->start_sect; 2220 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 2221 bio->bi_iter.bi_sector - p->start_sect); 2222 } 2223 bio->bi_partno = 0; 2224 ret = 0; 2225 out: 2226 rcu_read_unlock(); 2227 return ret; 2228 } 2229 2230 static noinline_for_stack bool 2231 generic_make_request_checks(struct bio *bio) 2232 { 2233 struct request_queue *q; 2234 int nr_sectors = bio_sectors(bio); 2235 blk_status_t status = BLK_STS_IOERR; 2236 char b[BDEVNAME_SIZE]; 2237 2238 might_sleep(); 2239 2240 q = bio->bi_disk->queue; 2241 if (unlikely(!q)) { 2242 printk(KERN_ERR 2243 "generic_make_request: Trying to access " 2244 "nonexistent block-device %s (%Lu)\n", 2245 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 2246 goto end_io; 2247 } 2248 2249 /* 2250 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2251 * if queue is not a request based queue. 2252 */ 2253 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2254 goto not_supported; 2255 2256 if (should_fail_bio(bio)) 2257 goto end_io; 2258 2259 if (bio->bi_partno) { 2260 if (unlikely(blk_partition_remap(bio))) 2261 goto end_io; 2262 } else { 2263 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 2264 goto end_io; 2265 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 2266 goto end_io; 2267 } 2268 2269 /* 2270 * Filter flush bio's early so that make_request based 2271 * drivers without flush support don't have to worry 2272 * about them. 2273 */ 2274 if (op_is_flush(bio->bi_opf) && 2275 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2276 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2277 if (!nr_sectors) { 2278 status = BLK_STS_OK; 2279 goto end_io; 2280 } 2281 } 2282 2283 switch (bio_op(bio)) { 2284 case REQ_OP_DISCARD: 2285 if (!blk_queue_discard(q)) 2286 goto not_supported; 2287 break; 2288 case REQ_OP_SECURE_ERASE: 2289 if (!blk_queue_secure_erase(q)) 2290 goto not_supported; 2291 break; 2292 case REQ_OP_WRITE_SAME: 2293 if (!q->limits.max_write_same_sectors) 2294 goto not_supported; 2295 break; 2296 case REQ_OP_ZONE_REPORT: 2297 case REQ_OP_ZONE_RESET: 2298 if (!blk_queue_is_zoned(q)) 2299 goto not_supported; 2300 break; 2301 case REQ_OP_WRITE_ZEROES: 2302 if (!q->limits.max_write_zeroes_sectors) 2303 goto not_supported; 2304 break; 2305 default: 2306 break; 2307 } 2308 2309 /* 2310 * Various block parts want %current->io_context and lazy ioc 2311 * allocation ends up trading a lot of pain for a small amount of 2312 * memory. Just allocate it upfront. This may fail and block 2313 * layer knows how to live with it. 2314 */ 2315 create_io_context(GFP_ATOMIC, q->node); 2316 2317 if (!blkcg_bio_issue_check(q, bio)) 2318 return false; 2319 2320 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2321 trace_block_bio_queue(q, bio); 2322 /* Now that enqueuing has been traced, we need to trace 2323 * completion as well. 2324 */ 2325 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2326 } 2327 return true; 2328 2329 not_supported: 2330 status = BLK_STS_NOTSUPP; 2331 end_io: 2332 bio->bi_status = status; 2333 bio_endio(bio); 2334 return false; 2335 } 2336 2337 /** 2338 * generic_make_request - hand a buffer to its device driver for I/O 2339 * @bio: The bio describing the location in memory and on the device. 2340 * 2341 * generic_make_request() is used to make I/O requests of block 2342 * devices. It is passed a &struct bio, which describes the I/O that needs 2343 * to be done. 2344 * 2345 * generic_make_request() does not return any status. The 2346 * success/failure status of the request, along with notification of 2347 * completion, is delivered asynchronously through the bio->bi_end_io 2348 * function described (one day) else where. 2349 * 2350 * The caller of generic_make_request must make sure that bi_io_vec 2351 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2352 * set to describe the device address, and the 2353 * bi_end_io and optionally bi_private are set to describe how 2354 * completion notification should be signaled. 2355 * 2356 * generic_make_request and the drivers it calls may use bi_next if this 2357 * bio happens to be merged with someone else, and may resubmit the bio to 2358 * a lower device by calling into generic_make_request recursively, which 2359 * means the bio should NOT be touched after the call to ->make_request_fn. 2360 */ 2361 blk_qc_t generic_make_request(struct bio *bio) 2362 { 2363 /* 2364 * bio_list_on_stack[0] contains bios submitted by the current 2365 * make_request_fn. 2366 * bio_list_on_stack[1] contains bios that were submitted before 2367 * the current make_request_fn, but that haven't been processed 2368 * yet. 2369 */ 2370 struct bio_list bio_list_on_stack[2]; 2371 blk_mq_req_flags_t flags = 0; 2372 struct request_queue *q = bio->bi_disk->queue; 2373 blk_qc_t ret = BLK_QC_T_NONE; 2374 2375 if (bio->bi_opf & REQ_NOWAIT) 2376 flags = BLK_MQ_REQ_NOWAIT; 2377 if (bio_flagged(bio, BIO_QUEUE_ENTERED)) 2378 blk_queue_enter_live(q); 2379 else if (blk_queue_enter(q, flags) < 0) { 2380 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT)) 2381 bio_wouldblock_error(bio); 2382 else 2383 bio_io_error(bio); 2384 return ret; 2385 } 2386 2387 if (!generic_make_request_checks(bio)) 2388 goto out; 2389 2390 /* 2391 * We only want one ->make_request_fn to be active at a time, else 2392 * stack usage with stacked devices could be a problem. So use 2393 * current->bio_list to keep a list of requests submited by a 2394 * make_request_fn function. current->bio_list is also used as a 2395 * flag to say if generic_make_request is currently active in this 2396 * task or not. If it is NULL, then no make_request is active. If 2397 * it is non-NULL, then a make_request is active, and new requests 2398 * should be added at the tail 2399 */ 2400 if (current->bio_list) { 2401 bio_list_add(¤t->bio_list[0], bio); 2402 goto out; 2403 } 2404 2405 /* following loop may be a bit non-obvious, and so deserves some 2406 * explanation. 2407 * Before entering the loop, bio->bi_next is NULL (as all callers 2408 * ensure that) so we have a list with a single bio. 2409 * We pretend that we have just taken it off a longer list, so 2410 * we assign bio_list to a pointer to the bio_list_on_stack, 2411 * thus initialising the bio_list of new bios to be 2412 * added. ->make_request() may indeed add some more bios 2413 * through a recursive call to generic_make_request. If it 2414 * did, we find a non-NULL value in bio_list and re-enter the loop 2415 * from the top. In this case we really did just take the bio 2416 * of the top of the list (no pretending) and so remove it from 2417 * bio_list, and call into ->make_request() again. 2418 */ 2419 BUG_ON(bio->bi_next); 2420 bio_list_init(&bio_list_on_stack[0]); 2421 current->bio_list = bio_list_on_stack; 2422 do { 2423 bool enter_succeeded = true; 2424 2425 if (unlikely(q != bio->bi_disk->queue)) { 2426 if (q) 2427 blk_queue_exit(q); 2428 q = bio->bi_disk->queue; 2429 flags = 0; 2430 if (bio->bi_opf & REQ_NOWAIT) 2431 flags = BLK_MQ_REQ_NOWAIT; 2432 if (blk_queue_enter(q, flags) < 0) { 2433 enter_succeeded = false; 2434 q = NULL; 2435 } 2436 } 2437 2438 if (enter_succeeded) { 2439 struct bio_list lower, same; 2440 2441 /* Create a fresh bio_list for all subordinate requests */ 2442 bio_list_on_stack[1] = bio_list_on_stack[0]; 2443 bio_list_init(&bio_list_on_stack[0]); 2444 ret = q->make_request_fn(q, bio); 2445 2446 /* sort new bios into those for a lower level 2447 * and those for the same level 2448 */ 2449 bio_list_init(&lower); 2450 bio_list_init(&same); 2451 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2452 if (q == bio->bi_disk->queue) 2453 bio_list_add(&same, bio); 2454 else 2455 bio_list_add(&lower, bio); 2456 /* now assemble so we handle the lowest level first */ 2457 bio_list_merge(&bio_list_on_stack[0], &lower); 2458 bio_list_merge(&bio_list_on_stack[0], &same); 2459 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2460 } else { 2461 if (unlikely(!blk_queue_dying(q) && 2462 (bio->bi_opf & REQ_NOWAIT))) 2463 bio_wouldblock_error(bio); 2464 else 2465 bio_io_error(bio); 2466 } 2467 bio = bio_list_pop(&bio_list_on_stack[0]); 2468 } while (bio); 2469 current->bio_list = NULL; /* deactivate */ 2470 2471 out: 2472 if (q) 2473 blk_queue_exit(q); 2474 return ret; 2475 } 2476 EXPORT_SYMBOL(generic_make_request); 2477 2478 /** 2479 * direct_make_request - hand a buffer directly to its device driver for I/O 2480 * @bio: The bio describing the location in memory and on the device. 2481 * 2482 * This function behaves like generic_make_request(), but does not protect 2483 * against recursion. Must only be used if the called driver is known 2484 * to not call generic_make_request (or direct_make_request) again from 2485 * its make_request function. (Calling direct_make_request again from 2486 * a workqueue is perfectly fine as that doesn't recurse). 2487 */ 2488 blk_qc_t direct_make_request(struct bio *bio) 2489 { 2490 struct request_queue *q = bio->bi_disk->queue; 2491 bool nowait = bio->bi_opf & REQ_NOWAIT; 2492 blk_qc_t ret; 2493 2494 if (!generic_make_request_checks(bio)) 2495 return BLK_QC_T_NONE; 2496 2497 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 2498 if (nowait && !blk_queue_dying(q)) 2499 bio->bi_status = BLK_STS_AGAIN; 2500 else 2501 bio->bi_status = BLK_STS_IOERR; 2502 bio_endio(bio); 2503 return BLK_QC_T_NONE; 2504 } 2505 2506 ret = q->make_request_fn(q, bio); 2507 blk_queue_exit(q); 2508 return ret; 2509 } 2510 EXPORT_SYMBOL_GPL(direct_make_request); 2511 2512 /** 2513 * submit_bio - submit a bio to the block device layer for I/O 2514 * @bio: The &struct bio which describes the I/O 2515 * 2516 * submit_bio() is very similar in purpose to generic_make_request(), and 2517 * uses that function to do most of the work. Both are fairly rough 2518 * interfaces; @bio must be presetup and ready for I/O. 2519 * 2520 */ 2521 blk_qc_t submit_bio(struct bio *bio) 2522 { 2523 /* 2524 * If it's a regular read/write or a barrier with data attached, 2525 * go through the normal accounting stuff before submission. 2526 */ 2527 if (bio_has_data(bio)) { 2528 unsigned int count; 2529 2530 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2531 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 2532 else 2533 count = bio_sectors(bio); 2534 2535 if (op_is_write(bio_op(bio))) { 2536 count_vm_events(PGPGOUT, count); 2537 } else { 2538 task_io_account_read(bio->bi_iter.bi_size); 2539 count_vm_events(PGPGIN, count); 2540 } 2541 2542 if (unlikely(block_dump)) { 2543 char b[BDEVNAME_SIZE]; 2544 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2545 current->comm, task_pid_nr(current), 2546 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2547 (unsigned long long)bio->bi_iter.bi_sector, 2548 bio_devname(bio, b), count); 2549 } 2550 } 2551 2552 return generic_make_request(bio); 2553 } 2554 EXPORT_SYMBOL(submit_bio); 2555 2556 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 2557 { 2558 if (!q->poll_fn || !blk_qc_t_valid(cookie)) 2559 return false; 2560 2561 if (current->plug) 2562 blk_flush_plug_list(current->plug, false); 2563 return q->poll_fn(q, cookie); 2564 } 2565 EXPORT_SYMBOL_GPL(blk_poll); 2566 2567 /** 2568 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2569 * for new the queue limits 2570 * @q: the queue 2571 * @rq: the request being checked 2572 * 2573 * Description: 2574 * @rq may have been made based on weaker limitations of upper-level queues 2575 * in request stacking drivers, and it may violate the limitation of @q. 2576 * Since the block layer and the underlying device driver trust @rq 2577 * after it is inserted to @q, it should be checked against @q before 2578 * the insertion using this generic function. 2579 * 2580 * Request stacking drivers like request-based dm may change the queue 2581 * limits when retrying requests on other queues. Those requests need 2582 * to be checked against the new queue limits again during dispatch. 2583 */ 2584 static int blk_cloned_rq_check_limits(struct request_queue *q, 2585 struct request *rq) 2586 { 2587 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2588 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2589 return -EIO; 2590 } 2591 2592 /* 2593 * queue's settings related to segment counting like q->bounce_pfn 2594 * may differ from that of other stacking queues. 2595 * Recalculate it to check the request correctly on this queue's 2596 * limitation. 2597 */ 2598 blk_recalc_rq_segments(rq); 2599 if (rq->nr_phys_segments > queue_max_segments(q)) { 2600 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2601 return -EIO; 2602 } 2603 2604 return 0; 2605 } 2606 2607 /** 2608 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2609 * @q: the queue to submit the request 2610 * @rq: the request being queued 2611 */ 2612 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2613 { 2614 unsigned long flags; 2615 int where = ELEVATOR_INSERT_BACK; 2616 2617 if (blk_cloned_rq_check_limits(q, rq)) 2618 return BLK_STS_IOERR; 2619 2620 if (rq->rq_disk && 2621 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2622 return BLK_STS_IOERR; 2623 2624 if (q->mq_ops) { 2625 if (blk_queue_io_stat(q)) 2626 blk_account_io_start(rq, true); 2627 /* 2628 * Since we have a scheduler attached on the top device, 2629 * bypass a potential scheduler on the bottom device for 2630 * insert. 2631 */ 2632 return blk_mq_request_issue_directly(rq); 2633 } 2634 2635 spin_lock_irqsave(q->queue_lock, flags); 2636 if (unlikely(blk_queue_dying(q))) { 2637 spin_unlock_irqrestore(q->queue_lock, flags); 2638 return BLK_STS_IOERR; 2639 } 2640 2641 /* 2642 * Submitting request must be dequeued before calling this function 2643 * because it will be linked to another request_queue 2644 */ 2645 BUG_ON(blk_queued_rq(rq)); 2646 2647 if (op_is_flush(rq->cmd_flags)) 2648 where = ELEVATOR_INSERT_FLUSH; 2649 2650 add_acct_request(q, rq, where); 2651 if (where == ELEVATOR_INSERT_FLUSH) 2652 __blk_run_queue(q); 2653 spin_unlock_irqrestore(q->queue_lock, flags); 2654 2655 return BLK_STS_OK; 2656 } 2657 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2658 2659 /** 2660 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2661 * @rq: request to examine 2662 * 2663 * Description: 2664 * A request could be merge of IOs which require different failure 2665 * handling. This function determines the number of bytes which 2666 * can be failed from the beginning of the request without 2667 * crossing into area which need to be retried further. 2668 * 2669 * Return: 2670 * The number of bytes to fail. 2671 */ 2672 unsigned int blk_rq_err_bytes(const struct request *rq) 2673 { 2674 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2675 unsigned int bytes = 0; 2676 struct bio *bio; 2677 2678 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2679 return blk_rq_bytes(rq); 2680 2681 /* 2682 * Currently the only 'mixing' which can happen is between 2683 * different fastfail types. We can safely fail portions 2684 * which have all the failfast bits that the first one has - 2685 * the ones which are at least as eager to fail as the first 2686 * one. 2687 */ 2688 for (bio = rq->bio; bio; bio = bio->bi_next) { 2689 if ((bio->bi_opf & ff) != ff) 2690 break; 2691 bytes += bio->bi_iter.bi_size; 2692 } 2693 2694 /* this could lead to infinite loop */ 2695 BUG_ON(blk_rq_bytes(rq) && !bytes); 2696 return bytes; 2697 } 2698 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2699 2700 void blk_account_io_completion(struct request *req, unsigned int bytes) 2701 { 2702 if (blk_do_io_stat(req)) { 2703 const int rw = rq_data_dir(req); 2704 struct hd_struct *part; 2705 int cpu; 2706 2707 cpu = part_stat_lock(); 2708 part = req->part; 2709 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2710 part_stat_unlock(); 2711 } 2712 } 2713 2714 void blk_account_io_done(struct request *req, u64 now) 2715 { 2716 /* 2717 * Account IO completion. flush_rq isn't accounted as a 2718 * normal IO on queueing nor completion. Accounting the 2719 * containing request is enough. 2720 */ 2721 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2722 unsigned long duration; 2723 const int rw = rq_data_dir(req); 2724 struct hd_struct *part; 2725 int cpu; 2726 2727 duration = nsecs_to_jiffies(now - req->start_time_ns); 2728 cpu = part_stat_lock(); 2729 part = req->part; 2730 2731 part_stat_inc(cpu, part, ios[rw]); 2732 part_stat_add(cpu, part, ticks[rw], duration); 2733 part_round_stats(req->q, cpu, part); 2734 part_dec_in_flight(req->q, part, rw); 2735 2736 hd_struct_put(part); 2737 part_stat_unlock(); 2738 } 2739 } 2740 2741 #ifdef CONFIG_PM 2742 /* 2743 * Don't process normal requests when queue is suspended 2744 * or in the process of suspending/resuming 2745 */ 2746 static bool blk_pm_allow_request(struct request *rq) 2747 { 2748 switch (rq->q->rpm_status) { 2749 case RPM_RESUMING: 2750 case RPM_SUSPENDING: 2751 return rq->rq_flags & RQF_PM; 2752 case RPM_SUSPENDED: 2753 return false; 2754 } 2755 2756 return true; 2757 } 2758 #else 2759 static bool blk_pm_allow_request(struct request *rq) 2760 { 2761 return true; 2762 } 2763 #endif 2764 2765 void blk_account_io_start(struct request *rq, bool new_io) 2766 { 2767 struct hd_struct *part; 2768 int rw = rq_data_dir(rq); 2769 int cpu; 2770 2771 if (!blk_do_io_stat(rq)) 2772 return; 2773 2774 cpu = part_stat_lock(); 2775 2776 if (!new_io) { 2777 part = rq->part; 2778 part_stat_inc(cpu, part, merges[rw]); 2779 } else { 2780 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2781 if (!hd_struct_try_get(part)) { 2782 /* 2783 * The partition is already being removed, 2784 * the request will be accounted on the disk only 2785 * 2786 * We take a reference on disk->part0 although that 2787 * partition will never be deleted, so we can treat 2788 * it as any other partition. 2789 */ 2790 part = &rq->rq_disk->part0; 2791 hd_struct_get(part); 2792 } 2793 part_round_stats(rq->q, cpu, part); 2794 part_inc_in_flight(rq->q, part, rw); 2795 rq->part = part; 2796 } 2797 2798 part_stat_unlock(); 2799 } 2800 2801 static struct request *elv_next_request(struct request_queue *q) 2802 { 2803 struct request *rq; 2804 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 2805 2806 WARN_ON_ONCE(q->mq_ops); 2807 2808 while (1) { 2809 list_for_each_entry(rq, &q->queue_head, queuelist) { 2810 if (blk_pm_allow_request(rq)) 2811 return rq; 2812 2813 if (rq->rq_flags & RQF_SOFTBARRIER) 2814 break; 2815 } 2816 2817 /* 2818 * Flush request is running and flush request isn't queueable 2819 * in the drive, we can hold the queue till flush request is 2820 * finished. Even we don't do this, driver can't dispatch next 2821 * requests and will requeue them. And this can improve 2822 * throughput too. For example, we have request flush1, write1, 2823 * flush 2. flush1 is dispatched, then queue is hold, write1 2824 * isn't inserted to queue. After flush1 is finished, flush2 2825 * will be dispatched. Since disk cache is already clean, 2826 * flush2 will be finished very soon, so looks like flush2 is 2827 * folded to flush1. 2828 * Since the queue is hold, a flag is set to indicate the queue 2829 * should be restarted later. Please see flush_end_io() for 2830 * details. 2831 */ 2832 if (fq->flush_pending_idx != fq->flush_running_idx && 2833 !queue_flush_queueable(q)) { 2834 fq->flush_queue_delayed = 1; 2835 return NULL; 2836 } 2837 if (unlikely(blk_queue_bypass(q)) || 2838 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0)) 2839 return NULL; 2840 } 2841 } 2842 2843 /** 2844 * blk_peek_request - peek at the top of a request queue 2845 * @q: request queue to peek at 2846 * 2847 * Description: 2848 * Return the request at the top of @q. The returned request 2849 * should be started using blk_start_request() before LLD starts 2850 * processing it. 2851 * 2852 * Return: 2853 * Pointer to the request at the top of @q if available. Null 2854 * otherwise. 2855 */ 2856 struct request *blk_peek_request(struct request_queue *q) 2857 { 2858 struct request *rq; 2859 int ret; 2860 2861 lockdep_assert_held(q->queue_lock); 2862 WARN_ON_ONCE(q->mq_ops); 2863 2864 while ((rq = elv_next_request(q)) != NULL) { 2865 if (!(rq->rq_flags & RQF_STARTED)) { 2866 /* 2867 * This is the first time the device driver 2868 * sees this request (possibly after 2869 * requeueing). Notify IO scheduler. 2870 */ 2871 if (rq->rq_flags & RQF_SORTED) 2872 elv_activate_rq(q, rq); 2873 2874 /* 2875 * just mark as started even if we don't start 2876 * it, a request that has been delayed should 2877 * not be passed by new incoming requests 2878 */ 2879 rq->rq_flags |= RQF_STARTED; 2880 trace_block_rq_issue(q, rq); 2881 } 2882 2883 if (!q->boundary_rq || q->boundary_rq == rq) { 2884 q->end_sector = rq_end_sector(rq); 2885 q->boundary_rq = NULL; 2886 } 2887 2888 if (rq->rq_flags & RQF_DONTPREP) 2889 break; 2890 2891 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2892 /* 2893 * make sure space for the drain appears we 2894 * know we can do this because max_hw_segments 2895 * has been adjusted to be one fewer than the 2896 * device can handle 2897 */ 2898 rq->nr_phys_segments++; 2899 } 2900 2901 if (!q->prep_rq_fn) 2902 break; 2903 2904 ret = q->prep_rq_fn(q, rq); 2905 if (ret == BLKPREP_OK) { 2906 break; 2907 } else if (ret == BLKPREP_DEFER) { 2908 /* 2909 * the request may have been (partially) prepped. 2910 * we need to keep this request in the front to 2911 * avoid resource deadlock. RQF_STARTED will 2912 * prevent other fs requests from passing this one. 2913 */ 2914 if (q->dma_drain_size && blk_rq_bytes(rq) && 2915 !(rq->rq_flags & RQF_DONTPREP)) { 2916 /* 2917 * remove the space for the drain we added 2918 * so that we don't add it again 2919 */ 2920 --rq->nr_phys_segments; 2921 } 2922 2923 rq = NULL; 2924 break; 2925 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2926 rq->rq_flags |= RQF_QUIET; 2927 /* 2928 * Mark this request as started so we don't trigger 2929 * any debug logic in the end I/O path. 2930 */ 2931 blk_start_request(rq); 2932 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2933 BLK_STS_TARGET : BLK_STS_IOERR); 2934 } else { 2935 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2936 break; 2937 } 2938 } 2939 2940 return rq; 2941 } 2942 EXPORT_SYMBOL(blk_peek_request); 2943 2944 static void blk_dequeue_request(struct request *rq) 2945 { 2946 struct request_queue *q = rq->q; 2947 2948 BUG_ON(list_empty(&rq->queuelist)); 2949 BUG_ON(ELV_ON_HASH(rq)); 2950 2951 list_del_init(&rq->queuelist); 2952 2953 /* 2954 * the time frame between a request being removed from the lists 2955 * and to it is freed is accounted as io that is in progress at 2956 * the driver side. 2957 */ 2958 if (blk_account_rq(rq)) 2959 q->in_flight[rq_is_sync(rq)]++; 2960 } 2961 2962 /** 2963 * blk_start_request - start request processing on the driver 2964 * @req: request to dequeue 2965 * 2966 * Description: 2967 * Dequeue @req and start timeout timer on it. This hands off the 2968 * request to the driver. 2969 */ 2970 void blk_start_request(struct request *req) 2971 { 2972 lockdep_assert_held(req->q->queue_lock); 2973 WARN_ON_ONCE(req->q->mq_ops); 2974 2975 blk_dequeue_request(req); 2976 2977 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2978 req->io_start_time_ns = ktime_get_ns(); 2979 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2980 req->throtl_size = blk_rq_sectors(req); 2981 #endif 2982 req->rq_flags |= RQF_STATS; 2983 wbt_issue(req->q->rq_wb, req); 2984 } 2985 2986 BUG_ON(blk_rq_is_complete(req)); 2987 blk_add_timer(req); 2988 } 2989 EXPORT_SYMBOL(blk_start_request); 2990 2991 /** 2992 * blk_fetch_request - fetch a request from a request queue 2993 * @q: request queue to fetch a request from 2994 * 2995 * Description: 2996 * Return the request at the top of @q. The request is started on 2997 * return and LLD can start processing it immediately. 2998 * 2999 * Return: 3000 * Pointer to the request at the top of @q if available. Null 3001 * otherwise. 3002 */ 3003 struct request *blk_fetch_request(struct request_queue *q) 3004 { 3005 struct request *rq; 3006 3007 lockdep_assert_held(q->queue_lock); 3008 WARN_ON_ONCE(q->mq_ops); 3009 3010 rq = blk_peek_request(q); 3011 if (rq) 3012 blk_start_request(rq); 3013 return rq; 3014 } 3015 EXPORT_SYMBOL(blk_fetch_request); 3016 3017 /* 3018 * Steal bios from a request and add them to a bio list. 3019 * The request must not have been partially completed before. 3020 */ 3021 void blk_steal_bios(struct bio_list *list, struct request *rq) 3022 { 3023 if (rq->bio) { 3024 if (list->tail) 3025 list->tail->bi_next = rq->bio; 3026 else 3027 list->head = rq->bio; 3028 list->tail = rq->biotail; 3029 3030 rq->bio = NULL; 3031 rq->biotail = NULL; 3032 } 3033 3034 rq->__data_len = 0; 3035 } 3036 EXPORT_SYMBOL_GPL(blk_steal_bios); 3037 3038 /** 3039 * blk_update_request - Special helper function for request stacking drivers 3040 * @req: the request being processed 3041 * @error: block status code 3042 * @nr_bytes: number of bytes to complete @req 3043 * 3044 * Description: 3045 * Ends I/O on a number of bytes attached to @req, but doesn't complete 3046 * the request structure even if @req doesn't have leftover. 3047 * If @req has leftover, sets it up for the next range of segments. 3048 * 3049 * This special helper function is only for request stacking drivers 3050 * (e.g. request-based dm) so that they can handle partial completion. 3051 * Actual device drivers should use blk_end_request instead. 3052 * 3053 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 3054 * %false return from this function. 3055 * 3056 * Return: 3057 * %false - this request doesn't have any more data 3058 * %true - this request has more data 3059 **/ 3060 bool blk_update_request(struct request *req, blk_status_t error, 3061 unsigned int nr_bytes) 3062 { 3063 int total_bytes; 3064 3065 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 3066 3067 if (!req->bio) 3068 return false; 3069 3070 if (unlikely(error && !blk_rq_is_passthrough(req) && 3071 !(req->rq_flags & RQF_QUIET))) 3072 print_req_error(req, error); 3073 3074 blk_account_io_completion(req, nr_bytes); 3075 3076 total_bytes = 0; 3077 while (req->bio) { 3078 struct bio *bio = req->bio; 3079 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 3080 3081 if (bio_bytes == bio->bi_iter.bi_size) 3082 req->bio = bio->bi_next; 3083 3084 /* Completion has already been traced */ 3085 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 3086 req_bio_endio(req, bio, bio_bytes, error); 3087 3088 total_bytes += bio_bytes; 3089 nr_bytes -= bio_bytes; 3090 3091 if (!nr_bytes) 3092 break; 3093 } 3094 3095 /* 3096 * completely done 3097 */ 3098 if (!req->bio) { 3099 /* 3100 * Reset counters so that the request stacking driver 3101 * can find how many bytes remain in the request 3102 * later. 3103 */ 3104 req->__data_len = 0; 3105 return false; 3106 } 3107 3108 req->__data_len -= total_bytes; 3109 3110 /* update sector only for requests with clear definition of sector */ 3111 if (!blk_rq_is_passthrough(req)) 3112 req->__sector += total_bytes >> 9; 3113 3114 /* mixed attributes always follow the first bio */ 3115 if (req->rq_flags & RQF_MIXED_MERGE) { 3116 req->cmd_flags &= ~REQ_FAILFAST_MASK; 3117 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 3118 } 3119 3120 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 3121 /* 3122 * If total number of sectors is less than the first segment 3123 * size, something has gone terribly wrong. 3124 */ 3125 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 3126 blk_dump_rq_flags(req, "request botched"); 3127 req->__data_len = blk_rq_cur_bytes(req); 3128 } 3129 3130 /* recalculate the number of segments */ 3131 blk_recalc_rq_segments(req); 3132 } 3133 3134 return true; 3135 } 3136 EXPORT_SYMBOL_GPL(blk_update_request); 3137 3138 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 3139 unsigned int nr_bytes, 3140 unsigned int bidi_bytes) 3141 { 3142 if (blk_update_request(rq, error, nr_bytes)) 3143 return true; 3144 3145 /* Bidi request must be completed as a whole */ 3146 if (unlikely(blk_bidi_rq(rq)) && 3147 blk_update_request(rq->next_rq, error, bidi_bytes)) 3148 return true; 3149 3150 if (blk_queue_add_random(rq->q)) 3151 add_disk_randomness(rq->rq_disk); 3152 3153 return false; 3154 } 3155 3156 /** 3157 * blk_unprep_request - unprepare a request 3158 * @req: the request 3159 * 3160 * This function makes a request ready for complete resubmission (or 3161 * completion). It happens only after all error handling is complete, 3162 * so represents the appropriate moment to deallocate any resources 3163 * that were allocated to the request in the prep_rq_fn. The queue 3164 * lock is held when calling this. 3165 */ 3166 void blk_unprep_request(struct request *req) 3167 { 3168 struct request_queue *q = req->q; 3169 3170 req->rq_flags &= ~RQF_DONTPREP; 3171 if (q->unprep_rq_fn) 3172 q->unprep_rq_fn(q, req); 3173 } 3174 EXPORT_SYMBOL_GPL(blk_unprep_request); 3175 3176 void blk_finish_request(struct request *req, blk_status_t error) 3177 { 3178 struct request_queue *q = req->q; 3179 u64 now = ktime_get_ns(); 3180 3181 lockdep_assert_held(req->q->queue_lock); 3182 WARN_ON_ONCE(q->mq_ops); 3183 3184 if (req->rq_flags & RQF_STATS) 3185 blk_stat_add(req, now); 3186 3187 if (req->rq_flags & RQF_QUEUED) 3188 blk_queue_end_tag(q, req); 3189 3190 BUG_ON(blk_queued_rq(req)); 3191 3192 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 3193 laptop_io_completion(req->q->backing_dev_info); 3194 3195 blk_delete_timer(req); 3196 3197 if (req->rq_flags & RQF_DONTPREP) 3198 blk_unprep_request(req); 3199 3200 blk_account_io_done(req, now); 3201 3202 if (req->end_io) { 3203 wbt_done(req->q->rq_wb, req); 3204 req->end_io(req, error); 3205 } else { 3206 if (blk_bidi_rq(req)) 3207 __blk_put_request(req->next_rq->q, req->next_rq); 3208 3209 __blk_put_request(q, req); 3210 } 3211 } 3212 EXPORT_SYMBOL(blk_finish_request); 3213 3214 /** 3215 * blk_end_bidi_request - Complete a bidi request 3216 * @rq: the request to complete 3217 * @error: block status code 3218 * @nr_bytes: number of bytes to complete @rq 3219 * @bidi_bytes: number of bytes to complete @rq->next_rq 3220 * 3221 * Description: 3222 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 3223 * Drivers that supports bidi can safely call this member for any 3224 * type of request, bidi or uni. In the later case @bidi_bytes is 3225 * just ignored. 3226 * 3227 * Return: 3228 * %false - we are done with this request 3229 * %true - still buffers pending for this request 3230 **/ 3231 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 3232 unsigned int nr_bytes, unsigned int bidi_bytes) 3233 { 3234 struct request_queue *q = rq->q; 3235 unsigned long flags; 3236 3237 WARN_ON_ONCE(q->mq_ops); 3238 3239 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3240 return true; 3241 3242 spin_lock_irqsave(q->queue_lock, flags); 3243 blk_finish_request(rq, error); 3244 spin_unlock_irqrestore(q->queue_lock, flags); 3245 3246 return false; 3247 } 3248 3249 /** 3250 * __blk_end_bidi_request - Complete a bidi request with queue lock held 3251 * @rq: the request to complete 3252 * @error: block status code 3253 * @nr_bytes: number of bytes to complete @rq 3254 * @bidi_bytes: number of bytes to complete @rq->next_rq 3255 * 3256 * Description: 3257 * Identical to blk_end_bidi_request() except that queue lock is 3258 * assumed to be locked on entry and remains so on return. 3259 * 3260 * Return: 3261 * %false - we are done with this request 3262 * %true - still buffers pending for this request 3263 **/ 3264 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 3265 unsigned int nr_bytes, unsigned int bidi_bytes) 3266 { 3267 lockdep_assert_held(rq->q->queue_lock); 3268 WARN_ON_ONCE(rq->q->mq_ops); 3269 3270 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3271 return true; 3272 3273 blk_finish_request(rq, error); 3274 3275 return false; 3276 } 3277 3278 /** 3279 * blk_end_request - Helper function for drivers to complete the request. 3280 * @rq: the request being processed 3281 * @error: block status code 3282 * @nr_bytes: number of bytes to complete 3283 * 3284 * Description: 3285 * Ends I/O on a number of bytes attached to @rq. 3286 * If @rq has leftover, sets it up for the next range of segments. 3287 * 3288 * Return: 3289 * %false - we are done with this request 3290 * %true - still buffers pending for this request 3291 **/ 3292 bool blk_end_request(struct request *rq, blk_status_t error, 3293 unsigned int nr_bytes) 3294 { 3295 WARN_ON_ONCE(rq->q->mq_ops); 3296 return blk_end_bidi_request(rq, error, nr_bytes, 0); 3297 } 3298 EXPORT_SYMBOL(blk_end_request); 3299 3300 /** 3301 * blk_end_request_all - Helper function for drives to finish the request. 3302 * @rq: the request to finish 3303 * @error: block status code 3304 * 3305 * Description: 3306 * Completely finish @rq. 3307 */ 3308 void blk_end_request_all(struct request *rq, blk_status_t error) 3309 { 3310 bool pending; 3311 unsigned int bidi_bytes = 0; 3312 3313 if (unlikely(blk_bidi_rq(rq))) 3314 bidi_bytes = blk_rq_bytes(rq->next_rq); 3315 3316 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3317 BUG_ON(pending); 3318 } 3319 EXPORT_SYMBOL(blk_end_request_all); 3320 3321 /** 3322 * __blk_end_request - Helper function for drivers to complete the request. 3323 * @rq: the request being processed 3324 * @error: block status code 3325 * @nr_bytes: number of bytes to complete 3326 * 3327 * Description: 3328 * Must be called with queue lock held unlike blk_end_request(). 3329 * 3330 * Return: 3331 * %false - we are done with this request 3332 * %true - still buffers pending for this request 3333 **/ 3334 bool __blk_end_request(struct request *rq, blk_status_t error, 3335 unsigned int nr_bytes) 3336 { 3337 lockdep_assert_held(rq->q->queue_lock); 3338 WARN_ON_ONCE(rq->q->mq_ops); 3339 3340 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 3341 } 3342 EXPORT_SYMBOL(__blk_end_request); 3343 3344 /** 3345 * __blk_end_request_all - Helper function for drives to finish the request. 3346 * @rq: the request to finish 3347 * @error: block status code 3348 * 3349 * Description: 3350 * Completely finish @rq. Must be called with queue lock held. 3351 */ 3352 void __blk_end_request_all(struct request *rq, blk_status_t error) 3353 { 3354 bool pending; 3355 unsigned int bidi_bytes = 0; 3356 3357 lockdep_assert_held(rq->q->queue_lock); 3358 WARN_ON_ONCE(rq->q->mq_ops); 3359 3360 if (unlikely(blk_bidi_rq(rq))) 3361 bidi_bytes = blk_rq_bytes(rq->next_rq); 3362 3363 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3364 BUG_ON(pending); 3365 } 3366 EXPORT_SYMBOL(__blk_end_request_all); 3367 3368 /** 3369 * __blk_end_request_cur - Helper function to finish the current request chunk. 3370 * @rq: the request to finish the current chunk for 3371 * @error: block status code 3372 * 3373 * Description: 3374 * Complete the current consecutively mapped chunk from @rq. Must 3375 * be called with queue lock held. 3376 * 3377 * Return: 3378 * %false - we are done with this request 3379 * %true - still buffers pending for this request 3380 */ 3381 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3382 { 3383 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3384 } 3385 EXPORT_SYMBOL(__blk_end_request_cur); 3386 3387 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3388 struct bio *bio) 3389 { 3390 if (bio_has_data(bio)) 3391 rq->nr_phys_segments = bio_phys_segments(q, bio); 3392 else if (bio_op(bio) == REQ_OP_DISCARD) 3393 rq->nr_phys_segments = 1; 3394 3395 rq->__data_len = bio->bi_iter.bi_size; 3396 rq->bio = rq->biotail = bio; 3397 3398 if (bio->bi_disk) 3399 rq->rq_disk = bio->bi_disk; 3400 } 3401 3402 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3403 /** 3404 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3405 * @rq: the request to be flushed 3406 * 3407 * Description: 3408 * Flush all pages in @rq. 3409 */ 3410 void rq_flush_dcache_pages(struct request *rq) 3411 { 3412 struct req_iterator iter; 3413 struct bio_vec bvec; 3414 3415 rq_for_each_segment(bvec, rq, iter) 3416 flush_dcache_page(bvec.bv_page); 3417 } 3418 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3419 #endif 3420 3421 /** 3422 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3423 * @q : the queue of the device being checked 3424 * 3425 * Description: 3426 * Check if underlying low-level drivers of a device are busy. 3427 * If the drivers want to export their busy state, they must set own 3428 * exporting function using blk_queue_lld_busy() first. 3429 * 3430 * Basically, this function is used only by request stacking drivers 3431 * to stop dispatching requests to underlying devices when underlying 3432 * devices are busy. This behavior helps more I/O merging on the queue 3433 * of the request stacking driver and prevents I/O throughput regression 3434 * on burst I/O load. 3435 * 3436 * Return: 3437 * 0 - Not busy (The request stacking driver should dispatch request) 3438 * 1 - Busy (The request stacking driver should stop dispatching request) 3439 */ 3440 int blk_lld_busy(struct request_queue *q) 3441 { 3442 if (q->lld_busy_fn) 3443 return q->lld_busy_fn(q); 3444 3445 return 0; 3446 } 3447 EXPORT_SYMBOL_GPL(blk_lld_busy); 3448 3449 /** 3450 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3451 * @rq: the clone request to be cleaned up 3452 * 3453 * Description: 3454 * Free all bios in @rq for a cloned request. 3455 */ 3456 void blk_rq_unprep_clone(struct request *rq) 3457 { 3458 struct bio *bio; 3459 3460 while ((bio = rq->bio) != NULL) { 3461 rq->bio = bio->bi_next; 3462 3463 bio_put(bio); 3464 } 3465 } 3466 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3467 3468 /* 3469 * Copy attributes of the original request to the clone request. 3470 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3471 */ 3472 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3473 { 3474 dst->cpu = src->cpu; 3475 dst->__sector = blk_rq_pos(src); 3476 dst->__data_len = blk_rq_bytes(src); 3477 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3478 dst->rq_flags |= RQF_SPECIAL_PAYLOAD; 3479 dst->special_vec = src->special_vec; 3480 } 3481 dst->nr_phys_segments = src->nr_phys_segments; 3482 dst->ioprio = src->ioprio; 3483 dst->extra_len = src->extra_len; 3484 } 3485 3486 /** 3487 * blk_rq_prep_clone - Helper function to setup clone request 3488 * @rq: the request to be setup 3489 * @rq_src: original request to be cloned 3490 * @bs: bio_set that bios for clone are allocated from 3491 * @gfp_mask: memory allocation mask for bio 3492 * @bio_ctr: setup function to be called for each clone bio. 3493 * Returns %0 for success, non %0 for failure. 3494 * @data: private data to be passed to @bio_ctr 3495 * 3496 * Description: 3497 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3498 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3499 * are not copied, and copying such parts is the caller's responsibility. 3500 * Also, pages which the original bios are pointing to are not copied 3501 * and the cloned bios just point same pages. 3502 * So cloned bios must be completed before original bios, which means 3503 * the caller must complete @rq before @rq_src. 3504 */ 3505 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3506 struct bio_set *bs, gfp_t gfp_mask, 3507 int (*bio_ctr)(struct bio *, struct bio *, void *), 3508 void *data) 3509 { 3510 struct bio *bio, *bio_src; 3511 3512 if (!bs) 3513 bs = &fs_bio_set; 3514 3515 __rq_for_each_bio(bio_src, rq_src) { 3516 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3517 if (!bio) 3518 goto free_and_out; 3519 3520 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3521 goto free_and_out; 3522 3523 if (rq->bio) { 3524 rq->biotail->bi_next = bio; 3525 rq->biotail = bio; 3526 } else 3527 rq->bio = rq->biotail = bio; 3528 } 3529 3530 __blk_rq_prep_clone(rq, rq_src); 3531 3532 return 0; 3533 3534 free_and_out: 3535 if (bio) 3536 bio_put(bio); 3537 blk_rq_unprep_clone(rq); 3538 3539 return -ENOMEM; 3540 } 3541 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3542 3543 int kblockd_schedule_work(struct work_struct *work) 3544 { 3545 return queue_work(kblockd_workqueue, work); 3546 } 3547 EXPORT_SYMBOL(kblockd_schedule_work); 3548 3549 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3550 { 3551 return queue_work_on(cpu, kblockd_workqueue, work); 3552 } 3553 EXPORT_SYMBOL(kblockd_schedule_work_on); 3554 3555 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3556 unsigned long delay) 3557 { 3558 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3559 } 3560 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3561 3562 /** 3563 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3564 * @plug: The &struct blk_plug that needs to be initialized 3565 * 3566 * Description: 3567 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3568 * pending I/O should the task end up blocking between blk_start_plug() and 3569 * blk_finish_plug(). This is important from a performance perspective, but 3570 * also ensures that we don't deadlock. For instance, if the task is blocking 3571 * for a memory allocation, memory reclaim could end up wanting to free a 3572 * page belonging to that request that is currently residing in our private 3573 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3574 * this kind of deadlock. 3575 */ 3576 void blk_start_plug(struct blk_plug *plug) 3577 { 3578 struct task_struct *tsk = current; 3579 3580 /* 3581 * If this is a nested plug, don't actually assign it. 3582 */ 3583 if (tsk->plug) 3584 return; 3585 3586 INIT_LIST_HEAD(&plug->list); 3587 INIT_LIST_HEAD(&plug->mq_list); 3588 INIT_LIST_HEAD(&plug->cb_list); 3589 /* 3590 * Store ordering should not be needed here, since a potential 3591 * preempt will imply a full memory barrier 3592 */ 3593 tsk->plug = plug; 3594 } 3595 EXPORT_SYMBOL(blk_start_plug); 3596 3597 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3598 { 3599 struct request *rqa = container_of(a, struct request, queuelist); 3600 struct request *rqb = container_of(b, struct request, queuelist); 3601 3602 return !(rqa->q < rqb->q || 3603 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3604 } 3605 3606 /* 3607 * If 'from_schedule' is true, then postpone the dispatch of requests 3608 * until a safe kblockd context. We due this to avoid accidental big 3609 * additional stack usage in driver dispatch, in places where the originally 3610 * plugger did not intend it. 3611 */ 3612 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3613 bool from_schedule) 3614 __releases(q->queue_lock) 3615 { 3616 lockdep_assert_held(q->queue_lock); 3617 3618 trace_block_unplug(q, depth, !from_schedule); 3619 3620 if (from_schedule) 3621 blk_run_queue_async(q); 3622 else 3623 __blk_run_queue(q); 3624 spin_unlock_irq(q->queue_lock); 3625 } 3626 3627 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3628 { 3629 LIST_HEAD(callbacks); 3630 3631 while (!list_empty(&plug->cb_list)) { 3632 list_splice_init(&plug->cb_list, &callbacks); 3633 3634 while (!list_empty(&callbacks)) { 3635 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3636 struct blk_plug_cb, 3637 list); 3638 list_del(&cb->list); 3639 cb->callback(cb, from_schedule); 3640 } 3641 } 3642 } 3643 3644 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3645 int size) 3646 { 3647 struct blk_plug *plug = current->plug; 3648 struct blk_plug_cb *cb; 3649 3650 if (!plug) 3651 return NULL; 3652 3653 list_for_each_entry(cb, &plug->cb_list, list) 3654 if (cb->callback == unplug && cb->data == data) 3655 return cb; 3656 3657 /* Not currently on the callback list */ 3658 BUG_ON(size < sizeof(*cb)); 3659 cb = kzalloc(size, GFP_ATOMIC); 3660 if (cb) { 3661 cb->data = data; 3662 cb->callback = unplug; 3663 list_add(&cb->list, &plug->cb_list); 3664 } 3665 return cb; 3666 } 3667 EXPORT_SYMBOL(blk_check_plugged); 3668 3669 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3670 { 3671 struct request_queue *q; 3672 struct request *rq; 3673 LIST_HEAD(list); 3674 unsigned int depth; 3675 3676 flush_plug_callbacks(plug, from_schedule); 3677 3678 if (!list_empty(&plug->mq_list)) 3679 blk_mq_flush_plug_list(plug, from_schedule); 3680 3681 if (list_empty(&plug->list)) 3682 return; 3683 3684 list_splice_init(&plug->list, &list); 3685 3686 list_sort(NULL, &list, plug_rq_cmp); 3687 3688 q = NULL; 3689 depth = 0; 3690 3691 while (!list_empty(&list)) { 3692 rq = list_entry_rq(list.next); 3693 list_del_init(&rq->queuelist); 3694 BUG_ON(!rq->q); 3695 if (rq->q != q) { 3696 /* 3697 * This drops the queue lock 3698 */ 3699 if (q) 3700 queue_unplugged(q, depth, from_schedule); 3701 q = rq->q; 3702 depth = 0; 3703 spin_lock_irq(q->queue_lock); 3704 } 3705 3706 /* 3707 * Short-circuit if @q is dead 3708 */ 3709 if (unlikely(blk_queue_dying(q))) { 3710 __blk_end_request_all(rq, BLK_STS_IOERR); 3711 continue; 3712 } 3713 3714 /* 3715 * rq is already accounted, so use raw insert 3716 */ 3717 if (op_is_flush(rq->cmd_flags)) 3718 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3719 else 3720 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3721 3722 depth++; 3723 } 3724 3725 /* 3726 * This drops the queue lock 3727 */ 3728 if (q) 3729 queue_unplugged(q, depth, from_schedule); 3730 } 3731 3732 void blk_finish_plug(struct blk_plug *plug) 3733 { 3734 if (plug != current->plug) 3735 return; 3736 blk_flush_plug_list(plug, false); 3737 3738 current->plug = NULL; 3739 } 3740 EXPORT_SYMBOL(blk_finish_plug); 3741 3742 #ifdef CONFIG_PM 3743 /** 3744 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3745 * @q: the queue of the device 3746 * @dev: the device the queue belongs to 3747 * 3748 * Description: 3749 * Initialize runtime-PM-related fields for @q and start auto suspend for 3750 * @dev. Drivers that want to take advantage of request-based runtime PM 3751 * should call this function after @dev has been initialized, and its 3752 * request queue @q has been allocated, and runtime PM for it can not happen 3753 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3754 * cases, driver should call this function before any I/O has taken place. 3755 * 3756 * This function takes care of setting up using auto suspend for the device, 3757 * the autosuspend delay is set to -1 to make runtime suspend impossible 3758 * until an updated value is either set by user or by driver. Drivers do 3759 * not need to touch other autosuspend settings. 3760 * 3761 * The block layer runtime PM is request based, so only works for drivers 3762 * that use request as their IO unit instead of those directly use bio's. 3763 */ 3764 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3765 { 3766 /* not support for RQF_PM and ->rpm_status in blk-mq yet */ 3767 if (q->mq_ops) 3768 return; 3769 3770 q->dev = dev; 3771 q->rpm_status = RPM_ACTIVE; 3772 pm_runtime_set_autosuspend_delay(q->dev, -1); 3773 pm_runtime_use_autosuspend(q->dev); 3774 } 3775 EXPORT_SYMBOL(blk_pm_runtime_init); 3776 3777 /** 3778 * blk_pre_runtime_suspend - Pre runtime suspend check 3779 * @q: the queue of the device 3780 * 3781 * Description: 3782 * This function will check if runtime suspend is allowed for the device 3783 * by examining if there are any requests pending in the queue. If there 3784 * are requests pending, the device can not be runtime suspended; otherwise, 3785 * the queue's status will be updated to SUSPENDING and the driver can 3786 * proceed to suspend the device. 3787 * 3788 * For the not allowed case, we mark last busy for the device so that 3789 * runtime PM core will try to autosuspend it some time later. 3790 * 3791 * This function should be called near the start of the device's 3792 * runtime_suspend callback. 3793 * 3794 * Return: 3795 * 0 - OK to runtime suspend the device 3796 * -EBUSY - Device should not be runtime suspended 3797 */ 3798 int blk_pre_runtime_suspend(struct request_queue *q) 3799 { 3800 int ret = 0; 3801 3802 if (!q->dev) 3803 return ret; 3804 3805 spin_lock_irq(q->queue_lock); 3806 if (q->nr_pending) { 3807 ret = -EBUSY; 3808 pm_runtime_mark_last_busy(q->dev); 3809 } else { 3810 q->rpm_status = RPM_SUSPENDING; 3811 } 3812 spin_unlock_irq(q->queue_lock); 3813 return ret; 3814 } 3815 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3816 3817 /** 3818 * blk_post_runtime_suspend - Post runtime suspend processing 3819 * @q: the queue of the device 3820 * @err: return value of the device's runtime_suspend function 3821 * 3822 * Description: 3823 * Update the queue's runtime status according to the return value of the 3824 * device's runtime suspend function and mark last busy for the device so 3825 * that PM core will try to auto suspend the device at a later time. 3826 * 3827 * This function should be called near the end of the device's 3828 * runtime_suspend callback. 3829 */ 3830 void blk_post_runtime_suspend(struct request_queue *q, int err) 3831 { 3832 if (!q->dev) 3833 return; 3834 3835 spin_lock_irq(q->queue_lock); 3836 if (!err) { 3837 q->rpm_status = RPM_SUSPENDED; 3838 } else { 3839 q->rpm_status = RPM_ACTIVE; 3840 pm_runtime_mark_last_busy(q->dev); 3841 } 3842 spin_unlock_irq(q->queue_lock); 3843 } 3844 EXPORT_SYMBOL(blk_post_runtime_suspend); 3845 3846 /** 3847 * blk_pre_runtime_resume - Pre runtime resume processing 3848 * @q: the queue of the device 3849 * 3850 * Description: 3851 * Update the queue's runtime status to RESUMING in preparation for the 3852 * runtime resume of the device. 3853 * 3854 * This function should be called near the start of the device's 3855 * runtime_resume callback. 3856 */ 3857 void blk_pre_runtime_resume(struct request_queue *q) 3858 { 3859 if (!q->dev) 3860 return; 3861 3862 spin_lock_irq(q->queue_lock); 3863 q->rpm_status = RPM_RESUMING; 3864 spin_unlock_irq(q->queue_lock); 3865 } 3866 EXPORT_SYMBOL(blk_pre_runtime_resume); 3867 3868 /** 3869 * blk_post_runtime_resume - Post runtime resume processing 3870 * @q: the queue of the device 3871 * @err: return value of the device's runtime_resume function 3872 * 3873 * Description: 3874 * Update the queue's runtime status according to the return value of the 3875 * device's runtime_resume function. If it is successfully resumed, process 3876 * the requests that are queued into the device's queue when it is resuming 3877 * and then mark last busy and initiate autosuspend for it. 3878 * 3879 * This function should be called near the end of the device's 3880 * runtime_resume callback. 3881 */ 3882 void blk_post_runtime_resume(struct request_queue *q, int err) 3883 { 3884 if (!q->dev) 3885 return; 3886 3887 spin_lock_irq(q->queue_lock); 3888 if (!err) { 3889 q->rpm_status = RPM_ACTIVE; 3890 __blk_run_queue(q); 3891 pm_runtime_mark_last_busy(q->dev); 3892 pm_request_autosuspend(q->dev); 3893 } else { 3894 q->rpm_status = RPM_SUSPENDED; 3895 } 3896 spin_unlock_irq(q->queue_lock); 3897 } 3898 EXPORT_SYMBOL(blk_post_runtime_resume); 3899 3900 /** 3901 * blk_set_runtime_active - Force runtime status of the queue to be active 3902 * @q: the queue of the device 3903 * 3904 * If the device is left runtime suspended during system suspend the resume 3905 * hook typically resumes the device and corrects runtime status 3906 * accordingly. However, that does not affect the queue runtime PM status 3907 * which is still "suspended". This prevents processing requests from the 3908 * queue. 3909 * 3910 * This function can be used in driver's resume hook to correct queue 3911 * runtime PM status and re-enable peeking requests from the queue. It 3912 * should be called before first request is added to the queue. 3913 */ 3914 void blk_set_runtime_active(struct request_queue *q) 3915 { 3916 spin_lock_irq(q->queue_lock); 3917 q->rpm_status = RPM_ACTIVE; 3918 pm_runtime_mark_last_busy(q->dev); 3919 pm_request_autosuspend(q->dev); 3920 spin_unlock_irq(q->queue_lock); 3921 } 3922 EXPORT_SYMBOL(blk_set_runtime_active); 3923 #endif 3924 3925 int __init blk_dev_init(void) 3926 { 3927 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3928 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3929 FIELD_SIZEOF(struct request, cmd_flags)); 3930 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3931 FIELD_SIZEOF(struct bio, bi_opf)); 3932 3933 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3934 kblockd_workqueue = alloc_workqueue("kblockd", 3935 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3936 if (!kblockd_workqueue) 3937 panic("Failed to create kblockd\n"); 3938 3939 request_cachep = kmem_cache_create("blkdev_requests", 3940 sizeof(struct request), 0, SLAB_PANIC, NULL); 3941 3942 blk_requestq_cachep = kmem_cache_create("request_queue", 3943 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3944 3945 #ifdef CONFIG_DEBUG_FS 3946 blk_debugfs_root = debugfs_create_dir("block", NULL); 3947 #endif 3948 3949 return 0; 3950 } 3951