1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/block.h> 33 34 #include "blk.h" 35 36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 39 40 static int __make_request(struct request_queue *q, struct bio *bio); 41 42 /* 43 * For the allocated request tables 44 */ 45 static struct kmem_cache *request_cachep; 46 47 /* 48 * For queue allocation 49 */ 50 struct kmem_cache *blk_requestq_cachep; 51 52 /* 53 * Controlling structure to kblockd 54 */ 55 static struct workqueue_struct *kblockd_workqueue; 56 57 static void drive_stat_acct(struct request *rq, int new_io) 58 { 59 struct hd_struct *part; 60 int rw = rq_data_dir(rq); 61 int cpu; 62 63 if (!blk_do_io_stat(rq)) 64 return; 65 66 cpu = part_stat_lock(); 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 68 69 if (!new_io) 70 part_stat_inc(cpu, part, merges[rw]); 71 else { 72 part_round_stats(cpu, part); 73 part_inc_in_flight(part, rw); 74 } 75 76 part_stat_unlock(); 77 } 78 79 void blk_queue_congestion_threshold(struct request_queue *q) 80 { 81 int nr; 82 83 nr = q->nr_requests - (q->nr_requests / 8) + 1; 84 if (nr > q->nr_requests) 85 nr = q->nr_requests; 86 q->nr_congestion_on = nr; 87 88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 89 if (nr < 1) 90 nr = 1; 91 q->nr_congestion_off = nr; 92 } 93 94 /** 95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 96 * @bdev: device 97 * 98 * Locates the passed device's request queue and returns the address of its 99 * backing_dev_info 100 * 101 * Will return NULL if the request queue cannot be located. 102 */ 103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 104 { 105 struct backing_dev_info *ret = NULL; 106 struct request_queue *q = bdev_get_queue(bdev); 107 108 if (q) 109 ret = &q->backing_dev_info; 110 return ret; 111 } 112 EXPORT_SYMBOL(blk_get_backing_dev_info); 113 114 void blk_rq_init(struct request_queue *q, struct request *rq) 115 { 116 memset(rq, 0, sizeof(*rq)); 117 118 INIT_LIST_HEAD(&rq->queuelist); 119 INIT_LIST_HEAD(&rq->timeout_list); 120 rq->cpu = -1; 121 rq->q = q; 122 rq->__sector = (sector_t) -1; 123 INIT_HLIST_NODE(&rq->hash); 124 RB_CLEAR_NODE(&rq->rb_node); 125 rq->cmd = rq->__cmd; 126 rq->cmd_len = BLK_MAX_CDB; 127 rq->tag = -1; 128 rq->ref_count = 1; 129 rq->start_time = jiffies; 130 set_start_time_ns(rq); 131 } 132 EXPORT_SYMBOL(blk_rq_init); 133 134 static void req_bio_endio(struct request *rq, struct bio *bio, 135 unsigned int nbytes, int error) 136 { 137 struct request_queue *q = rq->q; 138 139 if (&q->bar_rq != rq) { 140 if (error) 141 clear_bit(BIO_UPTODATE, &bio->bi_flags); 142 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 143 error = -EIO; 144 145 if (unlikely(nbytes > bio->bi_size)) { 146 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 147 __func__, nbytes, bio->bi_size); 148 nbytes = bio->bi_size; 149 } 150 151 if (unlikely(rq->cmd_flags & REQ_QUIET)) 152 set_bit(BIO_QUIET, &bio->bi_flags); 153 154 bio->bi_size -= nbytes; 155 bio->bi_sector += (nbytes >> 9); 156 157 if (bio_integrity(bio)) 158 bio_integrity_advance(bio, nbytes); 159 160 if (bio->bi_size == 0) 161 bio_endio(bio, error); 162 } else { 163 164 /* 165 * Okay, this is the barrier request in progress, just 166 * record the error; 167 */ 168 if (error && !q->orderr) 169 q->orderr = error; 170 } 171 } 172 173 void blk_dump_rq_flags(struct request *rq, char *msg) 174 { 175 int bit; 176 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 179 rq->cmd_flags); 180 181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 182 (unsigned long long)blk_rq_pos(rq), 183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 186 187 if (blk_pc_request(rq)) { 188 printk(KERN_INFO " cdb: "); 189 for (bit = 0; bit < BLK_MAX_CDB; bit++) 190 printk("%02x ", rq->cmd[bit]); 191 printk("\n"); 192 } 193 } 194 EXPORT_SYMBOL(blk_dump_rq_flags); 195 196 /* 197 * "plug" the device if there are no outstanding requests: this will 198 * force the transfer to start only after we have put all the requests 199 * on the list. 200 * 201 * This is called with interrupts off and no requests on the queue and 202 * with the queue lock held. 203 */ 204 void blk_plug_device(struct request_queue *q) 205 { 206 WARN_ON(!irqs_disabled()); 207 208 /* 209 * don't plug a stopped queue, it must be paired with blk_start_queue() 210 * which will restart the queueing 211 */ 212 if (blk_queue_stopped(q)) 213 return; 214 215 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 216 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 217 trace_block_plug(q); 218 } 219 } 220 EXPORT_SYMBOL(blk_plug_device); 221 222 /** 223 * blk_plug_device_unlocked - plug a device without queue lock held 224 * @q: The &struct request_queue to plug 225 * 226 * Description: 227 * Like @blk_plug_device(), but grabs the queue lock and disables 228 * interrupts. 229 **/ 230 void blk_plug_device_unlocked(struct request_queue *q) 231 { 232 unsigned long flags; 233 234 spin_lock_irqsave(q->queue_lock, flags); 235 blk_plug_device(q); 236 spin_unlock_irqrestore(q->queue_lock, flags); 237 } 238 EXPORT_SYMBOL(blk_plug_device_unlocked); 239 240 /* 241 * remove the queue from the plugged list, if present. called with 242 * queue lock held and interrupts disabled. 243 */ 244 int blk_remove_plug(struct request_queue *q) 245 { 246 WARN_ON(!irqs_disabled()); 247 248 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 249 return 0; 250 251 del_timer(&q->unplug_timer); 252 return 1; 253 } 254 EXPORT_SYMBOL(blk_remove_plug); 255 256 /* 257 * remove the plug and let it rip.. 258 */ 259 void __generic_unplug_device(struct request_queue *q) 260 { 261 if (unlikely(blk_queue_stopped(q))) 262 return; 263 if (!blk_remove_plug(q) && !blk_queue_nonrot(q)) 264 return; 265 266 q->request_fn(q); 267 } 268 269 /** 270 * generic_unplug_device - fire a request queue 271 * @q: The &struct request_queue in question 272 * 273 * Description: 274 * Linux uses plugging to build bigger requests queues before letting 275 * the device have at them. If a queue is plugged, the I/O scheduler 276 * is still adding and merging requests on the queue. Once the queue 277 * gets unplugged, the request_fn defined for the queue is invoked and 278 * transfers started. 279 **/ 280 void generic_unplug_device(struct request_queue *q) 281 { 282 if (blk_queue_plugged(q)) { 283 spin_lock_irq(q->queue_lock); 284 __generic_unplug_device(q); 285 spin_unlock_irq(q->queue_lock); 286 } 287 } 288 EXPORT_SYMBOL(generic_unplug_device); 289 290 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 291 struct page *page) 292 { 293 struct request_queue *q = bdi->unplug_io_data; 294 295 blk_unplug(q); 296 } 297 298 void blk_unplug_work(struct work_struct *work) 299 { 300 struct request_queue *q = 301 container_of(work, struct request_queue, unplug_work); 302 303 trace_block_unplug_io(q); 304 q->unplug_fn(q); 305 } 306 307 void blk_unplug_timeout(unsigned long data) 308 { 309 struct request_queue *q = (struct request_queue *)data; 310 311 trace_block_unplug_timer(q); 312 kblockd_schedule_work(q, &q->unplug_work); 313 } 314 315 void blk_unplug(struct request_queue *q) 316 { 317 /* 318 * devices don't necessarily have an ->unplug_fn defined 319 */ 320 if (q->unplug_fn) { 321 trace_block_unplug_io(q); 322 q->unplug_fn(q); 323 } 324 } 325 EXPORT_SYMBOL(blk_unplug); 326 327 /** 328 * blk_start_queue - restart a previously stopped queue 329 * @q: The &struct request_queue in question 330 * 331 * Description: 332 * blk_start_queue() will clear the stop flag on the queue, and call 333 * the request_fn for the queue if it was in a stopped state when 334 * entered. Also see blk_stop_queue(). Queue lock must be held. 335 **/ 336 void blk_start_queue(struct request_queue *q) 337 { 338 WARN_ON(!irqs_disabled()); 339 340 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 341 __blk_run_queue(q); 342 } 343 EXPORT_SYMBOL(blk_start_queue); 344 345 /** 346 * blk_stop_queue - stop a queue 347 * @q: The &struct request_queue in question 348 * 349 * Description: 350 * The Linux block layer assumes that a block driver will consume all 351 * entries on the request queue when the request_fn strategy is called. 352 * Often this will not happen, because of hardware limitations (queue 353 * depth settings). If a device driver gets a 'queue full' response, 354 * or if it simply chooses not to queue more I/O at one point, it can 355 * call this function to prevent the request_fn from being called until 356 * the driver has signalled it's ready to go again. This happens by calling 357 * blk_start_queue() to restart queue operations. Queue lock must be held. 358 **/ 359 void blk_stop_queue(struct request_queue *q) 360 { 361 blk_remove_plug(q); 362 queue_flag_set(QUEUE_FLAG_STOPPED, q); 363 } 364 EXPORT_SYMBOL(blk_stop_queue); 365 366 /** 367 * blk_sync_queue - cancel any pending callbacks on a queue 368 * @q: the queue 369 * 370 * Description: 371 * The block layer may perform asynchronous callback activity 372 * on a queue, such as calling the unplug function after a timeout. 373 * A block device may call blk_sync_queue to ensure that any 374 * such activity is cancelled, thus allowing it to release resources 375 * that the callbacks might use. The caller must already have made sure 376 * that its ->make_request_fn will not re-add plugging prior to calling 377 * this function. 378 * 379 */ 380 void blk_sync_queue(struct request_queue *q) 381 { 382 del_timer_sync(&q->unplug_timer); 383 del_timer_sync(&q->timeout); 384 cancel_work_sync(&q->unplug_work); 385 } 386 EXPORT_SYMBOL(blk_sync_queue); 387 388 /** 389 * __blk_run_queue - run a single device queue 390 * @q: The queue to run 391 * 392 * Description: 393 * See @blk_run_queue. This variant must be called with the queue lock 394 * held and interrupts disabled. 395 * 396 */ 397 void __blk_run_queue(struct request_queue *q) 398 { 399 blk_remove_plug(q); 400 401 if (unlikely(blk_queue_stopped(q))) 402 return; 403 404 if (elv_queue_empty(q)) 405 return; 406 407 /* 408 * Only recurse once to avoid overrunning the stack, let the unplug 409 * handling reinvoke the handler shortly if we already got there. 410 */ 411 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 412 q->request_fn(q); 413 queue_flag_clear(QUEUE_FLAG_REENTER, q); 414 } else { 415 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 416 kblockd_schedule_work(q, &q->unplug_work); 417 } 418 } 419 EXPORT_SYMBOL(__blk_run_queue); 420 421 /** 422 * blk_run_queue - run a single device queue 423 * @q: The queue to run 424 * 425 * Description: 426 * Invoke request handling on this queue, if it has pending work to do. 427 * May be used to restart queueing when a request has completed. 428 */ 429 void blk_run_queue(struct request_queue *q) 430 { 431 unsigned long flags; 432 433 spin_lock_irqsave(q->queue_lock, flags); 434 __blk_run_queue(q); 435 spin_unlock_irqrestore(q->queue_lock, flags); 436 } 437 EXPORT_SYMBOL(blk_run_queue); 438 439 void blk_put_queue(struct request_queue *q) 440 { 441 kobject_put(&q->kobj); 442 } 443 444 void blk_cleanup_queue(struct request_queue *q) 445 { 446 /* 447 * We know we have process context here, so we can be a little 448 * cautious and ensure that pending block actions on this device 449 * are done before moving on. Going into this function, we should 450 * not have processes doing IO to this device. 451 */ 452 blk_sync_queue(q); 453 454 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 455 mutex_lock(&q->sysfs_lock); 456 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 457 mutex_unlock(&q->sysfs_lock); 458 459 if (q->elevator) 460 elevator_exit(q->elevator); 461 462 blk_put_queue(q); 463 } 464 EXPORT_SYMBOL(blk_cleanup_queue); 465 466 static int blk_init_free_list(struct request_queue *q) 467 { 468 struct request_list *rl = &q->rq; 469 470 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 471 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 472 rl->elvpriv = 0; 473 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 474 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 475 476 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 477 mempool_free_slab, request_cachep, q->node); 478 479 if (!rl->rq_pool) 480 return -ENOMEM; 481 482 return 0; 483 } 484 485 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 486 { 487 return blk_alloc_queue_node(gfp_mask, -1); 488 } 489 EXPORT_SYMBOL(blk_alloc_queue); 490 491 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 492 { 493 struct request_queue *q; 494 int err; 495 496 q = kmem_cache_alloc_node(blk_requestq_cachep, 497 gfp_mask | __GFP_ZERO, node_id); 498 if (!q) 499 return NULL; 500 501 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 502 q->backing_dev_info.unplug_io_data = q; 503 q->backing_dev_info.ra_pages = 504 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 505 q->backing_dev_info.state = 0; 506 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 507 q->backing_dev_info.name = "block"; 508 509 err = bdi_init(&q->backing_dev_info); 510 if (err) { 511 kmem_cache_free(blk_requestq_cachep, q); 512 return NULL; 513 } 514 515 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 516 laptop_mode_timer_fn, (unsigned long) q); 517 init_timer(&q->unplug_timer); 518 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 519 INIT_LIST_HEAD(&q->timeout_list); 520 INIT_WORK(&q->unplug_work, blk_unplug_work); 521 522 kobject_init(&q->kobj, &blk_queue_ktype); 523 524 mutex_init(&q->sysfs_lock); 525 spin_lock_init(&q->__queue_lock); 526 527 return q; 528 } 529 EXPORT_SYMBOL(blk_alloc_queue_node); 530 531 /** 532 * blk_init_queue - prepare a request queue for use with a block device 533 * @rfn: The function to be called to process requests that have been 534 * placed on the queue. 535 * @lock: Request queue spin lock 536 * 537 * Description: 538 * If a block device wishes to use the standard request handling procedures, 539 * which sorts requests and coalesces adjacent requests, then it must 540 * call blk_init_queue(). The function @rfn will be called when there 541 * are requests on the queue that need to be processed. If the device 542 * supports plugging, then @rfn may not be called immediately when requests 543 * are available on the queue, but may be called at some time later instead. 544 * Plugged queues are generally unplugged when a buffer belonging to one 545 * of the requests on the queue is needed, or due to memory pressure. 546 * 547 * @rfn is not required, or even expected, to remove all requests off the 548 * queue, but only as many as it can handle at a time. If it does leave 549 * requests on the queue, it is responsible for arranging that the requests 550 * get dealt with eventually. 551 * 552 * The queue spin lock must be held while manipulating the requests on the 553 * request queue; this lock will be taken also from interrupt context, so irq 554 * disabling is needed for it. 555 * 556 * Function returns a pointer to the initialized request queue, or %NULL if 557 * it didn't succeed. 558 * 559 * Note: 560 * blk_init_queue() must be paired with a blk_cleanup_queue() call 561 * when the block device is deactivated (such as at module unload). 562 **/ 563 564 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 565 { 566 return blk_init_queue_node(rfn, lock, -1); 567 } 568 EXPORT_SYMBOL(blk_init_queue); 569 570 struct request_queue * 571 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 572 { 573 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 574 575 return blk_init_allocated_queue_node(q, rfn, lock, node_id); 576 } 577 EXPORT_SYMBOL(blk_init_queue_node); 578 579 struct request_queue * 580 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 581 spinlock_t *lock) 582 { 583 return blk_init_allocated_queue_node(q, rfn, lock, -1); 584 } 585 EXPORT_SYMBOL(blk_init_allocated_queue); 586 587 struct request_queue * 588 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn, 589 spinlock_t *lock, int node_id) 590 { 591 if (!q) 592 return NULL; 593 594 q->node = node_id; 595 if (blk_init_free_list(q)) { 596 kmem_cache_free(blk_requestq_cachep, q); 597 return NULL; 598 } 599 600 q->request_fn = rfn; 601 q->prep_rq_fn = NULL; 602 q->unplug_fn = generic_unplug_device; 603 q->queue_flags = QUEUE_FLAG_DEFAULT; 604 q->queue_lock = lock; 605 606 /* 607 * This also sets hw/phys segments, boundary and size 608 */ 609 blk_queue_make_request(q, __make_request); 610 611 q->sg_reserved_size = INT_MAX; 612 613 /* 614 * all done 615 */ 616 if (!elevator_init(q, NULL)) { 617 blk_queue_congestion_threshold(q); 618 return q; 619 } 620 621 blk_put_queue(q); 622 return NULL; 623 } 624 EXPORT_SYMBOL(blk_init_allocated_queue_node); 625 626 int blk_get_queue(struct request_queue *q) 627 { 628 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 629 kobject_get(&q->kobj); 630 return 0; 631 } 632 633 return 1; 634 } 635 636 static inline void blk_free_request(struct request_queue *q, struct request *rq) 637 { 638 if (rq->cmd_flags & REQ_ELVPRIV) 639 elv_put_request(q, rq); 640 mempool_free(rq, q->rq.rq_pool); 641 } 642 643 static struct request * 644 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 645 { 646 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 647 648 if (!rq) 649 return NULL; 650 651 blk_rq_init(q, rq); 652 653 rq->cmd_flags = flags | REQ_ALLOCED; 654 655 if (priv) { 656 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 657 mempool_free(rq, q->rq.rq_pool); 658 return NULL; 659 } 660 rq->cmd_flags |= REQ_ELVPRIV; 661 } 662 663 return rq; 664 } 665 666 /* 667 * ioc_batching returns true if the ioc is a valid batching request and 668 * should be given priority access to a request. 669 */ 670 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 671 { 672 if (!ioc) 673 return 0; 674 675 /* 676 * Make sure the process is able to allocate at least 1 request 677 * even if the batch times out, otherwise we could theoretically 678 * lose wakeups. 679 */ 680 return ioc->nr_batch_requests == q->nr_batching || 681 (ioc->nr_batch_requests > 0 682 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 683 } 684 685 /* 686 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 687 * will cause the process to be a "batcher" on all queues in the system. This 688 * is the behaviour we want though - once it gets a wakeup it should be given 689 * a nice run. 690 */ 691 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 692 { 693 if (!ioc || ioc_batching(q, ioc)) 694 return; 695 696 ioc->nr_batch_requests = q->nr_batching; 697 ioc->last_waited = jiffies; 698 } 699 700 static void __freed_request(struct request_queue *q, int sync) 701 { 702 struct request_list *rl = &q->rq; 703 704 if (rl->count[sync] < queue_congestion_off_threshold(q)) 705 blk_clear_queue_congested(q, sync); 706 707 if (rl->count[sync] + 1 <= q->nr_requests) { 708 if (waitqueue_active(&rl->wait[sync])) 709 wake_up(&rl->wait[sync]); 710 711 blk_clear_queue_full(q, sync); 712 } 713 } 714 715 /* 716 * A request has just been released. Account for it, update the full and 717 * congestion status, wake up any waiters. Called under q->queue_lock. 718 */ 719 static void freed_request(struct request_queue *q, int sync, int priv) 720 { 721 struct request_list *rl = &q->rq; 722 723 rl->count[sync]--; 724 if (priv) 725 rl->elvpriv--; 726 727 __freed_request(q, sync); 728 729 if (unlikely(rl->starved[sync ^ 1])) 730 __freed_request(q, sync ^ 1); 731 } 732 733 /* 734 * Get a free request, queue_lock must be held. 735 * Returns NULL on failure, with queue_lock held. 736 * Returns !NULL on success, with queue_lock *not held*. 737 */ 738 static struct request *get_request(struct request_queue *q, int rw_flags, 739 struct bio *bio, gfp_t gfp_mask) 740 { 741 struct request *rq = NULL; 742 struct request_list *rl = &q->rq; 743 struct io_context *ioc = NULL; 744 const bool is_sync = rw_is_sync(rw_flags) != 0; 745 int may_queue, priv; 746 747 may_queue = elv_may_queue(q, rw_flags); 748 if (may_queue == ELV_MQUEUE_NO) 749 goto rq_starved; 750 751 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 752 if (rl->count[is_sync]+1 >= q->nr_requests) { 753 ioc = current_io_context(GFP_ATOMIC, q->node); 754 /* 755 * The queue will fill after this allocation, so set 756 * it as full, and mark this process as "batching". 757 * This process will be allowed to complete a batch of 758 * requests, others will be blocked. 759 */ 760 if (!blk_queue_full(q, is_sync)) { 761 ioc_set_batching(q, ioc); 762 blk_set_queue_full(q, is_sync); 763 } else { 764 if (may_queue != ELV_MQUEUE_MUST 765 && !ioc_batching(q, ioc)) { 766 /* 767 * The queue is full and the allocating 768 * process is not a "batcher", and not 769 * exempted by the IO scheduler 770 */ 771 goto out; 772 } 773 } 774 } 775 blk_set_queue_congested(q, is_sync); 776 } 777 778 /* 779 * Only allow batching queuers to allocate up to 50% over the defined 780 * limit of requests, otherwise we could have thousands of requests 781 * allocated with any setting of ->nr_requests 782 */ 783 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 784 goto out; 785 786 rl->count[is_sync]++; 787 rl->starved[is_sync] = 0; 788 789 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 790 if (priv) 791 rl->elvpriv++; 792 793 if (blk_queue_io_stat(q)) 794 rw_flags |= REQ_IO_STAT; 795 spin_unlock_irq(q->queue_lock); 796 797 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 798 if (unlikely(!rq)) { 799 /* 800 * Allocation failed presumably due to memory. Undo anything 801 * we might have messed up. 802 * 803 * Allocating task should really be put onto the front of the 804 * wait queue, but this is pretty rare. 805 */ 806 spin_lock_irq(q->queue_lock); 807 freed_request(q, is_sync, priv); 808 809 /* 810 * in the very unlikely event that allocation failed and no 811 * requests for this direction was pending, mark us starved 812 * so that freeing of a request in the other direction will 813 * notice us. another possible fix would be to split the 814 * rq mempool into READ and WRITE 815 */ 816 rq_starved: 817 if (unlikely(rl->count[is_sync] == 0)) 818 rl->starved[is_sync] = 1; 819 820 goto out; 821 } 822 823 /* 824 * ioc may be NULL here, and ioc_batching will be false. That's 825 * OK, if the queue is under the request limit then requests need 826 * not count toward the nr_batch_requests limit. There will always 827 * be some limit enforced by BLK_BATCH_TIME. 828 */ 829 if (ioc_batching(q, ioc)) 830 ioc->nr_batch_requests--; 831 832 trace_block_getrq(q, bio, rw_flags & 1); 833 out: 834 return rq; 835 } 836 837 /* 838 * No available requests for this queue, unplug the device and wait for some 839 * requests to become available. 840 * 841 * Called with q->queue_lock held, and returns with it unlocked. 842 */ 843 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 844 struct bio *bio) 845 { 846 const bool is_sync = rw_is_sync(rw_flags) != 0; 847 struct request *rq; 848 849 rq = get_request(q, rw_flags, bio, GFP_NOIO); 850 while (!rq) { 851 DEFINE_WAIT(wait); 852 struct io_context *ioc; 853 struct request_list *rl = &q->rq; 854 855 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 856 TASK_UNINTERRUPTIBLE); 857 858 trace_block_sleeprq(q, bio, rw_flags & 1); 859 860 __generic_unplug_device(q); 861 spin_unlock_irq(q->queue_lock); 862 io_schedule(); 863 864 /* 865 * After sleeping, we become a "batching" process and 866 * will be able to allocate at least one request, and 867 * up to a big batch of them for a small period time. 868 * See ioc_batching, ioc_set_batching 869 */ 870 ioc = current_io_context(GFP_NOIO, q->node); 871 ioc_set_batching(q, ioc); 872 873 spin_lock_irq(q->queue_lock); 874 finish_wait(&rl->wait[is_sync], &wait); 875 876 rq = get_request(q, rw_flags, bio, GFP_NOIO); 877 }; 878 879 return rq; 880 } 881 882 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 883 { 884 struct request *rq; 885 886 BUG_ON(rw != READ && rw != WRITE); 887 888 spin_lock_irq(q->queue_lock); 889 if (gfp_mask & __GFP_WAIT) { 890 rq = get_request_wait(q, rw, NULL); 891 } else { 892 rq = get_request(q, rw, NULL, gfp_mask); 893 if (!rq) 894 spin_unlock_irq(q->queue_lock); 895 } 896 /* q->queue_lock is unlocked at this point */ 897 898 return rq; 899 } 900 EXPORT_SYMBOL(blk_get_request); 901 902 /** 903 * blk_make_request - given a bio, allocate a corresponding struct request. 904 * @q: target request queue 905 * @bio: The bio describing the memory mappings that will be submitted for IO. 906 * It may be a chained-bio properly constructed by block/bio layer. 907 * @gfp_mask: gfp flags to be used for memory allocation 908 * 909 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 910 * type commands. Where the struct request needs to be farther initialized by 911 * the caller. It is passed a &struct bio, which describes the memory info of 912 * the I/O transfer. 913 * 914 * The caller of blk_make_request must make sure that bi_io_vec 915 * are set to describe the memory buffers. That bio_data_dir() will return 916 * the needed direction of the request. (And all bio's in the passed bio-chain 917 * are properly set accordingly) 918 * 919 * If called under none-sleepable conditions, mapped bio buffers must not 920 * need bouncing, by calling the appropriate masked or flagged allocator, 921 * suitable for the target device. Otherwise the call to blk_queue_bounce will 922 * BUG. 923 * 924 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 925 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 926 * anything but the first bio in the chain. Otherwise you risk waiting for IO 927 * completion of a bio that hasn't been submitted yet, thus resulting in a 928 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 929 * of bio_alloc(), as that avoids the mempool deadlock. 930 * If possible a big IO should be split into smaller parts when allocation 931 * fails. Partial allocation should not be an error, or you risk a live-lock. 932 */ 933 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 934 gfp_t gfp_mask) 935 { 936 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 937 938 if (unlikely(!rq)) 939 return ERR_PTR(-ENOMEM); 940 941 for_each_bio(bio) { 942 struct bio *bounce_bio = bio; 943 int ret; 944 945 blk_queue_bounce(q, &bounce_bio); 946 ret = blk_rq_append_bio(q, rq, bounce_bio); 947 if (unlikely(ret)) { 948 blk_put_request(rq); 949 return ERR_PTR(ret); 950 } 951 } 952 953 return rq; 954 } 955 EXPORT_SYMBOL(blk_make_request); 956 957 /** 958 * blk_requeue_request - put a request back on queue 959 * @q: request queue where request should be inserted 960 * @rq: request to be inserted 961 * 962 * Description: 963 * Drivers often keep queueing requests until the hardware cannot accept 964 * more, when that condition happens we need to put the request back 965 * on the queue. Must be called with queue lock held. 966 */ 967 void blk_requeue_request(struct request_queue *q, struct request *rq) 968 { 969 blk_delete_timer(rq); 970 blk_clear_rq_complete(rq); 971 trace_block_rq_requeue(q, rq); 972 973 if (blk_rq_tagged(rq)) 974 blk_queue_end_tag(q, rq); 975 976 BUG_ON(blk_queued_rq(rq)); 977 978 elv_requeue_request(q, rq); 979 } 980 EXPORT_SYMBOL(blk_requeue_request); 981 982 /** 983 * blk_insert_request - insert a special request into a request queue 984 * @q: request queue where request should be inserted 985 * @rq: request to be inserted 986 * @at_head: insert request at head or tail of queue 987 * @data: private data 988 * 989 * Description: 990 * Many block devices need to execute commands asynchronously, so they don't 991 * block the whole kernel from preemption during request execution. This is 992 * accomplished normally by inserting aritficial requests tagged as 993 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 994 * be scheduled for actual execution by the request queue. 995 * 996 * We have the option of inserting the head or the tail of the queue. 997 * Typically we use the tail for new ioctls and so forth. We use the head 998 * of the queue for things like a QUEUE_FULL message from a device, or a 999 * host that is unable to accept a particular command. 1000 */ 1001 void blk_insert_request(struct request_queue *q, struct request *rq, 1002 int at_head, void *data) 1003 { 1004 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 1005 unsigned long flags; 1006 1007 /* 1008 * tell I/O scheduler that this isn't a regular read/write (ie it 1009 * must not attempt merges on this) and that it acts as a soft 1010 * barrier 1011 */ 1012 rq->cmd_type = REQ_TYPE_SPECIAL; 1013 1014 rq->special = data; 1015 1016 spin_lock_irqsave(q->queue_lock, flags); 1017 1018 /* 1019 * If command is tagged, release the tag 1020 */ 1021 if (blk_rq_tagged(rq)) 1022 blk_queue_end_tag(q, rq); 1023 1024 drive_stat_acct(rq, 1); 1025 __elv_add_request(q, rq, where, 0); 1026 __blk_run_queue(q); 1027 spin_unlock_irqrestore(q->queue_lock, flags); 1028 } 1029 EXPORT_SYMBOL(blk_insert_request); 1030 1031 /* 1032 * add-request adds a request to the linked list. 1033 * queue lock is held and interrupts disabled, as we muck with the 1034 * request queue list. 1035 */ 1036 static inline void add_request(struct request_queue *q, struct request *req) 1037 { 1038 drive_stat_acct(req, 1); 1039 1040 /* 1041 * elevator indicated where it wants this request to be 1042 * inserted at elevator_merge time 1043 */ 1044 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 1045 } 1046 1047 static void part_round_stats_single(int cpu, struct hd_struct *part, 1048 unsigned long now) 1049 { 1050 if (now == part->stamp) 1051 return; 1052 1053 if (part_in_flight(part)) { 1054 __part_stat_add(cpu, part, time_in_queue, 1055 part_in_flight(part) * (now - part->stamp)); 1056 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1057 } 1058 part->stamp = now; 1059 } 1060 1061 /** 1062 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1063 * @cpu: cpu number for stats access 1064 * @part: target partition 1065 * 1066 * The average IO queue length and utilisation statistics are maintained 1067 * by observing the current state of the queue length and the amount of 1068 * time it has been in this state for. 1069 * 1070 * Normally, that accounting is done on IO completion, but that can result 1071 * in more than a second's worth of IO being accounted for within any one 1072 * second, leading to >100% utilisation. To deal with that, we call this 1073 * function to do a round-off before returning the results when reading 1074 * /proc/diskstats. This accounts immediately for all queue usage up to 1075 * the current jiffies and restarts the counters again. 1076 */ 1077 void part_round_stats(int cpu, struct hd_struct *part) 1078 { 1079 unsigned long now = jiffies; 1080 1081 if (part->partno) 1082 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1083 part_round_stats_single(cpu, part, now); 1084 } 1085 EXPORT_SYMBOL_GPL(part_round_stats); 1086 1087 /* 1088 * queue lock must be held 1089 */ 1090 void __blk_put_request(struct request_queue *q, struct request *req) 1091 { 1092 if (unlikely(!q)) 1093 return; 1094 if (unlikely(--req->ref_count)) 1095 return; 1096 1097 elv_completed_request(q, req); 1098 1099 /* this is a bio leak */ 1100 WARN_ON(req->bio != NULL); 1101 1102 /* 1103 * Request may not have originated from ll_rw_blk. if not, 1104 * it didn't come out of our reserved rq pools 1105 */ 1106 if (req->cmd_flags & REQ_ALLOCED) { 1107 int is_sync = rq_is_sync(req) != 0; 1108 int priv = req->cmd_flags & REQ_ELVPRIV; 1109 1110 BUG_ON(!list_empty(&req->queuelist)); 1111 BUG_ON(!hlist_unhashed(&req->hash)); 1112 1113 blk_free_request(q, req); 1114 freed_request(q, is_sync, priv); 1115 } 1116 } 1117 EXPORT_SYMBOL_GPL(__blk_put_request); 1118 1119 void blk_put_request(struct request *req) 1120 { 1121 unsigned long flags; 1122 struct request_queue *q = req->q; 1123 1124 spin_lock_irqsave(q->queue_lock, flags); 1125 __blk_put_request(q, req); 1126 spin_unlock_irqrestore(q->queue_lock, flags); 1127 } 1128 EXPORT_SYMBOL(blk_put_request); 1129 1130 void init_request_from_bio(struct request *req, struct bio *bio) 1131 { 1132 req->cpu = bio->bi_comp_cpu; 1133 req->cmd_type = REQ_TYPE_FS; 1134 1135 /* 1136 * Inherit FAILFAST from bio (for read-ahead, and explicit 1137 * FAILFAST). FAILFAST flags are identical for req and bio. 1138 */ 1139 if (bio_rw_flagged(bio, BIO_RW_AHEAD)) 1140 req->cmd_flags |= REQ_FAILFAST_MASK; 1141 else 1142 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK; 1143 1144 if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) { 1145 req->cmd_flags |= REQ_DISCARD; 1146 if (bio_rw_flagged(bio, BIO_RW_BARRIER)) 1147 req->cmd_flags |= REQ_SOFTBARRIER; 1148 } else if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) 1149 req->cmd_flags |= REQ_HARDBARRIER; 1150 1151 if (bio_rw_flagged(bio, BIO_RW_SYNCIO)) 1152 req->cmd_flags |= REQ_RW_SYNC; 1153 if (bio_rw_flagged(bio, BIO_RW_META)) 1154 req->cmd_flags |= REQ_RW_META; 1155 if (bio_rw_flagged(bio, BIO_RW_NOIDLE)) 1156 req->cmd_flags |= REQ_NOIDLE; 1157 1158 req->errors = 0; 1159 req->__sector = bio->bi_sector; 1160 req->ioprio = bio_prio(bio); 1161 blk_rq_bio_prep(req->q, req, bio); 1162 } 1163 1164 /* 1165 * Only disabling plugging for non-rotational devices if it does tagging 1166 * as well, otherwise we do need the proper merging 1167 */ 1168 static inline bool queue_should_plug(struct request_queue *q) 1169 { 1170 return !(blk_queue_nonrot(q) && blk_queue_tagged(q)); 1171 } 1172 1173 static int __make_request(struct request_queue *q, struct bio *bio) 1174 { 1175 struct request *req; 1176 int el_ret; 1177 unsigned int bytes = bio->bi_size; 1178 const unsigned short prio = bio_prio(bio); 1179 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); 1180 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG); 1181 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1182 int rw_flags; 1183 1184 if (bio_rw_flagged(bio, BIO_RW_BARRIER) && 1185 (q->next_ordered == QUEUE_ORDERED_NONE)) { 1186 bio_endio(bio, -EOPNOTSUPP); 1187 return 0; 1188 } 1189 /* 1190 * low level driver can indicate that it wants pages above a 1191 * certain limit bounced to low memory (ie for highmem, or even 1192 * ISA dma in theory) 1193 */ 1194 blk_queue_bounce(q, &bio); 1195 1196 spin_lock_irq(q->queue_lock); 1197 1198 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q)) 1199 goto get_rq; 1200 1201 el_ret = elv_merge(q, &req, bio); 1202 switch (el_ret) { 1203 case ELEVATOR_BACK_MERGE: 1204 BUG_ON(!rq_mergeable(req)); 1205 1206 if (!ll_back_merge_fn(q, req, bio)) 1207 break; 1208 1209 trace_block_bio_backmerge(q, bio); 1210 1211 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1212 blk_rq_set_mixed_merge(req); 1213 1214 req->biotail->bi_next = bio; 1215 req->biotail = bio; 1216 req->__data_len += bytes; 1217 req->ioprio = ioprio_best(req->ioprio, prio); 1218 if (!blk_rq_cpu_valid(req)) 1219 req->cpu = bio->bi_comp_cpu; 1220 drive_stat_acct(req, 0); 1221 elv_bio_merged(q, req, bio); 1222 if (!attempt_back_merge(q, req)) 1223 elv_merged_request(q, req, el_ret); 1224 goto out; 1225 1226 case ELEVATOR_FRONT_MERGE: 1227 BUG_ON(!rq_mergeable(req)); 1228 1229 if (!ll_front_merge_fn(q, req, bio)) 1230 break; 1231 1232 trace_block_bio_frontmerge(q, bio); 1233 1234 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) { 1235 blk_rq_set_mixed_merge(req); 1236 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1237 req->cmd_flags |= ff; 1238 } 1239 1240 bio->bi_next = req->bio; 1241 req->bio = bio; 1242 1243 /* 1244 * may not be valid. if the low level driver said 1245 * it didn't need a bounce buffer then it better 1246 * not touch req->buffer either... 1247 */ 1248 req->buffer = bio_data(bio); 1249 req->__sector = bio->bi_sector; 1250 req->__data_len += bytes; 1251 req->ioprio = ioprio_best(req->ioprio, prio); 1252 if (!blk_rq_cpu_valid(req)) 1253 req->cpu = bio->bi_comp_cpu; 1254 drive_stat_acct(req, 0); 1255 elv_bio_merged(q, req, bio); 1256 if (!attempt_front_merge(q, req)) 1257 elv_merged_request(q, req, el_ret); 1258 goto out; 1259 1260 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1261 default: 1262 ; 1263 } 1264 1265 get_rq: 1266 /* 1267 * This sync check and mask will be re-done in init_request_from_bio(), 1268 * but we need to set it earlier to expose the sync flag to the 1269 * rq allocator and io schedulers. 1270 */ 1271 rw_flags = bio_data_dir(bio); 1272 if (sync) 1273 rw_flags |= REQ_RW_SYNC; 1274 1275 /* 1276 * Grab a free request. This is might sleep but can not fail. 1277 * Returns with the queue unlocked. 1278 */ 1279 req = get_request_wait(q, rw_flags, bio); 1280 1281 /* 1282 * After dropping the lock and possibly sleeping here, our request 1283 * may now be mergeable after it had proven unmergeable (above). 1284 * We don't worry about that case for efficiency. It won't happen 1285 * often, and the elevators are able to handle it. 1286 */ 1287 init_request_from_bio(req, bio); 1288 1289 spin_lock_irq(q->queue_lock); 1290 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1291 bio_flagged(bio, BIO_CPU_AFFINE)) 1292 req->cpu = blk_cpu_to_group(smp_processor_id()); 1293 if (queue_should_plug(q) && elv_queue_empty(q)) 1294 blk_plug_device(q); 1295 add_request(q, req); 1296 out: 1297 if (unplug || !queue_should_plug(q)) 1298 __generic_unplug_device(q); 1299 spin_unlock_irq(q->queue_lock); 1300 return 0; 1301 } 1302 1303 /* 1304 * If bio->bi_dev is a partition, remap the location 1305 */ 1306 static inline void blk_partition_remap(struct bio *bio) 1307 { 1308 struct block_device *bdev = bio->bi_bdev; 1309 1310 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1311 struct hd_struct *p = bdev->bd_part; 1312 1313 bio->bi_sector += p->start_sect; 1314 bio->bi_bdev = bdev->bd_contains; 1315 1316 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio, 1317 bdev->bd_dev, 1318 bio->bi_sector - p->start_sect); 1319 } 1320 } 1321 1322 static void handle_bad_sector(struct bio *bio) 1323 { 1324 char b[BDEVNAME_SIZE]; 1325 1326 printk(KERN_INFO "attempt to access beyond end of device\n"); 1327 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1328 bdevname(bio->bi_bdev, b), 1329 bio->bi_rw, 1330 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1331 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1332 1333 set_bit(BIO_EOF, &bio->bi_flags); 1334 } 1335 1336 #ifdef CONFIG_FAIL_MAKE_REQUEST 1337 1338 static DECLARE_FAULT_ATTR(fail_make_request); 1339 1340 static int __init setup_fail_make_request(char *str) 1341 { 1342 return setup_fault_attr(&fail_make_request, str); 1343 } 1344 __setup("fail_make_request=", setup_fail_make_request); 1345 1346 static int should_fail_request(struct bio *bio) 1347 { 1348 struct hd_struct *part = bio->bi_bdev->bd_part; 1349 1350 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1351 return should_fail(&fail_make_request, bio->bi_size); 1352 1353 return 0; 1354 } 1355 1356 static int __init fail_make_request_debugfs(void) 1357 { 1358 return init_fault_attr_dentries(&fail_make_request, 1359 "fail_make_request"); 1360 } 1361 1362 late_initcall(fail_make_request_debugfs); 1363 1364 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1365 1366 static inline int should_fail_request(struct bio *bio) 1367 { 1368 return 0; 1369 } 1370 1371 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1372 1373 /* 1374 * Check whether this bio extends beyond the end of the device. 1375 */ 1376 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1377 { 1378 sector_t maxsector; 1379 1380 if (!nr_sectors) 1381 return 0; 1382 1383 /* Test device or partition size, when known. */ 1384 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1385 if (maxsector) { 1386 sector_t sector = bio->bi_sector; 1387 1388 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1389 /* 1390 * This may well happen - the kernel calls bread() 1391 * without checking the size of the device, e.g., when 1392 * mounting a device. 1393 */ 1394 handle_bad_sector(bio); 1395 return 1; 1396 } 1397 } 1398 1399 return 0; 1400 } 1401 1402 /** 1403 * generic_make_request - hand a buffer to its device driver for I/O 1404 * @bio: The bio describing the location in memory and on the device. 1405 * 1406 * generic_make_request() is used to make I/O requests of block 1407 * devices. It is passed a &struct bio, which describes the I/O that needs 1408 * to be done. 1409 * 1410 * generic_make_request() does not return any status. The 1411 * success/failure status of the request, along with notification of 1412 * completion, is delivered asynchronously through the bio->bi_end_io 1413 * function described (one day) else where. 1414 * 1415 * The caller of generic_make_request must make sure that bi_io_vec 1416 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1417 * set to describe the device address, and the 1418 * bi_end_io and optionally bi_private are set to describe how 1419 * completion notification should be signaled. 1420 * 1421 * generic_make_request and the drivers it calls may use bi_next if this 1422 * bio happens to be merged with someone else, and may change bi_dev and 1423 * bi_sector for remaps as it sees fit. So the values of these fields 1424 * should NOT be depended on after the call to generic_make_request. 1425 */ 1426 static inline void __generic_make_request(struct bio *bio) 1427 { 1428 struct request_queue *q; 1429 sector_t old_sector; 1430 int ret, nr_sectors = bio_sectors(bio); 1431 dev_t old_dev; 1432 int err = -EIO; 1433 1434 might_sleep(); 1435 1436 if (bio_check_eod(bio, nr_sectors)) 1437 goto end_io; 1438 1439 /* 1440 * Resolve the mapping until finished. (drivers are 1441 * still free to implement/resolve their own stacking 1442 * by explicitly returning 0) 1443 * 1444 * NOTE: we don't repeat the blk_size check for each new device. 1445 * Stacking drivers are expected to know what they are doing. 1446 */ 1447 old_sector = -1; 1448 old_dev = 0; 1449 do { 1450 char b[BDEVNAME_SIZE]; 1451 1452 q = bdev_get_queue(bio->bi_bdev); 1453 if (unlikely(!q)) { 1454 printk(KERN_ERR 1455 "generic_make_request: Trying to access " 1456 "nonexistent block-device %s (%Lu)\n", 1457 bdevname(bio->bi_bdev, b), 1458 (long long) bio->bi_sector); 1459 goto end_io; 1460 } 1461 1462 if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) && 1463 nr_sectors > queue_max_hw_sectors(q))) { 1464 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1465 bdevname(bio->bi_bdev, b), 1466 bio_sectors(bio), 1467 queue_max_hw_sectors(q)); 1468 goto end_io; 1469 } 1470 1471 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1472 goto end_io; 1473 1474 if (should_fail_request(bio)) 1475 goto end_io; 1476 1477 /* 1478 * If this device has partitions, remap block n 1479 * of partition p to block n+start(p) of the disk. 1480 */ 1481 blk_partition_remap(bio); 1482 1483 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1484 goto end_io; 1485 1486 if (old_sector != -1) 1487 trace_block_remap(q, bio, old_dev, old_sector); 1488 1489 old_sector = bio->bi_sector; 1490 old_dev = bio->bi_bdev->bd_dev; 1491 1492 if (bio_check_eod(bio, nr_sectors)) 1493 goto end_io; 1494 1495 if (bio_rw_flagged(bio, BIO_RW_DISCARD) && 1496 !blk_queue_discard(q)) { 1497 err = -EOPNOTSUPP; 1498 goto end_io; 1499 } 1500 1501 trace_block_bio_queue(q, bio); 1502 1503 ret = q->make_request_fn(q, bio); 1504 } while (ret); 1505 1506 return; 1507 1508 end_io: 1509 bio_endio(bio, err); 1510 } 1511 1512 /* 1513 * We only want one ->make_request_fn to be active at a time, 1514 * else stack usage with stacked devices could be a problem. 1515 * So use current->bio_list to keep a list of requests 1516 * submited by a make_request_fn function. 1517 * current->bio_list is also used as a flag to say if 1518 * generic_make_request is currently active in this task or not. 1519 * If it is NULL, then no make_request is active. If it is non-NULL, 1520 * then a make_request is active, and new requests should be added 1521 * at the tail 1522 */ 1523 void generic_make_request(struct bio *bio) 1524 { 1525 struct bio_list bio_list_on_stack; 1526 1527 if (current->bio_list) { 1528 /* make_request is active */ 1529 bio_list_add(current->bio_list, bio); 1530 return; 1531 } 1532 /* following loop may be a bit non-obvious, and so deserves some 1533 * explanation. 1534 * Before entering the loop, bio->bi_next is NULL (as all callers 1535 * ensure that) so we have a list with a single bio. 1536 * We pretend that we have just taken it off a longer list, so 1537 * we assign bio_list to a pointer to the bio_list_on_stack, 1538 * thus initialising the bio_list of new bios to be 1539 * added. __generic_make_request may indeed add some more bios 1540 * through a recursive call to generic_make_request. If it 1541 * did, we find a non-NULL value in bio_list and re-enter the loop 1542 * from the top. In this case we really did just take the bio 1543 * of the top of the list (no pretending) and so remove it from 1544 * bio_list, and call into __generic_make_request again. 1545 * 1546 * The loop was structured like this to make only one call to 1547 * __generic_make_request (which is important as it is large and 1548 * inlined) and to keep the structure simple. 1549 */ 1550 BUG_ON(bio->bi_next); 1551 bio_list_init(&bio_list_on_stack); 1552 current->bio_list = &bio_list_on_stack; 1553 do { 1554 __generic_make_request(bio); 1555 bio = bio_list_pop(current->bio_list); 1556 } while (bio); 1557 current->bio_list = NULL; /* deactivate */ 1558 } 1559 EXPORT_SYMBOL(generic_make_request); 1560 1561 /** 1562 * submit_bio - submit a bio to the block device layer for I/O 1563 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1564 * @bio: The &struct bio which describes the I/O 1565 * 1566 * submit_bio() is very similar in purpose to generic_make_request(), and 1567 * uses that function to do most of the work. Both are fairly rough 1568 * interfaces; @bio must be presetup and ready for I/O. 1569 * 1570 */ 1571 void submit_bio(int rw, struct bio *bio) 1572 { 1573 int count = bio_sectors(bio); 1574 1575 bio->bi_rw |= rw; 1576 1577 /* 1578 * If it's a regular read/write or a barrier with data attached, 1579 * go through the normal accounting stuff before submission. 1580 */ 1581 if (bio_has_data(bio)) { 1582 if (rw & WRITE) { 1583 count_vm_events(PGPGOUT, count); 1584 } else { 1585 task_io_account_read(bio->bi_size); 1586 count_vm_events(PGPGIN, count); 1587 } 1588 1589 if (unlikely(block_dump)) { 1590 char b[BDEVNAME_SIZE]; 1591 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1592 current->comm, task_pid_nr(current), 1593 (rw & WRITE) ? "WRITE" : "READ", 1594 (unsigned long long)bio->bi_sector, 1595 bdevname(bio->bi_bdev, b)); 1596 } 1597 } 1598 1599 generic_make_request(bio); 1600 } 1601 EXPORT_SYMBOL(submit_bio); 1602 1603 /** 1604 * blk_rq_check_limits - Helper function to check a request for the queue limit 1605 * @q: the queue 1606 * @rq: the request being checked 1607 * 1608 * Description: 1609 * @rq may have been made based on weaker limitations of upper-level queues 1610 * in request stacking drivers, and it may violate the limitation of @q. 1611 * Since the block layer and the underlying device driver trust @rq 1612 * after it is inserted to @q, it should be checked against @q before 1613 * the insertion using this generic function. 1614 * 1615 * This function should also be useful for request stacking drivers 1616 * in some cases below, so export this fuction. 1617 * Request stacking drivers like request-based dm may change the queue 1618 * limits while requests are in the queue (e.g. dm's table swapping). 1619 * Such request stacking drivers should check those requests agaist 1620 * the new queue limits again when they dispatch those requests, 1621 * although such checkings are also done against the old queue limits 1622 * when submitting requests. 1623 */ 1624 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1625 { 1626 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1627 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1628 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1629 return -EIO; 1630 } 1631 1632 /* 1633 * queue's settings related to segment counting like q->bounce_pfn 1634 * may differ from that of other stacking queues. 1635 * Recalculate it to check the request correctly on this queue's 1636 * limitation. 1637 */ 1638 blk_recalc_rq_segments(rq); 1639 if (rq->nr_phys_segments > queue_max_segments(q)) { 1640 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1641 return -EIO; 1642 } 1643 1644 return 0; 1645 } 1646 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1647 1648 /** 1649 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1650 * @q: the queue to submit the request 1651 * @rq: the request being queued 1652 */ 1653 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1654 { 1655 unsigned long flags; 1656 1657 if (blk_rq_check_limits(q, rq)) 1658 return -EIO; 1659 1660 #ifdef CONFIG_FAIL_MAKE_REQUEST 1661 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1662 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1663 return -EIO; 1664 #endif 1665 1666 spin_lock_irqsave(q->queue_lock, flags); 1667 1668 /* 1669 * Submitting request must be dequeued before calling this function 1670 * because it will be linked to another request_queue 1671 */ 1672 BUG_ON(blk_queued_rq(rq)); 1673 1674 drive_stat_acct(rq, 1); 1675 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1676 1677 spin_unlock_irqrestore(q->queue_lock, flags); 1678 1679 return 0; 1680 } 1681 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1682 1683 /** 1684 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1685 * @rq: request to examine 1686 * 1687 * Description: 1688 * A request could be merge of IOs which require different failure 1689 * handling. This function determines the number of bytes which 1690 * can be failed from the beginning of the request without 1691 * crossing into area which need to be retried further. 1692 * 1693 * Return: 1694 * The number of bytes to fail. 1695 * 1696 * Context: 1697 * queue_lock must be held. 1698 */ 1699 unsigned int blk_rq_err_bytes(const struct request *rq) 1700 { 1701 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1702 unsigned int bytes = 0; 1703 struct bio *bio; 1704 1705 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1706 return blk_rq_bytes(rq); 1707 1708 /* 1709 * Currently the only 'mixing' which can happen is between 1710 * different fastfail types. We can safely fail portions 1711 * which have all the failfast bits that the first one has - 1712 * the ones which are at least as eager to fail as the first 1713 * one. 1714 */ 1715 for (bio = rq->bio; bio; bio = bio->bi_next) { 1716 if ((bio->bi_rw & ff) != ff) 1717 break; 1718 bytes += bio->bi_size; 1719 } 1720 1721 /* this could lead to infinite loop */ 1722 BUG_ON(blk_rq_bytes(rq) && !bytes); 1723 return bytes; 1724 } 1725 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1726 1727 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1728 { 1729 if (blk_do_io_stat(req)) { 1730 const int rw = rq_data_dir(req); 1731 struct hd_struct *part; 1732 int cpu; 1733 1734 cpu = part_stat_lock(); 1735 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req)); 1736 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1737 part_stat_unlock(); 1738 } 1739 } 1740 1741 static void blk_account_io_done(struct request *req) 1742 { 1743 /* 1744 * Account IO completion. bar_rq isn't accounted as a normal 1745 * IO on queueing nor completion. Accounting the containing 1746 * request is enough. 1747 */ 1748 if (blk_do_io_stat(req) && req != &req->q->bar_rq) { 1749 unsigned long duration = jiffies - req->start_time; 1750 const int rw = rq_data_dir(req); 1751 struct hd_struct *part; 1752 int cpu; 1753 1754 cpu = part_stat_lock(); 1755 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req)); 1756 1757 part_stat_inc(cpu, part, ios[rw]); 1758 part_stat_add(cpu, part, ticks[rw], duration); 1759 part_round_stats(cpu, part); 1760 part_dec_in_flight(part, rw); 1761 1762 part_stat_unlock(); 1763 } 1764 } 1765 1766 /** 1767 * blk_peek_request - peek at the top of a request queue 1768 * @q: request queue to peek at 1769 * 1770 * Description: 1771 * Return the request at the top of @q. The returned request 1772 * should be started using blk_start_request() before LLD starts 1773 * processing it. 1774 * 1775 * Return: 1776 * Pointer to the request at the top of @q if available. Null 1777 * otherwise. 1778 * 1779 * Context: 1780 * queue_lock must be held. 1781 */ 1782 struct request *blk_peek_request(struct request_queue *q) 1783 { 1784 struct request *rq; 1785 int ret; 1786 1787 while ((rq = __elv_next_request(q)) != NULL) { 1788 if (!(rq->cmd_flags & REQ_STARTED)) { 1789 /* 1790 * This is the first time the device driver 1791 * sees this request (possibly after 1792 * requeueing). Notify IO scheduler. 1793 */ 1794 if (blk_sorted_rq(rq)) 1795 elv_activate_rq(q, rq); 1796 1797 /* 1798 * just mark as started even if we don't start 1799 * it, a request that has been delayed should 1800 * not be passed by new incoming requests 1801 */ 1802 rq->cmd_flags |= REQ_STARTED; 1803 trace_block_rq_issue(q, rq); 1804 } 1805 1806 if (!q->boundary_rq || q->boundary_rq == rq) { 1807 q->end_sector = rq_end_sector(rq); 1808 q->boundary_rq = NULL; 1809 } 1810 1811 if (rq->cmd_flags & REQ_DONTPREP) 1812 break; 1813 1814 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1815 /* 1816 * make sure space for the drain appears we 1817 * know we can do this because max_hw_segments 1818 * has been adjusted to be one fewer than the 1819 * device can handle 1820 */ 1821 rq->nr_phys_segments++; 1822 } 1823 1824 if (!q->prep_rq_fn) 1825 break; 1826 1827 ret = q->prep_rq_fn(q, rq); 1828 if (ret == BLKPREP_OK) { 1829 break; 1830 } else if (ret == BLKPREP_DEFER) { 1831 /* 1832 * the request may have been (partially) prepped. 1833 * we need to keep this request in the front to 1834 * avoid resource deadlock. REQ_STARTED will 1835 * prevent other fs requests from passing this one. 1836 */ 1837 if (q->dma_drain_size && blk_rq_bytes(rq) && 1838 !(rq->cmd_flags & REQ_DONTPREP)) { 1839 /* 1840 * remove the space for the drain we added 1841 * so that we don't add it again 1842 */ 1843 --rq->nr_phys_segments; 1844 } 1845 1846 rq = NULL; 1847 break; 1848 } else if (ret == BLKPREP_KILL) { 1849 rq->cmd_flags |= REQ_QUIET; 1850 /* 1851 * Mark this request as started so we don't trigger 1852 * any debug logic in the end I/O path. 1853 */ 1854 blk_start_request(rq); 1855 __blk_end_request_all(rq, -EIO); 1856 } else { 1857 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1858 break; 1859 } 1860 } 1861 1862 return rq; 1863 } 1864 EXPORT_SYMBOL(blk_peek_request); 1865 1866 void blk_dequeue_request(struct request *rq) 1867 { 1868 struct request_queue *q = rq->q; 1869 1870 BUG_ON(list_empty(&rq->queuelist)); 1871 BUG_ON(ELV_ON_HASH(rq)); 1872 1873 list_del_init(&rq->queuelist); 1874 1875 /* 1876 * the time frame between a request being removed from the lists 1877 * and to it is freed is accounted as io that is in progress at 1878 * the driver side. 1879 */ 1880 if (blk_account_rq(rq)) { 1881 q->in_flight[rq_is_sync(rq)]++; 1882 set_io_start_time_ns(rq); 1883 } 1884 } 1885 1886 /** 1887 * blk_start_request - start request processing on the driver 1888 * @req: request to dequeue 1889 * 1890 * Description: 1891 * Dequeue @req and start timeout timer on it. This hands off the 1892 * request to the driver. 1893 * 1894 * Block internal functions which don't want to start timer should 1895 * call blk_dequeue_request(). 1896 * 1897 * Context: 1898 * queue_lock must be held. 1899 */ 1900 void blk_start_request(struct request *req) 1901 { 1902 blk_dequeue_request(req); 1903 1904 /* 1905 * We are now handing the request to the hardware, initialize 1906 * resid_len to full count and add the timeout handler. 1907 */ 1908 req->resid_len = blk_rq_bytes(req); 1909 if (unlikely(blk_bidi_rq(req))) 1910 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1911 1912 blk_add_timer(req); 1913 } 1914 EXPORT_SYMBOL(blk_start_request); 1915 1916 /** 1917 * blk_fetch_request - fetch a request from a request queue 1918 * @q: request queue to fetch a request from 1919 * 1920 * Description: 1921 * Return the request at the top of @q. The request is started on 1922 * return and LLD can start processing it immediately. 1923 * 1924 * Return: 1925 * Pointer to the request at the top of @q if available. Null 1926 * otherwise. 1927 * 1928 * Context: 1929 * queue_lock must be held. 1930 */ 1931 struct request *blk_fetch_request(struct request_queue *q) 1932 { 1933 struct request *rq; 1934 1935 rq = blk_peek_request(q); 1936 if (rq) 1937 blk_start_request(rq); 1938 return rq; 1939 } 1940 EXPORT_SYMBOL(blk_fetch_request); 1941 1942 /** 1943 * blk_update_request - Special helper function for request stacking drivers 1944 * @req: the request being processed 1945 * @error: %0 for success, < %0 for error 1946 * @nr_bytes: number of bytes to complete @req 1947 * 1948 * Description: 1949 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1950 * the request structure even if @req doesn't have leftover. 1951 * If @req has leftover, sets it up for the next range of segments. 1952 * 1953 * This special helper function is only for request stacking drivers 1954 * (e.g. request-based dm) so that they can handle partial completion. 1955 * Actual device drivers should use blk_end_request instead. 1956 * 1957 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1958 * %false return from this function. 1959 * 1960 * Return: 1961 * %false - this request doesn't have any more data 1962 * %true - this request has more data 1963 **/ 1964 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 1965 { 1966 int total_bytes, bio_nbytes, next_idx = 0; 1967 struct bio *bio; 1968 1969 if (!req->bio) 1970 return false; 1971 1972 trace_block_rq_complete(req->q, req); 1973 1974 /* 1975 * For fs requests, rq is just carrier of independent bio's 1976 * and each partial completion should be handled separately. 1977 * Reset per-request error on each partial completion. 1978 * 1979 * TODO: tj: This is too subtle. It would be better to let 1980 * low level drivers do what they see fit. 1981 */ 1982 if (blk_fs_request(req)) 1983 req->errors = 0; 1984 1985 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1986 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1987 req->rq_disk ? req->rq_disk->disk_name : "?", 1988 (unsigned long long)blk_rq_pos(req)); 1989 } 1990 1991 blk_account_io_completion(req, nr_bytes); 1992 1993 total_bytes = bio_nbytes = 0; 1994 while ((bio = req->bio) != NULL) { 1995 int nbytes; 1996 1997 if (nr_bytes >= bio->bi_size) { 1998 req->bio = bio->bi_next; 1999 nbytes = bio->bi_size; 2000 req_bio_endio(req, bio, nbytes, error); 2001 next_idx = 0; 2002 bio_nbytes = 0; 2003 } else { 2004 int idx = bio->bi_idx + next_idx; 2005 2006 if (unlikely(idx >= bio->bi_vcnt)) { 2007 blk_dump_rq_flags(req, "__end_that"); 2008 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2009 __func__, idx, bio->bi_vcnt); 2010 break; 2011 } 2012 2013 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2014 BIO_BUG_ON(nbytes > bio->bi_size); 2015 2016 /* 2017 * not a complete bvec done 2018 */ 2019 if (unlikely(nbytes > nr_bytes)) { 2020 bio_nbytes += nr_bytes; 2021 total_bytes += nr_bytes; 2022 break; 2023 } 2024 2025 /* 2026 * advance to the next vector 2027 */ 2028 next_idx++; 2029 bio_nbytes += nbytes; 2030 } 2031 2032 total_bytes += nbytes; 2033 nr_bytes -= nbytes; 2034 2035 bio = req->bio; 2036 if (bio) { 2037 /* 2038 * end more in this run, or just return 'not-done' 2039 */ 2040 if (unlikely(nr_bytes <= 0)) 2041 break; 2042 } 2043 } 2044 2045 /* 2046 * completely done 2047 */ 2048 if (!req->bio) { 2049 /* 2050 * Reset counters so that the request stacking driver 2051 * can find how many bytes remain in the request 2052 * later. 2053 */ 2054 req->__data_len = 0; 2055 return false; 2056 } 2057 2058 /* 2059 * if the request wasn't completed, update state 2060 */ 2061 if (bio_nbytes) { 2062 req_bio_endio(req, bio, bio_nbytes, error); 2063 bio->bi_idx += next_idx; 2064 bio_iovec(bio)->bv_offset += nr_bytes; 2065 bio_iovec(bio)->bv_len -= nr_bytes; 2066 } 2067 2068 req->__data_len -= total_bytes; 2069 req->buffer = bio_data(req->bio); 2070 2071 /* update sector only for requests with clear definition of sector */ 2072 if (blk_fs_request(req) || blk_discard_rq(req)) 2073 req->__sector += total_bytes >> 9; 2074 2075 /* mixed attributes always follow the first bio */ 2076 if (req->cmd_flags & REQ_MIXED_MERGE) { 2077 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2078 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2079 } 2080 2081 /* 2082 * If total number of sectors is less than the first segment 2083 * size, something has gone terribly wrong. 2084 */ 2085 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2086 printk(KERN_ERR "blk: request botched\n"); 2087 req->__data_len = blk_rq_cur_bytes(req); 2088 } 2089 2090 /* recalculate the number of segments */ 2091 blk_recalc_rq_segments(req); 2092 2093 return true; 2094 } 2095 EXPORT_SYMBOL_GPL(blk_update_request); 2096 2097 static bool blk_update_bidi_request(struct request *rq, int error, 2098 unsigned int nr_bytes, 2099 unsigned int bidi_bytes) 2100 { 2101 if (blk_update_request(rq, error, nr_bytes)) 2102 return true; 2103 2104 /* Bidi request must be completed as a whole */ 2105 if (unlikely(blk_bidi_rq(rq)) && 2106 blk_update_request(rq->next_rq, error, bidi_bytes)) 2107 return true; 2108 2109 add_disk_randomness(rq->rq_disk); 2110 2111 return false; 2112 } 2113 2114 /* 2115 * queue lock must be held 2116 */ 2117 static void blk_finish_request(struct request *req, int error) 2118 { 2119 if (blk_rq_tagged(req)) 2120 blk_queue_end_tag(req->q, req); 2121 2122 BUG_ON(blk_queued_rq(req)); 2123 2124 if (unlikely(laptop_mode) && blk_fs_request(req)) 2125 laptop_io_completion(&req->q->backing_dev_info); 2126 2127 blk_delete_timer(req); 2128 2129 blk_account_io_done(req); 2130 2131 if (req->end_io) 2132 req->end_io(req, error); 2133 else { 2134 if (blk_bidi_rq(req)) 2135 __blk_put_request(req->next_rq->q, req->next_rq); 2136 2137 __blk_put_request(req->q, req); 2138 } 2139 } 2140 2141 /** 2142 * blk_end_bidi_request - Complete a bidi request 2143 * @rq: the request to complete 2144 * @error: %0 for success, < %0 for error 2145 * @nr_bytes: number of bytes to complete @rq 2146 * @bidi_bytes: number of bytes to complete @rq->next_rq 2147 * 2148 * Description: 2149 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2150 * Drivers that supports bidi can safely call this member for any 2151 * type of request, bidi or uni. In the later case @bidi_bytes is 2152 * just ignored. 2153 * 2154 * Return: 2155 * %false - we are done with this request 2156 * %true - still buffers pending for this request 2157 **/ 2158 static bool blk_end_bidi_request(struct request *rq, int error, 2159 unsigned int nr_bytes, unsigned int bidi_bytes) 2160 { 2161 struct request_queue *q = rq->q; 2162 unsigned long flags; 2163 2164 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2165 return true; 2166 2167 spin_lock_irqsave(q->queue_lock, flags); 2168 blk_finish_request(rq, error); 2169 spin_unlock_irqrestore(q->queue_lock, flags); 2170 2171 return false; 2172 } 2173 2174 /** 2175 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2176 * @rq: the request to complete 2177 * @error: %0 for success, < %0 for error 2178 * @nr_bytes: number of bytes to complete @rq 2179 * @bidi_bytes: number of bytes to complete @rq->next_rq 2180 * 2181 * Description: 2182 * Identical to blk_end_bidi_request() except that queue lock is 2183 * assumed to be locked on entry and remains so on return. 2184 * 2185 * Return: 2186 * %false - we are done with this request 2187 * %true - still buffers pending for this request 2188 **/ 2189 static bool __blk_end_bidi_request(struct request *rq, int error, 2190 unsigned int nr_bytes, unsigned int bidi_bytes) 2191 { 2192 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2193 return true; 2194 2195 blk_finish_request(rq, error); 2196 2197 return false; 2198 } 2199 2200 /** 2201 * blk_end_request - Helper function for drivers to complete the request. 2202 * @rq: the request being processed 2203 * @error: %0 for success, < %0 for error 2204 * @nr_bytes: number of bytes to complete 2205 * 2206 * Description: 2207 * Ends I/O on a number of bytes attached to @rq. 2208 * If @rq has leftover, sets it up for the next range of segments. 2209 * 2210 * Return: 2211 * %false - we are done with this request 2212 * %true - still buffers pending for this request 2213 **/ 2214 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2215 { 2216 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2217 } 2218 EXPORT_SYMBOL(blk_end_request); 2219 2220 /** 2221 * blk_end_request_all - Helper function for drives to finish the request. 2222 * @rq: the request to finish 2223 * @error: %0 for success, < %0 for error 2224 * 2225 * Description: 2226 * Completely finish @rq. 2227 */ 2228 void blk_end_request_all(struct request *rq, int error) 2229 { 2230 bool pending; 2231 unsigned int bidi_bytes = 0; 2232 2233 if (unlikely(blk_bidi_rq(rq))) 2234 bidi_bytes = blk_rq_bytes(rq->next_rq); 2235 2236 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2237 BUG_ON(pending); 2238 } 2239 EXPORT_SYMBOL(blk_end_request_all); 2240 2241 /** 2242 * blk_end_request_cur - Helper function to finish the current request chunk. 2243 * @rq: the request to finish the current chunk for 2244 * @error: %0 for success, < %0 for error 2245 * 2246 * Description: 2247 * Complete the current consecutively mapped chunk from @rq. 2248 * 2249 * Return: 2250 * %false - we are done with this request 2251 * %true - still buffers pending for this request 2252 */ 2253 bool blk_end_request_cur(struct request *rq, int error) 2254 { 2255 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2256 } 2257 EXPORT_SYMBOL(blk_end_request_cur); 2258 2259 /** 2260 * blk_end_request_err - Finish a request till the next failure boundary. 2261 * @rq: the request to finish till the next failure boundary for 2262 * @error: must be negative errno 2263 * 2264 * Description: 2265 * Complete @rq till the next failure boundary. 2266 * 2267 * Return: 2268 * %false - we are done with this request 2269 * %true - still buffers pending for this request 2270 */ 2271 bool blk_end_request_err(struct request *rq, int error) 2272 { 2273 WARN_ON(error >= 0); 2274 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2275 } 2276 EXPORT_SYMBOL_GPL(blk_end_request_err); 2277 2278 /** 2279 * __blk_end_request - Helper function for drivers to complete the request. 2280 * @rq: the request being processed 2281 * @error: %0 for success, < %0 for error 2282 * @nr_bytes: number of bytes to complete 2283 * 2284 * Description: 2285 * Must be called with queue lock held unlike blk_end_request(). 2286 * 2287 * Return: 2288 * %false - we are done with this request 2289 * %true - still buffers pending for this request 2290 **/ 2291 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2292 { 2293 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2294 } 2295 EXPORT_SYMBOL(__blk_end_request); 2296 2297 /** 2298 * __blk_end_request_all - Helper function for drives to finish the request. 2299 * @rq: the request to finish 2300 * @error: %0 for success, < %0 for error 2301 * 2302 * Description: 2303 * Completely finish @rq. Must be called with queue lock held. 2304 */ 2305 void __blk_end_request_all(struct request *rq, int error) 2306 { 2307 bool pending; 2308 unsigned int bidi_bytes = 0; 2309 2310 if (unlikely(blk_bidi_rq(rq))) 2311 bidi_bytes = blk_rq_bytes(rq->next_rq); 2312 2313 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2314 BUG_ON(pending); 2315 } 2316 EXPORT_SYMBOL(__blk_end_request_all); 2317 2318 /** 2319 * __blk_end_request_cur - Helper function to finish the current request chunk. 2320 * @rq: the request to finish the current chunk for 2321 * @error: %0 for success, < %0 for error 2322 * 2323 * Description: 2324 * Complete the current consecutively mapped chunk from @rq. Must 2325 * be called with queue lock held. 2326 * 2327 * Return: 2328 * %false - we are done with this request 2329 * %true - still buffers pending for this request 2330 */ 2331 bool __blk_end_request_cur(struct request *rq, int error) 2332 { 2333 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2334 } 2335 EXPORT_SYMBOL(__blk_end_request_cur); 2336 2337 /** 2338 * __blk_end_request_err - Finish a request till the next failure boundary. 2339 * @rq: the request to finish till the next failure boundary for 2340 * @error: must be negative errno 2341 * 2342 * Description: 2343 * Complete @rq till the next failure boundary. Must be called 2344 * with queue lock held. 2345 * 2346 * Return: 2347 * %false - we are done with this request 2348 * %true - still buffers pending for this request 2349 */ 2350 bool __blk_end_request_err(struct request *rq, int error) 2351 { 2352 WARN_ON(error >= 0); 2353 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2354 } 2355 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2356 2357 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2358 struct bio *bio) 2359 { 2360 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2361 rq->cmd_flags |= bio->bi_rw & REQ_RW; 2362 2363 if (bio_has_data(bio)) { 2364 rq->nr_phys_segments = bio_phys_segments(q, bio); 2365 rq->buffer = bio_data(bio); 2366 } 2367 rq->__data_len = bio->bi_size; 2368 rq->bio = rq->biotail = bio; 2369 2370 if (bio->bi_bdev) 2371 rq->rq_disk = bio->bi_bdev->bd_disk; 2372 } 2373 2374 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2375 /** 2376 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2377 * @rq: the request to be flushed 2378 * 2379 * Description: 2380 * Flush all pages in @rq. 2381 */ 2382 void rq_flush_dcache_pages(struct request *rq) 2383 { 2384 struct req_iterator iter; 2385 struct bio_vec *bvec; 2386 2387 rq_for_each_segment(bvec, rq, iter) 2388 flush_dcache_page(bvec->bv_page); 2389 } 2390 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2391 #endif 2392 2393 /** 2394 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2395 * @q : the queue of the device being checked 2396 * 2397 * Description: 2398 * Check if underlying low-level drivers of a device are busy. 2399 * If the drivers want to export their busy state, they must set own 2400 * exporting function using blk_queue_lld_busy() first. 2401 * 2402 * Basically, this function is used only by request stacking drivers 2403 * to stop dispatching requests to underlying devices when underlying 2404 * devices are busy. This behavior helps more I/O merging on the queue 2405 * of the request stacking driver and prevents I/O throughput regression 2406 * on burst I/O load. 2407 * 2408 * Return: 2409 * 0 - Not busy (The request stacking driver should dispatch request) 2410 * 1 - Busy (The request stacking driver should stop dispatching request) 2411 */ 2412 int blk_lld_busy(struct request_queue *q) 2413 { 2414 if (q->lld_busy_fn) 2415 return q->lld_busy_fn(q); 2416 2417 return 0; 2418 } 2419 EXPORT_SYMBOL_GPL(blk_lld_busy); 2420 2421 /** 2422 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2423 * @rq: the clone request to be cleaned up 2424 * 2425 * Description: 2426 * Free all bios in @rq for a cloned request. 2427 */ 2428 void blk_rq_unprep_clone(struct request *rq) 2429 { 2430 struct bio *bio; 2431 2432 while ((bio = rq->bio) != NULL) { 2433 rq->bio = bio->bi_next; 2434 2435 bio_put(bio); 2436 } 2437 } 2438 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2439 2440 /* 2441 * Copy attributes of the original request to the clone request. 2442 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2443 */ 2444 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2445 { 2446 dst->cpu = src->cpu; 2447 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE); 2448 dst->cmd_type = src->cmd_type; 2449 dst->__sector = blk_rq_pos(src); 2450 dst->__data_len = blk_rq_bytes(src); 2451 dst->nr_phys_segments = src->nr_phys_segments; 2452 dst->ioprio = src->ioprio; 2453 dst->extra_len = src->extra_len; 2454 } 2455 2456 /** 2457 * blk_rq_prep_clone - Helper function to setup clone request 2458 * @rq: the request to be setup 2459 * @rq_src: original request to be cloned 2460 * @bs: bio_set that bios for clone are allocated from 2461 * @gfp_mask: memory allocation mask for bio 2462 * @bio_ctr: setup function to be called for each clone bio. 2463 * Returns %0 for success, non %0 for failure. 2464 * @data: private data to be passed to @bio_ctr 2465 * 2466 * Description: 2467 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2468 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2469 * are not copied, and copying such parts is the caller's responsibility. 2470 * Also, pages which the original bios are pointing to are not copied 2471 * and the cloned bios just point same pages. 2472 * So cloned bios must be completed before original bios, which means 2473 * the caller must complete @rq before @rq_src. 2474 */ 2475 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2476 struct bio_set *bs, gfp_t gfp_mask, 2477 int (*bio_ctr)(struct bio *, struct bio *, void *), 2478 void *data) 2479 { 2480 struct bio *bio, *bio_src; 2481 2482 if (!bs) 2483 bs = fs_bio_set; 2484 2485 blk_rq_init(NULL, rq); 2486 2487 __rq_for_each_bio(bio_src, rq_src) { 2488 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2489 if (!bio) 2490 goto free_and_out; 2491 2492 __bio_clone(bio, bio_src); 2493 2494 if (bio_integrity(bio_src) && 2495 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2496 goto free_and_out; 2497 2498 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2499 goto free_and_out; 2500 2501 if (rq->bio) { 2502 rq->biotail->bi_next = bio; 2503 rq->biotail = bio; 2504 } else 2505 rq->bio = rq->biotail = bio; 2506 } 2507 2508 __blk_rq_prep_clone(rq, rq_src); 2509 2510 return 0; 2511 2512 free_and_out: 2513 if (bio) 2514 bio_free(bio, bs); 2515 blk_rq_unprep_clone(rq); 2516 2517 return -ENOMEM; 2518 } 2519 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2520 2521 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2522 { 2523 return queue_work(kblockd_workqueue, work); 2524 } 2525 EXPORT_SYMBOL(kblockd_schedule_work); 2526 2527 int __init blk_dev_init(void) 2528 { 2529 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2530 sizeof(((struct request *)0)->cmd_flags)); 2531 2532 kblockd_workqueue = create_workqueue("kblockd"); 2533 if (!kblockd_workqueue) 2534 panic("Failed to create kblockd\n"); 2535 2536 request_cachep = kmem_cache_create("blkdev_requests", 2537 sizeof(struct request), 0, SLAB_PANIC, NULL); 2538 2539 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2540 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2541 2542 return 0; 2543 } 2544