1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/blktrace_api.h> 30 #include <linux/fault-inject.h> 31 #include <trace/block.h> 32 33 #include "blk.h" 34 35 DEFINE_TRACE(block_plug); 36 DEFINE_TRACE(block_unplug_io); 37 DEFINE_TRACE(block_unplug_timer); 38 DEFINE_TRACE(block_getrq); 39 DEFINE_TRACE(block_sleeprq); 40 DEFINE_TRACE(block_rq_requeue); 41 DEFINE_TRACE(block_bio_backmerge); 42 DEFINE_TRACE(block_bio_frontmerge); 43 DEFINE_TRACE(block_bio_queue); 44 DEFINE_TRACE(block_rq_complete); 45 DEFINE_TRACE(block_remap); /* Also used in drivers/md/dm.c */ 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap); 47 48 static int __make_request(struct request_queue *q, struct bio *bio); 49 50 /* 51 * For the allocated request tables 52 */ 53 static struct kmem_cache *request_cachep; 54 55 /* 56 * For queue allocation 57 */ 58 struct kmem_cache *blk_requestq_cachep; 59 60 /* 61 * Controlling structure to kblockd 62 */ 63 static struct workqueue_struct *kblockd_workqueue; 64 65 static void drive_stat_acct(struct request *rq, int new_io) 66 { 67 struct gendisk *disk = rq->rq_disk; 68 struct hd_struct *part; 69 int rw = rq_data_dir(rq); 70 int cpu; 71 72 if (!blk_fs_request(rq) || !disk || !blk_do_io_stat(disk->queue)) 73 return; 74 75 cpu = part_stat_lock(); 76 part = disk_map_sector_rcu(rq->rq_disk, rq->sector); 77 78 if (!new_io) 79 part_stat_inc(cpu, part, merges[rw]); 80 else { 81 part_round_stats(cpu, part); 82 part_inc_in_flight(part); 83 } 84 85 part_stat_unlock(); 86 } 87 88 void blk_queue_congestion_threshold(struct request_queue *q) 89 { 90 int nr; 91 92 nr = q->nr_requests - (q->nr_requests / 8) + 1; 93 if (nr > q->nr_requests) 94 nr = q->nr_requests; 95 q->nr_congestion_on = nr; 96 97 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 98 if (nr < 1) 99 nr = 1; 100 q->nr_congestion_off = nr; 101 } 102 103 /** 104 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 105 * @bdev: device 106 * 107 * Locates the passed device's request queue and returns the address of its 108 * backing_dev_info 109 * 110 * Will return NULL if the request queue cannot be located. 111 */ 112 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 113 { 114 struct backing_dev_info *ret = NULL; 115 struct request_queue *q = bdev_get_queue(bdev); 116 117 if (q) 118 ret = &q->backing_dev_info; 119 return ret; 120 } 121 EXPORT_SYMBOL(blk_get_backing_dev_info); 122 123 void blk_rq_init(struct request_queue *q, struct request *rq) 124 { 125 memset(rq, 0, sizeof(*rq)); 126 127 INIT_LIST_HEAD(&rq->queuelist); 128 INIT_LIST_HEAD(&rq->timeout_list); 129 rq->cpu = -1; 130 rq->q = q; 131 rq->sector = rq->hard_sector = (sector_t) -1; 132 INIT_HLIST_NODE(&rq->hash); 133 RB_CLEAR_NODE(&rq->rb_node); 134 rq->cmd = rq->__cmd; 135 rq->tag = -1; 136 rq->ref_count = 1; 137 } 138 EXPORT_SYMBOL(blk_rq_init); 139 140 static void req_bio_endio(struct request *rq, struct bio *bio, 141 unsigned int nbytes, int error) 142 { 143 struct request_queue *q = rq->q; 144 145 if (&q->bar_rq != rq) { 146 if (error) 147 clear_bit(BIO_UPTODATE, &bio->bi_flags); 148 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 149 error = -EIO; 150 151 if (unlikely(nbytes > bio->bi_size)) { 152 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 153 __func__, nbytes, bio->bi_size); 154 nbytes = bio->bi_size; 155 } 156 157 if (unlikely(rq->cmd_flags & REQ_QUIET)) 158 set_bit(BIO_QUIET, &bio->bi_flags); 159 160 bio->bi_size -= nbytes; 161 bio->bi_sector += (nbytes >> 9); 162 163 if (bio_integrity(bio)) 164 bio_integrity_advance(bio, nbytes); 165 166 if (bio->bi_size == 0) 167 bio_endio(bio, error); 168 } else { 169 170 /* 171 * Okay, this is the barrier request in progress, just 172 * record the error; 173 */ 174 if (error && !q->orderr) 175 q->orderr = error; 176 } 177 } 178 179 void blk_dump_rq_flags(struct request *rq, char *msg) 180 { 181 int bit; 182 183 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 184 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 185 rq->cmd_flags); 186 187 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n", 188 (unsigned long long)rq->sector, 189 rq->nr_sectors, 190 rq->current_nr_sectors); 191 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n", 192 rq->bio, rq->biotail, 193 rq->buffer, rq->data, 194 rq->data_len); 195 196 if (blk_pc_request(rq)) { 197 printk(KERN_INFO " cdb: "); 198 for (bit = 0; bit < BLK_MAX_CDB; bit++) 199 printk("%02x ", rq->cmd[bit]); 200 printk("\n"); 201 } 202 } 203 EXPORT_SYMBOL(blk_dump_rq_flags); 204 205 /* 206 * "plug" the device if there are no outstanding requests: this will 207 * force the transfer to start only after we have put all the requests 208 * on the list. 209 * 210 * This is called with interrupts off and no requests on the queue and 211 * with the queue lock held. 212 */ 213 void blk_plug_device(struct request_queue *q) 214 { 215 WARN_ON(!irqs_disabled()); 216 217 /* 218 * don't plug a stopped queue, it must be paired with blk_start_queue() 219 * which will restart the queueing 220 */ 221 if (blk_queue_stopped(q)) 222 return; 223 224 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 225 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 226 trace_block_plug(q); 227 } 228 } 229 EXPORT_SYMBOL(blk_plug_device); 230 231 /** 232 * blk_plug_device_unlocked - plug a device without queue lock held 233 * @q: The &struct request_queue to plug 234 * 235 * Description: 236 * Like @blk_plug_device(), but grabs the queue lock and disables 237 * interrupts. 238 **/ 239 void blk_plug_device_unlocked(struct request_queue *q) 240 { 241 unsigned long flags; 242 243 spin_lock_irqsave(q->queue_lock, flags); 244 blk_plug_device(q); 245 spin_unlock_irqrestore(q->queue_lock, flags); 246 } 247 EXPORT_SYMBOL(blk_plug_device_unlocked); 248 249 /* 250 * remove the queue from the plugged list, if present. called with 251 * queue lock held and interrupts disabled. 252 */ 253 int blk_remove_plug(struct request_queue *q) 254 { 255 WARN_ON(!irqs_disabled()); 256 257 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 258 return 0; 259 260 del_timer(&q->unplug_timer); 261 return 1; 262 } 263 EXPORT_SYMBOL(blk_remove_plug); 264 265 /* 266 * remove the plug and let it rip.. 267 */ 268 void __generic_unplug_device(struct request_queue *q) 269 { 270 if (unlikely(blk_queue_stopped(q))) 271 return; 272 if (!blk_remove_plug(q) && !blk_queue_nonrot(q)) 273 return; 274 275 q->request_fn(q); 276 } 277 278 /** 279 * generic_unplug_device - fire a request queue 280 * @q: The &struct request_queue in question 281 * 282 * Description: 283 * Linux uses plugging to build bigger requests queues before letting 284 * the device have at them. If a queue is plugged, the I/O scheduler 285 * is still adding and merging requests on the queue. Once the queue 286 * gets unplugged, the request_fn defined for the queue is invoked and 287 * transfers started. 288 **/ 289 void generic_unplug_device(struct request_queue *q) 290 { 291 if (blk_queue_plugged(q)) { 292 spin_lock_irq(q->queue_lock); 293 __generic_unplug_device(q); 294 spin_unlock_irq(q->queue_lock); 295 } 296 } 297 EXPORT_SYMBOL(generic_unplug_device); 298 299 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 300 struct page *page) 301 { 302 struct request_queue *q = bdi->unplug_io_data; 303 304 blk_unplug(q); 305 } 306 307 void blk_unplug_work(struct work_struct *work) 308 { 309 struct request_queue *q = 310 container_of(work, struct request_queue, unplug_work); 311 312 trace_block_unplug_io(q); 313 q->unplug_fn(q); 314 } 315 316 void blk_unplug_timeout(unsigned long data) 317 { 318 struct request_queue *q = (struct request_queue *)data; 319 320 trace_block_unplug_timer(q); 321 kblockd_schedule_work(q, &q->unplug_work); 322 } 323 324 void blk_unplug(struct request_queue *q) 325 { 326 /* 327 * devices don't necessarily have an ->unplug_fn defined 328 */ 329 if (q->unplug_fn) { 330 trace_block_unplug_io(q); 331 q->unplug_fn(q); 332 } 333 } 334 EXPORT_SYMBOL(blk_unplug); 335 336 static void blk_invoke_request_fn(struct request_queue *q) 337 { 338 if (unlikely(blk_queue_stopped(q))) 339 return; 340 341 /* 342 * one level of recursion is ok and is much faster than kicking 343 * the unplug handling 344 */ 345 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 346 q->request_fn(q); 347 queue_flag_clear(QUEUE_FLAG_REENTER, q); 348 } else { 349 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 350 kblockd_schedule_work(q, &q->unplug_work); 351 } 352 } 353 354 /** 355 * blk_start_queue - restart a previously stopped queue 356 * @q: The &struct request_queue in question 357 * 358 * Description: 359 * blk_start_queue() will clear the stop flag on the queue, and call 360 * the request_fn for the queue if it was in a stopped state when 361 * entered. Also see blk_stop_queue(). Queue lock must be held. 362 **/ 363 void blk_start_queue(struct request_queue *q) 364 { 365 WARN_ON(!irqs_disabled()); 366 367 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 368 blk_invoke_request_fn(q); 369 } 370 EXPORT_SYMBOL(blk_start_queue); 371 372 /** 373 * blk_stop_queue - stop a queue 374 * @q: The &struct request_queue in question 375 * 376 * Description: 377 * The Linux block layer assumes that a block driver will consume all 378 * entries on the request queue when the request_fn strategy is called. 379 * Often this will not happen, because of hardware limitations (queue 380 * depth settings). If a device driver gets a 'queue full' response, 381 * or if it simply chooses not to queue more I/O at one point, it can 382 * call this function to prevent the request_fn from being called until 383 * the driver has signalled it's ready to go again. This happens by calling 384 * blk_start_queue() to restart queue operations. Queue lock must be held. 385 **/ 386 void blk_stop_queue(struct request_queue *q) 387 { 388 blk_remove_plug(q); 389 queue_flag_set(QUEUE_FLAG_STOPPED, q); 390 } 391 EXPORT_SYMBOL(blk_stop_queue); 392 393 /** 394 * blk_sync_queue - cancel any pending callbacks on a queue 395 * @q: the queue 396 * 397 * Description: 398 * The block layer may perform asynchronous callback activity 399 * on a queue, such as calling the unplug function after a timeout. 400 * A block device may call blk_sync_queue to ensure that any 401 * such activity is cancelled, thus allowing it to release resources 402 * that the callbacks might use. The caller must already have made sure 403 * that its ->make_request_fn will not re-add plugging prior to calling 404 * this function. 405 * 406 */ 407 void blk_sync_queue(struct request_queue *q) 408 { 409 del_timer_sync(&q->unplug_timer); 410 del_timer_sync(&q->timeout); 411 cancel_work_sync(&q->unplug_work); 412 } 413 EXPORT_SYMBOL(blk_sync_queue); 414 415 /** 416 * __blk_run_queue - run a single device queue 417 * @q: The queue to run 418 * 419 * Description: 420 * See @blk_run_queue. This variant must be called with the queue lock 421 * held and interrupts disabled. 422 * 423 */ 424 void __blk_run_queue(struct request_queue *q) 425 { 426 blk_remove_plug(q); 427 428 /* 429 * Only recurse once to avoid overrunning the stack, let the unplug 430 * handling reinvoke the handler shortly if we already got there. 431 */ 432 if (!elv_queue_empty(q)) 433 blk_invoke_request_fn(q); 434 } 435 EXPORT_SYMBOL(__blk_run_queue); 436 437 /** 438 * blk_run_queue - run a single device queue 439 * @q: The queue to run 440 * 441 * Description: 442 * Invoke request handling on this queue, if it has pending work to do. 443 * May be used to restart queueing when a request has completed. Also 444 * See @blk_start_queueing. 445 * 446 */ 447 void blk_run_queue(struct request_queue *q) 448 { 449 unsigned long flags; 450 451 spin_lock_irqsave(q->queue_lock, flags); 452 __blk_run_queue(q); 453 spin_unlock_irqrestore(q->queue_lock, flags); 454 } 455 EXPORT_SYMBOL(blk_run_queue); 456 457 void blk_put_queue(struct request_queue *q) 458 { 459 kobject_put(&q->kobj); 460 } 461 462 void blk_cleanup_queue(struct request_queue *q) 463 { 464 /* 465 * We know we have process context here, so we can be a little 466 * cautious and ensure that pending block actions on this device 467 * are done before moving on. Going into this function, we should 468 * not have processes doing IO to this device. 469 */ 470 blk_sync_queue(q); 471 472 mutex_lock(&q->sysfs_lock); 473 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 474 mutex_unlock(&q->sysfs_lock); 475 476 if (q->elevator) 477 elevator_exit(q->elevator); 478 479 blk_put_queue(q); 480 } 481 EXPORT_SYMBOL(blk_cleanup_queue); 482 483 static int blk_init_free_list(struct request_queue *q) 484 { 485 struct request_list *rl = &q->rq; 486 487 rl->count[READ] = rl->count[WRITE] = 0; 488 rl->starved[READ] = rl->starved[WRITE] = 0; 489 rl->elvpriv = 0; 490 init_waitqueue_head(&rl->wait[READ]); 491 init_waitqueue_head(&rl->wait[WRITE]); 492 493 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 494 mempool_free_slab, request_cachep, q->node); 495 496 if (!rl->rq_pool) 497 return -ENOMEM; 498 499 return 0; 500 } 501 502 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 503 { 504 return blk_alloc_queue_node(gfp_mask, -1); 505 } 506 EXPORT_SYMBOL(blk_alloc_queue); 507 508 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 509 { 510 struct request_queue *q; 511 int err; 512 513 q = kmem_cache_alloc_node(blk_requestq_cachep, 514 gfp_mask | __GFP_ZERO, node_id); 515 if (!q) 516 return NULL; 517 518 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 519 q->backing_dev_info.unplug_io_data = q; 520 err = bdi_init(&q->backing_dev_info); 521 if (err) { 522 kmem_cache_free(blk_requestq_cachep, q); 523 return NULL; 524 } 525 526 init_timer(&q->unplug_timer); 527 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 528 INIT_LIST_HEAD(&q->timeout_list); 529 INIT_WORK(&q->unplug_work, blk_unplug_work); 530 531 kobject_init(&q->kobj, &blk_queue_ktype); 532 533 mutex_init(&q->sysfs_lock); 534 spin_lock_init(&q->__queue_lock); 535 536 return q; 537 } 538 EXPORT_SYMBOL(blk_alloc_queue_node); 539 540 /** 541 * blk_init_queue - prepare a request queue for use with a block device 542 * @rfn: The function to be called to process requests that have been 543 * placed on the queue. 544 * @lock: Request queue spin lock 545 * 546 * Description: 547 * If a block device wishes to use the standard request handling procedures, 548 * which sorts requests and coalesces adjacent requests, then it must 549 * call blk_init_queue(). The function @rfn will be called when there 550 * are requests on the queue that need to be processed. If the device 551 * supports plugging, then @rfn may not be called immediately when requests 552 * are available on the queue, but may be called at some time later instead. 553 * Plugged queues are generally unplugged when a buffer belonging to one 554 * of the requests on the queue is needed, or due to memory pressure. 555 * 556 * @rfn is not required, or even expected, to remove all requests off the 557 * queue, but only as many as it can handle at a time. If it does leave 558 * requests on the queue, it is responsible for arranging that the requests 559 * get dealt with eventually. 560 * 561 * The queue spin lock must be held while manipulating the requests on the 562 * request queue; this lock will be taken also from interrupt context, so irq 563 * disabling is needed for it. 564 * 565 * Function returns a pointer to the initialized request queue, or %NULL if 566 * it didn't succeed. 567 * 568 * Note: 569 * blk_init_queue() must be paired with a blk_cleanup_queue() call 570 * when the block device is deactivated (such as at module unload). 571 **/ 572 573 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 574 { 575 return blk_init_queue_node(rfn, lock, -1); 576 } 577 EXPORT_SYMBOL(blk_init_queue); 578 579 struct request_queue * 580 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 581 { 582 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 583 584 if (!q) 585 return NULL; 586 587 q->node = node_id; 588 if (blk_init_free_list(q)) { 589 kmem_cache_free(blk_requestq_cachep, q); 590 return NULL; 591 } 592 593 /* 594 * if caller didn't supply a lock, they get per-queue locking with 595 * our embedded lock 596 */ 597 if (!lock) 598 lock = &q->__queue_lock; 599 600 q->request_fn = rfn; 601 q->prep_rq_fn = NULL; 602 q->unplug_fn = generic_unplug_device; 603 q->queue_flags = QUEUE_FLAG_DEFAULT; 604 q->queue_lock = lock; 605 606 blk_queue_segment_boundary(q, BLK_SEG_BOUNDARY_MASK); 607 608 blk_queue_make_request(q, __make_request); 609 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); 610 611 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 612 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 613 614 q->sg_reserved_size = INT_MAX; 615 616 blk_set_cmd_filter_defaults(&q->cmd_filter); 617 618 /* 619 * all done 620 */ 621 if (!elevator_init(q, NULL)) { 622 blk_queue_congestion_threshold(q); 623 return q; 624 } 625 626 blk_put_queue(q); 627 return NULL; 628 } 629 EXPORT_SYMBOL(blk_init_queue_node); 630 631 int blk_get_queue(struct request_queue *q) 632 { 633 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 634 kobject_get(&q->kobj); 635 return 0; 636 } 637 638 return 1; 639 } 640 641 static inline void blk_free_request(struct request_queue *q, struct request *rq) 642 { 643 if (rq->cmd_flags & REQ_ELVPRIV) 644 elv_put_request(q, rq); 645 mempool_free(rq, q->rq.rq_pool); 646 } 647 648 static struct request * 649 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask) 650 { 651 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 652 653 if (!rq) 654 return NULL; 655 656 blk_rq_init(q, rq); 657 658 rq->cmd_flags = rw | REQ_ALLOCED; 659 660 if (priv) { 661 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 662 mempool_free(rq, q->rq.rq_pool); 663 return NULL; 664 } 665 rq->cmd_flags |= REQ_ELVPRIV; 666 } 667 668 return rq; 669 } 670 671 /* 672 * ioc_batching returns true if the ioc is a valid batching request and 673 * should be given priority access to a request. 674 */ 675 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 676 { 677 if (!ioc) 678 return 0; 679 680 /* 681 * Make sure the process is able to allocate at least 1 request 682 * even if the batch times out, otherwise we could theoretically 683 * lose wakeups. 684 */ 685 return ioc->nr_batch_requests == q->nr_batching || 686 (ioc->nr_batch_requests > 0 687 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 688 } 689 690 /* 691 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 692 * will cause the process to be a "batcher" on all queues in the system. This 693 * is the behaviour we want though - once it gets a wakeup it should be given 694 * a nice run. 695 */ 696 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 697 { 698 if (!ioc || ioc_batching(q, ioc)) 699 return; 700 701 ioc->nr_batch_requests = q->nr_batching; 702 ioc->last_waited = jiffies; 703 } 704 705 static void __freed_request(struct request_queue *q, int rw) 706 { 707 struct request_list *rl = &q->rq; 708 709 if (rl->count[rw] < queue_congestion_off_threshold(q)) 710 blk_clear_queue_congested(q, rw); 711 712 if (rl->count[rw] + 1 <= q->nr_requests) { 713 if (waitqueue_active(&rl->wait[rw])) 714 wake_up(&rl->wait[rw]); 715 716 blk_clear_queue_full(q, rw); 717 } 718 } 719 720 /* 721 * A request has just been released. Account for it, update the full and 722 * congestion status, wake up any waiters. Called under q->queue_lock. 723 */ 724 static void freed_request(struct request_queue *q, int rw, int priv) 725 { 726 struct request_list *rl = &q->rq; 727 728 rl->count[rw]--; 729 if (priv) 730 rl->elvpriv--; 731 732 __freed_request(q, rw); 733 734 if (unlikely(rl->starved[rw ^ 1])) 735 __freed_request(q, rw ^ 1); 736 } 737 738 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist) 739 /* 740 * Get a free request, queue_lock must be held. 741 * Returns NULL on failure, with queue_lock held. 742 * Returns !NULL on success, with queue_lock *not held*. 743 */ 744 static struct request *get_request(struct request_queue *q, int rw_flags, 745 struct bio *bio, gfp_t gfp_mask) 746 { 747 struct request *rq = NULL; 748 struct request_list *rl = &q->rq; 749 struct io_context *ioc = NULL; 750 const int rw = rw_flags & 0x01; 751 int may_queue, priv; 752 753 may_queue = elv_may_queue(q, rw_flags); 754 if (may_queue == ELV_MQUEUE_NO) 755 goto rq_starved; 756 757 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) { 758 if (rl->count[rw]+1 >= q->nr_requests) { 759 ioc = current_io_context(GFP_ATOMIC, q->node); 760 /* 761 * The queue will fill after this allocation, so set 762 * it as full, and mark this process as "batching". 763 * This process will be allowed to complete a batch of 764 * requests, others will be blocked. 765 */ 766 if (!blk_queue_full(q, rw)) { 767 ioc_set_batching(q, ioc); 768 blk_set_queue_full(q, rw); 769 } else { 770 if (may_queue != ELV_MQUEUE_MUST 771 && !ioc_batching(q, ioc)) { 772 /* 773 * The queue is full and the allocating 774 * process is not a "batcher", and not 775 * exempted by the IO scheduler 776 */ 777 goto out; 778 } 779 } 780 } 781 blk_set_queue_congested(q, rw); 782 } 783 784 /* 785 * Only allow batching queuers to allocate up to 50% over the defined 786 * limit of requests, otherwise we could have thousands of requests 787 * allocated with any setting of ->nr_requests 788 */ 789 if (rl->count[rw] >= (3 * q->nr_requests / 2)) 790 goto out; 791 792 rl->count[rw]++; 793 rl->starved[rw] = 0; 794 795 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 796 if (priv) 797 rl->elvpriv++; 798 799 spin_unlock_irq(q->queue_lock); 800 801 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 802 if (unlikely(!rq)) { 803 /* 804 * Allocation failed presumably due to memory. Undo anything 805 * we might have messed up. 806 * 807 * Allocating task should really be put onto the front of the 808 * wait queue, but this is pretty rare. 809 */ 810 spin_lock_irq(q->queue_lock); 811 freed_request(q, rw, priv); 812 813 /* 814 * in the very unlikely event that allocation failed and no 815 * requests for this direction was pending, mark us starved 816 * so that freeing of a request in the other direction will 817 * notice us. another possible fix would be to split the 818 * rq mempool into READ and WRITE 819 */ 820 rq_starved: 821 if (unlikely(rl->count[rw] == 0)) 822 rl->starved[rw] = 1; 823 824 goto out; 825 } 826 827 /* 828 * ioc may be NULL here, and ioc_batching will be false. That's 829 * OK, if the queue is under the request limit then requests need 830 * not count toward the nr_batch_requests limit. There will always 831 * be some limit enforced by BLK_BATCH_TIME. 832 */ 833 if (ioc_batching(q, ioc)) 834 ioc->nr_batch_requests--; 835 836 trace_block_getrq(q, bio, rw); 837 out: 838 return rq; 839 } 840 841 /* 842 * No available requests for this queue, unplug the device and wait for some 843 * requests to become available. 844 * 845 * Called with q->queue_lock held, and returns with it unlocked. 846 */ 847 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 848 struct bio *bio) 849 { 850 const int rw = rw_flags & 0x01; 851 struct request *rq; 852 853 rq = get_request(q, rw_flags, bio, GFP_NOIO); 854 while (!rq) { 855 DEFINE_WAIT(wait); 856 struct io_context *ioc; 857 struct request_list *rl = &q->rq; 858 859 prepare_to_wait_exclusive(&rl->wait[rw], &wait, 860 TASK_UNINTERRUPTIBLE); 861 862 trace_block_sleeprq(q, bio, rw); 863 864 __generic_unplug_device(q); 865 spin_unlock_irq(q->queue_lock); 866 io_schedule(); 867 868 /* 869 * After sleeping, we become a "batching" process and 870 * will be able to allocate at least one request, and 871 * up to a big batch of them for a small period time. 872 * See ioc_batching, ioc_set_batching 873 */ 874 ioc = current_io_context(GFP_NOIO, q->node); 875 ioc_set_batching(q, ioc); 876 877 spin_lock_irq(q->queue_lock); 878 finish_wait(&rl->wait[rw], &wait); 879 880 rq = get_request(q, rw_flags, bio, GFP_NOIO); 881 }; 882 883 return rq; 884 } 885 886 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 887 { 888 struct request *rq; 889 890 BUG_ON(rw != READ && rw != WRITE); 891 892 spin_lock_irq(q->queue_lock); 893 if (gfp_mask & __GFP_WAIT) { 894 rq = get_request_wait(q, rw, NULL); 895 } else { 896 rq = get_request(q, rw, NULL, gfp_mask); 897 if (!rq) 898 spin_unlock_irq(q->queue_lock); 899 } 900 /* q->queue_lock is unlocked at this point */ 901 902 return rq; 903 } 904 EXPORT_SYMBOL(blk_get_request); 905 906 /** 907 * blk_start_queueing - initiate dispatch of requests to device 908 * @q: request queue to kick into gear 909 * 910 * This is basically a helper to remove the need to know whether a queue 911 * is plugged or not if someone just wants to initiate dispatch of requests 912 * for this queue. Should be used to start queueing on a device outside 913 * of ->request_fn() context. Also see @blk_run_queue. 914 * 915 * The queue lock must be held with interrupts disabled. 916 */ 917 void blk_start_queueing(struct request_queue *q) 918 { 919 if (!blk_queue_plugged(q)) { 920 if (unlikely(blk_queue_stopped(q))) 921 return; 922 q->request_fn(q); 923 } else 924 __generic_unplug_device(q); 925 } 926 EXPORT_SYMBOL(blk_start_queueing); 927 928 /** 929 * blk_requeue_request - put a request back on queue 930 * @q: request queue where request should be inserted 931 * @rq: request to be inserted 932 * 933 * Description: 934 * Drivers often keep queueing requests until the hardware cannot accept 935 * more, when that condition happens we need to put the request back 936 * on the queue. Must be called with queue lock held. 937 */ 938 void blk_requeue_request(struct request_queue *q, struct request *rq) 939 { 940 blk_delete_timer(rq); 941 blk_clear_rq_complete(rq); 942 trace_block_rq_requeue(q, rq); 943 944 if (blk_rq_tagged(rq)) 945 blk_queue_end_tag(q, rq); 946 947 elv_requeue_request(q, rq); 948 } 949 EXPORT_SYMBOL(blk_requeue_request); 950 951 /** 952 * blk_insert_request - insert a special request into a request queue 953 * @q: request queue where request should be inserted 954 * @rq: request to be inserted 955 * @at_head: insert request at head or tail of queue 956 * @data: private data 957 * 958 * Description: 959 * Many block devices need to execute commands asynchronously, so they don't 960 * block the whole kernel from preemption during request execution. This is 961 * accomplished normally by inserting aritficial requests tagged as 962 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 963 * be scheduled for actual execution by the request queue. 964 * 965 * We have the option of inserting the head or the tail of the queue. 966 * Typically we use the tail for new ioctls and so forth. We use the head 967 * of the queue for things like a QUEUE_FULL message from a device, or a 968 * host that is unable to accept a particular command. 969 */ 970 void blk_insert_request(struct request_queue *q, struct request *rq, 971 int at_head, void *data) 972 { 973 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 974 unsigned long flags; 975 976 /* 977 * tell I/O scheduler that this isn't a regular read/write (ie it 978 * must not attempt merges on this) and that it acts as a soft 979 * barrier 980 */ 981 rq->cmd_type = REQ_TYPE_SPECIAL; 982 rq->cmd_flags |= REQ_SOFTBARRIER; 983 984 rq->special = data; 985 986 spin_lock_irqsave(q->queue_lock, flags); 987 988 /* 989 * If command is tagged, release the tag 990 */ 991 if (blk_rq_tagged(rq)) 992 blk_queue_end_tag(q, rq); 993 994 drive_stat_acct(rq, 1); 995 __elv_add_request(q, rq, where, 0); 996 blk_start_queueing(q); 997 spin_unlock_irqrestore(q->queue_lock, flags); 998 } 999 EXPORT_SYMBOL(blk_insert_request); 1000 1001 /* 1002 * add-request adds a request to the linked list. 1003 * queue lock is held and interrupts disabled, as we muck with the 1004 * request queue list. 1005 */ 1006 static inline void add_request(struct request_queue *q, struct request *req) 1007 { 1008 drive_stat_acct(req, 1); 1009 1010 /* 1011 * elevator indicated where it wants this request to be 1012 * inserted at elevator_merge time 1013 */ 1014 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 1015 } 1016 1017 static void part_round_stats_single(int cpu, struct hd_struct *part, 1018 unsigned long now) 1019 { 1020 if (now == part->stamp) 1021 return; 1022 1023 if (part->in_flight) { 1024 __part_stat_add(cpu, part, time_in_queue, 1025 part->in_flight * (now - part->stamp)); 1026 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1027 } 1028 part->stamp = now; 1029 } 1030 1031 /** 1032 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1033 * @cpu: cpu number for stats access 1034 * @part: target partition 1035 * 1036 * The average IO queue length and utilisation statistics are maintained 1037 * by observing the current state of the queue length and the amount of 1038 * time it has been in this state for. 1039 * 1040 * Normally, that accounting is done on IO completion, but that can result 1041 * in more than a second's worth of IO being accounted for within any one 1042 * second, leading to >100% utilisation. To deal with that, we call this 1043 * function to do a round-off before returning the results when reading 1044 * /proc/diskstats. This accounts immediately for all queue usage up to 1045 * the current jiffies and restarts the counters again. 1046 */ 1047 void part_round_stats(int cpu, struct hd_struct *part) 1048 { 1049 unsigned long now = jiffies; 1050 1051 if (part->partno) 1052 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1053 part_round_stats_single(cpu, part, now); 1054 } 1055 EXPORT_SYMBOL_GPL(part_round_stats); 1056 1057 /* 1058 * queue lock must be held 1059 */ 1060 void __blk_put_request(struct request_queue *q, struct request *req) 1061 { 1062 if (unlikely(!q)) 1063 return; 1064 if (unlikely(--req->ref_count)) 1065 return; 1066 1067 elv_completed_request(q, req); 1068 1069 /* 1070 * Request may not have originated from ll_rw_blk. if not, 1071 * it didn't come out of our reserved rq pools 1072 */ 1073 if (req->cmd_flags & REQ_ALLOCED) { 1074 int rw = rq_data_dir(req); 1075 int priv = req->cmd_flags & REQ_ELVPRIV; 1076 1077 BUG_ON(!list_empty(&req->queuelist)); 1078 BUG_ON(!hlist_unhashed(&req->hash)); 1079 1080 blk_free_request(q, req); 1081 freed_request(q, rw, priv); 1082 } 1083 } 1084 EXPORT_SYMBOL_GPL(__blk_put_request); 1085 1086 void blk_put_request(struct request *req) 1087 { 1088 unsigned long flags; 1089 struct request_queue *q = req->q; 1090 1091 spin_lock_irqsave(q->queue_lock, flags); 1092 __blk_put_request(q, req); 1093 spin_unlock_irqrestore(q->queue_lock, flags); 1094 } 1095 EXPORT_SYMBOL(blk_put_request); 1096 1097 void init_request_from_bio(struct request *req, struct bio *bio) 1098 { 1099 req->cpu = bio->bi_comp_cpu; 1100 req->cmd_type = REQ_TYPE_FS; 1101 1102 /* 1103 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1104 */ 1105 if (bio_rw_ahead(bio)) 1106 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | 1107 REQ_FAILFAST_DRIVER); 1108 if (bio_failfast_dev(bio)) 1109 req->cmd_flags |= REQ_FAILFAST_DEV; 1110 if (bio_failfast_transport(bio)) 1111 req->cmd_flags |= REQ_FAILFAST_TRANSPORT; 1112 if (bio_failfast_driver(bio)) 1113 req->cmd_flags |= REQ_FAILFAST_DRIVER; 1114 1115 /* 1116 * REQ_BARRIER implies no merging, but lets make it explicit 1117 */ 1118 if (unlikely(bio_discard(bio))) { 1119 req->cmd_flags |= REQ_DISCARD; 1120 if (bio_barrier(bio)) 1121 req->cmd_flags |= REQ_SOFTBARRIER; 1122 req->q->prepare_discard_fn(req->q, req); 1123 } else if (unlikely(bio_barrier(bio))) 1124 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE); 1125 1126 if (bio_sync(bio)) 1127 req->cmd_flags |= REQ_RW_SYNC; 1128 if (bio_unplug(bio)) 1129 req->cmd_flags |= REQ_UNPLUG; 1130 if (bio_rw_meta(bio)) 1131 req->cmd_flags |= REQ_RW_META; 1132 1133 req->errors = 0; 1134 req->hard_sector = req->sector = bio->bi_sector; 1135 req->ioprio = bio_prio(bio); 1136 req->start_time = jiffies; 1137 blk_rq_bio_prep(req->q, req, bio); 1138 } 1139 1140 static int __make_request(struct request_queue *q, struct bio *bio) 1141 { 1142 struct request *req; 1143 int el_ret, nr_sectors; 1144 const unsigned short prio = bio_prio(bio); 1145 const int sync = bio_sync(bio); 1146 const int unplug = bio_unplug(bio); 1147 int rw_flags; 1148 1149 nr_sectors = bio_sectors(bio); 1150 1151 /* 1152 * low level driver can indicate that it wants pages above a 1153 * certain limit bounced to low memory (ie for highmem, or even 1154 * ISA dma in theory) 1155 */ 1156 blk_queue_bounce(q, &bio); 1157 1158 spin_lock_irq(q->queue_lock); 1159 1160 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q)) 1161 goto get_rq; 1162 1163 el_ret = elv_merge(q, &req, bio); 1164 switch (el_ret) { 1165 case ELEVATOR_BACK_MERGE: 1166 BUG_ON(!rq_mergeable(req)); 1167 1168 if (!ll_back_merge_fn(q, req, bio)) 1169 break; 1170 1171 trace_block_bio_backmerge(q, bio); 1172 1173 req->biotail->bi_next = bio; 1174 req->biotail = bio; 1175 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1176 req->ioprio = ioprio_best(req->ioprio, prio); 1177 if (!blk_rq_cpu_valid(req)) 1178 req->cpu = bio->bi_comp_cpu; 1179 drive_stat_acct(req, 0); 1180 if (!attempt_back_merge(q, req)) 1181 elv_merged_request(q, req, el_ret); 1182 goto out; 1183 1184 case ELEVATOR_FRONT_MERGE: 1185 BUG_ON(!rq_mergeable(req)); 1186 1187 if (!ll_front_merge_fn(q, req, bio)) 1188 break; 1189 1190 trace_block_bio_frontmerge(q, bio); 1191 1192 bio->bi_next = req->bio; 1193 req->bio = bio; 1194 1195 /* 1196 * may not be valid. if the low level driver said 1197 * it didn't need a bounce buffer then it better 1198 * not touch req->buffer either... 1199 */ 1200 req->buffer = bio_data(bio); 1201 req->current_nr_sectors = bio_cur_sectors(bio); 1202 req->hard_cur_sectors = req->current_nr_sectors; 1203 req->sector = req->hard_sector = bio->bi_sector; 1204 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1205 req->ioprio = ioprio_best(req->ioprio, prio); 1206 if (!blk_rq_cpu_valid(req)) 1207 req->cpu = bio->bi_comp_cpu; 1208 drive_stat_acct(req, 0); 1209 if (!attempt_front_merge(q, req)) 1210 elv_merged_request(q, req, el_ret); 1211 goto out; 1212 1213 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1214 default: 1215 ; 1216 } 1217 1218 get_rq: 1219 /* 1220 * This sync check and mask will be re-done in init_request_from_bio(), 1221 * but we need to set it earlier to expose the sync flag to the 1222 * rq allocator and io schedulers. 1223 */ 1224 rw_flags = bio_data_dir(bio); 1225 if (sync) 1226 rw_flags |= REQ_RW_SYNC; 1227 1228 /* 1229 * Grab a free request. This is might sleep but can not fail. 1230 * Returns with the queue unlocked. 1231 */ 1232 req = get_request_wait(q, rw_flags, bio); 1233 1234 /* 1235 * After dropping the lock and possibly sleeping here, our request 1236 * may now be mergeable after it had proven unmergeable (above). 1237 * We don't worry about that case for efficiency. It won't happen 1238 * often, and the elevators are able to handle it. 1239 */ 1240 init_request_from_bio(req, bio); 1241 1242 spin_lock_irq(q->queue_lock); 1243 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1244 bio_flagged(bio, BIO_CPU_AFFINE)) 1245 req->cpu = blk_cpu_to_group(smp_processor_id()); 1246 if (!blk_queue_nonrot(q) && elv_queue_empty(q)) 1247 blk_plug_device(q); 1248 add_request(q, req); 1249 out: 1250 if (unplug || blk_queue_nonrot(q)) 1251 __generic_unplug_device(q); 1252 spin_unlock_irq(q->queue_lock); 1253 return 0; 1254 } 1255 1256 /* 1257 * If bio->bi_dev is a partition, remap the location 1258 */ 1259 static inline void blk_partition_remap(struct bio *bio) 1260 { 1261 struct block_device *bdev = bio->bi_bdev; 1262 1263 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1264 struct hd_struct *p = bdev->bd_part; 1265 1266 bio->bi_sector += p->start_sect; 1267 bio->bi_bdev = bdev->bd_contains; 1268 1269 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio, 1270 bdev->bd_dev, bio->bi_sector, 1271 bio->bi_sector - p->start_sect); 1272 } 1273 } 1274 1275 static void handle_bad_sector(struct bio *bio) 1276 { 1277 char b[BDEVNAME_SIZE]; 1278 1279 printk(KERN_INFO "attempt to access beyond end of device\n"); 1280 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1281 bdevname(bio->bi_bdev, b), 1282 bio->bi_rw, 1283 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1284 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1285 1286 set_bit(BIO_EOF, &bio->bi_flags); 1287 } 1288 1289 #ifdef CONFIG_FAIL_MAKE_REQUEST 1290 1291 static DECLARE_FAULT_ATTR(fail_make_request); 1292 1293 static int __init setup_fail_make_request(char *str) 1294 { 1295 return setup_fault_attr(&fail_make_request, str); 1296 } 1297 __setup("fail_make_request=", setup_fail_make_request); 1298 1299 static int should_fail_request(struct bio *bio) 1300 { 1301 struct hd_struct *part = bio->bi_bdev->bd_part; 1302 1303 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1304 return should_fail(&fail_make_request, bio->bi_size); 1305 1306 return 0; 1307 } 1308 1309 static int __init fail_make_request_debugfs(void) 1310 { 1311 return init_fault_attr_dentries(&fail_make_request, 1312 "fail_make_request"); 1313 } 1314 1315 late_initcall(fail_make_request_debugfs); 1316 1317 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1318 1319 static inline int should_fail_request(struct bio *bio) 1320 { 1321 return 0; 1322 } 1323 1324 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1325 1326 /* 1327 * Check whether this bio extends beyond the end of the device. 1328 */ 1329 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1330 { 1331 sector_t maxsector; 1332 1333 if (!nr_sectors) 1334 return 0; 1335 1336 /* Test device or partition size, when known. */ 1337 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1338 if (maxsector) { 1339 sector_t sector = bio->bi_sector; 1340 1341 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1342 /* 1343 * This may well happen - the kernel calls bread() 1344 * without checking the size of the device, e.g., when 1345 * mounting a device. 1346 */ 1347 handle_bad_sector(bio); 1348 return 1; 1349 } 1350 } 1351 1352 return 0; 1353 } 1354 1355 /** 1356 * generic_make_request - hand a buffer to its device driver for I/O 1357 * @bio: The bio describing the location in memory and on the device. 1358 * 1359 * generic_make_request() is used to make I/O requests of block 1360 * devices. It is passed a &struct bio, which describes the I/O that needs 1361 * to be done. 1362 * 1363 * generic_make_request() does not return any status. The 1364 * success/failure status of the request, along with notification of 1365 * completion, is delivered asynchronously through the bio->bi_end_io 1366 * function described (one day) else where. 1367 * 1368 * The caller of generic_make_request must make sure that bi_io_vec 1369 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1370 * set to describe the device address, and the 1371 * bi_end_io and optionally bi_private are set to describe how 1372 * completion notification should be signaled. 1373 * 1374 * generic_make_request and the drivers it calls may use bi_next if this 1375 * bio happens to be merged with someone else, and may change bi_dev and 1376 * bi_sector for remaps as it sees fit. So the values of these fields 1377 * should NOT be depended on after the call to generic_make_request. 1378 */ 1379 static inline void __generic_make_request(struct bio *bio) 1380 { 1381 struct request_queue *q; 1382 sector_t old_sector; 1383 int ret, nr_sectors = bio_sectors(bio); 1384 dev_t old_dev; 1385 int err = -EIO; 1386 1387 might_sleep(); 1388 1389 if (bio_check_eod(bio, nr_sectors)) 1390 goto end_io; 1391 1392 /* 1393 * Resolve the mapping until finished. (drivers are 1394 * still free to implement/resolve their own stacking 1395 * by explicitly returning 0) 1396 * 1397 * NOTE: we don't repeat the blk_size check for each new device. 1398 * Stacking drivers are expected to know what they are doing. 1399 */ 1400 old_sector = -1; 1401 old_dev = 0; 1402 do { 1403 char b[BDEVNAME_SIZE]; 1404 1405 q = bdev_get_queue(bio->bi_bdev); 1406 if (unlikely(!q)) { 1407 printk(KERN_ERR 1408 "generic_make_request: Trying to access " 1409 "nonexistent block-device %s (%Lu)\n", 1410 bdevname(bio->bi_bdev, b), 1411 (long long) bio->bi_sector); 1412 goto end_io; 1413 } 1414 1415 if (unlikely(nr_sectors > q->max_hw_sectors)) { 1416 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1417 bdevname(bio->bi_bdev, b), 1418 bio_sectors(bio), 1419 q->max_hw_sectors); 1420 goto end_io; 1421 } 1422 1423 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1424 goto end_io; 1425 1426 if (should_fail_request(bio)) 1427 goto end_io; 1428 1429 /* 1430 * If this device has partitions, remap block n 1431 * of partition p to block n+start(p) of the disk. 1432 */ 1433 blk_partition_remap(bio); 1434 1435 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1436 goto end_io; 1437 1438 if (old_sector != -1) 1439 trace_block_remap(q, bio, old_dev, bio->bi_sector, 1440 old_sector); 1441 1442 trace_block_bio_queue(q, bio); 1443 1444 old_sector = bio->bi_sector; 1445 old_dev = bio->bi_bdev->bd_dev; 1446 1447 if (bio_check_eod(bio, nr_sectors)) 1448 goto end_io; 1449 1450 if (bio_discard(bio) && !q->prepare_discard_fn) { 1451 err = -EOPNOTSUPP; 1452 goto end_io; 1453 } 1454 if (bio_barrier(bio) && bio_has_data(bio) && 1455 (q->next_ordered == QUEUE_ORDERED_NONE)) { 1456 err = -EOPNOTSUPP; 1457 goto end_io; 1458 } 1459 1460 ret = q->make_request_fn(q, bio); 1461 } while (ret); 1462 1463 return; 1464 1465 end_io: 1466 bio_endio(bio, err); 1467 } 1468 1469 /* 1470 * We only want one ->make_request_fn to be active at a time, 1471 * else stack usage with stacked devices could be a problem. 1472 * So use current->bio_{list,tail} to keep a list of requests 1473 * submited by a make_request_fn function. 1474 * current->bio_tail is also used as a flag to say if 1475 * generic_make_request is currently active in this task or not. 1476 * If it is NULL, then no make_request is active. If it is non-NULL, 1477 * then a make_request is active, and new requests should be added 1478 * at the tail 1479 */ 1480 void generic_make_request(struct bio *bio) 1481 { 1482 if (current->bio_tail) { 1483 /* make_request is active */ 1484 *(current->bio_tail) = bio; 1485 bio->bi_next = NULL; 1486 current->bio_tail = &bio->bi_next; 1487 return; 1488 } 1489 /* following loop may be a bit non-obvious, and so deserves some 1490 * explanation. 1491 * Before entering the loop, bio->bi_next is NULL (as all callers 1492 * ensure that) so we have a list with a single bio. 1493 * We pretend that we have just taken it off a longer list, so 1494 * we assign bio_list to the next (which is NULL) and bio_tail 1495 * to &bio_list, thus initialising the bio_list of new bios to be 1496 * added. __generic_make_request may indeed add some more bios 1497 * through a recursive call to generic_make_request. If it 1498 * did, we find a non-NULL value in bio_list and re-enter the loop 1499 * from the top. In this case we really did just take the bio 1500 * of the top of the list (no pretending) and so fixup bio_list and 1501 * bio_tail or bi_next, and call into __generic_make_request again. 1502 * 1503 * The loop was structured like this to make only one call to 1504 * __generic_make_request (which is important as it is large and 1505 * inlined) and to keep the structure simple. 1506 */ 1507 BUG_ON(bio->bi_next); 1508 do { 1509 current->bio_list = bio->bi_next; 1510 if (bio->bi_next == NULL) 1511 current->bio_tail = ¤t->bio_list; 1512 else 1513 bio->bi_next = NULL; 1514 __generic_make_request(bio); 1515 bio = current->bio_list; 1516 } while (bio); 1517 current->bio_tail = NULL; /* deactivate */ 1518 } 1519 EXPORT_SYMBOL(generic_make_request); 1520 1521 /** 1522 * submit_bio - submit a bio to the block device layer for I/O 1523 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1524 * @bio: The &struct bio which describes the I/O 1525 * 1526 * submit_bio() is very similar in purpose to generic_make_request(), and 1527 * uses that function to do most of the work. Both are fairly rough 1528 * interfaces; @bio must be presetup and ready for I/O. 1529 * 1530 */ 1531 void submit_bio(int rw, struct bio *bio) 1532 { 1533 int count = bio_sectors(bio); 1534 1535 bio->bi_rw |= rw; 1536 1537 /* 1538 * If it's a regular read/write or a barrier with data attached, 1539 * go through the normal accounting stuff before submission. 1540 */ 1541 if (bio_has_data(bio)) { 1542 if (rw & WRITE) { 1543 count_vm_events(PGPGOUT, count); 1544 } else { 1545 task_io_account_read(bio->bi_size); 1546 count_vm_events(PGPGIN, count); 1547 } 1548 1549 if (unlikely(block_dump)) { 1550 char b[BDEVNAME_SIZE]; 1551 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1552 current->comm, task_pid_nr(current), 1553 (rw & WRITE) ? "WRITE" : "READ", 1554 (unsigned long long)bio->bi_sector, 1555 bdevname(bio->bi_bdev, b)); 1556 } 1557 } 1558 1559 generic_make_request(bio); 1560 } 1561 EXPORT_SYMBOL(submit_bio); 1562 1563 /** 1564 * blk_rq_check_limits - Helper function to check a request for the queue limit 1565 * @q: the queue 1566 * @rq: the request being checked 1567 * 1568 * Description: 1569 * @rq may have been made based on weaker limitations of upper-level queues 1570 * in request stacking drivers, and it may violate the limitation of @q. 1571 * Since the block layer and the underlying device driver trust @rq 1572 * after it is inserted to @q, it should be checked against @q before 1573 * the insertion using this generic function. 1574 * 1575 * This function should also be useful for request stacking drivers 1576 * in some cases below, so export this fuction. 1577 * Request stacking drivers like request-based dm may change the queue 1578 * limits while requests are in the queue (e.g. dm's table swapping). 1579 * Such request stacking drivers should check those requests agaist 1580 * the new queue limits again when they dispatch those requests, 1581 * although such checkings are also done against the old queue limits 1582 * when submitting requests. 1583 */ 1584 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1585 { 1586 if (rq->nr_sectors > q->max_sectors || 1587 rq->data_len > q->max_hw_sectors << 9) { 1588 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1589 return -EIO; 1590 } 1591 1592 /* 1593 * queue's settings related to segment counting like q->bounce_pfn 1594 * may differ from that of other stacking queues. 1595 * Recalculate it to check the request correctly on this queue's 1596 * limitation. 1597 */ 1598 blk_recalc_rq_segments(rq); 1599 if (rq->nr_phys_segments > q->max_phys_segments || 1600 rq->nr_phys_segments > q->max_hw_segments) { 1601 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1602 return -EIO; 1603 } 1604 1605 return 0; 1606 } 1607 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1608 1609 /** 1610 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1611 * @q: the queue to submit the request 1612 * @rq: the request being queued 1613 */ 1614 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1615 { 1616 unsigned long flags; 1617 1618 if (blk_rq_check_limits(q, rq)) 1619 return -EIO; 1620 1621 #ifdef CONFIG_FAIL_MAKE_REQUEST 1622 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1623 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1624 return -EIO; 1625 #endif 1626 1627 spin_lock_irqsave(q->queue_lock, flags); 1628 1629 /* 1630 * Submitting request must be dequeued before calling this function 1631 * because it will be linked to another request_queue 1632 */ 1633 BUG_ON(blk_queued_rq(rq)); 1634 1635 drive_stat_acct(rq, 1); 1636 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1637 1638 spin_unlock_irqrestore(q->queue_lock, flags); 1639 1640 return 0; 1641 } 1642 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1643 1644 /** 1645 * blkdev_dequeue_request - dequeue request and start timeout timer 1646 * @req: request to dequeue 1647 * 1648 * Dequeue @req and start timeout timer on it. This hands off the 1649 * request to the driver. 1650 * 1651 * Block internal functions which don't want to start timer should 1652 * call elv_dequeue_request(). 1653 */ 1654 void blkdev_dequeue_request(struct request *req) 1655 { 1656 elv_dequeue_request(req->q, req); 1657 1658 /* 1659 * We are now handing the request to the hardware, add the 1660 * timeout handler. 1661 */ 1662 blk_add_timer(req); 1663 } 1664 EXPORT_SYMBOL(blkdev_dequeue_request); 1665 1666 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1667 { 1668 struct gendisk *disk = req->rq_disk; 1669 1670 if (!disk || !blk_do_io_stat(disk->queue)) 1671 return; 1672 1673 if (blk_fs_request(req)) { 1674 const int rw = rq_data_dir(req); 1675 struct hd_struct *part; 1676 int cpu; 1677 1678 cpu = part_stat_lock(); 1679 part = disk_map_sector_rcu(req->rq_disk, req->sector); 1680 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1681 part_stat_unlock(); 1682 } 1683 } 1684 1685 static void blk_account_io_done(struct request *req) 1686 { 1687 struct gendisk *disk = req->rq_disk; 1688 1689 if (!disk || !blk_do_io_stat(disk->queue)) 1690 return; 1691 1692 /* 1693 * Account IO completion. bar_rq isn't accounted as a normal 1694 * IO on queueing nor completion. Accounting the containing 1695 * request is enough. 1696 */ 1697 if (blk_fs_request(req) && req != &req->q->bar_rq) { 1698 unsigned long duration = jiffies - req->start_time; 1699 const int rw = rq_data_dir(req); 1700 struct hd_struct *part; 1701 int cpu; 1702 1703 cpu = part_stat_lock(); 1704 part = disk_map_sector_rcu(disk, req->sector); 1705 1706 part_stat_inc(cpu, part, ios[rw]); 1707 part_stat_add(cpu, part, ticks[rw], duration); 1708 part_round_stats(cpu, part); 1709 part_dec_in_flight(part); 1710 1711 part_stat_unlock(); 1712 } 1713 } 1714 1715 /** 1716 * __end_that_request_first - end I/O on a request 1717 * @req: the request being processed 1718 * @error: %0 for success, < %0 for error 1719 * @nr_bytes: number of bytes to complete 1720 * 1721 * Description: 1722 * Ends I/O on a number of bytes attached to @req, and sets it up 1723 * for the next range of segments (if any) in the cluster. 1724 * 1725 * Return: 1726 * %0 - we are done with this request, call end_that_request_last() 1727 * %1 - still buffers pending for this request 1728 **/ 1729 static int __end_that_request_first(struct request *req, int error, 1730 int nr_bytes) 1731 { 1732 int total_bytes, bio_nbytes, next_idx = 0; 1733 struct bio *bio; 1734 1735 trace_block_rq_complete(req->q, req); 1736 1737 /* 1738 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual 1739 * sense key with us all the way through 1740 */ 1741 if (!blk_pc_request(req)) 1742 req->errors = 0; 1743 1744 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1745 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1746 req->rq_disk ? req->rq_disk->disk_name : "?", 1747 (unsigned long long)req->sector); 1748 } 1749 1750 blk_account_io_completion(req, nr_bytes); 1751 1752 total_bytes = bio_nbytes = 0; 1753 while ((bio = req->bio) != NULL) { 1754 int nbytes; 1755 1756 if (nr_bytes >= bio->bi_size) { 1757 req->bio = bio->bi_next; 1758 nbytes = bio->bi_size; 1759 req_bio_endio(req, bio, nbytes, error); 1760 next_idx = 0; 1761 bio_nbytes = 0; 1762 } else { 1763 int idx = bio->bi_idx + next_idx; 1764 1765 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { 1766 blk_dump_rq_flags(req, "__end_that"); 1767 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1768 __func__, bio->bi_idx, bio->bi_vcnt); 1769 break; 1770 } 1771 1772 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1773 BIO_BUG_ON(nbytes > bio->bi_size); 1774 1775 /* 1776 * not a complete bvec done 1777 */ 1778 if (unlikely(nbytes > nr_bytes)) { 1779 bio_nbytes += nr_bytes; 1780 total_bytes += nr_bytes; 1781 break; 1782 } 1783 1784 /* 1785 * advance to the next vector 1786 */ 1787 next_idx++; 1788 bio_nbytes += nbytes; 1789 } 1790 1791 total_bytes += nbytes; 1792 nr_bytes -= nbytes; 1793 1794 bio = req->bio; 1795 if (bio) { 1796 /* 1797 * end more in this run, or just return 'not-done' 1798 */ 1799 if (unlikely(nr_bytes <= 0)) 1800 break; 1801 } 1802 } 1803 1804 /* 1805 * completely done 1806 */ 1807 if (!req->bio) 1808 return 0; 1809 1810 /* 1811 * if the request wasn't completed, update state 1812 */ 1813 if (bio_nbytes) { 1814 req_bio_endio(req, bio, bio_nbytes, error); 1815 bio->bi_idx += next_idx; 1816 bio_iovec(bio)->bv_offset += nr_bytes; 1817 bio_iovec(bio)->bv_len -= nr_bytes; 1818 } 1819 1820 blk_recalc_rq_sectors(req, total_bytes >> 9); 1821 blk_recalc_rq_segments(req); 1822 return 1; 1823 } 1824 1825 /* 1826 * queue lock must be held 1827 */ 1828 static void end_that_request_last(struct request *req, int error) 1829 { 1830 if (blk_rq_tagged(req)) 1831 blk_queue_end_tag(req->q, req); 1832 1833 if (blk_queued_rq(req)) 1834 elv_dequeue_request(req->q, req); 1835 1836 if (unlikely(laptop_mode) && blk_fs_request(req)) 1837 laptop_io_completion(); 1838 1839 blk_delete_timer(req); 1840 1841 blk_account_io_done(req); 1842 1843 if (req->end_io) 1844 req->end_io(req, error); 1845 else { 1846 if (blk_bidi_rq(req)) 1847 __blk_put_request(req->next_rq->q, req->next_rq); 1848 1849 __blk_put_request(req->q, req); 1850 } 1851 } 1852 1853 /** 1854 * blk_rq_bytes - Returns bytes left to complete in the entire request 1855 * @rq: the request being processed 1856 **/ 1857 unsigned int blk_rq_bytes(struct request *rq) 1858 { 1859 if (blk_fs_request(rq)) 1860 return rq->hard_nr_sectors << 9; 1861 1862 return rq->data_len; 1863 } 1864 EXPORT_SYMBOL_GPL(blk_rq_bytes); 1865 1866 /** 1867 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment 1868 * @rq: the request being processed 1869 **/ 1870 unsigned int blk_rq_cur_bytes(struct request *rq) 1871 { 1872 if (blk_fs_request(rq)) 1873 return rq->current_nr_sectors << 9; 1874 1875 if (rq->bio) 1876 return rq->bio->bi_size; 1877 1878 return rq->data_len; 1879 } 1880 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes); 1881 1882 /** 1883 * end_request - end I/O on the current segment of the request 1884 * @req: the request being processed 1885 * @uptodate: error value or %0/%1 uptodate flag 1886 * 1887 * Description: 1888 * Ends I/O on the current segment of a request. If that is the only 1889 * remaining segment, the request is also completed and freed. 1890 * 1891 * This is a remnant of how older block drivers handled I/O completions. 1892 * Modern drivers typically end I/O on the full request in one go, unless 1893 * they have a residual value to account for. For that case this function 1894 * isn't really useful, unless the residual just happens to be the 1895 * full current segment. In other words, don't use this function in new 1896 * code. Use blk_end_request() or __blk_end_request() to end a request. 1897 **/ 1898 void end_request(struct request *req, int uptodate) 1899 { 1900 int error = 0; 1901 1902 if (uptodate <= 0) 1903 error = uptodate ? uptodate : -EIO; 1904 1905 __blk_end_request(req, error, req->hard_cur_sectors << 9); 1906 } 1907 EXPORT_SYMBOL(end_request); 1908 1909 static int end_that_request_data(struct request *rq, int error, 1910 unsigned int nr_bytes, unsigned int bidi_bytes) 1911 { 1912 if (rq->bio) { 1913 if (__end_that_request_first(rq, error, nr_bytes)) 1914 return 1; 1915 1916 /* Bidi request must be completed as a whole */ 1917 if (blk_bidi_rq(rq) && 1918 __end_that_request_first(rq->next_rq, error, bidi_bytes)) 1919 return 1; 1920 } 1921 1922 return 0; 1923 } 1924 1925 /** 1926 * blk_end_io - Generic end_io function to complete a request. 1927 * @rq: the request being processed 1928 * @error: %0 for success, < %0 for error 1929 * @nr_bytes: number of bytes to complete @rq 1930 * @bidi_bytes: number of bytes to complete @rq->next_rq 1931 * @drv_callback: function called between completion of bios in the request 1932 * and completion of the request. 1933 * If the callback returns non %0, this helper returns without 1934 * completion of the request. 1935 * 1936 * Description: 1937 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1938 * If @rq has leftover, sets it up for the next range of segments. 1939 * 1940 * Return: 1941 * %0 - we are done with this request 1942 * %1 - this request is not freed yet, it still has pending buffers. 1943 **/ 1944 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes, 1945 unsigned int bidi_bytes, 1946 int (drv_callback)(struct request *)) 1947 { 1948 struct request_queue *q = rq->q; 1949 unsigned long flags = 0UL; 1950 1951 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes)) 1952 return 1; 1953 1954 /* Special feature for tricky drivers */ 1955 if (drv_callback && drv_callback(rq)) 1956 return 1; 1957 1958 add_disk_randomness(rq->rq_disk); 1959 1960 spin_lock_irqsave(q->queue_lock, flags); 1961 end_that_request_last(rq, error); 1962 spin_unlock_irqrestore(q->queue_lock, flags); 1963 1964 return 0; 1965 } 1966 1967 /** 1968 * blk_end_request - Helper function for drivers to complete the request. 1969 * @rq: the request being processed 1970 * @error: %0 for success, < %0 for error 1971 * @nr_bytes: number of bytes to complete 1972 * 1973 * Description: 1974 * Ends I/O on a number of bytes attached to @rq. 1975 * If @rq has leftover, sets it up for the next range of segments. 1976 * 1977 * Return: 1978 * %0 - we are done with this request 1979 * %1 - still buffers pending for this request 1980 **/ 1981 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1982 { 1983 return blk_end_io(rq, error, nr_bytes, 0, NULL); 1984 } 1985 EXPORT_SYMBOL_GPL(blk_end_request); 1986 1987 /** 1988 * __blk_end_request - Helper function for drivers to complete the request. 1989 * @rq: the request being processed 1990 * @error: %0 for success, < %0 for error 1991 * @nr_bytes: number of bytes to complete 1992 * 1993 * Description: 1994 * Must be called with queue lock held unlike blk_end_request(). 1995 * 1996 * Return: 1997 * %0 - we are done with this request 1998 * %1 - still buffers pending for this request 1999 **/ 2000 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2001 { 2002 if (rq->bio && __end_that_request_first(rq, error, nr_bytes)) 2003 return 1; 2004 2005 add_disk_randomness(rq->rq_disk); 2006 2007 end_that_request_last(rq, error); 2008 2009 return 0; 2010 } 2011 EXPORT_SYMBOL_GPL(__blk_end_request); 2012 2013 /** 2014 * blk_end_bidi_request - Helper function for drivers to complete bidi request. 2015 * @rq: the bidi request being processed 2016 * @error: %0 for success, < %0 for error 2017 * @nr_bytes: number of bytes to complete @rq 2018 * @bidi_bytes: number of bytes to complete @rq->next_rq 2019 * 2020 * Description: 2021 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2022 * 2023 * Return: 2024 * %0 - we are done with this request 2025 * %1 - still buffers pending for this request 2026 **/ 2027 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes, 2028 unsigned int bidi_bytes) 2029 { 2030 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL); 2031 } 2032 EXPORT_SYMBOL_GPL(blk_end_bidi_request); 2033 2034 /** 2035 * blk_update_request - Special helper function for request stacking drivers 2036 * @rq: the request being processed 2037 * @error: %0 for success, < %0 for error 2038 * @nr_bytes: number of bytes to complete @rq 2039 * 2040 * Description: 2041 * Ends I/O on a number of bytes attached to @rq, but doesn't complete 2042 * the request structure even if @rq doesn't have leftover. 2043 * If @rq has leftover, sets it up for the next range of segments. 2044 * 2045 * This special helper function is only for request stacking drivers 2046 * (e.g. request-based dm) so that they can handle partial completion. 2047 * Actual device drivers should use blk_end_request instead. 2048 */ 2049 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes) 2050 { 2051 if (!end_that_request_data(rq, error, nr_bytes, 0)) { 2052 /* 2053 * These members are not updated in end_that_request_data() 2054 * when all bios are completed. 2055 * Update them so that the request stacking driver can find 2056 * how many bytes remain in the request later. 2057 */ 2058 rq->nr_sectors = rq->hard_nr_sectors = 0; 2059 rq->current_nr_sectors = rq->hard_cur_sectors = 0; 2060 } 2061 } 2062 EXPORT_SYMBOL_GPL(blk_update_request); 2063 2064 /** 2065 * blk_end_request_callback - Special helper function for tricky drivers 2066 * @rq: the request being processed 2067 * @error: %0 for success, < %0 for error 2068 * @nr_bytes: number of bytes to complete 2069 * @drv_callback: function called between completion of bios in the request 2070 * and completion of the request. 2071 * If the callback returns non %0, this helper returns without 2072 * completion of the request. 2073 * 2074 * Description: 2075 * Ends I/O on a number of bytes attached to @rq. 2076 * If @rq has leftover, sets it up for the next range of segments. 2077 * 2078 * This special helper function is used only for existing tricky drivers. 2079 * (e.g. cdrom_newpc_intr() of ide-cd) 2080 * This interface will be removed when such drivers are rewritten. 2081 * Don't use this interface in other places anymore. 2082 * 2083 * Return: 2084 * %0 - we are done with this request 2085 * %1 - this request is not freed yet. 2086 * this request still has pending buffers or 2087 * the driver doesn't want to finish this request yet. 2088 **/ 2089 int blk_end_request_callback(struct request *rq, int error, 2090 unsigned int nr_bytes, 2091 int (drv_callback)(struct request *)) 2092 { 2093 return blk_end_io(rq, error, nr_bytes, 0, drv_callback); 2094 } 2095 EXPORT_SYMBOL_GPL(blk_end_request_callback); 2096 2097 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2098 struct bio *bio) 2099 { 2100 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and 2101 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */ 2102 rq->cmd_flags |= (bio->bi_rw & 3); 2103 2104 if (bio_has_data(bio)) { 2105 rq->nr_phys_segments = bio_phys_segments(q, bio); 2106 rq->buffer = bio_data(bio); 2107 } 2108 rq->current_nr_sectors = bio_cur_sectors(bio); 2109 rq->hard_cur_sectors = rq->current_nr_sectors; 2110 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); 2111 rq->data_len = bio->bi_size; 2112 2113 rq->bio = rq->biotail = bio; 2114 2115 if (bio->bi_bdev) 2116 rq->rq_disk = bio->bi_bdev->bd_disk; 2117 } 2118 2119 /** 2120 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2121 * @q : the queue of the device being checked 2122 * 2123 * Description: 2124 * Check if underlying low-level drivers of a device are busy. 2125 * If the drivers want to export their busy state, they must set own 2126 * exporting function using blk_queue_lld_busy() first. 2127 * 2128 * Basically, this function is used only by request stacking drivers 2129 * to stop dispatching requests to underlying devices when underlying 2130 * devices are busy. This behavior helps more I/O merging on the queue 2131 * of the request stacking driver and prevents I/O throughput regression 2132 * on burst I/O load. 2133 * 2134 * Return: 2135 * 0 - Not busy (The request stacking driver should dispatch request) 2136 * 1 - Busy (The request stacking driver should stop dispatching request) 2137 */ 2138 int blk_lld_busy(struct request_queue *q) 2139 { 2140 if (q->lld_busy_fn) 2141 return q->lld_busy_fn(q); 2142 2143 return 0; 2144 } 2145 EXPORT_SYMBOL_GPL(blk_lld_busy); 2146 2147 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2148 { 2149 return queue_work(kblockd_workqueue, work); 2150 } 2151 EXPORT_SYMBOL(kblockd_schedule_work); 2152 2153 int __init blk_dev_init(void) 2154 { 2155 kblockd_workqueue = create_workqueue("kblockd"); 2156 if (!kblockd_workqueue) 2157 panic("Failed to create kblockd\n"); 2158 2159 request_cachep = kmem_cache_create("blkdev_requests", 2160 sizeof(struct request), 0, SLAB_PANIC, NULL); 2161 2162 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2163 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2164 2165 return 0; 2166 } 2167 2168