1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/block.h> 33 34 #include "blk.h" 35 36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 38 39 static int __make_request(struct request_queue *q, struct bio *bio); 40 41 /* 42 * For the allocated request tables 43 */ 44 static struct kmem_cache *request_cachep; 45 46 /* 47 * For queue allocation 48 */ 49 struct kmem_cache *blk_requestq_cachep; 50 51 /* 52 * Controlling structure to kblockd 53 */ 54 static struct workqueue_struct *kblockd_workqueue; 55 56 static void drive_stat_acct(struct request *rq, int new_io) 57 { 58 struct hd_struct *part; 59 int rw = rq_data_dir(rq); 60 int cpu; 61 62 if (!blk_do_io_stat(rq)) 63 return; 64 65 cpu = part_stat_lock(); 66 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 67 68 if (!new_io) 69 part_stat_inc(cpu, part, merges[rw]); 70 else { 71 part_round_stats(cpu, part); 72 part_inc_in_flight(part); 73 } 74 75 part_stat_unlock(); 76 } 77 78 void blk_queue_congestion_threshold(struct request_queue *q) 79 { 80 int nr; 81 82 nr = q->nr_requests - (q->nr_requests / 8) + 1; 83 if (nr > q->nr_requests) 84 nr = q->nr_requests; 85 q->nr_congestion_on = nr; 86 87 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 88 if (nr < 1) 89 nr = 1; 90 q->nr_congestion_off = nr; 91 } 92 93 /** 94 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 95 * @bdev: device 96 * 97 * Locates the passed device's request queue and returns the address of its 98 * backing_dev_info 99 * 100 * Will return NULL if the request queue cannot be located. 101 */ 102 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 103 { 104 struct backing_dev_info *ret = NULL; 105 struct request_queue *q = bdev_get_queue(bdev); 106 107 if (q) 108 ret = &q->backing_dev_info; 109 return ret; 110 } 111 EXPORT_SYMBOL(blk_get_backing_dev_info); 112 113 void blk_rq_init(struct request_queue *q, struct request *rq) 114 { 115 memset(rq, 0, sizeof(*rq)); 116 117 INIT_LIST_HEAD(&rq->queuelist); 118 INIT_LIST_HEAD(&rq->timeout_list); 119 rq->cpu = -1; 120 rq->q = q; 121 rq->__sector = (sector_t) -1; 122 INIT_HLIST_NODE(&rq->hash); 123 RB_CLEAR_NODE(&rq->rb_node); 124 rq->cmd = rq->__cmd; 125 rq->cmd_len = BLK_MAX_CDB; 126 rq->tag = -1; 127 rq->ref_count = 1; 128 rq->start_time = jiffies; 129 } 130 EXPORT_SYMBOL(blk_rq_init); 131 132 static void req_bio_endio(struct request *rq, struct bio *bio, 133 unsigned int nbytes, int error) 134 { 135 struct request_queue *q = rq->q; 136 137 if (&q->bar_rq != rq) { 138 if (error) 139 clear_bit(BIO_UPTODATE, &bio->bi_flags); 140 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 141 error = -EIO; 142 143 if (unlikely(nbytes > bio->bi_size)) { 144 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 145 __func__, nbytes, bio->bi_size); 146 nbytes = bio->bi_size; 147 } 148 149 if (unlikely(rq->cmd_flags & REQ_QUIET)) 150 set_bit(BIO_QUIET, &bio->bi_flags); 151 152 bio->bi_size -= nbytes; 153 bio->bi_sector += (nbytes >> 9); 154 155 if (bio_integrity(bio)) 156 bio_integrity_advance(bio, nbytes); 157 158 if (bio->bi_size == 0) 159 bio_endio(bio, error); 160 } else { 161 162 /* 163 * Okay, this is the barrier request in progress, just 164 * record the error; 165 */ 166 if (error && !q->orderr) 167 q->orderr = error; 168 } 169 } 170 171 void blk_dump_rq_flags(struct request *rq, char *msg) 172 { 173 int bit; 174 175 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 176 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 177 rq->cmd_flags); 178 179 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 180 (unsigned long long)blk_rq_pos(rq), 181 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 182 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 183 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 184 185 if (blk_pc_request(rq)) { 186 printk(KERN_INFO " cdb: "); 187 for (bit = 0; bit < BLK_MAX_CDB; bit++) 188 printk("%02x ", rq->cmd[bit]); 189 printk("\n"); 190 } 191 } 192 EXPORT_SYMBOL(blk_dump_rq_flags); 193 194 /* 195 * "plug" the device if there are no outstanding requests: this will 196 * force the transfer to start only after we have put all the requests 197 * on the list. 198 * 199 * This is called with interrupts off and no requests on the queue and 200 * with the queue lock held. 201 */ 202 void blk_plug_device(struct request_queue *q) 203 { 204 WARN_ON(!irqs_disabled()); 205 206 /* 207 * don't plug a stopped queue, it must be paired with blk_start_queue() 208 * which will restart the queueing 209 */ 210 if (blk_queue_stopped(q)) 211 return; 212 213 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 214 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 215 trace_block_plug(q); 216 } 217 } 218 EXPORT_SYMBOL(blk_plug_device); 219 220 /** 221 * blk_plug_device_unlocked - plug a device without queue lock held 222 * @q: The &struct request_queue to plug 223 * 224 * Description: 225 * Like @blk_plug_device(), but grabs the queue lock and disables 226 * interrupts. 227 **/ 228 void blk_plug_device_unlocked(struct request_queue *q) 229 { 230 unsigned long flags; 231 232 spin_lock_irqsave(q->queue_lock, flags); 233 blk_plug_device(q); 234 spin_unlock_irqrestore(q->queue_lock, flags); 235 } 236 EXPORT_SYMBOL(blk_plug_device_unlocked); 237 238 /* 239 * remove the queue from the plugged list, if present. called with 240 * queue lock held and interrupts disabled. 241 */ 242 int blk_remove_plug(struct request_queue *q) 243 { 244 WARN_ON(!irqs_disabled()); 245 246 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 247 return 0; 248 249 del_timer(&q->unplug_timer); 250 return 1; 251 } 252 EXPORT_SYMBOL(blk_remove_plug); 253 254 /* 255 * remove the plug and let it rip.. 256 */ 257 void __generic_unplug_device(struct request_queue *q) 258 { 259 if (unlikely(blk_queue_stopped(q))) 260 return; 261 if (!blk_remove_plug(q) && !blk_queue_nonrot(q)) 262 return; 263 264 q->request_fn(q); 265 } 266 267 /** 268 * generic_unplug_device - fire a request queue 269 * @q: The &struct request_queue in question 270 * 271 * Description: 272 * Linux uses plugging to build bigger requests queues before letting 273 * the device have at them. If a queue is plugged, the I/O scheduler 274 * is still adding and merging requests on the queue. Once the queue 275 * gets unplugged, the request_fn defined for the queue is invoked and 276 * transfers started. 277 **/ 278 void generic_unplug_device(struct request_queue *q) 279 { 280 if (blk_queue_plugged(q)) { 281 spin_lock_irq(q->queue_lock); 282 __generic_unplug_device(q); 283 spin_unlock_irq(q->queue_lock); 284 } 285 } 286 EXPORT_SYMBOL(generic_unplug_device); 287 288 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 289 struct page *page) 290 { 291 struct request_queue *q = bdi->unplug_io_data; 292 293 blk_unplug(q); 294 } 295 296 void blk_unplug_work(struct work_struct *work) 297 { 298 struct request_queue *q = 299 container_of(work, struct request_queue, unplug_work); 300 301 trace_block_unplug_io(q); 302 q->unplug_fn(q); 303 } 304 305 void blk_unplug_timeout(unsigned long data) 306 { 307 struct request_queue *q = (struct request_queue *)data; 308 309 trace_block_unplug_timer(q); 310 kblockd_schedule_work(q, &q->unplug_work); 311 } 312 313 void blk_unplug(struct request_queue *q) 314 { 315 /* 316 * devices don't necessarily have an ->unplug_fn defined 317 */ 318 if (q->unplug_fn) { 319 trace_block_unplug_io(q); 320 q->unplug_fn(q); 321 } 322 } 323 EXPORT_SYMBOL(blk_unplug); 324 325 /** 326 * blk_start_queue - restart a previously stopped queue 327 * @q: The &struct request_queue in question 328 * 329 * Description: 330 * blk_start_queue() will clear the stop flag on the queue, and call 331 * the request_fn for the queue if it was in a stopped state when 332 * entered. Also see blk_stop_queue(). Queue lock must be held. 333 **/ 334 void blk_start_queue(struct request_queue *q) 335 { 336 WARN_ON(!irqs_disabled()); 337 338 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 339 __blk_run_queue(q); 340 } 341 EXPORT_SYMBOL(blk_start_queue); 342 343 /** 344 * blk_stop_queue - stop a queue 345 * @q: The &struct request_queue in question 346 * 347 * Description: 348 * The Linux block layer assumes that a block driver will consume all 349 * entries on the request queue when the request_fn strategy is called. 350 * Often this will not happen, because of hardware limitations (queue 351 * depth settings). If a device driver gets a 'queue full' response, 352 * or if it simply chooses not to queue more I/O at one point, it can 353 * call this function to prevent the request_fn from being called until 354 * the driver has signalled it's ready to go again. This happens by calling 355 * blk_start_queue() to restart queue operations. Queue lock must be held. 356 **/ 357 void blk_stop_queue(struct request_queue *q) 358 { 359 blk_remove_plug(q); 360 queue_flag_set(QUEUE_FLAG_STOPPED, q); 361 } 362 EXPORT_SYMBOL(blk_stop_queue); 363 364 /** 365 * blk_sync_queue - cancel any pending callbacks on a queue 366 * @q: the queue 367 * 368 * Description: 369 * The block layer may perform asynchronous callback activity 370 * on a queue, such as calling the unplug function after a timeout. 371 * A block device may call blk_sync_queue to ensure that any 372 * such activity is cancelled, thus allowing it to release resources 373 * that the callbacks might use. The caller must already have made sure 374 * that its ->make_request_fn will not re-add plugging prior to calling 375 * this function. 376 * 377 */ 378 void blk_sync_queue(struct request_queue *q) 379 { 380 del_timer_sync(&q->unplug_timer); 381 del_timer_sync(&q->timeout); 382 cancel_work_sync(&q->unplug_work); 383 } 384 EXPORT_SYMBOL(blk_sync_queue); 385 386 /** 387 * __blk_run_queue - run a single device queue 388 * @q: The queue to run 389 * 390 * Description: 391 * See @blk_run_queue. This variant must be called with the queue lock 392 * held and interrupts disabled. 393 * 394 */ 395 void __blk_run_queue(struct request_queue *q) 396 { 397 blk_remove_plug(q); 398 399 if (unlikely(blk_queue_stopped(q))) 400 return; 401 402 if (elv_queue_empty(q)) 403 return; 404 405 /* 406 * Only recurse once to avoid overrunning the stack, let the unplug 407 * handling reinvoke the handler shortly if we already got there. 408 */ 409 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 410 q->request_fn(q); 411 queue_flag_clear(QUEUE_FLAG_REENTER, q); 412 } else { 413 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 414 kblockd_schedule_work(q, &q->unplug_work); 415 } 416 } 417 EXPORT_SYMBOL(__blk_run_queue); 418 419 /** 420 * blk_run_queue - run a single device queue 421 * @q: The queue to run 422 * 423 * Description: 424 * Invoke request handling on this queue, if it has pending work to do. 425 * May be used to restart queueing when a request has completed. 426 */ 427 void blk_run_queue(struct request_queue *q) 428 { 429 unsigned long flags; 430 431 spin_lock_irqsave(q->queue_lock, flags); 432 __blk_run_queue(q); 433 spin_unlock_irqrestore(q->queue_lock, flags); 434 } 435 EXPORT_SYMBOL(blk_run_queue); 436 437 void blk_put_queue(struct request_queue *q) 438 { 439 kobject_put(&q->kobj); 440 } 441 442 void blk_cleanup_queue(struct request_queue *q) 443 { 444 /* 445 * We know we have process context here, so we can be a little 446 * cautious and ensure that pending block actions on this device 447 * are done before moving on. Going into this function, we should 448 * not have processes doing IO to this device. 449 */ 450 blk_sync_queue(q); 451 452 mutex_lock(&q->sysfs_lock); 453 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 454 mutex_unlock(&q->sysfs_lock); 455 456 if (q->elevator) 457 elevator_exit(q->elevator); 458 459 blk_put_queue(q); 460 } 461 EXPORT_SYMBOL(blk_cleanup_queue); 462 463 static int blk_init_free_list(struct request_queue *q) 464 { 465 struct request_list *rl = &q->rq; 466 467 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 468 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 469 rl->elvpriv = 0; 470 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 471 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 472 473 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 474 mempool_free_slab, request_cachep, q->node); 475 476 if (!rl->rq_pool) 477 return -ENOMEM; 478 479 return 0; 480 } 481 482 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 483 { 484 return blk_alloc_queue_node(gfp_mask, -1); 485 } 486 EXPORT_SYMBOL(blk_alloc_queue); 487 488 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 489 { 490 struct request_queue *q; 491 int err; 492 493 q = kmem_cache_alloc_node(blk_requestq_cachep, 494 gfp_mask | __GFP_ZERO, node_id); 495 if (!q) 496 return NULL; 497 498 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 499 q->backing_dev_info.unplug_io_data = q; 500 q->backing_dev_info.ra_pages = 501 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 502 q->backing_dev_info.state = 0; 503 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 504 505 err = bdi_init(&q->backing_dev_info); 506 if (err) { 507 kmem_cache_free(blk_requestq_cachep, q); 508 return NULL; 509 } 510 511 init_timer(&q->unplug_timer); 512 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 513 INIT_LIST_HEAD(&q->timeout_list); 514 INIT_WORK(&q->unplug_work, blk_unplug_work); 515 516 kobject_init(&q->kobj, &blk_queue_ktype); 517 518 mutex_init(&q->sysfs_lock); 519 spin_lock_init(&q->__queue_lock); 520 521 return q; 522 } 523 EXPORT_SYMBOL(blk_alloc_queue_node); 524 525 /** 526 * blk_init_queue - prepare a request queue for use with a block device 527 * @rfn: The function to be called to process requests that have been 528 * placed on the queue. 529 * @lock: Request queue spin lock 530 * 531 * Description: 532 * If a block device wishes to use the standard request handling procedures, 533 * which sorts requests and coalesces adjacent requests, then it must 534 * call blk_init_queue(). The function @rfn will be called when there 535 * are requests on the queue that need to be processed. If the device 536 * supports plugging, then @rfn may not be called immediately when requests 537 * are available on the queue, but may be called at some time later instead. 538 * Plugged queues are generally unplugged when a buffer belonging to one 539 * of the requests on the queue is needed, or due to memory pressure. 540 * 541 * @rfn is not required, or even expected, to remove all requests off the 542 * queue, but only as many as it can handle at a time. If it does leave 543 * requests on the queue, it is responsible for arranging that the requests 544 * get dealt with eventually. 545 * 546 * The queue spin lock must be held while manipulating the requests on the 547 * request queue; this lock will be taken also from interrupt context, so irq 548 * disabling is needed for it. 549 * 550 * Function returns a pointer to the initialized request queue, or %NULL if 551 * it didn't succeed. 552 * 553 * Note: 554 * blk_init_queue() must be paired with a blk_cleanup_queue() call 555 * when the block device is deactivated (such as at module unload). 556 **/ 557 558 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 559 { 560 return blk_init_queue_node(rfn, lock, -1); 561 } 562 EXPORT_SYMBOL(blk_init_queue); 563 564 struct request_queue * 565 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 566 { 567 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 568 569 if (!q) 570 return NULL; 571 572 q->node = node_id; 573 if (blk_init_free_list(q)) { 574 kmem_cache_free(blk_requestq_cachep, q); 575 return NULL; 576 } 577 578 q->request_fn = rfn; 579 q->prep_rq_fn = NULL; 580 q->unplug_fn = generic_unplug_device; 581 q->queue_flags = QUEUE_FLAG_DEFAULT; 582 q->queue_lock = lock; 583 584 /* 585 * This also sets hw/phys segments, boundary and size 586 */ 587 blk_queue_make_request(q, __make_request); 588 589 q->sg_reserved_size = INT_MAX; 590 591 /* 592 * all done 593 */ 594 if (!elevator_init(q, NULL)) { 595 blk_queue_congestion_threshold(q); 596 return q; 597 } 598 599 blk_put_queue(q); 600 return NULL; 601 } 602 EXPORT_SYMBOL(blk_init_queue_node); 603 604 int blk_get_queue(struct request_queue *q) 605 { 606 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 607 kobject_get(&q->kobj); 608 return 0; 609 } 610 611 return 1; 612 } 613 614 static inline void blk_free_request(struct request_queue *q, struct request *rq) 615 { 616 if (rq->cmd_flags & REQ_ELVPRIV) 617 elv_put_request(q, rq); 618 mempool_free(rq, q->rq.rq_pool); 619 } 620 621 static struct request * 622 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 623 { 624 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 625 626 if (!rq) 627 return NULL; 628 629 blk_rq_init(q, rq); 630 631 rq->cmd_flags = flags | REQ_ALLOCED; 632 633 if (priv) { 634 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 635 mempool_free(rq, q->rq.rq_pool); 636 return NULL; 637 } 638 rq->cmd_flags |= REQ_ELVPRIV; 639 } 640 641 return rq; 642 } 643 644 /* 645 * ioc_batching returns true if the ioc is a valid batching request and 646 * should be given priority access to a request. 647 */ 648 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 649 { 650 if (!ioc) 651 return 0; 652 653 /* 654 * Make sure the process is able to allocate at least 1 request 655 * even if the batch times out, otherwise we could theoretically 656 * lose wakeups. 657 */ 658 return ioc->nr_batch_requests == q->nr_batching || 659 (ioc->nr_batch_requests > 0 660 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 661 } 662 663 /* 664 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 665 * will cause the process to be a "batcher" on all queues in the system. This 666 * is the behaviour we want though - once it gets a wakeup it should be given 667 * a nice run. 668 */ 669 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 670 { 671 if (!ioc || ioc_batching(q, ioc)) 672 return; 673 674 ioc->nr_batch_requests = q->nr_batching; 675 ioc->last_waited = jiffies; 676 } 677 678 static void __freed_request(struct request_queue *q, int sync) 679 { 680 struct request_list *rl = &q->rq; 681 682 if (rl->count[sync] < queue_congestion_off_threshold(q)) 683 blk_clear_queue_congested(q, sync); 684 685 if (rl->count[sync] + 1 <= q->nr_requests) { 686 if (waitqueue_active(&rl->wait[sync])) 687 wake_up(&rl->wait[sync]); 688 689 blk_clear_queue_full(q, sync); 690 } 691 } 692 693 /* 694 * A request has just been released. Account for it, update the full and 695 * congestion status, wake up any waiters. Called under q->queue_lock. 696 */ 697 static void freed_request(struct request_queue *q, int sync, int priv) 698 { 699 struct request_list *rl = &q->rq; 700 701 rl->count[sync]--; 702 if (priv) 703 rl->elvpriv--; 704 705 __freed_request(q, sync); 706 707 if (unlikely(rl->starved[sync ^ 1])) 708 __freed_request(q, sync ^ 1); 709 } 710 711 /* 712 * Get a free request, queue_lock must be held. 713 * Returns NULL on failure, with queue_lock held. 714 * Returns !NULL on success, with queue_lock *not held*. 715 */ 716 static struct request *get_request(struct request_queue *q, int rw_flags, 717 struct bio *bio, gfp_t gfp_mask) 718 { 719 struct request *rq = NULL; 720 struct request_list *rl = &q->rq; 721 struct io_context *ioc = NULL; 722 const bool is_sync = rw_is_sync(rw_flags) != 0; 723 int may_queue, priv; 724 725 may_queue = elv_may_queue(q, rw_flags); 726 if (may_queue == ELV_MQUEUE_NO) 727 goto rq_starved; 728 729 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 730 if (rl->count[is_sync]+1 >= q->nr_requests) { 731 ioc = current_io_context(GFP_ATOMIC, q->node); 732 /* 733 * The queue will fill after this allocation, so set 734 * it as full, and mark this process as "batching". 735 * This process will be allowed to complete a batch of 736 * requests, others will be blocked. 737 */ 738 if (!blk_queue_full(q, is_sync)) { 739 ioc_set_batching(q, ioc); 740 blk_set_queue_full(q, is_sync); 741 } else { 742 if (may_queue != ELV_MQUEUE_MUST 743 && !ioc_batching(q, ioc)) { 744 /* 745 * The queue is full and the allocating 746 * process is not a "batcher", and not 747 * exempted by the IO scheduler 748 */ 749 goto out; 750 } 751 } 752 } 753 blk_set_queue_congested(q, is_sync); 754 } 755 756 /* 757 * Only allow batching queuers to allocate up to 50% over the defined 758 * limit of requests, otherwise we could have thousands of requests 759 * allocated with any setting of ->nr_requests 760 */ 761 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 762 goto out; 763 764 rl->count[is_sync]++; 765 rl->starved[is_sync] = 0; 766 767 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 768 if (priv) 769 rl->elvpriv++; 770 771 if (blk_queue_io_stat(q)) 772 rw_flags |= REQ_IO_STAT; 773 spin_unlock_irq(q->queue_lock); 774 775 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 776 if (unlikely(!rq)) { 777 /* 778 * Allocation failed presumably due to memory. Undo anything 779 * we might have messed up. 780 * 781 * Allocating task should really be put onto the front of the 782 * wait queue, but this is pretty rare. 783 */ 784 spin_lock_irq(q->queue_lock); 785 freed_request(q, is_sync, priv); 786 787 /* 788 * in the very unlikely event that allocation failed and no 789 * requests for this direction was pending, mark us starved 790 * so that freeing of a request in the other direction will 791 * notice us. another possible fix would be to split the 792 * rq mempool into READ and WRITE 793 */ 794 rq_starved: 795 if (unlikely(rl->count[is_sync] == 0)) 796 rl->starved[is_sync] = 1; 797 798 goto out; 799 } 800 801 /* 802 * ioc may be NULL here, and ioc_batching will be false. That's 803 * OK, if the queue is under the request limit then requests need 804 * not count toward the nr_batch_requests limit. There will always 805 * be some limit enforced by BLK_BATCH_TIME. 806 */ 807 if (ioc_batching(q, ioc)) 808 ioc->nr_batch_requests--; 809 810 trace_block_getrq(q, bio, rw_flags & 1); 811 out: 812 return rq; 813 } 814 815 /* 816 * No available requests for this queue, unplug the device and wait for some 817 * requests to become available. 818 * 819 * Called with q->queue_lock held, and returns with it unlocked. 820 */ 821 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 822 struct bio *bio) 823 { 824 const bool is_sync = rw_is_sync(rw_flags) != 0; 825 struct request *rq; 826 827 rq = get_request(q, rw_flags, bio, GFP_NOIO); 828 while (!rq) { 829 DEFINE_WAIT(wait); 830 struct io_context *ioc; 831 struct request_list *rl = &q->rq; 832 833 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 834 TASK_UNINTERRUPTIBLE); 835 836 trace_block_sleeprq(q, bio, rw_flags & 1); 837 838 __generic_unplug_device(q); 839 spin_unlock_irq(q->queue_lock); 840 io_schedule(); 841 842 /* 843 * After sleeping, we become a "batching" process and 844 * will be able to allocate at least one request, and 845 * up to a big batch of them for a small period time. 846 * See ioc_batching, ioc_set_batching 847 */ 848 ioc = current_io_context(GFP_NOIO, q->node); 849 ioc_set_batching(q, ioc); 850 851 spin_lock_irq(q->queue_lock); 852 finish_wait(&rl->wait[is_sync], &wait); 853 854 rq = get_request(q, rw_flags, bio, GFP_NOIO); 855 }; 856 857 return rq; 858 } 859 860 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 861 { 862 struct request *rq; 863 864 BUG_ON(rw != READ && rw != WRITE); 865 866 spin_lock_irq(q->queue_lock); 867 if (gfp_mask & __GFP_WAIT) { 868 rq = get_request_wait(q, rw, NULL); 869 } else { 870 rq = get_request(q, rw, NULL, gfp_mask); 871 if (!rq) 872 spin_unlock_irq(q->queue_lock); 873 } 874 /* q->queue_lock is unlocked at this point */ 875 876 return rq; 877 } 878 EXPORT_SYMBOL(blk_get_request); 879 880 /** 881 * blk_make_request - given a bio, allocate a corresponding struct request. 882 * @q: target request queue 883 * @bio: The bio describing the memory mappings that will be submitted for IO. 884 * It may be a chained-bio properly constructed by block/bio layer. 885 * @gfp_mask: gfp flags to be used for memory allocation 886 * 887 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 888 * type commands. Where the struct request needs to be farther initialized by 889 * the caller. It is passed a &struct bio, which describes the memory info of 890 * the I/O transfer. 891 * 892 * The caller of blk_make_request must make sure that bi_io_vec 893 * are set to describe the memory buffers. That bio_data_dir() will return 894 * the needed direction of the request. (And all bio's in the passed bio-chain 895 * are properly set accordingly) 896 * 897 * If called under none-sleepable conditions, mapped bio buffers must not 898 * need bouncing, by calling the appropriate masked or flagged allocator, 899 * suitable for the target device. Otherwise the call to blk_queue_bounce will 900 * BUG. 901 * 902 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 903 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 904 * anything but the first bio in the chain. Otherwise you risk waiting for IO 905 * completion of a bio that hasn't been submitted yet, thus resulting in a 906 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 907 * of bio_alloc(), as that avoids the mempool deadlock. 908 * If possible a big IO should be split into smaller parts when allocation 909 * fails. Partial allocation should not be an error, or you risk a live-lock. 910 */ 911 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 912 gfp_t gfp_mask) 913 { 914 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 915 916 if (unlikely(!rq)) 917 return ERR_PTR(-ENOMEM); 918 919 for_each_bio(bio) { 920 struct bio *bounce_bio = bio; 921 int ret; 922 923 blk_queue_bounce(q, &bounce_bio); 924 ret = blk_rq_append_bio(q, rq, bounce_bio); 925 if (unlikely(ret)) { 926 blk_put_request(rq); 927 return ERR_PTR(ret); 928 } 929 } 930 931 return rq; 932 } 933 EXPORT_SYMBOL(blk_make_request); 934 935 /** 936 * blk_requeue_request - put a request back on queue 937 * @q: request queue where request should be inserted 938 * @rq: request to be inserted 939 * 940 * Description: 941 * Drivers often keep queueing requests until the hardware cannot accept 942 * more, when that condition happens we need to put the request back 943 * on the queue. Must be called with queue lock held. 944 */ 945 void blk_requeue_request(struct request_queue *q, struct request *rq) 946 { 947 blk_delete_timer(rq); 948 blk_clear_rq_complete(rq); 949 trace_block_rq_requeue(q, rq); 950 951 if (blk_rq_tagged(rq)) 952 blk_queue_end_tag(q, rq); 953 954 BUG_ON(blk_queued_rq(rq)); 955 956 elv_requeue_request(q, rq); 957 } 958 EXPORT_SYMBOL(blk_requeue_request); 959 960 /** 961 * blk_insert_request - insert a special request into a request queue 962 * @q: request queue where request should be inserted 963 * @rq: request to be inserted 964 * @at_head: insert request at head or tail of queue 965 * @data: private data 966 * 967 * Description: 968 * Many block devices need to execute commands asynchronously, so they don't 969 * block the whole kernel from preemption during request execution. This is 970 * accomplished normally by inserting aritficial requests tagged as 971 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 972 * be scheduled for actual execution by the request queue. 973 * 974 * We have the option of inserting the head or the tail of the queue. 975 * Typically we use the tail for new ioctls and so forth. We use the head 976 * of the queue for things like a QUEUE_FULL message from a device, or a 977 * host that is unable to accept a particular command. 978 */ 979 void blk_insert_request(struct request_queue *q, struct request *rq, 980 int at_head, void *data) 981 { 982 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 983 unsigned long flags; 984 985 /* 986 * tell I/O scheduler that this isn't a regular read/write (ie it 987 * must not attempt merges on this) and that it acts as a soft 988 * barrier 989 */ 990 rq->cmd_type = REQ_TYPE_SPECIAL; 991 992 rq->special = data; 993 994 spin_lock_irqsave(q->queue_lock, flags); 995 996 /* 997 * If command is tagged, release the tag 998 */ 999 if (blk_rq_tagged(rq)) 1000 blk_queue_end_tag(q, rq); 1001 1002 drive_stat_acct(rq, 1); 1003 __elv_add_request(q, rq, where, 0); 1004 __blk_run_queue(q); 1005 spin_unlock_irqrestore(q->queue_lock, flags); 1006 } 1007 EXPORT_SYMBOL(blk_insert_request); 1008 1009 /* 1010 * add-request adds a request to the linked list. 1011 * queue lock is held and interrupts disabled, as we muck with the 1012 * request queue list. 1013 */ 1014 static inline void add_request(struct request_queue *q, struct request *req) 1015 { 1016 drive_stat_acct(req, 1); 1017 1018 /* 1019 * elevator indicated where it wants this request to be 1020 * inserted at elevator_merge time 1021 */ 1022 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 1023 } 1024 1025 static void part_round_stats_single(int cpu, struct hd_struct *part, 1026 unsigned long now) 1027 { 1028 if (now == part->stamp) 1029 return; 1030 1031 if (part->in_flight) { 1032 __part_stat_add(cpu, part, time_in_queue, 1033 part->in_flight * (now - part->stamp)); 1034 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1035 } 1036 part->stamp = now; 1037 } 1038 1039 /** 1040 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1041 * @cpu: cpu number for stats access 1042 * @part: target partition 1043 * 1044 * The average IO queue length and utilisation statistics are maintained 1045 * by observing the current state of the queue length and the amount of 1046 * time it has been in this state for. 1047 * 1048 * Normally, that accounting is done on IO completion, but that can result 1049 * in more than a second's worth of IO being accounted for within any one 1050 * second, leading to >100% utilisation. To deal with that, we call this 1051 * function to do a round-off before returning the results when reading 1052 * /proc/diskstats. This accounts immediately for all queue usage up to 1053 * the current jiffies and restarts the counters again. 1054 */ 1055 void part_round_stats(int cpu, struct hd_struct *part) 1056 { 1057 unsigned long now = jiffies; 1058 1059 if (part->partno) 1060 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1061 part_round_stats_single(cpu, part, now); 1062 } 1063 EXPORT_SYMBOL_GPL(part_round_stats); 1064 1065 /* 1066 * queue lock must be held 1067 */ 1068 void __blk_put_request(struct request_queue *q, struct request *req) 1069 { 1070 if (unlikely(!q)) 1071 return; 1072 if (unlikely(--req->ref_count)) 1073 return; 1074 1075 elv_completed_request(q, req); 1076 1077 /* this is a bio leak */ 1078 WARN_ON(req->bio != NULL); 1079 1080 /* 1081 * Request may not have originated from ll_rw_blk. if not, 1082 * it didn't come out of our reserved rq pools 1083 */ 1084 if (req->cmd_flags & REQ_ALLOCED) { 1085 int is_sync = rq_is_sync(req) != 0; 1086 int priv = req->cmd_flags & REQ_ELVPRIV; 1087 1088 BUG_ON(!list_empty(&req->queuelist)); 1089 BUG_ON(!hlist_unhashed(&req->hash)); 1090 1091 blk_free_request(q, req); 1092 freed_request(q, is_sync, priv); 1093 } 1094 } 1095 EXPORT_SYMBOL_GPL(__blk_put_request); 1096 1097 void blk_put_request(struct request *req) 1098 { 1099 unsigned long flags; 1100 struct request_queue *q = req->q; 1101 1102 spin_lock_irqsave(q->queue_lock, flags); 1103 __blk_put_request(q, req); 1104 spin_unlock_irqrestore(q->queue_lock, flags); 1105 } 1106 EXPORT_SYMBOL(blk_put_request); 1107 1108 void init_request_from_bio(struct request *req, struct bio *bio) 1109 { 1110 req->cpu = bio->bi_comp_cpu; 1111 req->cmd_type = REQ_TYPE_FS; 1112 1113 /* 1114 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1115 */ 1116 if (bio_rw_ahead(bio)) 1117 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | 1118 REQ_FAILFAST_DRIVER); 1119 if (bio_failfast_dev(bio)) 1120 req->cmd_flags |= REQ_FAILFAST_DEV; 1121 if (bio_failfast_transport(bio)) 1122 req->cmd_flags |= REQ_FAILFAST_TRANSPORT; 1123 if (bio_failfast_driver(bio)) 1124 req->cmd_flags |= REQ_FAILFAST_DRIVER; 1125 1126 if (unlikely(bio_discard(bio))) { 1127 req->cmd_flags |= REQ_DISCARD; 1128 if (bio_barrier(bio)) 1129 req->cmd_flags |= REQ_SOFTBARRIER; 1130 req->q->prepare_discard_fn(req->q, req); 1131 } else if (unlikely(bio_barrier(bio))) 1132 req->cmd_flags |= REQ_HARDBARRIER; 1133 1134 if (bio_sync(bio)) 1135 req->cmd_flags |= REQ_RW_SYNC; 1136 if (bio_rw_meta(bio)) 1137 req->cmd_flags |= REQ_RW_META; 1138 if (bio_noidle(bio)) 1139 req->cmd_flags |= REQ_NOIDLE; 1140 1141 req->errors = 0; 1142 req->__sector = bio->bi_sector; 1143 req->ioprio = bio_prio(bio); 1144 blk_rq_bio_prep(req->q, req, bio); 1145 } 1146 1147 /* 1148 * Only disabling plugging for non-rotational devices if it does tagging 1149 * as well, otherwise we do need the proper merging 1150 */ 1151 static inline bool queue_should_plug(struct request_queue *q) 1152 { 1153 return !(blk_queue_nonrot(q) && blk_queue_tagged(q)); 1154 } 1155 1156 static int __make_request(struct request_queue *q, struct bio *bio) 1157 { 1158 struct request *req; 1159 int el_ret; 1160 unsigned int bytes = bio->bi_size; 1161 const unsigned short prio = bio_prio(bio); 1162 const int sync = bio_sync(bio); 1163 const int unplug = bio_unplug(bio); 1164 int rw_flags; 1165 1166 if (bio_barrier(bio) && bio_has_data(bio) && 1167 (q->next_ordered == QUEUE_ORDERED_NONE)) { 1168 bio_endio(bio, -EOPNOTSUPP); 1169 return 0; 1170 } 1171 /* 1172 * low level driver can indicate that it wants pages above a 1173 * certain limit bounced to low memory (ie for highmem, or even 1174 * ISA dma in theory) 1175 */ 1176 blk_queue_bounce(q, &bio); 1177 1178 spin_lock_irq(q->queue_lock); 1179 1180 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q)) 1181 goto get_rq; 1182 1183 el_ret = elv_merge(q, &req, bio); 1184 switch (el_ret) { 1185 case ELEVATOR_BACK_MERGE: 1186 BUG_ON(!rq_mergeable(req)); 1187 1188 if (!ll_back_merge_fn(q, req, bio)) 1189 break; 1190 1191 trace_block_bio_backmerge(q, bio); 1192 1193 req->biotail->bi_next = bio; 1194 req->biotail = bio; 1195 req->__data_len += bytes; 1196 req->ioprio = ioprio_best(req->ioprio, prio); 1197 if (!blk_rq_cpu_valid(req)) 1198 req->cpu = bio->bi_comp_cpu; 1199 drive_stat_acct(req, 0); 1200 if (!attempt_back_merge(q, req)) 1201 elv_merged_request(q, req, el_ret); 1202 goto out; 1203 1204 case ELEVATOR_FRONT_MERGE: 1205 BUG_ON(!rq_mergeable(req)); 1206 1207 if (!ll_front_merge_fn(q, req, bio)) 1208 break; 1209 1210 trace_block_bio_frontmerge(q, bio); 1211 1212 bio->bi_next = req->bio; 1213 req->bio = bio; 1214 1215 /* 1216 * may not be valid. if the low level driver said 1217 * it didn't need a bounce buffer then it better 1218 * not touch req->buffer either... 1219 */ 1220 req->buffer = bio_data(bio); 1221 req->__sector = bio->bi_sector; 1222 req->__data_len += bytes; 1223 req->ioprio = ioprio_best(req->ioprio, prio); 1224 if (!blk_rq_cpu_valid(req)) 1225 req->cpu = bio->bi_comp_cpu; 1226 drive_stat_acct(req, 0); 1227 if (!attempt_front_merge(q, req)) 1228 elv_merged_request(q, req, el_ret); 1229 goto out; 1230 1231 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1232 default: 1233 ; 1234 } 1235 1236 get_rq: 1237 /* 1238 * This sync check and mask will be re-done in init_request_from_bio(), 1239 * but we need to set it earlier to expose the sync flag to the 1240 * rq allocator and io schedulers. 1241 */ 1242 rw_flags = bio_data_dir(bio); 1243 if (sync) 1244 rw_flags |= REQ_RW_SYNC; 1245 1246 /* 1247 * Grab a free request. This is might sleep but can not fail. 1248 * Returns with the queue unlocked. 1249 */ 1250 req = get_request_wait(q, rw_flags, bio); 1251 1252 /* 1253 * After dropping the lock and possibly sleeping here, our request 1254 * may now be mergeable after it had proven unmergeable (above). 1255 * We don't worry about that case for efficiency. It won't happen 1256 * often, and the elevators are able to handle it. 1257 */ 1258 init_request_from_bio(req, bio); 1259 1260 spin_lock_irq(q->queue_lock); 1261 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1262 bio_flagged(bio, BIO_CPU_AFFINE)) 1263 req->cpu = blk_cpu_to_group(smp_processor_id()); 1264 if (queue_should_plug(q) && elv_queue_empty(q)) 1265 blk_plug_device(q); 1266 add_request(q, req); 1267 out: 1268 if (unplug || !queue_should_plug(q)) 1269 __generic_unplug_device(q); 1270 spin_unlock_irq(q->queue_lock); 1271 return 0; 1272 } 1273 1274 /* 1275 * If bio->bi_dev is a partition, remap the location 1276 */ 1277 static inline void blk_partition_remap(struct bio *bio) 1278 { 1279 struct block_device *bdev = bio->bi_bdev; 1280 1281 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1282 struct hd_struct *p = bdev->bd_part; 1283 1284 bio->bi_sector += p->start_sect; 1285 bio->bi_bdev = bdev->bd_contains; 1286 1287 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio, 1288 bdev->bd_dev, 1289 bio->bi_sector - p->start_sect); 1290 } 1291 } 1292 1293 static void handle_bad_sector(struct bio *bio) 1294 { 1295 char b[BDEVNAME_SIZE]; 1296 1297 printk(KERN_INFO "attempt to access beyond end of device\n"); 1298 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1299 bdevname(bio->bi_bdev, b), 1300 bio->bi_rw, 1301 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1302 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1303 1304 set_bit(BIO_EOF, &bio->bi_flags); 1305 } 1306 1307 #ifdef CONFIG_FAIL_MAKE_REQUEST 1308 1309 static DECLARE_FAULT_ATTR(fail_make_request); 1310 1311 static int __init setup_fail_make_request(char *str) 1312 { 1313 return setup_fault_attr(&fail_make_request, str); 1314 } 1315 __setup("fail_make_request=", setup_fail_make_request); 1316 1317 static int should_fail_request(struct bio *bio) 1318 { 1319 struct hd_struct *part = bio->bi_bdev->bd_part; 1320 1321 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1322 return should_fail(&fail_make_request, bio->bi_size); 1323 1324 return 0; 1325 } 1326 1327 static int __init fail_make_request_debugfs(void) 1328 { 1329 return init_fault_attr_dentries(&fail_make_request, 1330 "fail_make_request"); 1331 } 1332 1333 late_initcall(fail_make_request_debugfs); 1334 1335 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1336 1337 static inline int should_fail_request(struct bio *bio) 1338 { 1339 return 0; 1340 } 1341 1342 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1343 1344 /* 1345 * Check whether this bio extends beyond the end of the device. 1346 */ 1347 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1348 { 1349 sector_t maxsector; 1350 1351 if (!nr_sectors) 1352 return 0; 1353 1354 /* Test device or partition size, when known. */ 1355 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1356 if (maxsector) { 1357 sector_t sector = bio->bi_sector; 1358 1359 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1360 /* 1361 * This may well happen - the kernel calls bread() 1362 * without checking the size of the device, e.g., when 1363 * mounting a device. 1364 */ 1365 handle_bad_sector(bio); 1366 return 1; 1367 } 1368 } 1369 1370 return 0; 1371 } 1372 1373 /** 1374 * generic_make_request - hand a buffer to its device driver for I/O 1375 * @bio: The bio describing the location in memory and on the device. 1376 * 1377 * generic_make_request() is used to make I/O requests of block 1378 * devices. It is passed a &struct bio, which describes the I/O that needs 1379 * to be done. 1380 * 1381 * generic_make_request() does not return any status. The 1382 * success/failure status of the request, along with notification of 1383 * completion, is delivered asynchronously through the bio->bi_end_io 1384 * function described (one day) else where. 1385 * 1386 * The caller of generic_make_request must make sure that bi_io_vec 1387 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1388 * set to describe the device address, and the 1389 * bi_end_io and optionally bi_private are set to describe how 1390 * completion notification should be signaled. 1391 * 1392 * generic_make_request and the drivers it calls may use bi_next if this 1393 * bio happens to be merged with someone else, and may change bi_dev and 1394 * bi_sector for remaps as it sees fit. So the values of these fields 1395 * should NOT be depended on after the call to generic_make_request. 1396 */ 1397 static inline void __generic_make_request(struct bio *bio) 1398 { 1399 struct request_queue *q; 1400 sector_t old_sector; 1401 int ret, nr_sectors = bio_sectors(bio); 1402 dev_t old_dev; 1403 int err = -EIO; 1404 1405 might_sleep(); 1406 1407 if (bio_check_eod(bio, nr_sectors)) 1408 goto end_io; 1409 1410 /* 1411 * Resolve the mapping until finished. (drivers are 1412 * still free to implement/resolve their own stacking 1413 * by explicitly returning 0) 1414 * 1415 * NOTE: we don't repeat the blk_size check for each new device. 1416 * Stacking drivers are expected to know what they are doing. 1417 */ 1418 old_sector = -1; 1419 old_dev = 0; 1420 do { 1421 char b[BDEVNAME_SIZE]; 1422 1423 q = bdev_get_queue(bio->bi_bdev); 1424 if (unlikely(!q)) { 1425 printk(KERN_ERR 1426 "generic_make_request: Trying to access " 1427 "nonexistent block-device %s (%Lu)\n", 1428 bdevname(bio->bi_bdev, b), 1429 (long long) bio->bi_sector); 1430 goto end_io; 1431 } 1432 1433 if (unlikely(nr_sectors > queue_max_hw_sectors(q))) { 1434 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1435 bdevname(bio->bi_bdev, b), 1436 bio_sectors(bio), 1437 queue_max_hw_sectors(q)); 1438 goto end_io; 1439 } 1440 1441 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1442 goto end_io; 1443 1444 if (should_fail_request(bio)) 1445 goto end_io; 1446 1447 /* 1448 * If this device has partitions, remap block n 1449 * of partition p to block n+start(p) of the disk. 1450 */ 1451 blk_partition_remap(bio); 1452 1453 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1454 goto end_io; 1455 1456 if (old_sector != -1) 1457 trace_block_remap(q, bio, old_dev, old_sector); 1458 1459 trace_block_bio_queue(q, bio); 1460 1461 old_sector = bio->bi_sector; 1462 old_dev = bio->bi_bdev->bd_dev; 1463 1464 if (bio_check_eod(bio, nr_sectors)) 1465 goto end_io; 1466 1467 if (bio_discard(bio) && !q->prepare_discard_fn) { 1468 err = -EOPNOTSUPP; 1469 goto end_io; 1470 } 1471 1472 ret = q->make_request_fn(q, bio); 1473 } while (ret); 1474 1475 return; 1476 1477 end_io: 1478 bio_endio(bio, err); 1479 } 1480 1481 /* 1482 * We only want one ->make_request_fn to be active at a time, 1483 * else stack usage with stacked devices could be a problem. 1484 * So use current->bio_{list,tail} to keep a list of requests 1485 * submited by a make_request_fn function. 1486 * current->bio_tail is also used as a flag to say if 1487 * generic_make_request is currently active in this task or not. 1488 * If it is NULL, then no make_request is active. If it is non-NULL, 1489 * then a make_request is active, and new requests should be added 1490 * at the tail 1491 */ 1492 void generic_make_request(struct bio *bio) 1493 { 1494 if (current->bio_tail) { 1495 /* make_request is active */ 1496 *(current->bio_tail) = bio; 1497 bio->bi_next = NULL; 1498 current->bio_tail = &bio->bi_next; 1499 return; 1500 } 1501 /* following loop may be a bit non-obvious, and so deserves some 1502 * explanation. 1503 * Before entering the loop, bio->bi_next is NULL (as all callers 1504 * ensure that) so we have a list with a single bio. 1505 * We pretend that we have just taken it off a longer list, so 1506 * we assign bio_list to the next (which is NULL) and bio_tail 1507 * to &bio_list, thus initialising the bio_list of new bios to be 1508 * added. __generic_make_request may indeed add some more bios 1509 * through a recursive call to generic_make_request. If it 1510 * did, we find a non-NULL value in bio_list and re-enter the loop 1511 * from the top. In this case we really did just take the bio 1512 * of the top of the list (no pretending) and so fixup bio_list and 1513 * bio_tail or bi_next, and call into __generic_make_request again. 1514 * 1515 * The loop was structured like this to make only one call to 1516 * __generic_make_request (which is important as it is large and 1517 * inlined) and to keep the structure simple. 1518 */ 1519 BUG_ON(bio->bi_next); 1520 do { 1521 current->bio_list = bio->bi_next; 1522 if (bio->bi_next == NULL) 1523 current->bio_tail = ¤t->bio_list; 1524 else 1525 bio->bi_next = NULL; 1526 __generic_make_request(bio); 1527 bio = current->bio_list; 1528 } while (bio); 1529 current->bio_tail = NULL; /* deactivate */ 1530 } 1531 EXPORT_SYMBOL(generic_make_request); 1532 1533 /** 1534 * submit_bio - submit a bio to the block device layer for I/O 1535 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1536 * @bio: The &struct bio which describes the I/O 1537 * 1538 * submit_bio() is very similar in purpose to generic_make_request(), and 1539 * uses that function to do most of the work. Both are fairly rough 1540 * interfaces; @bio must be presetup and ready for I/O. 1541 * 1542 */ 1543 void submit_bio(int rw, struct bio *bio) 1544 { 1545 int count = bio_sectors(bio); 1546 1547 bio->bi_rw |= rw; 1548 1549 /* 1550 * If it's a regular read/write or a barrier with data attached, 1551 * go through the normal accounting stuff before submission. 1552 */ 1553 if (bio_has_data(bio)) { 1554 if (rw & WRITE) { 1555 count_vm_events(PGPGOUT, count); 1556 } else { 1557 task_io_account_read(bio->bi_size); 1558 count_vm_events(PGPGIN, count); 1559 } 1560 1561 if (unlikely(block_dump)) { 1562 char b[BDEVNAME_SIZE]; 1563 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1564 current->comm, task_pid_nr(current), 1565 (rw & WRITE) ? "WRITE" : "READ", 1566 (unsigned long long)bio->bi_sector, 1567 bdevname(bio->bi_bdev, b)); 1568 } 1569 } 1570 1571 generic_make_request(bio); 1572 } 1573 EXPORT_SYMBOL(submit_bio); 1574 1575 /** 1576 * blk_rq_check_limits - Helper function to check a request for the queue limit 1577 * @q: the queue 1578 * @rq: the request being checked 1579 * 1580 * Description: 1581 * @rq may have been made based on weaker limitations of upper-level queues 1582 * in request stacking drivers, and it may violate the limitation of @q. 1583 * Since the block layer and the underlying device driver trust @rq 1584 * after it is inserted to @q, it should be checked against @q before 1585 * the insertion using this generic function. 1586 * 1587 * This function should also be useful for request stacking drivers 1588 * in some cases below, so export this fuction. 1589 * Request stacking drivers like request-based dm may change the queue 1590 * limits while requests are in the queue (e.g. dm's table swapping). 1591 * Such request stacking drivers should check those requests agaist 1592 * the new queue limits again when they dispatch those requests, 1593 * although such checkings are also done against the old queue limits 1594 * when submitting requests. 1595 */ 1596 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1597 { 1598 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1599 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1600 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1601 return -EIO; 1602 } 1603 1604 /* 1605 * queue's settings related to segment counting like q->bounce_pfn 1606 * may differ from that of other stacking queues. 1607 * Recalculate it to check the request correctly on this queue's 1608 * limitation. 1609 */ 1610 blk_recalc_rq_segments(rq); 1611 if (rq->nr_phys_segments > queue_max_phys_segments(q) || 1612 rq->nr_phys_segments > queue_max_hw_segments(q)) { 1613 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1614 return -EIO; 1615 } 1616 1617 return 0; 1618 } 1619 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1620 1621 /** 1622 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1623 * @q: the queue to submit the request 1624 * @rq: the request being queued 1625 */ 1626 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1627 { 1628 unsigned long flags; 1629 1630 if (blk_rq_check_limits(q, rq)) 1631 return -EIO; 1632 1633 #ifdef CONFIG_FAIL_MAKE_REQUEST 1634 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1635 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1636 return -EIO; 1637 #endif 1638 1639 spin_lock_irqsave(q->queue_lock, flags); 1640 1641 /* 1642 * Submitting request must be dequeued before calling this function 1643 * because it will be linked to another request_queue 1644 */ 1645 BUG_ON(blk_queued_rq(rq)); 1646 1647 drive_stat_acct(rq, 1); 1648 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1649 1650 spin_unlock_irqrestore(q->queue_lock, flags); 1651 1652 return 0; 1653 } 1654 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1655 1656 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1657 { 1658 if (blk_do_io_stat(req)) { 1659 const int rw = rq_data_dir(req); 1660 struct hd_struct *part; 1661 int cpu; 1662 1663 cpu = part_stat_lock(); 1664 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req)); 1665 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1666 part_stat_unlock(); 1667 } 1668 } 1669 1670 static void blk_account_io_done(struct request *req) 1671 { 1672 /* 1673 * Account IO completion. bar_rq isn't accounted as a normal 1674 * IO on queueing nor completion. Accounting the containing 1675 * request is enough. 1676 */ 1677 if (blk_do_io_stat(req) && req != &req->q->bar_rq) { 1678 unsigned long duration = jiffies - req->start_time; 1679 const int rw = rq_data_dir(req); 1680 struct hd_struct *part; 1681 int cpu; 1682 1683 cpu = part_stat_lock(); 1684 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req)); 1685 1686 part_stat_inc(cpu, part, ios[rw]); 1687 part_stat_add(cpu, part, ticks[rw], duration); 1688 part_round_stats(cpu, part); 1689 part_dec_in_flight(part); 1690 1691 part_stat_unlock(); 1692 } 1693 } 1694 1695 /** 1696 * blk_peek_request - peek at the top of a request queue 1697 * @q: request queue to peek at 1698 * 1699 * Description: 1700 * Return the request at the top of @q. The returned request 1701 * should be started using blk_start_request() before LLD starts 1702 * processing it. 1703 * 1704 * Return: 1705 * Pointer to the request at the top of @q if available. Null 1706 * otherwise. 1707 * 1708 * Context: 1709 * queue_lock must be held. 1710 */ 1711 struct request *blk_peek_request(struct request_queue *q) 1712 { 1713 struct request *rq; 1714 int ret; 1715 1716 while ((rq = __elv_next_request(q)) != NULL) { 1717 if (!(rq->cmd_flags & REQ_STARTED)) { 1718 /* 1719 * This is the first time the device driver 1720 * sees this request (possibly after 1721 * requeueing). Notify IO scheduler. 1722 */ 1723 if (blk_sorted_rq(rq)) 1724 elv_activate_rq(q, rq); 1725 1726 /* 1727 * just mark as started even if we don't start 1728 * it, a request that has been delayed should 1729 * not be passed by new incoming requests 1730 */ 1731 rq->cmd_flags |= REQ_STARTED; 1732 trace_block_rq_issue(q, rq); 1733 } 1734 1735 if (!q->boundary_rq || q->boundary_rq == rq) { 1736 q->end_sector = rq_end_sector(rq); 1737 q->boundary_rq = NULL; 1738 } 1739 1740 if (rq->cmd_flags & REQ_DONTPREP) 1741 break; 1742 1743 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1744 /* 1745 * make sure space for the drain appears we 1746 * know we can do this because max_hw_segments 1747 * has been adjusted to be one fewer than the 1748 * device can handle 1749 */ 1750 rq->nr_phys_segments++; 1751 } 1752 1753 if (!q->prep_rq_fn) 1754 break; 1755 1756 ret = q->prep_rq_fn(q, rq); 1757 if (ret == BLKPREP_OK) { 1758 break; 1759 } else if (ret == BLKPREP_DEFER) { 1760 /* 1761 * the request may have been (partially) prepped. 1762 * we need to keep this request in the front to 1763 * avoid resource deadlock. REQ_STARTED will 1764 * prevent other fs requests from passing this one. 1765 */ 1766 if (q->dma_drain_size && blk_rq_bytes(rq) && 1767 !(rq->cmd_flags & REQ_DONTPREP)) { 1768 /* 1769 * remove the space for the drain we added 1770 * so that we don't add it again 1771 */ 1772 --rq->nr_phys_segments; 1773 } 1774 1775 rq = NULL; 1776 break; 1777 } else if (ret == BLKPREP_KILL) { 1778 rq->cmd_flags |= REQ_QUIET; 1779 /* 1780 * Mark this request as started so we don't trigger 1781 * any debug logic in the end I/O path. 1782 */ 1783 blk_start_request(rq); 1784 __blk_end_request_all(rq, -EIO); 1785 } else { 1786 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1787 break; 1788 } 1789 } 1790 1791 return rq; 1792 } 1793 EXPORT_SYMBOL(blk_peek_request); 1794 1795 void blk_dequeue_request(struct request *rq) 1796 { 1797 struct request_queue *q = rq->q; 1798 1799 BUG_ON(list_empty(&rq->queuelist)); 1800 BUG_ON(ELV_ON_HASH(rq)); 1801 1802 list_del_init(&rq->queuelist); 1803 1804 /* 1805 * the time frame between a request being removed from the lists 1806 * and to it is freed is accounted as io that is in progress at 1807 * the driver side. 1808 */ 1809 if (blk_account_rq(rq)) 1810 q->in_flight[rq_is_sync(rq)]++; 1811 } 1812 1813 /** 1814 * blk_start_request - start request processing on the driver 1815 * @req: request to dequeue 1816 * 1817 * Description: 1818 * Dequeue @req and start timeout timer on it. This hands off the 1819 * request to the driver. 1820 * 1821 * Block internal functions which don't want to start timer should 1822 * call blk_dequeue_request(). 1823 * 1824 * Context: 1825 * queue_lock must be held. 1826 */ 1827 void blk_start_request(struct request *req) 1828 { 1829 blk_dequeue_request(req); 1830 1831 /* 1832 * We are now handing the request to the hardware, initialize 1833 * resid_len to full count and add the timeout handler. 1834 */ 1835 req->resid_len = blk_rq_bytes(req); 1836 if (unlikely(blk_bidi_rq(req))) 1837 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1838 1839 blk_add_timer(req); 1840 } 1841 EXPORT_SYMBOL(blk_start_request); 1842 1843 /** 1844 * blk_fetch_request - fetch a request from a request queue 1845 * @q: request queue to fetch a request from 1846 * 1847 * Description: 1848 * Return the request at the top of @q. The request is started on 1849 * return and LLD can start processing it immediately. 1850 * 1851 * Return: 1852 * Pointer to the request at the top of @q if available. Null 1853 * otherwise. 1854 * 1855 * Context: 1856 * queue_lock must be held. 1857 */ 1858 struct request *blk_fetch_request(struct request_queue *q) 1859 { 1860 struct request *rq; 1861 1862 rq = blk_peek_request(q); 1863 if (rq) 1864 blk_start_request(rq); 1865 return rq; 1866 } 1867 EXPORT_SYMBOL(blk_fetch_request); 1868 1869 /** 1870 * blk_update_request - Special helper function for request stacking drivers 1871 * @req: the request being processed 1872 * @error: %0 for success, < %0 for error 1873 * @nr_bytes: number of bytes to complete @req 1874 * 1875 * Description: 1876 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1877 * the request structure even if @req doesn't have leftover. 1878 * If @req has leftover, sets it up for the next range of segments. 1879 * 1880 * This special helper function is only for request stacking drivers 1881 * (e.g. request-based dm) so that they can handle partial completion. 1882 * Actual device drivers should use blk_end_request instead. 1883 * 1884 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1885 * %false return from this function. 1886 * 1887 * Return: 1888 * %false - this request doesn't have any more data 1889 * %true - this request has more data 1890 **/ 1891 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 1892 { 1893 int total_bytes, bio_nbytes, next_idx = 0; 1894 struct bio *bio; 1895 1896 if (!req->bio) 1897 return false; 1898 1899 trace_block_rq_complete(req->q, req); 1900 1901 /* 1902 * For fs requests, rq is just carrier of independent bio's 1903 * and each partial completion should be handled separately. 1904 * Reset per-request error on each partial completion. 1905 * 1906 * TODO: tj: This is too subtle. It would be better to let 1907 * low level drivers do what they see fit. 1908 */ 1909 if (blk_fs_request(req)) 1910 req->errors = 0; 1911 1912 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1913 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1914 req->rq_disk ? req->rq_disk->disk_name : "?", 1915 (unsigned long long)blk_rq_pos(req)); 1916 } 1917 1918 blk_account_io_completion(req, nr_bytes); 1919 1920 total_bytes = bio_nbytes = 0; 1921 while ((bio = req->bio) != NULL) { 1922 int nbytes; 1923 1924 if (nr_bytes >= bio->bi_size) { 1925 req->bio = bio->bi_next; 1926 nbytes = bio->bi_size; 1927 req_bio_endio(req, bio, nbytes, error); 1928 next_idx = 0; 1929 bio_nbytes = 0; 1930 } else { 1931 int idx = bio->bi_idx + next_idx; 1932 1933 if (unlikely(idx >= bio->bi_vcnt)) { 1934 blk_dump_rq_flags(req, "__end_that"); 1935 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1936 __func__, idx, bio->bi_vcnt); 1937 break; 1938 } 1939 1940 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1941 BIO_BUG_ON(nbytes > bio->bi_size); 1942 1943 /* 1944 * not a complete bvec done 1945 */ 1946 if (unlikely(nbytes > nr_bytes)) { 1947 bio_nbytes += nr_bytes; 1948 total_bytes += nr_bytes; 1949 break; 1950 } 1951 1952 /* 1953 * advance to the next vector 1954 */ 1955 next_idx++; 1956 bio_nbytes += nbytes; 1957 } 1958 1959 total_bytes += nbytes; 1960 nr_bytes -= nbytes; 1961 1962 bio = req->bio; 1963 if (bio) { 1964 /* 1965 * end more in this run, or just return 'not-done' 1966 */ 1967 if (unlikely(nr_bytes <= 0)) 1968 break; 1969 } 1970 } 1971 1972 /* 1973 * completely done 1974 */ 1975 if (!req->bio) { 1976 /* 1977 * Reset counters so that the request stacking driver 1978 * can find how many bytes remain in the request 1979 * later. 1980 */ 1981 req->__data_len = 0; 1982 return false; 1983 } 1984 1985 /* 1986 * if the request wasn't completed, update state 1987 */ 1988 if (bio_nbytes) { 1989 req_bio_endio(req, bio, bio_nbytes, error); 1990 bio->bi_idx += next_idx; 1991 bio_iovec(bio)->bv_offset += nr_bytes; 1992 bio_iovec(bio)->bv_len -= nr_bytes; 1993 } 1994 1995 req->__data_len -= total_bytes; 1996 req->buffer = bio_data(req->bio); 1997 1998 /* update sector only for requests with clear definition of sector */ 1999 if (blk_fs_request(req) || blk_discard_rq(req)) 2000 req->__sector += total_bytes >> 9; 2001 2002 /* 2003 * If total number of sectors is less than the first segment 2004 * size, something has gone terribly wrong. 2005 */ 2006 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2007 printk(KERN_ERR "blk: request botched\n"); 2008 req->__data_len = blk_rq_cur_bytes(req); 2009 } 2010 2011 /* recalculate the number of segments */ 2012 blk_recalc_rq_segments(req); 2013 2014 return true; 2015 } 2016 EXPORT_SYMBOL_GPL(blk_update_request); 2017 2018 static bool blk_update_bidi_request(struct request *rq, int error, 2019 unsigned int nr_bytes, 2020 unsigned int bidi_bytes) 2021 { 2022 if (blk_update_request(rq, error, nr_bytes)) 2023 return true; 2024 2025 /* Bidi request must be completed as a whole */ 2026 if (unlikely(blk_bidi_rq(rq)) && 2027 blk_update_request(rq->next_rq, error, bidi_bytes)) 2028 return true; 2029 2030 add_disk_randomness(rq->rq_disk); 2031 2032 return false; 2033 } 2034 2035 /* 2036 * queue lock must be held 2037 */ 2038 static void blk_finish_request(struct request *req, int error) 2039 { 2040 if (blk_rq_tagged(req)) 2041 blk_queue_end_tag(req->q, req); 2042 2043 BUG_ON(blk_queued_rq(req)); 2044 2045 if (unlikely(laptop_mode) && blk_fs_request(req)) 2046 laptop_io_completion(); 2047 2048 blk_delete_timer(req); 2049 2050 blk_account_io_done(req); 2051 2052 if (req->end_io) 2053 req->end_io(req, error); 2054 else { 2055 if (blk_bidi_rq(req)) 2056 __blk_put_request(req->next_rq->q, req->next_rq); 2057 2058 __blk_put_request(req->q, req); 2059 } 2060 } 2061 2062 /** 2063 * blk_end_bidi_request - Complete a bidi request 2064 * @rq: the request to complete 2065 * @error: %0 for success, < %0 for error 2066 * @nr_bytes: number of bytes to complete @rq 2067 * @bidi_bytes: number of bytes to complete @rq->next_rq 2068 * 2069 * Description: 2070 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2071 * Drivers that supports bidi can safely call this member for any 2072 * type of request, bidi or uni. In the later case @bidi_bytes is 2073 * just ignored. 2074 * 2075 * Return: 2076 * %false - we are done with this request 2077 * %true - still buffers pending for this request 2078 **/ 2079 static bool blk_end_bidi_request(struct request *rq, int error, 2080 unsigned int nr_bytes, unsigned int bidi_bytes) 2081 { 2082 struct request_queue *q = rq->q; 2083 unsigned long flags; 2084 2085 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2086 return true; 2087 2088 spin_lock_irqsave(q->queue_lock, flags); 2089 blk_finish_request(rq, error); 2090 spin_unlock_irqrestore(q->queue_lock, flags); 2091 2092 return false; 2093 } 2094 2095 /** 2096 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2097 * @rq: the request to complete 2098 * @error: %0 for success, < %0 for error 2099 * @nr_bytes: number of bytes to complete @rq 2100 * @bidi_bytes: number of bytes to complete @rq->next_rq 2101 * 2102 * Description: 2103 * Identical to blk_end_bidi_request() except that queue lock is 2104 * assumed to be locked on entry and remains so on return. 2105 * 2106 * Return: 2107 * %false - we are done with this request 2108 * %true - still buffers pending for this request 2109 **/ 2110 static bool __blk_end_bidi_request(struct request *rq, int error, 2111 unsigned int nr_bytes, unsigned int bidi_bytes) 2112 { 2113 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2114 return true; 2115 2116 blk_finish_request(rq, error); 2117 2118 return false; 2119 } 2120 2121 /** 2122 * blk_end_request - Helper function for drivers to complete the request. 2123 * @rq: the request being processed 2124 * @error: %0 for success, < %0 for error 2125 * @nr_bytes: number of bytes to complete 2126 * 2127 * Description: 2128 * Ends I/O on a number of bytes attached to @rq. 2129 * If @rq has leftover, sets it up for the next range of segments. 2130 * 2131 * Return: 2132 * %false - we are done with this request 2133 * %true - still buffers pending for this request 2134 **/ 2135 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2136 { 2137 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2138 } 2139 EXPORT_SYMBOL(blk_end_request); 2140 2141 /** 2142 * blk_end_request_all - Helper function for drives to finish the request. 2143 * @rq: the request to finish 2144 * @error: %0 for success, < %0 for error 2145 * 2146 * Description: 2147 * Completely finish @rq. 2148 */ 2149 void blk_end_request_all(struct request *rq, int error) 2150 { 2151 bool pending; 2152 unsigned int bidi_bytes = 0; 2153 2154 if (unlikely(blk_bidi_rq(rq))) 2155 bidi_bytes = blk_rq_bytes(rq->next_rq); 2156 2157 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2158 BUG_ON(pending); 2159 } 2160 EXPORT_SYMBOL(blk_end_request_all); 2161 2162 /** 2163 * blk_end_request_cur - Helper function to finish the current request chunk. 2164 * @rq: the request to finish the current chunk for 2165 * @error: %0 for success, < %0 for error 2166 * 2167 * Description: 2168 * Complete the current consecutively mapped chunk from @rq. 2169 * 2170 * Return: 2171 * %false - we are done with this request 2172 * %true - still buffers pending for this request 2173 */ 2174 bool blk_end_request_cur(struct request *rq, int error) 2175 { 2176 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2177 } 2178 EXPORT_SYMBOL(blk_end_request_cur); 2179 2180 /** 2181 * __blk_end_request - Helper function for drivers to complete the request. 2182 * @rq: the request being processed 2183 * @error: %0 for success, < %0 for error 2184 * @nr_bytes: number of bytes to complete 2185 * 2186 * Description: 2187 * Must be called with queue lock held unlike blk_end_request(). 2188 * 2189 * Return: 2190 * %false - we are done with this request 2191 * %true - still buffers pending for this request 2192 **/ 2193 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2194 { 2195 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2196 } 2197 EXPORT_SYMBOL(__blk_end_request); 2198 2199 /** 2200 * __blk_end_request_all - Helper function for drives to finish the request. 2201 * @rq: the request to finish 2202 * @error: %0 for success, < %0 for error 2203 * 2204 * Description: 2205 * Completely finish @rq. Must be called with queue lock held. 2206 */ 2207 void __blk_end_request_all(struct request *rq, int error) 2208 { 2209 bool pending; 2210 unsigned int bidi_bytes = 0; 2211 2212 if (unlikely(blk_bidi_rq(rq))) 2213 bidi_bytes = blk_rq_bytes(rq->next_rq); 2214 2215 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2216 BUG_ON(pending); 2217 } 2218 EXPORT_SYMBOL(__blk_end_request_all); 2219 2220 /** 2221 * __blk_end_request_cur - Helper function to finish the current request chunk. 2222 * @rq: the request to finish the current chunk for 2223 * @error: %0 for success, < %0 for error 2224 * 2225 * Description: 2226 * Complete the current consecutively mapped chunk from @rq. Must 2227 * be called with queue lock held. 2228 * 2229 * Return: 2230 * %false - we are done with this request 2231 * %true - still buffers pending for this request 2232 */ 2233 bool __blk_end_request_cur(struct request *rq, int error) 2234 { 2235 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2236 } 2237 EXPORT_SYMBOL(__blk_end_request_cur); 2238 2239 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2240 struct bio *bio) 2241 { 2242 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and 2243 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */ 2244 rq->cmd_flags |= (bio->bi_rw & 3); 2245 2246 if (bio_has_data(bio)) { 2247 rq->nr_phys_segments = bio_phys_segments(q, bio); 2248 rq->buffer = bio_data(bio); 2249 } 2250 rq->__data_len = bio->bi_size; 2251 rq->bio = rq->biotail = bio; 2252 2253 if (bio->bi_bdev) 2254 rq->rq_disk = bio->bi_bdev->bd_disk; 2255 } 2256 2257 /** 2258 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2259 * @q : the queue of the device being checked 2260 * 2261 * Description: 2262 * Check if underlying low-level drivers of a device are busy. 2263 * If the drivers want to export their busy state, they must set own 2264 * exporting function using blk_queue_lld_busy() first. 2265 * 2266 * Basically, this function is used only by request stacking drivers 2267 * to stop dispatching requests to underlying devices when underlying 2268 * devices are busy. This behavior helps more I/O merging on the queue 2269 * of the request stacking driver and prevents I/O throughput regression 2270 * on burst I/O load. 2271 * 2272 * Return: 2273 * 0 - Not busy (The request stacking driver should dispatch request) 2274 * 1 - Busy (The request stacking driver should stop dispatching request) 2275 */ 2276 int blk_lld_busy(struct request_queue *q) 2277 { 2278 if (q->lld_busy_fn) 2279 return q->lld_busy_fn(q); 2280 2281 return 0; 2282 } 2283 EXPORT_SYMBOL_GPL(blk_lld_busy); 2284 2285 /** 2286 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2287 * @rq: the clone request to be cleaned up 2288 * 2289 * Description: 2290 * Free all bios in @rq for a cloned request. 2291 */ 2292 void blk_rq_unprep_clone(struct request *rq) 2293 { 2294 struct bio *bio; 2295 2296 while ((bio = rq->bio) != NULL) { 2297 rq->bio = bio->bi_next; 2298 2299 bio_put(bio); 2300 } 2301 } 2302 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2303 2304 /* 2305 * Copy attributes of the original request to the clone request. 2306 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2307 */ 2308 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2309 { 2310 dst->cpu = src->cpu; 2311 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE); 2312 dst->cmd_type = src->cmd_type; 2313 dst->__sector = blk_rq_pos(src); 2314 dst->__data_len = blk_rq_bytes(src); 2315 dst->nr_phys_segments = src->nr_phys_segments; 2316 dst->ioprio = src->ioprio; 2317 dst->extra_len = src->extra_len; 2318 } 2319 2320 /** 2321 * blk_rq_prep_clone - Helper function to setup clone request 2322 * @rq: the request to be setup 2323 * @rq_src: original request to be cloned 2324 * @bs: bio_set that bios for clone are allocated from 2325 * @gfp_mask: memory allocation mask for bio 2326 * @bio_ctr: setup function to be called for each clone bio. 2327 * Returns %0 for success, non %0 for failure. 2328 * @data: private data to be passed to @bio_ctr 2329 * 2330 * Description: 2331 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2332 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2333 * are not copied, and copying such parts is the caller's responsibility. 2334 * Also, pages which the original bios are pointing to are not copied 2335 * and the cloned bios just point same pages. 2336 * So cloned bios must be completed before original bios, which means 2337 * the caller must complete @rq before @rq_src. 2338 */ 2339 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2340 struct bio_set *bs, gfp_t gfp_mask, 2341 int (*bio_ctr)(struct bio *, struct bio *, void *), 2342 void *data) 2343 { 2344 struct bio *bio, *bio_src; 2345 2346 if (!bs) 2347 bs = fs_bio_set; 2348 2349 blk_rq_init(NULL, rq); 2350 2351 __rq_for_each_bio(bio_src, rq_src) { 2352 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2353 if (!bio) 2354 goto free_and_out; 2355 2356 __bio_clone(bio, bio_src); 2357 2358 if (bio_integrity(bio_src) && 2359 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2360 goto free_and_out; 2361 2362 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2363 goto free_and_out; 2364 2365 if (rq->bio) { 2366 rq->biotail->bi_next = bio; 2367 rq->biotail = bio; 2368 } else 2369 rq->bio = rq->biotail = bio; 2370 } 2371 2372 __blk_rq_prep_clone(rq, rq_src); 2373 2374 return 0; 2375 2376 free_and_out: 2377 if (bio) 2378 bio_free(bio, bs); 2379 blk_rq_unprep_clone(rq); 2380 2381 return -ENOMEM; 2382 } 2383 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2384 2385 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2386 { 2387 return queue_work(kblockd_workqueue, work); 2388 } 2389 EXPORT_SYMBOL(kblockd_schedule_work); 2390 2391 int __init blk_dev_init(void) 2392 { 2393 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2394 sizeof(((struct request *)0)->cmd_flags)); 2395 2396 kblockd_workqueue = create_workqueue("kblockd"); 2397 if (!kblockd_workqueue) 2398 panic("Failed to create kblockd\n"); 2399 2400 request_cachep = kmem_cache_create("blkdev_requests", 2401 sizeof(struct request), 0, SLAB_PANIC, NULL); 2402 2403 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2404 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2405 2406 return 0; 2407 } 2408 2409