1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 #include <linux/list_sort.h> 31 #include <linux/delay.h> 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/block.h> 35 36 #include "blk.h" 37 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 41 42 /* 43 * For the allocated request tables 44 */ 45 static struct kmem_cache *request_cachep; 46 47 /* 48 * For queue allocation 49 */ 50 struct kmem_cache *blk_requestq_cachep; 51 52 /* 53 * Controlling structure to kblockd 54 */ 55 static struct workqueue_struct *kblockd_workqueue; 56 57 static void drive_stat_acct(struct request *rq, int new_io) 58 { 59 struct hd_struct *part; 60 int rw = rq_data_dir(rq); 61 int cpu; 62 63 if (!blk_do_io_stat(rq)) 64 return; 65 66 cpu = part_stat_lock(); 67 68 if (!new_io) { 69 part = rq->part; 70 part_stat_inc(cpu, part, merges[rw]); 71 } else { 72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 73 if (!hd_struct_try_get(part)) { 74 /* 75 * The partition is already being removed, 76 * the request will be accounted on the disk only 77 * 78 * We take a reference on disk->part0 although that 79 * partition will never be deleted, so we can treat 80 * it as any other partition. 81 */ 82 part = &rq->rq_disk->part0; 83 hd_struct_get(part); 84 } 85 part_round_stats(cpu, part); 86 part_inc_in_flight(part, rw); 87 rq->part = part; 88 } 89 90 part_stat_unlock(); 91 } 92 93 void blk_queue_congestion_threshold(struct request_queue *q) 94 { 95 int nr; 96 97 nr = q->nr_requests - (q->nr_requests / 8) + 1; 98 if (nr > q->nr_requests) 99 nr = q->nr_requests; 100 q->nr_congestion_on = nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 103 if (nr < 1) 104 nr = 1; 105 q->nr_congestion_off = nr; 106 } 107 108 /** 109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 110 * @bdev: device 111 * 112 * Locates the passed device's request queue and returns the address of its 113 * backing_dev_info 114 * 115 * Will return NULL if the request queue cannot be located. 116 */ 117 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 118 { 119 struct backing_dev_info *ret = NULL; 120 struct request_queue *q = bdev_get_queue(bdev); 121 122 if (q) 123 ret = &q->backing_dev_info; 124 return ret; 125 } 126 EXPORT_SYMBOL(blk_get_backing_dev_info); 127 128 void blk_rq_init(struct request_queue *q, struct request *rq) 129 { 130 memset(rq, 0, sizeof(*rq)); 131 132 INIT_LIST_HEAD(&rq->queuelist); 133 INIT_LIST_HEAD(&rq->timeout_list); 134 rq->cpu = -1; 135 rq->q = q; 136 rq->__sector = (sector_t) -1; 137 INIT_HLIST_NODE(&rq->hash); 138 RB_CLEAR_NODE(&rq->rb_node); 139 rq->cmd = rq->__cmd; 140 rq->cmd_len = BLK_MAX_CDB; 141 rq->tag = -1; 142 rq->ref_count = 1; 143 rq->start_time = jiffies; 144 set_start_time_ns(rq); 145 rq->part = NULL; 146 } 147 EXPORT_SYMBOL(blk_rq_init); 148 149 static void req_bio_endio(struct request *rq, struct bio *bio, 150 unsigned int nbytes, int error) 151 { 152 if (error) 153 clear_bit(BIO_UPTODATE, &bio->bi_flags); 154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 155 error = -EIO; 156 157 if (unlikely(nbytes > bio->bi_size)) { 158 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 159 __func__, nbytes, bio->bi_size); 160 nbytes = bio->bi_size; 161 } 162 163 if (unlikely(rq->cmd_flags & REQ_QUIET)) 164 set_bit(BIO_QUIET, &bio->bi_flags); 165 166 bio->bi_size -= nbytes; 167 bio->bi_sector += (nbytes >> 9); 168 169 if (bio_integrity(bio)) 170 bio_integrity_advance(bio, nbytes); 171 172 /* don't actually finish bio if it's part of flush sequence */ 173 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 174 bio_endio(bio, error); 175 } 176 177 void blk_dump_rq_flags(struct request *rq, char *msg) 178 { 179 int bit; 180 181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 183 rq->cmd_flags); 184 185 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 186 (unsigned long long)blk_rq_pos(rq), 187 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 188 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 189 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 190 191 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 192 printk(KERN_INFO " cdb: "); 193 for (bit = 0; bit < BLK_MAX_CDB; bit++) 194 printk("%02x ", rq->cmd[bit]); 195 printk("\n"); 196 } 197 } 198 EXPORT_SYMBOL(blk_dump_rq_flags); 199 200 static void blk_delay_work(struct work_struct *work) 201 { 202 struct request_queue *q; 203 204 q = container_of(work, struct request_queue, delay_work.work); 205 spin_lock_irq(q->queue_lock); 206 __blk_run_queue(q); 207 spin_unlock_irq(q->queue_lock); 208 } 209 210 /** 211 * blk_delay_queue - restart queueing after defined interval 212 * @q: The &struct request_queue in question 213 * @msecs: Delay in msecs 214 * 215 * Description: 216 * Sometimes queueing needs to be postponed for a little while, to allow 217 * resources to come back. This function will make sure that queueing is 218 * restarted around the specified time. 219 */ 220 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 221 { 222 queue_delayed_work(kblockd_workqueue, &q->delay_work, 223 msecs_to_jiffies(msecs)); 224 } 225 EXPORT_SYMBOL(blk_delay_queue); 226 227 /** 228 * blk_start_queue - restart a previously stopped queue 229 * @q: The &struct request_queue in question 230 * 231 * Description: 232 * blk_start_queue() will clear the stop flag on the queue, and call 233 * the request_fn for the queue if it was in a stopped state when 234 * entered. Also see blk_stop_queue(). Queue lock must be held. 235 **/ 236 void blk_start_queue(struct request_queue *q) 237 { 238 WARN_ON(!irqs_disabled()); 239 240 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 241 __blk_run_queue(q); 242 } 243 EXPORT_SYMBOL(blk_start_queue); 244 245 /** 246 * blk_stop_queue - stop a queue 247 * @q: The &struct request_queue in question 248 * 249 * Description: 250 * The Linux block layer assumes that a block driver will consume all 251 * entries on the request queue when the request_fn strategy is called. 252 * Often this will not happen, because of hardware limitations (queue 253 * depth settings). If a device driver gets a 'queue full' response, 254 * or if it simply chooses not to queue more I/O at one point, it can 255 * call this function to prevent the request_fn from being called until 256 * the driver has signalled it's ready to go again. This happens by calling 257 * blk_start_queue() to restart queue operations. Queue lock must be held. 258 **/ 259 void blk_stop_queue(struct request_queue *q) 260 { 261 __cancel_delayed_work(&q->delay_work); 262 queue_flag_set(QUEUE_FLAG_STOPPED, q); 263 } 264 EXPORT_SYMBOL(blk_stop_queue); 265 266 /** 267 * blk_sync_queue - cancel any pending callbacks on a queue 268 * @q: the queue 269 * 270 * Description: 271 * The block layer may perform asynchronous callback activity 272 * on a queue, such as calling the unplug function after a timeout. 273 * A block device may call blk_sync_queue to ensure that any 274 * such activity is cancelled, thus allowing it to release resources 275 * that the callbacks might use. The caller must already have made sure 276 * that its ->make_request_fn will not re-add plugging prior to calling 277 * this function. 278 * 279 * This function does not cancel any asynchronous activity arising 280 * out of elevator or throttling code. That would require elevaotor_exit() 281 * and blk_throtl_exit() to be called with queue lock initialized. 282 * 283 */ 284 void blk_sync_queue(struct request_queue *q) 285 { 286 del_timer_sync(&q->timeout); 287 cancel_delayed_work_sync(&q->delay_work); 288 } 289 EXPORT_SYMBOL(blk_sync_queue); 290 291 /** 292 * __blk_run_queue - run a single device queue 293 * @q: The queue to run 294 * 295 * Description: 296 * See @blk_run_queue. This variant must be called with the queue lock 297 * held and interrupts disabled. 298 */ 299 void __blk_run_queue(struct request_queue *q) 300 { 301 if (unlikely(blk_queue_stopped(q))) 302 return; 303 304 q->request_fn(q); 305 } 306 EXPORT_SYMBOL(__blk_run_queue); 307 308 /** 309 * blk_run_queue_async - run a single device queue in workqueue context 310 * @q: The queue to run 311 * 312 * Description: 313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 314 * of us. 315 */ 316 void blk_run_queue_async(struct request_queue *q) 317 { 318 if (likely(!blk_queue_stopped(q))) { 319 __cancel_delayed_work(&q->delay_work); 320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0); 321 } 322 } 323 EXPORT_SYMBOL(blk_run_queue_async); 324 325 /** 326 * blk_run_queue - run a single device queue 327 * @q: The queue to run 328 * 329 * Description: 330 * Invoke request handling on this queue, if it has pending work to do. 331 * May be used to restart queueing when a request has completed. 332 */ 333 void blk_run_queue(struct request_queue *q) 334 { 335 unsigned long flags; 336 337 spin_lock_irqsave(q->queue_lock, flags); 338 __blk_run_queue(q); 339 spin_unlock_irqrestore(q->queue_lock, flags); 340 } 341 EXPORT_SYMBOL(blk_run_queue); 342 343 void blk_put_queue(struct request_queue *q) 344 { 345 kobject_put(&q->kobj); 346 } 347 EXPORT_SYMBOL(blk_put_queue); 348 349 /** 350 * blk_drain_queue - drain requests from request_queue 351 * @q: queue to drain 352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 353 * 354 * Drain requests from @q. If @drain_all is set, all requests are drained. 355 * If not, only ELVPRIV requests are drained. The caller is responsible 356 * for ensuring that no new requests which need to be drained are queued. 357 */ 358 void blk_drain_queue(struct request_queue *q, bool drain_all) 359 { 360 while (true) { 361 int nr_rqs; 362 363 spin_lock_irq(q->queue_lock); 364 365 elv_drain_elevator(q); 366 if (drain_all) 367 blk_throtl_drain(q); 368 369 __blk_run_queue(q); 370 371 if (drain_all) 372 nr_rqs = q->rq.count[0] + q->rq.count[1]; 373 else 374 nr_rqs = q->rq.elvpriv; 375 376 spin_unlock_irq(q->queue_lock); 377 378 if (!nr_rqs) 379 break; 380 msleep(10); 381 } 382 } 383 384 /** 385 * blk_cleanup_queue - shutdown a request queue 386 * @q: request queue to shutdown 387 * 388 * Mark @q DEAD, drain all pending requests, destroy and put it. All 389 * future requests will be failed immediately with -ENODEV. 390 */ 391 void blk_cleanup_queue(struct request_queue *q) 392 { 393 spinlock_t *lock = q->queue_lock; 394 395 /* mark @q DEAD, no new request or merges will be allowed afterwards */ 396 mutex_lock(&q->sysfs_lock); 397 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 398 399 spin_lock_irq(lock); 400 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 401 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 402 queue_flag_set(QUEUE_FLAG_DEAD, q); 403 404 if (q->queue_lock != &q->__queue_lock) 405 q->queue_lock = &q->__queue_lock; 406 407 spin_unlock_irq(lock); 408 mutex_unlock(&q->sysfs_lock); 409 410 /* 411 * Drain all requests queued before DEAD marking. The caller might 412 * be trying to tear down @q before its elevator is initialized, in 413 * which case we don't want to call into draining. 414 */ 415 if (q->elevator) 416 blk_drain_queue(q, true); 417 418 /* @q won't process any more request, flush async actions */ 419 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 420 blk_sync_queue(q); 421 422 /* @q is and will stay empty, shutdown and put */ 423 blk_put_queue(q); 424 } 425 EXPORT_SYMBOL(blk_cleanup_queue); 426 427 static int blk_init_free_list(struct request_queue *q) 428 { 429 struct request_list *rl = &q->rq; 430 431 if (unlikely(rl->rq_pool)) 432 return 0; 433 434 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 435 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 436 rl->elvpriv = 0; 437 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 438 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 439 440 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 441 mempool_free_slab, request_cachep, q->node); 442 443 if (!rl->rq_pool) 444 return -ENOMEM; 445 446 return 0; 447 } 448 449 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 450 { 451 return blk_alloc_queue_node(gfp_mask, -1); 452 } 453 EXPORT_SYMBOL(blk_alloc_queue); 454 455 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 456 { 457 struct request_queue *q; 458 int err; 459 460 q = kmem_cache_alloc_node(blk_requestq_cachep, 461 gfp_mask | __GFP_ZERO, node_id); 462 if (!q) 463 return NULL; 464 465 q->backing_dev_info.ra_pages = 466 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 467 q->backing_dev_info.state = 0; 468 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 469 q->backing_dev_info.name = "block"; 470 471 err = bdi_init(&q->backing_dev_info); 472 if (err) { 473 kmem_cache_free(blk_requestq_cachep, q); 474 return NULL; 475 } 476 477 if (blk_throtl_init(q)) { 478 kmem_cache_free(blk_requestq_cachep, q); 479 return NULL; 480 } 481 482 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 483 laptop_mode_timer_fn, (unsigned long) q); 484 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 485 INIT_LIST_HEAD(&q->timeout_list); 486 INIT_LIST_HEAD(&q->flush_queue[0]); 487 INIT_LIST_HEAD(&q->flush_queue[1]); 488 INIT_LIST_HEAD(&q->flush_data_in_flight); 489 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 490 491 kobject_init(&q->kobj, &blk_queue_ktype); 492 493 mutex_init(&q->sysfs_lock); 494 spin_lock_init(&q->__queue_lock); 495 496 /* 497 * By default initialize queue_lock to internal lock and driver can 498 * override it later if need be. 499 */ 500 q->queue_lock = &q->__queue_lock; 501 502 return q; 503 } 504 EXPORT_SYMBOL(blk_alloc_queue_node); 505 506 /** 507 * blk_init_queue - prepare a request queue for use with a block device 508 * @rfn: The function to be called to process requests that have been 509 * placed on the queue. 510 * @lock: Request queue spin lock 511 * 512 * Description: 513 * If a block device wishes to use the standard request handling procedures, 514 * which sorts requests and coalesces adjacent requests, then it must 515 * call blk_init_queue(). The function @rfn will be called when there 516 * are requests on the queue that need to be processed. If the device 517 * supports plugging, then @rfn may not be called immediately when requests 518 * are available on the queue, but may be called at some time later instead. 519 * Plugged queues are generally unplugged when a buffer belonging to one 520 * of the requests on the queue is needed, or due to memory pressure. 521 * 522 * @rfn is not required, or even expected, to remove all requests off the 523 * queue, but only as many as it can handle at a time. If it does leave 524 * requests on the queue, it is responsible for arranging that the requests 525 * get dealt with eventually. 526 * 527 * The queue spin lock must be held while manipulating the requests on the 528 * request queue; this lock will be taken also from interrupt context, so irq 529 * disabling is needed for it. 530 * 531 * Function returns a pointer to the initialized request queue, or %NULL if 532 * it didn't succeed. 533 * 534 * Note: 535 * blk_init_queue() must be paired with a blk_cleanup_queue() call 536 * when the block device is deactivated (such as at module unload). 537 **/ 538 539 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 540 { 541 return blk_init_queue_node(rfn, lock, -1); 542 } 543 EXPORT_SYMBOL(blk_init_queue); 544 545 struct request_queue * 546 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 547 { 548 struct request_queue *uninit_q, *q; 549 550 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 551 if (!uninit_q) 552 return NULL; 553 554 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id); 555 if (!q) 556 blk_cleanup_queue(uninit_q); 557 558 return q; 559 } 560 EXPORT_SYMBOL(blk_init_queue_node); 561 562 struct request_queue * 563 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 564 spinlock_t *lock) 565 { 566 return blk_init_allocated_queue_node(q, rfn, lock, -1); 567 } 568 EXPORT_SYMBOL(blk_init_allocated_queue); 569 570 struct request_queue * 571 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn, 572 spinlock_t *lock, int node_id) 573 { 574 if (!q) 575 return NULL; 576 577 q->node = node_id; 578 if (blk_init_free_list(q)) 579 return NULL; 580 581 q->request_fn = rfn; 582 q->prep_rq_fn = NULL; 583 q->unprep_rq_fn = NULL; 584 q->queue_flags = QUEUE_FLAG_DEFAULT; 585 586 /* Override internal queue lock with supplied lock pointer */ 587 if (lock) 588 q->queue_lock = lock; 589 590 /* 591 * This also sets hw/phys segments, boundary and size 592 */ 593 blk_queue_make_request(q, blk_queue_bio); 594 595 q->sg_reserved_size = INT_MAX; 596 597 /* 598 * all done 599 */ 600 if (!elevator_init(q, NULL)) { 601 blk_queue_congestion_threshold(q); 602 return q; 603 } 604 605 return NULL; 606 } 607 EXPORT_SYMBOL(blk_init_allocated_queue_node); 608 609 int blk_get_queue(struct request_queue *q) 610 { 611 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 612 kobject_get(&q->kobj); 613 return 0; 614 } 615 616 return 1; 617 } 618 EXPORT_SYMBOL(blk_get_queue); 619 620 static inline void blk_free_request(struct request_queue *q, struct request *rq) 621 { 622 if (rq->cmd_flags & REQ_ELVPRIV) 623 elv_put_request(q, rq); 624 mempool_free(rq, q->rq.rq_pool); 625 } 626 627 static struct request * 628 blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask) 629 { 630 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 631 632 if (!rq) 633 return NULL; 634 635 blk_rq_init(q, rq); 636 637 rq->cmd_flags = flags | REQ_ALLOCED; 638 639 if ((flags & REQ_ELVPRIV) && 640 unlikely(elv_set_request(q, rq, gfp_mask))) { 641 mempool_free(rq, q->rq.rq_pool); 642 return NULL; 643 } 644 645 return rq; 646 } 647 648 /* 649 * ioc_batching returns true if the ioc is a valid batching request and 650 * should be given priority access to a request. 651 */ 652 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 653 { 654 if (!ioc) 655 return 0; 656 657 /* 658 * Make sure the process is able to allocate at least 1 request 659 * even if the batch times out, otherwise we could theoretically 660 * lose wakeups. 661 */ 662 return ioc->nr_batch_requests == q->nr_batching || 663 (ioc->nr_batch_requests > 0 664 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 665 } 666 667 /* 668 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 669 * will cause the process to be a "batcher" on all queues in the system. This 670 * is the behaviour we want though - once it gets a wakeup it should be given 671 * a nice run. 672 */ 673 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 674 { 675 if (!ioc || ioc_batching(q, ioc)) 676 return; 677 678 ioc->nr_batch_requests = q->nr_batching; 679 ioc->last_waited = jiffies; 680 } 681 682 static void __freed_request(struct request_queue *q, int sync) 683 { 684 struct request_list *rl = &q->rq; 685 686 if (rl->count[sync] < queue_congestion_off_threshold(q)) 687 blk_clear_queue_congested(q, sync); 688 689 if (rl->count[sync] + 1 <= q->nr_requests) { 690 if (waitqueue_active(&rl->wait[sync])) 691 wake_up(&rl->wait[sync]); 692 693 blk_clear_queue_full(q, sync); 694 } 695 } 696 697 /* 698 * A request has just been released. Account for it, update the full and 699 * congestion status, wake up any waiters. Called under q->queue_lock. 700 */ 701 static void freed_request(struct request_queue *q, unsigned int flags) 702 { 703 struct request_list *rl = &q->rq; 704 int sync = rw_is_sync(flags); 705 706 rl->count[sync]--; 707 if (flags & REQ_ELVPRIV) 708 rl->elvpriv--; 709 710 __freed_request(q, sync); 711 712 if (unlikely(rl->starved[sync ^ 1])) 713 __freed_request(q, sync ^ 1); 714 } 715 716 /* 717 * Determine if elevator data should be initialized when allocating the 718 * request associated with @bio. 719 */ 720 static bool blk_rq_should_init_elevator(struct bio *bio) 721 { 722 if (!bio) 723 return true; 724 725 /* 726 * Flush requests do not use the elevator so skip initialization. 727 * This allows a request to share the flush and elevator data. 728 */ 729 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 730 return false; 731 732 return true; 733 } 734 735 /** 736 * get_request - get a free request 737 * @q: request_queue to allocate request from 738 * @rw_flags: RW and SYNC flags 739 * @bio: bio to allocate request for (can be %NULL) 740 * @gfp_mask: allocation mask 741 * 742 * Get a free request from @q. This function may fail under memory 743 * pressure or if @q is dead. 744 * 745 * Must be callled with @q->queue_lock held and, 746 * Returns %NULL on failure, with @q->queue_lock held. 747 * Returns !%NULL on success, with @q->queue_lock *not held*. 748 */ 749 static struct request *get_request(struct request_queue *q, int rw_flags, 750 struct bio *bio, gfp_t gfp_mask) 751 { 752 struct request *rq = NULL; 753 struct request_list *rl = &q->rq; 754 struct io_context *ioc = NULL; 755 const bool is_sync = rw_is_sync(rw_flags) != 0; 756 int may_queue; 757 758 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 759 return NULL; 760 761 may_queue = elv_may_queue(q, rw_flags); 762 if (may_queue == ELV_MQUEUE_NO) 763 goto rq_starved; 764 765 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 766 if (rl->count[is_sync]+1 >= q->nr_requests) { 767 ioc = current_io_context(GFP_ATOMIC, q->node); 768 /* 769 * The queue will fill after this allocation, so set 770 * it as full, and mark this process as "batching". 771 * This process will be allowed to complete a batch of 772 * requests, others will be blocked. 773 */ 774 if (!blk_queue_full(q, is_sync)) { 775 ioc_set_batching(q, ioc); 776 blk_set_queue_full(q, is_sync); 777 } else { 778 if (may_queue != ELV_MQUEUE_MUST 779 && !ioc_batching(q, ioc)) { 780 /* 781 * The queue is full and the allocating 782 * process is not a "batcher", and not 783 * exempted by the IO scheduler 784 */ 785 goto out; 786 } 787 } 788 } 789 blk_set_queue_congested(q, is_sync); 790 } 791 792 /* 793 * Only allow batching queuers to allocate up to 50% over the defined 794 * limit of requests, otherwise we could have thousands of requests 795 * allocated with any setting of ->nr_requests 796 */ 797 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 798 goto out; 799 800 rl->count[is_sync]++; 801 rl->starved[is_sync] = 0; 802 803 if (blk_rq_should_init_elevator(bio) && 804 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) { 805 rw_flags |= REQ_ELVPRIV; 806 rl->elvpriv++; 807 } 808 809 if (blk_queue_io_stat(q)) 810 rw_flags |= REQ_IO_STAT; 811 spin_unlock_irq(q->queue_lock); 812 813 rq = blk_alloc_request(q, rw_flags, gfp_mask); 814 if (unlikely(!rq)) { 815 /* 816 * Allocation failed presumably due to memory. Undo anything 817 * we might have messed up. 818 * 819 * Allocating task should really be put onto the front of the 820 * wait queue, but this is pretty rare. 821 */ 822 spin_lock_irq(q->queue_lock); 823 freed_request(q, rw_flags); 824 825 /* 826 * in the very unlikely event that allocation failed and no 827 * requests for this direction was pending, mark us starved 828 * so that freeing of a request in the other direction will 829 * notice us. another possible fix would be to split the 830 * rq mempool into READ and WRITE 831 */ 832 rq_starved: 833 if (unlikely(rl->count[is_sync] == 0)) 834 rl->starved[is_sync] = 1; 835 836 goto out; 837 } 838 839 /* 840 * ioc may be NULL here, and ioc_batching will be false. That's 841 * OK, if the queue is under the request limit then requests need 842 * not count toward the nr_batch_requests limit. There will always 843 * be some limit enforced by BLK_BATCH_TIME. 844 */ 845 if (ioc_batching(q, ioc)) 846 ioc->nr_batch_requests--; 847 848 trace_block_getrq(q, bio, rw_flags & 1); 849 out: 850 return rq; 851 } 852 853 /** 854 * get_request_wait - get a free request with retry 855 * @q: request_queue to allocate request from 856 * @rw_flags: RW and SYNC flags 857 * @bio: bio to allocate request for (can be %NULL) 858 * 859 * Get a free request from @q. This function keeps retrying under memory 860 * pressure and fails iff @q is dead. 861 * 862 * Must be callled with @q->queue_lock held and, 863 * Returns %NULL on failure, with @q->queue_lock held. 864 * Returns !%NULL on success, with @q->queue_lock *not held*. 865 */ 866 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 867 struct bio *bio) 868 { 869 const bool is_sync = rw_is_sync(rw_flags) != 0; 870 struct request *rq; 871 872 rq = get_request(q, rw_flags, bio, GFP_NOIO); 873 while (!rq) { 874 DEFINE_WAIT(wait); 875 struct io_context *ioc; 876 struct request_list *rl = &q->rq; 877 878 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 879 return NULL; 880 881 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 882 TASK_UNINTERRUPTIBLE); 883 884 trace_block_sleeprq(q, bio, rw_flags & 1); 885 886 spin_unlock_irq(q->queue_lock); 887 io_schedule(); 888 889 /* 890 * After sleeping, we become a "batching" process and 891 * will be able to allocate at least one request, and 892 * up to a big batch of them for a small period time. 893 * See ioc_batching, ioc_set_batching 894 */ 895 ioc = current_io_context(GFP_NOIO, q->node); 896 ioc_set_batching(q, ioc); 897 898 spin_lock_irq(q->queue_lock); 899 finish_wait(&rl->wait[is_sync], &wait); 900 901 rq = get_request(q, rw_flags, bio, GFP_NOIO); 902 }; 903 904 return rq; 905 } 906 907 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 908 { 909 struct request *rq; 910 911 BUG_ON(rw != READ && rw != WRITE); 912 913 spin_lock_irq(q->queue_lock); 914 if (gfp_mask & __GFP_WAIT) 915 rq = get_request_wait(q, rw, NULL); 916 else 917 rq = get_request(q, rw, NULL, gfp_mask); 918 if (!rq) 919 spin_unlock_irq(q->queue_lock); 920 /* q->queue_lock is unlocked at this point */ 921 922 return rq; 923 } 924 EXPORT_SYMBOL(blk_get_request); 925 926 /** 927 * blk_make_request - given a bio, allocate a corresponding struct request. 928 * @q: target request queue 929 * @bio: The bio describing the memory mappings that will be submitted for IO. 930 * It may be a chained-bio properly constructed by block/bio layer. 931 * @gfp_mask: gfp flags to be used for memory allocation 932 * 933 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 934 * type commands. Where the struct request needs to be farther initialized by 935 * the caller. It is passed a &struct bio, which describes the memory info of 936 * the I/O transfer. 937 * 938 * The caller of blk_make_request must make sure that bi_io_vec 939 * are set to describe the memory buffers. That bio_data_dir() will return 940 * the needed direction of the request. (And all bio's in the passed bio-chain 941 * are properly set accordingly) 942 * 943 * If called under none-sleepable conditions, mapped bio buffers must not 944 * need bouncing, by calling the appropriate masked or flagged allocator, 945 * suitable for the target device. Otherwise the call to blk_queue_bounce will 946 * BUG. 947 * 948 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 949 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 950 * anything but the first bio in the chain. Otherwise you risk waiting for IO 951 * completion of a bio that hasn't been submitted yet, thus resulting in a 952 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 953 * of bio_alloc(), as that avoids the mempool deadlock. 954 * If possible a big IO should be split into smaller parts when allocation 955 * fails. Partial allocation should not be an error, or you risk a live-lock. 956 */ 957 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 958 gfp_t gfp_mask) 959 { 960 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 961 962 if (unlikely(!rq)) 963 return ERR_PTR(-ENOMEM); 964 965 for_each_bio(bio) { 966 struct bio *bounce_bio = bio; 967 int ret; 968 969 blk_queue_bounce(q, &bounce_bio); 970 ret = blk_rq_append_bio(q, rq, bounce_bio); 971 if (unlikely(ret)) { 972 blk_put_request(rq); 973 return ERR_PTR(ret); 974 } 975 } 976 977 return rq; 978 } 979 EXPORT_SYMBOL(blk_make_request); 980 981 /** 982 * blk_requeue_request - put a request back on queue 983 * @q: request queue where request should be inserted 984 * @rq: request to be inserted 985 * 986 * Description: 987 * Drivers often keep queueing requests until the hardware cannot accept 988 * more, when that condition happens we need to put the request back 989 * on the queue. Must be called with queue lock held. 990 */ 991 void blk_requeue_request(struct request_queue *q, struct request *rq) 992 { 993 blk_delete_timer(rq); 994 blk_clear_rq_complete(rq); 995 trace_block_rq_requeue(q, rq); 996 997 if (blk_rq_tagged(rq)) 998 blk_queue_end_tag(q, rq); 999 1000 BUG_ON(blk_queued_rq(rq)); 1001 1002 elv_requeue_request(q, rq); 1003 } 1004 EXPORT_SYMBOL(blk_requeue_request); 1005 1006 static void add_acct_request(struct request_queue *q, struct request *rq, 1007 int where) 1008 { 1009 drive_stat_acct(rq, 1); 1010 __elv_add_request(q, rq, where); 1011 } 1012 1013 /** 1014 * blk_insert_request - insert a special request into a request queue 1015 * @q: request queue where request should be inserted 1016 * @rq: request to be inserted 1017 * @at_head: insert request at head or tail of queue 1018 * @data: private data 1019 * 1020 * Description: 1021 * Many block devices need to execute commands asynchronously, so they don't 1022 * block the whole kernel from preemption during request execution. This is 1023 * accomplished normally by inserting aritficial requests tagged as 1024 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 1025 * be scheduled for actual execution by the request queue. 1026 * 1027 * We have the option of inserting the head or the tail of the queue. 1028 * Typically we use the tail for new ioctls and so forth. We use the head 1029 * of the queue for things like a QUEUE_FULL message from a device, or a 1030 * host that is unable to accept a particular command. 1031 */ 1032 void blk_insert_request(struct request_queue *q, struct request *rq, 1033 int at_head, void *data) 1034 { 1035 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 1036 unsigned long flags; 1037 1038 /* 1039 * tell I/O scheduler that this isn't a regular read/write (ie it 1040 * must not attempt merges on this) and that it acts as a soft 1041 * barrier 1042 */ 1043 rq->cmd_type = REQ_TYPE_SPECIAL; 1044 1045 rq->special = data; 1046 1047 spin_lock_irqsave(q->queue_lock, flags); 1048 1049 /* 1050 * If command is tagged, release the tag 1051 */ 1052 if (blk_rq_tagged(rq)) 1053 blk_queue_end_tag(q, rq); 1054 1055 add_acct_request(q, rq, where); 1056 __blk_run_queue(q); 1057 spin_unlock_irqrestore(q->queue_lock, flags); 1058 } 1059 EXPORT_SYMBOL(blk_insert_request); 1060 1061 static void part_round_stats_single(int cpu, struct hd_struct *part, 1062 unsigned long now) 1063 { 1064 if (now == part->stamp) 1065 return; 1066 1067 if (part_in_flight(part)) { 1068 __part_stat_add(cpu, part, time_in_queue, 1069 part_in_flight(part) * (now - part->stamp)); 1070 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1071 } 1072 part->stamp = now; 1073 } 1074 1075 /** 1076 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1077 * @cpu: cpu number for stats access 1078 * @part: target partition 1079 * 1080 * The average IO queue length and utilisation statistics are maintained 1081 * by observing the current state of the queue length and the amount of 1082 * time it has been in this state for. 1083 * 1084 * Normally, that accounting is done on IO completion, but that can result 1085 * in more than a second's worth of IO being accounted for within any one 1086 * second, leading to >100% utilisation. To deal with that, we call this 1087 * function to do a round-off before returning the results when reading 1088 * /proc/diskstats. This accounts immediately for all queue usage up to 1089 * the current jiffies and restarts the counters again. 1090 */ 1091 void part_round_stats(int cpu, struct hd_struct *part) 1092 { 1093 unsigned long now = jiffies; 1094 1095 if (part->partno) 1096 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1097 part_round_stats_single(cpu, part, now); 1098 } 1099 EXPORT_SYMBOL_GPL(part_round_stats); 1100 1101 /* 1102 * queue lock must be held 1103 */ 1104 void __blk_put_request(struct request_queue *q, struct request *req) 1105 { 1106 if (unlikely(!q)) 1107 return; 1108 if (unlikely(--req->ref_count)) 1109 return; 1110 1111 elv_completed_request(q, req); 1112 1113 /* this is a bio leak */ 1114 WARN_ON(req->bio != NULL); 1115 1116 /* 1117 * Request may not have originated from ll_rw_blk. if not, 1118 * it didn't come out of our reserved rq pools 1119 */ 1120 if (req->cmd_flags & REQ_ALLOCED) { 1121 unsigned int flags = req->cmd_flags; 1122 1123 BUG_ON(!list_empty(&req->queuelist)); 1124 BUG_ON(!hlist_unhashed(&req->hash)); 1125 1126 blk_free_request(q, req); 1127 freed_request(q, flags); 1128 } 1129 } 1130 EXPORT_SYMBOL_GPL(__blk_put_request); 1131 1132 void blk_put_request(struct request *req) 1133 { 1134 unsigned long flags; 1135 struct request_queue *q = req->q; 1136 1137 spin_lock_irqsave(q->queue_lock, flags); 1138 __blk_put_request(q, req); 1139 spin_unlock_irqrestore(q->queue_lock, flags); 1140 } 1141 EXPORT_SYMBOL(blk_put_request); 1142 1143 /** 1144 * blk_add_request_payload - add a payload to a request 1145 * @rq: request to update 1146 * @page: page backing the payload 1147 * @len: length of the payload. 1148 * 1149 * This allows to later add a payload to an already submitted request by 1150 * a block driver. The driver needs to take care of freeing the payload 1151 * itself. 1152 * 1153 * Note that this is a quite horrible hack and nothing but handling of 1154 * discard requests should ever use it. 1155 */ 1156 void blk_add_request_payload(struct request *rq, struct page *page, 1157 unsigned int len) 1158 { 1159 struct bio *bio = rq->bio; 1160 1161 bio->bi_io_vec->bv_page = page; 1162 bio->bi_io_vec->bv_offset = 0; 1163 bio->bi_io_vec->bv_len = len; 1164 1165 bio->bi_size = len; 1166 bio->bi_vcnt = 1; 1167 bio->bi_phys_segments = 1; 1168 1169 rq->__data_len = rq->resid_len = len; 1170 rq->nr_phys_segments = 1; 1171 rq->buffer = bio_data(bio); 1172 } 1173 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1174 1175 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1176 struct bio *bio) 1177 { 1178 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1179 1180 if (!ll_back_merge_fn(q, req, bio)) 1181 return false; 1182 1183 trace_block_bio_backmerge(q, bio); 1184 1185 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1186 blk_rq_set_mixed_merge(req); 1187 1188 req->biotail->bi_next = bio; 1189 req->biotail = bio; 1190 req->__data_len += bio->bi_size; 1191 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1192 1193 drive_stat_acct(req, 0); 1194 elv_bio_merged(q, req, bio); 1195 return true; 1196 } 1197 1198 static bool bio_attempt_front_merge(struct request_queue *q, 1199 struct request *req, struct bio *bio) 1200 { 1201 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1202 1203 if (!ll_front_merge_fn(q, req, bio)) 1204 return false; 1205 1206 trace_block_bio_frontmerge(q, bio); 1207 1208 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1209 blk_rq_set_mixed_merge(req); 1210 1211 bio->bi_next = req->bio; 1212 req->bio = bio; 1213 1214 /* 1215 * may not be valid. if the low level driver said 1216 * it didn't need a bounce buffer then it better 1217 * not touch req->buffer either... 1218 */ 1219 req->buffer = bio_data(bio); 1220 req->__sector = bio->bi_sector; 1221 req->__data_len += bio->bi_size; 1222 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1223 1224 drive_stat_acct(req, 0); 1225 elv_bio_merged(q, req, bio); 1226 return true; 1227 } 1228 1229 /** 1230 * attempt_plug_merge - try to merge with %current's plugged list 1231 * @q: request_queue new bio is being queued at 1232 * @bio: new bio being queued 1233 * @request_count: out parameter for number of traversed plugged requests 1234 * 1235 * Determine whether @bio being queued on @q can be merged with a request 1236 * on %current's plugged list. Returns %true if merge was successful, 1237 * otherwise %false. 1238 * 1239 * This function is called without @q->queue_lock; however, elevator is 1240 * accessed iff there already are requests on the plugged list which in 1241 * turn guarantees validity of the elevator. 1242 * 1243 * Note that, on successful merge, elevator operation 1244 * elevator_bio_merged_fn() will be called without queue lock. Elevator 1245 * must be ready for this. 1246 */ 1247 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio, 1248 unsigned int *request_count) 1249 { 1250 struct blk_plug *plug; 1251 struct request *rq; 1252 bool ret = false; 1253 1254 plug = current->plug; 1255 if (!plug) 1256 goto out; 1257 *request_count = 0; 1258 1259 list_for_each_entry_reverse(rq, &plug->list, queuelist) { 1260 int el_ret; 1261 1262 (*request_count)++; 1263 1264 if (rq->q != q) 1265 continue; 1266 1267 el_ret = elv_try_merge(rq, bio); 1268 if (el_ret == ELEVATOR_BACK_MERGE) { 1269 ret = bio_attempt_back_merge(q, rq, bio); 1270 if (ret) 1271 break; 1272 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1273 ret = bio_attempt_front_merge(q, rq, bio); 1274 if (ret) 1275 break; 1276 } 1277 } 1278 out: 1279 return ret; 1280 } 1281 1282 void init_request_from_bio(struct request *req, struct bio *bio) 1283 { 1284 req->cmd_type = REQ_TYPE_FS; 1285 1286 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1287 if (bio->bi_rw & REQ_RAHEAD) 1288 req->cmd_flags |= REQ_FAILFAST_MASK; 1289 1290 req->errors = 0; 1291 req->__sector = bio->bi_sector; 1292 req->ioprio = bio_prio(bio); 1293 blk_rq_bio_prep(req->q, req, bio); 1294 } 1295 1296 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1297 { 1298 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1299 struct blk_plug *plug; 1300 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1301 struct request *req; 1302 unsigned int request_count = 0; 1303 1304 /* 1305 * low level driver can indicate that it wants pages above a 1306 * certain limit bounced to low memory (ie for highmem, or even 1307 * ISA dma in theory) 1308 */ 1309 blk_queue_bounce(q, &bio); 1310 1311 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1312 spin_lock_irq(q->queue_lock); 1313 where = ELEVATOR_INSERT_FLUSH; 1314 goto get_rq; 1315 } 1316 1317 /* 1318 * Check if we can merge with the plugged list before grabbing 1319 * any locks. 1320 */ 1321 if (attempt_plug_merge(q, bio, &request_count)) 1322 return; 1323 1324 spin_lock_irq(q->queue_lock); 1325 1326 el_ret = elv_merge(q, &req, bio); 1327 if (el_ret == ELEVATOR_BACK_MERGE) { 1328 if (bio_attempt_back_merge(q, req, bio)) { 1329 if (!attempt_back_merge(q, req)) 1330 elv_merged_request(q, req, el_ret); 1331 goto out_unlock; 1332 } 1333 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1334 if (bio_attempt_front_merge(q, req, bio)) { 1335 if (!attempt_front_merge(q, req)) 1336 elv_merged_request(q, req, el_ret); 1337 goto out_unlock; 1338 } 1339 } 1340 1341 get_rq: 1342 /* 1343 * This sync check and mask will be re-done in init_request_from_bio(), 1344 * but we need to set it earlier to expose the sync flag to the 1345 * rq allocator and io schedulers. 1346 */ 1347 rw_flags = bio_data_dir(bio); 1348 if (sync) 1349 rw_flags |= REQ_SYNC; 1350 1351 /* 1352 * Grab a free request. This is might sleep but can not fail. 1353 * Returns with the queue unlocked. 1354 */ 1355 req = get_request_wait(q, rw_flags, bio); 1356 if (unlikely(!req)) { 1357 bio_endio(bio, -ENODEV); /* @q is dead */ 1358 goto out_unlock; 1359 } 1360 1361 /* 1362 * After dropping the lock and possibly sleeping here, our request 1363 * may now be mergeable after it had proven unmergeable (above). 1364 * We don't worry about that case for efficiency. It won't happen 1365 * often, and the elevators are able to handle it. 1366 */ 1367 init_request_from_bio(req, bio); 1368 1369 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1370 req->cpu = raw_smp_processor_id(); 1371 1372 plug = current->plug; 1373 if (plug) { 1374 /* 1375 * If this is the first request added after a plug, fire 1376 * of a plug trace. If others have been added before, check 1377 * if we have multiple devices in this plug. If so, make a 1378 * note to sort the list before dispatch. 1379 */ 1380 if (list_empty(&plug->list)) 1381 trace_block_plug(q); 1382 else if (!plug->should_sort) { 1383 struct request *__rq; 1384 1385 __rq = list_entry_rq(plug->list.prev); 1386 if (__rq->q != q) 1387 plug->should_sort = 1; 1388 } 1389 if (request_count >= BLK_MAX_REQUEST_COUNT) 1390 blk_flush_plug_list(plug, false); 1391 list_add_tail(&req->queuelist, &plug->list); 1392 drive_stat_acct(req, 1); 1393 } else { 1394 spin_lock_irq(q->queue_lock); 1395 add_acct_request(q, req, where); 1396 __blk_run_queue(q); 1397 out_unlock: 1398 spin_unlock_irq(q->queue_lock); 1399 } 1400 } 1401 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1402 1403 /* 1404 * If bio->bi_dev is a partition, remap the location 1405 */ 1406 static inline void blk_partition_remap(struct bio *bio) 1407 { 1408 struct block_device *bdev = bio->bi_bdev; 1409 1410 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1411 struct hd_struct *p = bdev->bd_part; 1412 1413 bio->bi_sector += p->start_sect; 1414 bio->bi_bdev = bdev->bd_contains; 1415 1416 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1417 bdev->bd_dev, 1418 bio->bi_sector - p->start_sect); 1419 } 1420 } 1421 1422 static void handle_bad_sector(struct bio *bio) 1423 { 1424 char b[BDEVNAME_SIZE]; 1425 1426 printk(KERN_INFO "attempt to access beyond end of device\n"); 1427 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1428 bdevname(bio->bi_bdev, b), 1429 bio->bi_rw, 1430 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1431 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1432 1433 set_bit(BIO_EOF, &bio->bi_flags); 1434 } 1435 1436 #ifdef CONFIG_FAIL_MAKE_REQUEST 1437 1438 static DECLARE_FAULT_ATTR(fail_make_request); 1439 1440 static int __init setup_fail_make_request(char *str) 1441 { 1442 return setup_fault_attr(&fail_make_request, str); 1443 } 1444 __setup("fail_make_request=", setup_fail_make_request); 1445 1446 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1447 { 1448 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1449 } 1450 1451 static int __init fail_make_request_debugfs(void) 1452 { 1453 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1454 NULL, &fail_make_request); 1455 1456 return IS_ERR(dir) ? PTR_ERR(dir) : 0; 1457 } 1458 1459 late_initcall(fail_make_request_debugfs); 1460 1461 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1462 1463 static inline bool should_fail_request(struct hd_struct *part, 1464 unsigned int bytes) 1465 { 1466 return false; 1467 } 1468 1469 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1470 1471 /* 1472 * Check whether this bio extends beyond the end of the device. 1473 */ 1474 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1475 { 1476 sector_t maxsector; 1477 1478 if (!nr_sectors) 1479 return 0; 1480 1481 /* Test device or partition size, when known. */ 1482 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1483 if (maxsector) { 1484 sector_t sector = bio->bi_sector; 1485 1486 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1487 /* 1488 * This may well happen - the kernel calls bread() 1489 * without checking the size of the device, e.g., when 1490 * mounting a device. 1491 */ 1492 handle_bad_sector(bio); 1493 return 1; 1494 } 1495 } 1496 1497 return 0; 1498 } 1499 1500 static noinline_for_stack bool 1501 generic_make_request_checks(struct bio *bio) 1502 { 1503 struct request_queue *q; 1504 int nr_sectors = bio_sectors(bio); 1505 int err = -EIO; 1506 char b[BDEVNAME_SIZE]; 1507 struct hd_struct *part; 1508 1509 might_sleep(); 1510 1511 if (bio_check_eod(bio, nr_sectors)) 1512 goto end_io; 1513 1514 q = bdev_get_queue(bio->bi_bdev); 1515 if (unlikely(!q)) { 1516 printk(KERN_ERR 1517 "generic_make_request: Trying to access " 1518 "nonexistent block-device %s (%Lu)\n", 1519 bdevname(bio->bi_bdev, b), 1520 (long long) bio->bi_sector); 1521 goto end_io; 1522 } 1523 1524 if (unlikely(!(bio->bi_rw & REQ_DISCARD) && 1525 nr_sectors > queue_max_hw_sectors(q))) { 1526 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1527 bdevname(bio->bi_bdev, b), 1528 bio_sectors(bio), 1529 queue_max_hw_sectors(q)); 1530 goto end_io; 1531 } 1532 1533 part = bio->bi_bdev->bd_part; 1534 if (should_fail_request(part, bio->bi_size) || 1535 should_fail_request(&part_to_disk(part)->part0, 1536 bio->bi_size)) 1537 goto end_io; 1538 1539 /* 1540 * If this device has partitions, remap block n 1541 * of partition p to block n+start(p) of the disk. 1542 */ 1543 blk_partition_remap(bio); 1544 1545 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1546 goto end_io; 1547 1548 if (bio_check_eod(bio, nr_sectors)) 1549 goto end_io; 1550 1551 /* 1552 * Filter flush bio's early so that make_request based 1553 * drivers without flush support don't have to worry 1554 * about them. 1555 */ 1556 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1557 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1558 if (!nr_sectors) { 1559 err = 0; 1560 goto end_io; 1561 } 1562 } 1563 1564 if ((bio->bi_rw & REQ_DISCARD) && 1565 (!blk_queue_discard(q) || 1566 ((bio->bi_rw & REQ_SECURE) && 1567 !blk_queue_secdiscard(q)))) { 1568 err = -EOPNOTSUPP; 1569 goto end_io; 1570 } 1571 1572 if (blk_throtl_bio(q, bio)) 1573 return false; /* throttled, will be resubmitted later */ 1574 1575 trace_block_bio_queue(q, bio); 1576 return true; 1577 1578 end_io: 1579 bio_endio(bio, err); 1580 return false; 1581 } 1582 1583 /** 1584 * generic_make_request - hand a buffer to its device driver for I/O 1585 * @bio: The bio describing the location in memory and on the device. 1586 * 1587 * generic_make_request() is used to make I/O requests of block 1588 * devices. It is passed a &struct bio, which describes the I/O that needs 1589 * to be done. 1590 * 1591 * generic_make_request() does not return any status. The 1592 * success/failure status of the request, along with notification of 1593 * completion, is delivered asynchronously through the bio->bi_end_io 1594 * function described (one day) else where. 1595 * 1596 * The caller of generic_make_request must make sure that bi_io_vec 1597 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1598 * set to describe the device address, and the 1599 * bi_end_io and optionally bi_private are set to describe how 1600 * completion notification should be signaled. 1601 * 1602 * generic_make_request and the drivers it calls may use bi_next if this 1603 * bio happens to be merged with someone else, and may resubmit the bio to 1604 * a lower device by calling into generic_make_request recursively, which 1605 * means the bio should NOT be touched after the call to ->make_request_fn. 1606 */ 1607 void generic_make_request(struct bio *bio) 1608 { 1609 struct bio_list bio_list_on_stack; 1610 1611 if (!generic_make_request_checks(bio)) 1612 return; 1613 1614 /* 1615 * We only want one ->make_request_fn to be active at a time, else 1616 * stack usage with stacked devices could be a problem. So use 1617 * current->bio_list to keep a list of requests submited by a 1618 * make_request_fn function. current->bio_list is also used as a 1619 * flag to say if generic_make_request is currently active in this 1620 * task or not. If it is NULL, then no make_request is active. If 1621 * it is non-NULL, then a make_request is active, and new requests 1622 * should be added at the tail 1623 */ 1624 if (current->bio_list) { 1625 bio_list_add(current->bio_list, bio); 1626 return; 1627 } 1628 1629 /* following loop may be a bit non-obvious, and so deserves some 1630 * explanation. 1631 * Before entering the loop, bio->bi_next is NULL (as all callers 1632 * ensure that) so we have a list with a single bio. 1633 * We pretend that we have just taken it off a longer list, so 1634 * we assign bio_list to a pointer to the bio_list_on_stack, 1635 * thus initialising the bio_list of new bios to be 1636 * added. ->make_request() may indeed add some more bios 1637 * through a recursive call to generic_make_request. If it 1638 * did, we find a non-NULL value in bio_list and re-enter the loop 1639 * from the top. In this case we really did just take the bio 1640 * of the top of the list (no pretending) and so remove it from 1641 * bio_list, and call into ->make_request() again. 1642 */ 1643 BUG_ON(bio->bi_next); 1644 bio_list_init(&bio_list_on_stack); 1645 current->bio_list = &bio_list_on_stack; 1646 do { 1647 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1648 1649 q->make_request_fn(q, bio); 1650 1651 bio = bio_list_pop(current->bio_list); 1652 } while (bio); 1653 current->bio_list = NULL; /* deactivate */ 1654 } 1655 EXPORT_SYMBOL(generic_make_request); 1656 1657 /** 1658 * submit_bio - submit a bio to the block device layer for I/O 1659 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1660 * @bio: The &struct bio which describes the I/O 1661 * 1662 * submit_bio() is very similar in purpose to generic_make_request(), and 1663 * uses that function to do most of the work. Both are fairly rough 1664 * interfaces; @bio must be presetup and ready for I/O. 1665 * 1666 */ 1667 void submit_bio(int rw, struct bio *bio) 1668 { 1669 int count = bio_sectors(bio); 1670 1671 bio->bi_rw |= rw; 1672 1673 /* 1674 * If it's a regular read/write or a barrier with data attached, 1675 * go through the normal accounting stuff before submission. 1676 */ 1677 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) { 1678 if (rw & WRITE) { 1679 count_vm_events(PGPGOUT, count); 1680 } else { 1681 task_io_account_read(bio->bi_size); 1682 count_vm_events(PGPGIN, count); 1683 } 1684 1685 if (unlikely(block_dump)) { 1686 char b[BDEVNAME_SIZE]; 1687 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1688 current->comm, task_pid_nr(current), 1689 (rw & WRITE) ? "WRITE" : "READ", 1690 (unsigned long long)bio->bi_sector, 1691 bdevname(bio->bi_bdev, b), 1692 count); 1693 } 1694 } 1695 1696 generic_make_request(bio); 1697 } 1698 EXPORT_SYMBOL(submit_bio); 1699 1700 /** 1701 * blk_rq_check_limits - Helper function to check a request for the queue limit 1702 * @q: the queue 1703 * @rq: the request being checked 1704 * 1705 * Description: 1706 * @rq may have been made based on weaker limitations of upper-level queues 1707 * in request stacking drivers, and it may violate the limitation of @q. 1708 * Since the block layer and the underlying device driver trust @rq 1709 * after it is inserted to @q, it should be checked against @q before 1710 * the insertion using this generic function. 1711 * 1712 * This function should also be useful for request stacking drivers 1713 * in some cases below, so export this function. 1714 * Request stacking drivers like request-based dm may change the queue 1715 * limits while requests are in the queue (e.g. dm's table swapping). 1716 * Such request stacking drivers should check those requests agaist 1717 * the new queue limits again when they dispatch those requests, 1718 * although such checkings are also done against the old queue limits 1719 * when submitting requests. 1720 */ 1721 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1722 { 1723 if (rq->cmd_flags & REQ_DISCARD) 1724 return 0; 1725 1726 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1727 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1728 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1729 return -EIO; 1730 } 1731 1732 /* 1733 * queue's settings related to segment counting like q->bounce_pfn 1734 * may differ from that of other stacking queues. 1735 * Recalculate it to check the request correctly on this queue's 1736 * limitation. 1737 */ 1738 blk_recalc_rq_segments(rq); 1739 if (rq->nr_phys_segments > queue_max_segments(q)) { 1740 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1741 return -EIO; 1742 } 1743 1744 return 0; 1745 } 1746 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1747 1748 /** 1749 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1750 * @q: the queue to submit the request 1751 * @rq: the request being queued 1752 */ 1753 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1754 { 1755 unsigned long flags; 1756 int where = ELEVATOR_INSERT_BACK; 1757 1758 if (blk_rq_check_limits(q, rq)) 1759 return -EIO; 1760 1761 if (rq->rq_disk && 1762 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1763 return -EIO; 1764 1765 spin_lock_irqsave(q->queue_lock, flags); 1766 1767 /* 1768 * Submitting request must be dequeued before calling this function 1769 * because it will be linked to another request_queue 1770 */ 1771 BUG_ON(blk_queued_rq(rq)); 1772 1773 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 1774 where = ELEVATOR_INSERT_FLUSH; 1775 1776 add_acct_request(q, rq, where); 1777 if (where == ELEVATOR_INSERT_FLUSH) 1778 __blk_run_queue(q); 1779 spin_unlock_irqrestore(q->queue_lock, flags); 1780 1781 return 0; 1782 } 1783 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1784 1785 /** 1786 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1787 * @rq: request to examine 1788 * 1789 * Description: 1790 * A request could be merge of IOs which require different failure 1791 * handling. This function determines the number of bytes which 1792 * can be failed from the beginning of the request without 1793 * crossing into area which need to be retried further. 1794 * 1795 * Return: 1796 * The number of bytes to fail. 1797 * 1798 * Context: 1799 * queue_lock must be held. 1800 */ 1801 unsigned int blk_rq_err_bytes(const struct request *rq) 1802 { 1803 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1804 unsigned int bytes = 0; 1805 struct bio *bio; 1806 1807 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1808 return blk_rq_bytes(rq); 1809 1810 /* 1811 * Currently the only 'mixing' which can happen is between 1812 * different fastfail types. We can safely fail portions 1813 * which have all the failfast bits that the first one has - 1814 * the ones which are at least as eager to fail as the first 1815 * one. 1816 */ 1817 for (bio = rq->bio; bio; bio = bio->bi_next) { 1818 if ((bio->bi_rw & ff) != ff) 1819 break; 1820 bytes += bio->bi_size; 1821 } 1822 1823 /* this could lead to infinite loop */ 1824 BUG_ON(blk_rq_bytes(rq) && !bytes); 1825 return bytes; 1826 } 1827 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1828 1829 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1830 { 1831 if (blk_do_io_stat(req)) { 1832 const int rw = rq_data_dir(req); 1833 struct hd_struct *part; 1834 int cpu; 1835 1836 cpu = part_stat_lock(); 1837 part = req->part; 1838 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1839 part_stat_unlock(); 1840 } 1841 } 1842 1843 static void blk_account_io_done(struct request *req) 1844 { 1845 /* 1846 * Account IO completion. flush_rq isn't accounted as a 1847 * normal IO on queueing nor completion. Accounting the 1848 * containing request is enough. 1849 */ 1850 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 1851 unsigned long duration = jiffies - req->start_time; 1852 const int rw = rq_data_dir(req); 1853 struct hd_struct *part; 1854 int cpu; 1855 1856 cpu = part_stat_lock(); 1857 part = req->part; 1858 1859 part_stat_inc(cpu, part, ios[rw]); 1860 part_stat_add(cpu, part, ticks[rw], duration); 1861 part_round_stats(cpu, part); 1862 part_dec_in_flight(part, rw); 1863 1864 hd_struct_put(part); 1865 part_stat_unlock(); 1866 } 1867 } 1868 1869 /** 1870 * blk_peek_request - peek at the top of a request queue 1871 * @q: request queue to peek at 1872 * 1873 * Description: 1874 * Return the request at the top of @q. The returned request 1875 * should be started using blk_start_request() before LLD starts 1876 * processing it. 1877 * 1878 * Return: 1879 * Pointer to the request at the top of @q if available. Null 1880 * otherwise. 1881 * 1882 * Context: 1883 * queue_lock must be held. 1884 */ 1885 struct request *blk_peek_request(struct request_queue *q) 1886 { 1887 struct request *rq; 1888 int ret; 1889 1890 while ((rq = __elv_next_request(q)) != NULL) { 1891 if (!(rq->cmd_flags & REQ_STARTED)) { 1892 /* 1893 * This is the first time the device driver 1894 * sees this request (possibly after 1895 * requeueing). Notify IO scheduler. 1896 */ 1897 if (rq->cmd_flags & REQ_SORTED) 1898 elv_activate_rq(q, rq); 1899 1900 /* 1901 * just mark as started even if we don't start 1902 * it, a request that has been delayed should 1903 * not be passed by new incoming requests 1904 */ 1905 rq->cmd_flags |= REQ_STARTED; 1906 trace_block_rq_issue(q, rq); 1907 } 1908 1909 if (!q->boundary_rq || q->boundary_rq == rq) { 1910 q->end_sector = rq_end_sector(rq); 1911 q->boundary_rq = NULL; 1912 } 1913 1914 if (rq->cmd_flags & REQ_DONTPREP) 1915 break; 1916 1917 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1918 /* 1919 * make sure space for the drain appears we 1920 * know we can do this because max_hw_segments 1921 * has been adjusted to be one fewer than the 1922 * device can handle 1923 */ 1924 rq->nr_phys_segments++; 1925 } 1926 1927 if (!q->prep_rq_fn) 1928 break; 1929 1930 ret = q->prep_rq_fn(q, rq); 1931 if (ret == BLKPREP_OK) { 1932 break; 1933 } else if (ret == BLKPREP_DEFER) { 1934 /* 1935 * the request may have been (partially) prepped. 1936 * we need to keep this request in the front to 1937 * avoid resource deadlock. REQ_STARTED will 1938 * prevent other fs requests from passing this one. 1939 */ 1940 if (q->dma_drain_size && blk_rq_bytes(rq) && 1941 !(rq->cmd_flags & REQ_DONTPREP)) { 1942 /* 1943 * remove the space for the drain we added 1944 * so that we don't add it again 1945 */ 1946 --rq->nr_phys_segments; 1947 } 1948 1949 rq = NULL; 1950 break; 1951 } else if (ret == BLKPREP_KILL) { 1952 rq->cmd_flags |= REQ_QUIET; 1953 /* 1954 * Mark this request as started so we don't trigger 1955 * any debug logic in the end I/O path. 1956 */ 1957 blk_start_request(rq); 1958 __blk_end_request_all(rq, -EIO); 1959 } else { 1960 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1961 break; 1962 } 1963 } 1964 1965 return rq; 1966 } 1967 EXPORT_SYMBOL(blk_peek_request); 1968 1969 void blk_dequeue_request(struct request *rq) 1970 { 1971 struct request_queue *q = rq->q; 1972 1973 BUG_ON(list_empty(&rq->queuelist)); 1974 BUG_ON(ELV_ON_HASH(rq)); 1975 1976 list_del_init(&rq->queuelist); 1977 1978 /* 1979 * the time frame between a request being removed from the lists 1980 * and to it is freed is accounted as io that is in progress at 1981 * the driver side. 1982 */ 1983 if (blk_account_rq(rq)) { 1984 q->in_flight[rq_is_sync(rq)]++; 1985 set_io_start_time_ns(rq); 1986 } 1987 } 1988 1989 /** 1990 * blk_start_request - start request processing on the driver 1991 * @req: request to dequeue 1992 * 1993 * Description: 1994 * Dequeue @req and start timeout timer on it. This hands off the 1995 * request to the driver. 1996 * 1997 * Block internal functions which don't want to start timer should 1998 * call blk_dequeue_request(). 1999 * 2000 * Context: 2001 * queue_lock must be held. 2002 */ 2003 void blk_start_request(struct request *req) 2004 { 2005 blk_dequeue_request(req); 2006 2007 /* 2008 * We are now handing the request to the hardware, initialize 2009 * resid_len to full count and add the timeout handler. 2010 */ 2011 req->resid_len = blk_rq_bytes(req); 2012 if (unlikely(blk_bidi_rq(req))) 2013 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2014 2015 blk_add_timer(req); 2016 } 2017 EXPORT_SYMBOL(blk_start_request); 2018 2019 /** 2020 * blk_fetch_request - fetch a request from a request queue 2021 * @q: request queue to fetch a request from 2022 * 2023 * Description: 2024 * Return the request at the top of @q. The request is started on 2025 * return and LLD can start processing it immediately. 2026 * 2027 * Return: 2028 * Pointer to the request at the top of @q if available. Null 2029 * otherwise. 2030 * 2031 * Context: 2032 * queue_lock must be held. 2033 */ 2034 struct request *blk_fetch_request(struct request_queue *q) 2035 { 2036 struct request *rq; 2037 2038 rq = blk_peek_request(q); 2039 if (rq) 2040 blk_start_request(rq); 2041 return rq; 2042 } 2043 EXPORT_SYMBOL(blk_fetch_request); 2044 2045 /** 2046 * blk_update_request - Special helper function for request stacking drivers 2047 * @req: the request being processed 2048 * @error: %0 for success, < %0 for error 2049 * @nr_bytes: number of bytes to complete @req 2050 * 2051 * Description: 2052 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2053 * the request structure even if @req doesn't have leftover. 2054 * If @req has leftover, sets it up for the next range of segments. 2055 * 2056 * This special helper function is only for request stacking drivers 2057 * (e.g. request-based dm) so that they can handle partial completion. 2058 * Actual device drivers should use blk_end_request instead. 2059 * 2060 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2061 * %false return from this function. 2062 * 2063 * Return: 2064 * %false - this request doesn't have any more data 2065 * %true - this request has more data 2066 **/ 2067 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2068 { 2069 int total_bytes, bio_nbytes, next_idx = 0; 2070 struct bio *bio; 2071 2072 if (!req->bio) 2073 return false; 2074 2075 trace_block_rq_complete(req->q, req); 2076 2077 /* 2078 * For fs requests, rq is just carrier of independent bio's 2079 * and each partial completion should be handled separately. 2080 * Reset per-request error on each partial completion. 2081 * 2082 * TODO: tj: This is too subtle. It would be better to let 2083 * low level drivers do what they see fit. 2084 */ 2085 if (req->cmd_type == REQ_TYPE_FS) 2086 req->errors = 0; 2087 2088 if (error && req->cmd_type == REQ_TYPE_FS && 2089 !(req->cmd_flags & REQ_QUIET)) { 2090 char *error_type; 2091 2092 switch (error) { 2093 case -ENOLINK: 2094 error_type = "recoverable transport"; 2095 break; 2096 case -EREMOTEIO: 2097 error_type = "critical target"; 2098 break; 2099 case -EBADE: 2100 error_type = "critical nexus"; 2101 break; 2102 case -EIO: 2103 default: 2104 error_type = "I/O"; 2105 break; 2106 } 2107 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2108 error_type, req->rq_disk ? req->rq_disk->disk_name : "?", 2109 (unsigned long long)blk_rq_pos(req)); 2110 } 2111 2112 blk_account_io_completion(req, nr_bytes); 2113 2114 total_bytes = bio_nbytes = 0; 2115 while ((bio = req->bio) != NULL) { 2116 int nbytes; 2117 2118 if (nr_bytes >= bio->bi_size) { 2119 req->bio = bio->bi_next; 2120 nbytes = bio->bi_size; 2121 req_bio_endio(req, bio, nbytes, error); 2122 next_idx = 0; 2123 bio_nbytes = 0; 2124 } else { 2125 int idx = bio->bi_idx + next_idx; 2126 2127 if (unlikely(idx >= bio->bi_vcnt)) { 2128 blk_dump_rq_flags(req, "__end_that"); 2129 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2130 __func__, idx, bio->bi_vcnt); 2131 break; 2132 } 2133 2134 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2135 BIO_BUG_ON(nbytes > bio->bi_size); 2136 2137 /* 2138 * not a complete bvec done 2139 */ 2140 if (unlikely(nbytes > nr_bytes)) { 2141 bio_nbytes += nr_bytes; 2142 total_bytes += nr_bytes; 2143 break; 2144 } 2145 2146 /* 2147 * advance to the next vector 2148 */ 2149 next_idx++; 2150 bio_nbytes += nbytes; 2151 } 2152 2153 total_bytes += nbytes; 2154 nr_bytes -= nbytes; 2155 2156 bio = req->bio; 2157 if (bio) { 2158 /* 2159 * end more in this run, or just return 'not-done' 2160 */ 2161 if (unlikely(nr_bytes <= 0)) 2162 break; 2163 } 2164 } 2165 2166 /* 2167 * completely done 2168 */ 2169 if (!req->bio) { 2170 /* 2171 * Reset counters so that the request stacking driver 2172 * can find how many bytes remain in the request 2173 * later. 2174 */ 2175 req->__data_len = 0; 2176 return false; 2177 } 2178 2179 /* 2180 * if the request wasn't completed, update state 2181 */ 2182 if (bio_nbytes) { 2183 req_bio_endio(req, bio, bio_nbytes, error); 2184 bio->bi_idx += next_idx; 2185 bio_iovec(bio)->bv_offset += nr_bytes; 2186 bio_iovec(bio)->bv_len -= nr_bytes; 2187 } 2188 2189 req->__data_len -= total_bytes; 2190 req->buffer = bio_data(req->bio); 2191 2192 /* update sector only for requests with clear definition of sector */ 2193 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD)) 2194 req->__sector += total_bytes >> 9; 2195 2196 /* mixed attributes always follow the first bio */ 2197 if (req->cmd_flags & REQ_MIXED_MERGE) { 2198 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2199 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2200 } 2201 2202 /* 2203 * If total number of sectors is less than the first segment 2204 * size, something has gone terribly wrong. 2205 */ 2206 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2207 blk_dump_rq_flags(req, "request botched"); 2208 req->__data_len = blk_rq_cur_bytes(req); 2209 } 2210 2211 /* recalculate the number of segments */ 2212 blk_recalc_rq_segments(req); 2213 2214 return true; 2215 } 2216 EXPORT_SYMBOL_GPL(blk_update_request); 2217 2218 static bool blk_update_bidi_request(struct request *rq, int error, 2219 unsigned int nr_bytes, 2220 unsigned int bidi_bytes) 2221 { 2222 if (blk_update_request(rq, error, nr_bytes)) 2223 return true; 2224 2225 /* Bidi request must be completed as a whole */ 2226 if (unlikely(blk_bidi_rq(rq)) && 2227 blk_update_request(rq->next_rq, error, bidi_bytes)) 2228 return true; 2229 2230 if (blk_queue_add_random(rq->q)) 2231 add_disk_randomness(rq->rq_disk); 2232 2233 return false; 2234 } 2235 2236 /** 2237 * blk_unprep_request - unprepare a request 2238 * @req: the request 2239 * 2240 * This function makes a request ready for complete resubmission (or 2241 * completion). It happens only after all error handling is complete, 2242 * so represents the appropriate moment to deallocate any resources 2243 * that were allocated to the request in the prep_rq_fn. The queue 2244 * lock is held when calling this. 2245 */ 2246 void blk_unprep_request(struct request *req) 2247 { 2248 struct request_queue *q = req->q; 2249 2250 req->cmd_flags &= ~REQ_DONTPREP; 2251 if (q->unprep_rq_fn) 2252 q->unprep_rq_fn(q, req); 2253 } 2254 EXPORT_SYMBOL_GPL(blk_unprep_request); 2255 2256 /* 2257 * queue lock must be held 2258 */ 2259 static void blk_finish_request(struct request *req, int error) 2260 { 2261 if (blk_rq_tagged(req)) 2262 blk_queue_end_tag(req->q, req); 2263 2264 BUG_ON(blk_queued_rq(req)); 2265 2266 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2267 laptop_io_completion(&req->q->backing_dev_info); 2268 2269 blk_delete_timer(req); 2270 2271 if (req->cmd_flags & REQ_DONTPREP) 2272 blk_unprep_request(req); 2273 2274 2275 blk_account_io_done(req); 2276 2277 if (req->end_io) 2278 req->end_io(req, error); 2279 else { 2280 if (blk_bidi_rq(req)) 2281 __blk_put_request(req->next_rq->q, req->next_rq); 2282 2283 __blk_put_request(req->q, req); 2284 } 2285 } 2286 2287 /** 2288 * blk_end_bidi_request - Complete a bidi request 2289 * @rq: the request to complete 2290 * @error: %0 for success, < %0 for error 2291 * @nr_bytes: number of bytes to complete @rq 2292 * @bidi_bytes: number of bytes to complete @rq->next_rq 2293 * 2294 * Description: 2295 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2296 * Drivers that supports bidi can safely call this member for any 2297 * type of request, bidi or uni. In the later case @bidi_bytes is 2298 * just ignored. 2299 * 2300 * Return: 2301 * %false - we are done with this request 2302 * %true - still buffers pending for this request 2303 **/ 2304 static bool blk_end_bidi_request(struct request *rq, int error, 2305 unsigned int nr_bytes, unsigned int bidi_bytes) 2306 { 2307 struct request_queue *q = rq->q; 2308 unsigned long flags; 2309 2310 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2311 return true; 2312 2313 spin_lock_irqsave(q->queue_lock, flags); 2314 blk_finish_request(rq, error); 2315 spin_unlock_irqrestore(q->queue_lock, flags); 2316 2317 return false; 2318 } 2319 2320 /** 2321 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2322 * @rq: the request to complete 2323 * @error: %0 for success, < %0 for error 2324 * @nr_bytes: number of bytes to complete @rq 2325 * @bidi_bytes: number of bytes to complete @rq->next_rq 2326 * 2327 * Description: 2328 * Identical to blk_end_bidi_request() except that queue lock is 2329 * assumed to be locked on entry and remains so on return. 2330 * 2331 * Return: 2332 * %false - we are done with this request 2333 * %true - still buffers pending for this request 2334 **/ 2335 bool __blk_end_bidi_request(struct request *rq, int error, 2336 unsigned int nr_bytes, unsigned int bidi_bytes) 2337 { 2338 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2339 return true; 2340 2341 blk_finish_request(rq, error); 2342 2343 return false; 2344 } 2345 2346 /** 2347 * blk_end_request - Helper function for drivers to complete the request. 2348 * @rq: the request being processed 2349 * @error: %0 for success, < %0 for error 2350 * @nr_bytes: number of bytes to complete 2351 * 2352 * Description: 2353 * Ends I/O on a number of bytes attached to @rq. 2354 * If @rq has leftover, sets it up for the next range of segments. 2355 * 2356 * Return: 2357 * %false - we are done with this request 2358 * %true - still buffers pending for this request 2359 **/ 2360 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2361 { 2362 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2363 } 2364 EXPORT_SYMBOL(blk_end_request); 2365 2366 /** 2367 * blk_end_request_all - Helper function for drives to finish the request. 2368 * @rq: the request to finish 2369 * @error: %0 for success, < %0 for error 2370 * 2371 * Description: 2372 * Completely finish @rq. 2373 */ 2374 void blk_end_request_all(struct request *rq, int error) 2375 { 2376 bool pending; 2377 unsigned int bidi_bytes = 0; 2378 2379 if (unlikely(blk_bidi_rq(rq))) 2380 bidi_bytes = blk_rq_bytes(rq->next_rq); 2381 2382 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2383 BUG_ON(pending); 2384 } 2385 EXPORT_SYMBOL(blk_end_request_all); 2386 2387 /** 2388 * blk_end_request_cur - Helper function to finish the current request chunk. 2389 * @rq: the request to finish the current chunk for 2390 * @error: %0 for success, < %0 for error 2391 * 2392 * Description: 2393 * Complete the current consecutively mapped chunk from @rq. 2394 * 2395 * Return: 2396 * %false - we are done with this request 2397 * %true - still buffers pending for this request 2398 */ 2399 bool blk_end_request_cur(struct request *rq, int error) 2400 { 2401 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2402 } 2403 EXPORT_SYMBOL(blk_end_request_cur); 2404 2405 /** 2406 * blk_end_request_err - Finish a request till the next failure boundary. 2407 * @rq: the request to finish till the next failure boundary for 2408 * @error: must be negative errno 2409 * 2410 * Description: 2411 * Complete @rq till the next failure boundary. 2412 * 2413 * Return: 2414 * %false - we are done with this request 2415 * %true - still buffers pending for this request 2416 */ 2417 bool blk_end_request_err(struct request *rq, int error) 2418 { 2419 WARN_ON(error >= 0); 2420 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2421 } 2422 EXPORT_SYMBOL_GPL(blk_end_request_err); 2423 2424 /** 2425 * __blk_end_request - Helper function for drivers to complete the request. 2426 * @rq: the request being processed 2427 * @error: %0 for success, < %0 for error 2428 * @nr_bytes: number of bytes to complete 2429 * 2430 * Description: 2431 * Must be called with queue lock held unlike blk_end_request(). 2432 * 2433 * Return: 2434 * %false - we are done with this request 2435 * %true - still buffers pending for this request 2436 **/ 2437 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2438 { 2439 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2440 } 2441 EXPORT_SYMBOL(__blk_end_request); 2442 2443 /** 2444 * __blk_end_request_all - Helper function for drives to finish the request. 2445 * @rq: the request to finish 2446 * @error: %0 for success, < %0 for error 2447 * 2448 * Description: 2449 * Completely finish @rq. Must be called with queue lock held. 2450 */ 2451 void __blk_end_request_all(struct request *rq, int error) 2452 { 2453 bool pending; 2454 unsigned int bidi_bytes = 0; 2455 2456 if (unlikely(blk_bidi_rq(rq))) 2457 bidi_bytes = blk_rq_bytes(rq->next_rq); 2458 2459 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2460 BUG_ON(pending); 2461 } 2462 EXPORT_SYMBOL(__blk_end_request_all); 2463 2464 /** 2465 * __blk_end_request_cur - Helper function to finish the current request chunk. 2466 * @rq: the request to finish the current chunk for 2467 * @error: %0 for success, < %0 for error 2468 * 2469 * Description: 2470 * Complete the current consecutively mapped chunk from @rq. Must 2471 * be called with queue lock held. 2472 * 2473 * Return: 2474 * %false - we are done with this request 2475 * %true - still buffers pending for this request 2476 */ 2477 bool __blk_end_request_cur(struct request *rq, int error) 2478 { 2479 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2480 } 2481 EXPORT_SYMBOL(__blk_end_request_cur); 2482 2483 /** 2484 * __blk_end_request_err - Finish a request till the next failure boundary. 2485 * @rq: the request to finish till the next failure boundary for 2486 * @error: must be negative errno 2487 * 2488 * Description: 2489 * Complete @rq till the next failure boundary. Must be called 2490 * with queue lock held. 2491 * 2492 * Return: 2493 * %false - we are done with this request 2494 * %true - still buffers pending for this request 2495 */ 2496 bool __blk_end_request_err(struct request *rq, int error) 2497 { 2498 WARN_ON(error >= 0); 2499 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2500 } 2501 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2502 2503 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2504 struct bio *bio) 2505 { 2506 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2507 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2508 2509 if (bio_has_data(bio)) { 2510 rq->nr_phys_segments = bio_phys_segments(q, bio); 2511 rq->buffer = bio_data(bio); 2512 } 2513 rq->__data_len = bio->bi_size; 2514 rq->bio = rq->biotail = bio; 2515 2516 if (bio->bi_bdev) 2517 rq->rq_disk = bio->bi_bdev->bd_disk; 2518 } 2519 2520 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2521 /** 2522 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2523 * @rq: the request to be flushed 2524 * 2525 * Description: 2526 * Flush all pages in @rq. 2527 */ 2528 void rq_flush_dcache_pages(struct request *rq) 2529 { 2530 struct req_iterator iter; 2531 struct bio_vec *bvec; 2532 2533 rq_for_each_segment(bvec, rq, iter) 2534 flush_dcache_page(bvec->bv_page); 2535 } 2536 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2537 #endif 2538 2539 /** 2540 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2541 * @q : the queue of the device being checked 2542 * 2543 * Description: 2544 * Check if underlying low-level drivers of a device are busy. 2545 * If the drivers want to export their busy state, they must set own 2546 * exporting function using blk_queue_lld_busy() first. 2547 * 2548 * Basically, this function is used only by request stacking drivers 2549 * to stop dispatching requests to underlying devices when underlying 2550 * devices are busy. This behavior helps more I/O merging on the queue 2551 * of the request stacking driver and prevents I/O throughput regression 2552 * on burst I/O load. 2553 * 2554 * Return: 2555 * 0 - Not busy (The request stacking driver should dispatch request) 2556 * 1 - Busy (The request stacking driver should stop dispatching request) 2557 */ 2558 int blk_lld_busy(struct request_queue *q) 2559 { 2560 if (q->lld_busy_fn) 2561 return q->lld_busy_fn(q); 2562 2563 return 0; 2564 } 2565 EXPORT_SYMBOL_GPL(blk_lld_busy); 2566 2567 /** 2568 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2569 * @rq: the clone request to be cleaned up 2570 * 2571 * Description: 2572 * Free all bios in @rq for a cloned request. 2573 */ 2574 void blk_rq_unprep_clone(struct request *rq) 2575 { 2576 struct bio *bio; 2577 2578 while ((bio = rq->bio) != NULL) { 2579 rq->bio = bio->bi_next; 2580 2581 bio_put(bio); 2582 } 2583 } 2584 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2585 2586 /* 2587 * Copy attributes of the original request to the clone request. 2588 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2589 */ 2590 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2591 { 2592 dst->cpu = src->cpu; 2593 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2594 dst->cmd_type = src->cmd_type; 2595 dst->__sector = blk_rq_pos(src); 2596 dst->__data_len = blk_rq_bytes(src); 2597 dst->nr_phys_segments = src->nr_phys_segments; 2598 dst->ioprio = src->ioprio; 2599 dst->extra_len = src->extra_len; 2600 } 2601 2602 /** 2603 * blk_rq_prep_clone - Helper function to setup clone request 2604 * @rq: the request to be setup 2605 * @rq_src: original request to be cloned 2606 * @bs: bio_set that bios for clone are allocated from 2607 * @gfp_mask: memory allocation mask for bio 2608 * @bio_ctr: setup function to be called for each clone bio. 2609 * Returns %0 for success, non %0 for failure. 2610 * @data: private data to be passed to @bio_ctr 2611 * 2612 * Description: 2613 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2614 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2615 * are not copied, and copying such parts is the caller's responsibility. 2616 * Also, pages which the original bios are pointing to are not copied 2617 * and the cloned bios just point same pages. 2618 * So cloned bios must be completed before original bios, which means 2619 * the caller must complete @rq before @rq_src. 2620 */ 2621 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2622 struct bio_set *bs, gfp_t gfp_mask, 2623 int (*bio_ctr)(struct bio *, struct bio *, void *), 2624 void *data) 2625 { 2626 struct bio *bio, *bio_src; 2627 2628 if (!bs) 2629 bs = fs_bio_set; 2630 2631 blk_rq_init(NULL, rq); 2632 2633 __rq_for_each_bio(bio_src, rq_src) { 2634 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2635 if (!bio) 2636 goto free_and_out; 2637 2638 __bio_clone(bio, bio_src); 2639 2640 if (bio_integrity(bio_src) && 2641 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2642 goto free_and_out; 2643 2644 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2645 goto free_and_out; 2646 2647 if (rq->bio) { 2648 rq->biotail->bi_next = bio; 2649 rq->biotail = bio; 2650 } else 2651 rq->bio = rq->biotail = bio; 2652 } 2653 2654 __blk_rq_prep_clone(rq, rq_src); 2655 2656 return 0; 2657 2658 free_and_out: 2659 if (bio) 2660 bio_free(bio, bs); 2661 blk_rq_unprep_clone(rq); 2662 2663 return -ENOMEM; 2664 } 2665 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2666 2667 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2668 { 2669 return queue_work(kblockd_workqueue, work); 2670 } 2671 EXPORT_SYMBOL(kblockd_schedule_work); 2672 2673 int kblockd_schedule_delayed_work(struct request_queue *q, 2674 struct delayed_work *dwork, unsigned long delay) 2675 { 2676 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2677 } 2678 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2679 2680 #define PLUG_MAGIC 0x91827364 2681 2682 /** 2683 * blk_start_plug - initialize blk_plug and track it inside the task_struct 2684 * @plug: The &struct blk_plug that needs to be initialized 2685 * 2686 * Description: 2687 * Tracking blk_plug inside the task_struct will help with auto-flushing the 2688 * pending I/O should the task end up blocking between blk_start_plug() and 2689 * blk_finish_plug(). This is important from a performance perspective, but 2690 * also ensures that we don't deadlock. For instance, if the task is blocking 2691 * for a memory allocation, memory reclaim could end up wanting to free a 2692 * page belonging to that request that is currently residing in our private 2693 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 2694 * this kind of deadlock. 2695 */ 2696 void blk_start_plug(struct blk_plug *plug) 2697 { 2698 struct task_struct *tsk = current; 2699 2700 plug->magic = PLUG_MAGIC; 2701 INIT_LIST_HEAD(&plug->list); 2702 INIT_LIST_HEAD(&plug->cb_list); 2703 plug->should_sort = 0; 2704 2705 /* 2706 * If this is a nested plug, don't actually assign it. It will be 2707 * flushed on its own. 2708 */ 2709 if (!tsk->plug) { 2710 /* 2711 * Store ordering should not be needed here, since a potential 2712 * preempt will imply a full memory barrier 2713 */ 2714 tsk->plug = plug; 2715 } 2716 } 2717 EXPORT_SYMBOL(blk_start_plug); 2718 2719 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2720 { 2721 struct request *rqa = container_of(a, struct request, queuelist); 2722 struct request *rqb = container_of(b, struct request, queuelist); 2723 2724 return !(rqa->q <= rqb->q); 2725 } 2726 2727 /* 2728 * If 'from_schedule' is true, then postpone the dispatch of requests 2729 * until a safe kblockd context. We due this to avoid accidental big 2730 * additional stack usage in driver dispatch, in places where the originally 2731 * plugger did not intend it. 2732 */ 2733 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2734 bool from_schedule) 2735 __releases(q->queue_lock) 2736 { 2737 trace_block_unplug(q, depth, !from_schedule); 2738 2739 /* 2740 * If we are punting this to kblockd, then we can safely drop 2741 * the queue_lock before waking kblockd (which needs to take 2742 * this lock). 2743 */ 2744 if (from_schedule) { 2745 spin_unlock(q->queue_lock); 2746 blk_run_queue_async(q); 2747 } else { 2748 __blk_run_queue(q); 2749 spin_unlock(q->queue_lock); 2750 } 2751 2752 } 2753 2754 static void flush_plug_callbacks(struct blk_plug *plug) 2755 { 2756 LIST_HEAD(callbacks); 2757 2758 if (list_empty(&plug->cb_list)) 2759 return; 2760 2761 list_splice_init(&plug->cb_list, &callbacks); 2762 2763 while (!list_empty(&callbacks)) { 2764 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2765 struct blk_plug_cb, 2766 list); 2767 list_del(&cb->list); 2768 cb->callback(cb); 2769 } 2770 } 2771 2772 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2773 { 2774 struct request_queue *q; 2775 unsigned long flags; 2776 struct request *rq; 2777 LIST_HEAD(list); 2778 unsigned int depth; 2779 2780 BUG_ON(plug->magic != PLUG_MAGIC); 2781 2782 flush_plug_callbacks(plug); 2783 if (list_empty(&plug->list)) 2784 return; 2785 2786 list_splice_init(&plug->list, &list); 2787 2788 if (plug->should_sort) { 2789 list_sort(NULL, &list, plug_rq_cmp); 2790 plug->should_sort = 0; 2791 } 2792 2793 q = NULL; 2794 depth = 0; 2795 2796 /* 2797 * Save and disable interrupts here, to avoid doing it for every 2798 * queue lock we have to take. 2799 */ 2800 local_irq_save(flags); 2801 while (!list_empty(&list)) { 2802 rq = list_entry_rq(list.next); 2803 list_del_init(&rq->queuelist); 2804 BUG_ON(!rq->q); 2805 if (rq->q != q) { 2806 /* 2807 * This drops the queue lock 2808 */ 2809 if (q) 2810 queue_unplugged(q, depth, from_schedule); 2811 q = rq->q; 2812 depth = 0; 2813 spin_lock(q->queue_lock); 2814 } 2815 /* 2816 * rq is already accounted, so use raw insert 2817 */ 2818 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 2819 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 2820 else 2821 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 2822 2823 depth++; 2824 } 2825 2826 /* 2827 * This drops the queue lock 2828 */ 2829 if (q) 2830 queue_unplugged(q, depth, from_schedule); 2831 2832 local_irq_restore(flags); 2833 } 2834 2835 void blk_finish_plug(struct blk_plug *plug) 2836 { 2837 blk_flush_plug_list(plug, false); 2838 2839 if (plug == current->plug) 2840 current->plug = NULL; 2841 } 2842 EXPORT_SYMBOL(blk_finish_plug); 2843 2844 int __init blk_dev_init(void) 2845 { 2846 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2847 sizeof(((struct request *)0)->cmd_flags)); 2848 2849 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 2850 kblockd_workqueue = alloc_workqueue("kblockd", 2851 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2852 if (!kblockd_workqueue) 2853 panic("Failed to create kblockd\n"); 2854 2855 request_cachep = kmem_cache_create("blkdev_requests", 2856 sizeof(struct request), 0, SLAB_PANIC, NULL); 2857 2858 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2859 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2860 2861 return 0; 2862 } 2863