xref: /linux/block/blk-core.c (revision a67ff6a54095e27093ea501fb143fefe51a536c2)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
35 
36 #include "blk.h"
37 
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
41 
42 /*
43  * For the allocated request tables
44  */
45 static struct kmem_cache *request_cachep;
46 
47 /*
48  * For queue allocation
49  */
50 struct kmem_cache *blk_requestq_cachep;
51 
52 /*
53  * Controlling structure to kblockd
54  */
55 static struct workqueue_struct *kblockd_workqueue;
56 
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 	struct hd_struct *part;
60 	int rw = rq_data_dir(rq);
61 	int cpu;
62 
63 	if (!blk_do_io_stat(rq))
64 		return;
65 
66 	cpu = part_stat_lock();
67 
68 	if (!new_io) {
69 		part = rq->part;
70 		part_stat_inc(cpu, part, merges[rw]);
71 	} else {
72 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
73 		if (!hd_struct_try_get(part)) {
74 			/*
75 			 * The partition is already being removed,
76 			 * the request will be accounted on the disk only
77 			 *
78 			 * We take a reference on disk->part0 although that
79 			 * partition will never be deleted, so we can treat
80 			 * it as any other partition.
81 			 */
82 			part = &rq->rq_disk->part0;
83 			hd_struct_get(part);
84 		}
85 		part_round_stats(cpu, part);
86 		part_inc_in_flight(part, rw);
87 		rq->part = part;
88 	}
89 
90 	part_stat_unlock();
91 }
92 
93 void blk_queue_congestion_threshold(struct request_queue *q)
94 {
95 	int nr;
96 
97 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 	if (nr > q->nr_requests)
99 		nr = q->nr_requests;
100 	q->nr_congestion_on = nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 	if (nr < 1)
104 		nr = 1;
105 	q->nr_congestion_off = nr;
106 }
107 
108 /**
109  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110  * @bdev:	device
111  *
112  * Locates the passed device's request queue and returns the address of its
113  * backing_dev_info
114  *
115  * Will return NULL if the request queue cannot be located.
116  */
117 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118 {
119 	struct backing_dev_info *ret = NULL;
120 	struct request_queue *q = bdev_get_queue(bdev);
121 
122 	if (q)
123 		ret = &q->backing_dev_info;
124 	return ret;
125 }
126 EXPORT_SYMBOL(blk_get_backing_dev_info);
127 
128 void blk_rq_init(struct request_queue *q, struct request *rq)
129 {
130 	memset(rq, 0, sizeof(*rq));
131 
132 	INIT_LIST_HEAD(&rq->queuelist);
133 	INIT_LIST_HEAD(&rq->timeout_list);
134 	rq->cpu = -1;
135 	rq->q = q;
136 	rq->__sector = (sector_t) -1;
137 	INIT_HLIST_NODE(&rq->hash);
138 	RB_CLEAR_NODE(&rq->rb_node);
139 	rq->cmd = rq->__cmd;
140 	rq->cmd_len = BLK_MAX_CDB;
141 	rq->tag = -1;
142 	rq->ref_count = 1;
143 	rq->start_time = jiffies;
144 	set_start_time_ns(rq);
145 	rq->part = NULL;
146 }
147 EXPORT_SYMBOL(blk_rq_init);
148 
149 static void req_bio_endio(struct request *rq, struct bio *bio,
150 			  unsigned int nbytes, int error)
151 {
152 	if (error)
153 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 		error = -EIO;
156 
157 	if (unlikely(nbytes > bio->bi_size)) {
158 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 		       __func__, nbytes, bio->bi_size);
160 		nbytes = bio->bi_size;
161 	}
162 
163 	if (unlikely(rq->cmd_flags & REQ_QUIET))
164 		set_bit(BIO_QUIET, &bio->bi_flags);
165 
166 	bio->bi_size -= nbytes;
167 	bio->bi_sector += (nbytes >> 9);
168 
169 	if (bio_integrity(bio))
170 		bio_integrity_advance(bio, nbytes);
171 
172 	/* don't actually finish bio if it's part of flush sequence */
173 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 		bio_endio(bio, error);
175 }
176 
177 void blk_dump_rq_flags(struct request *rq, char *msg)
178 {
179 	int bit;
180 
181 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
182 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 		rq->cmd_flags);
184 
185 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
186 	       (unsigned long long)blk_rq_pos(rq),
187 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
188 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
189 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
190 
191 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
192 		printk(KERN_INFO "  cdb: ");
193 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
194 			printk("%02x ", rq->cmd[bit]);
195 		printk("\n");
196 	}
197 }
198 EXPORT_SYMBOL(blk_dump_rq_flags);
199 
200 static void blk_delay_work(struct work_struct *work)
201 {
202 	struct request_queue *q;
203 
204 	q = container_of(work, struct request_queue, delay_work.work);
205 	spin_lock_irq(q->queue_lock);
206 	__blk_run_queue(q);
207 	spin_unlock_irq(q->queue_lock);
208 }
209 
210 /**
211  * blk_delay_queue - restart queueing after defined interval
212  * @q:		The &struct request_queue in question
213  * @msecs:	Delay in msecs
214  *
215  * Description:
216  *   Sometimes queueing needs to be postponed for a little while, to allow
217  *   resources to come back. This function will make sure that queueing is
218  *   restarted around the specified time.
219  */
220 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
221 {
222 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
223 				msecs_to_jiffies(msecs));
224 }
225 EXPORT_SYMBOL(blk_delay_queue);
226 
227 /**
228  * blk_start_queue - restart a previously stopped queue
229  * @q:    The &struct request_queue in question
230  *
231  * Description:
232  *   blk_start_queue() will clear the stop flag on the queue, and call
233  *   the request_fn for the queue if it was in a stopped state when
234  *   entered. Also see blk_stop_queue(). Queue lock must be held.
235  **/
236 void blk_start_queue(struct request_queue *q)
237 {
238 	WARN_ON(!irqs_disabled());
239 
240 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
241 	__blk_run_queue(q);
242 }
243 EXPORT_SYMBOL(blk_start_queue);
244 
245 /**
246  * blk_stop_queue - stop a queue
247  * @q:    The &struct request_queue in question
248  *
249  * Description:
250  *   The Linux block layer assumes that a block driver will consume all
251  *   entries on the request queue when the request_fn strategy is called.
252  *   Often this will not happen, because of hardware limitations (queue
253  *   depth settings). If a device driver gets a 'queue full' response,
254  *   or if it simply chooses not to queue more I/O at one point, it can
255  *   call this function to prevent the request_fn from being called until
256  *   the driver has signalled it's ready to go again. This happens by calling
257  *   blk_start_queue() to restart queue operations. Queue lock must be held.
258  **/
259 void blk_stop_queue(struct request_queue *q)
260 {
261 	__cancel_delayed_work(&q->delay_work);
262 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
263 }
264 EXPORT_SYMBOL(blk_stop_queue);
265 
266 /**
267  * blk_sync_queue - cancel any pending callbacks on a queue
268  * @q: the queue
269  *
270  * Description:
271  *     The block layer may perform asynchronous callback activity
272  *     on a queue, such as calling the unplug function after a timeout.
273  *     A block device may call blk_sync_queue to ensure that any
274  *     such activity is cancelled, thus allowing it to release resources
275  *     that the callbacks might use. The caller must already have made sure
276  *     that its ->make_request_fn will not re-add plugging prior to calling
277  *     this function.
278  *
279  *     This function does not cancel any asynchronous activity arising
280  *     out of elevator or throttling code. That would require elevaotor_exit()
281  *     and blk_throtl_exit() to be called with queue lock initialized.
282  *
283  */
284 void blk_sync_queue(struct request_queue *q)
285 {
286 	del_timer_sync(&q->timeout);
287 	cancel_delayed_work_sync(&q->delay_work);
288 }
289 EXPORT_SYMBOL(blk_sync_queue);
290 
291 /**
292  * __blk_run_queue - run a single device queue
293  * @q:	The queue to run
294  *
295  * Description:
296  *    See @blk_run_queue. This variant must be called with the queue lock
297  *    held and interrupts disabled.
298  */
299 void __blk_run_queue(struct request_queue *q)
300 {
301 	if (unlikely(blk_queue_stopped(q)))
302 		return;
303 
304 	q->request_fn(q);
305 }
306 EXPORT_SYMBOL(__blk_run_queue);
307 
308 /**
309  * blk_run_queue_async - run a single device queue in workqueue context
310  * @q:	The queue to run
311  *
312  * Description:
313  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314  *    of us.
315  */
316 void blk_run_queue_async(struct request_queue *q)
317 {
318 	if (likely(!blk_queue_stopped(q))) {
319 		__cancel_delayed_work(&q->delay_work);
320 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
321 	}
322 }
323 EXPORT_SYMBOL(blk_run_queue_async);
324 
325 /**
326  * blk_run_queue - run a single device queue
327  * @q: The queue to run
328  *
329  * Description:
330  *    Invoke request handling on this queue, if it has pending work to do.
331  *    May be used to restart queueing when a request has completed.
332  */
333 void blk_run_queue(struct request_queue *q)
334 {
335 	unsigned long flags;
336 
337 	spin_lock_irqsave(q->queue_lock, flags);
338 	__blk_run_queue(q);
339 	spin_unlock_irqrestore(q->queue_lock, flags);
340 }
341 EXPORT_SYMBOL(blk_run_queue);
342 
343 void blk_put_queue(struct request_queue *q)
344 {
345 	kobject_put(&q->kobj);
346 }
347 EXPORT_SYMBOL(blk_put_queue);
348 
349 /**
350  * blk_drain_queue - drain requests from request_queue
351  * @q: queue to drain
352  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
353  *
354  * Drain requests from @q.  If @drain_all is set, all requests are drained.
355  * If not, only ELVPRIV requests are drained.  The caller is responsible
356  * for ensuring that no new requests which need to be drained are queued.
357  */
358 void blk_drain_queue(struct request_queue *q, bool drain_all)
359 {
360 	while (true) {
361 		int nr_rqs;
362 
363 		spin_lock_irq(q->queue_lock);
364 
365 		elv_drain_elevator(q);
366 		if (drain_all)
367 			blk_throtl_drain(q);
368 
369 		__blk_run_queue(q);
370 
371 		if (drain_all)
372 			nr_rqs = q->rq.count[0] + q->rq.count[1];
373 		else
374 			nr_rqs = q->rq.elvpriv;
375 
376 		spin_unlock_irq(q->queue_lock);
377 
378 		if (!nr_rqs)
379 			break;
380 		msleep(10);
381 	}
382 }
383 
384 /**
385  * blk_cleanup_queue - shutdown a request queue
386  * @q: request queue to shutdown
387  *
388  * Mark @q DEAD, drain all pending requests, destroy and put it.  All
389  * future requests will be failed immediately with -ENODEV.
390  */
391 void blk_cleanup_queue(struct request_queue *q)
392 {
393 	spinlock_t *lock = q->queue_lock;
394 
395 	/* mark @q DEAD, no new request or merges will be allowed afterwards */
396 	mutex_lock(&q->sysfs_lock);
397 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
398 
399 	spin_lock_irq(lock);
400 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
401 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
402 	queue_flag_set(QUEUE_FLAG_DEAD, q);
403 
404 	if (q->queue_lock != &q->__queue_lock)
405 		q->queue_lock = &q->__queue_lock;
406 
407 	spin_unlock_irq(lock);
408 	mutex_unlock(&q->sysfs_lock);
409 
410 	/*
411 	 * Drain all requests queued before DEAD marking.  The caller might
412 	 * be trying to tear down @q before its elevator is initialized, in
413 	 * which case we don't want to call into draining.
414 	 */
415 	if (q->elevator)
416 		blk_drain_queue(q, true);
417 
418 	/* @q won't process any more request, flush async actions */
419 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
420 	blk_sync_queue(q);
421 
422 	/* @q is and will stay empty, shutdown and put */
423 	blk_put_queue(q);
424 }
425 EXPORT_SYMBOL(blk_cleanup_queue);
426 
427 static int blk_init_free_list(struct request_queue *q)
428 {
429 	struct request_list *rl = &q->rq;
430 
431 	if (unlikely(rl->rq_pool))
432 		return 0;
433 
434 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
435 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
436 	rl->elvpriv = 0;
437 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
438 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
439 
440 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
441 				mempool_free_slab, request_cachep, q->node);
442 
443 	if (!rl->rq_pool)
444 		return -ENOMEM;
445 
446 	return 0;
447 }
448 
449 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
450 {
451 	return blk_alloc_queue_node(gfp_mask, -1);
452 }
453 EXPORT_SYMBOL(blk_alloc_queue);
454 
455 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
456 {
457 	struct request_queue *q;
458 	int err;
459 
460 	q = kmem_cache_alloc_node(blk_requestq_cachep,
461 				gfp_mask | __GFP_ZERO, node_id);
462 	if (!q)
463 		return NULL;
464 
465 	q->backing_dev_info.ra_pages =
466 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
467 	q->backing_dev_info.state = 0;
468 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
469 	q->backing_dev_info.name = "block";
470 
471 	err = bdi_init(&q->backing_dev_info);
472 	if (err) {
473 		kmem_cache_free(blk_requestq_cachep, q);
474 		return NULL;
475 	}
476 
477 	if (blk_throtl_init(q)) {
478 		kmem_cache_free(blk_requestq_cachep, q);
479 		return NULL;
480 	}
481 
482 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
483 		    laptop_mode_timer_fn, (unsigned long) q);
484 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
485 	INIT_LIST_HEAD(&q->timeout_list);
486 	INIT_LIST_HEAD(&q->flush_queue[0]);
487 	INIT_LIST_HEAD(&q->flush_queue[1]);
488 	INIT_LIST_HEAD(&q->flush_data_in_flight);
489 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
490 
491 	kobject_init(&q->kobj, &blk_queue_ktype);
492 
493 	mutex_init(&q->sysfs_lock);
494 	spin_lock_init(&q->__queue_lock);
495 
496 	/*
497 	 * By default initialize queue_lock to internal lock and driver can
498 	 * override it later if need be.
499 	 */
500 	q->queue_lock = &q->__queue_lock;
501 
502 	return q;
503 }
504 EXPORT_SYMBOL(blk_alloc_queue_node);
505 
506 /**
507  * blk_init_queue  - prepare a request queue for use with a block device
508  * @rfn:  The function to be called to process requests that have been
509  *        placed on the queue.
510  * @lock: Request queue spin lock
511  *
512  * Description:
513  *    If a block device wishes to use the standard request handling procedures,
514  *    which sorts requests and coalesces adjacent requests, then it must
515  *    call blk_init_queue().  The function @rfn will be called when there
516  *    are requests on the queue that need to be processed.  If the device
517  *    supports plugging, then @rfn may not be called immediately when requests
518  *    are available on the queue, but may be called at some time later instead.
519  *    Plugged queues are generally unplugged when a buffer belonging to one
520  *    of the requests on the queue is needed, or due to memory pressure.
521  *
522  *    @rfn is not required, or even expected, to remove all requests off the
523  *    queue, but only as many as it can handle at a time.  If it does leave
524  *    requests on the queue, it is responsible for arranging that the requests
525  *    get dealt with eventually.
526  *
527  *    The queue spin lock must be held while manipulating the requests on the
528  *    request queue; this lock will be taken also from interrupt context, so irq
529  *    disabling is needed for it.
530  *
531  *    Function returns a pointer to the initialized request queue, or %NULL if
532  *    it didn't succeed.
533  *
534  * Note:
535  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
536  *    when the block device is deactivated (such as at module unload).
537  **/
538 
539 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
540 {
541 	return blk_init_queue_node(rfn, lock, -1);
542 }
543 EXPORT_SYMBOL(blk_init_queue);
544 
545 struct request_queue *
546 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
547 {
548 	struct request_queue *uninit_q, *q;
549 
550 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
551 	if (!uninit_q)
552 		return NULL;
553 
554 	q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
555 	if (!q)
556 		blk_cleanup_queue(uninit_q);
557 
558 	return q;
559 }
560 EXPORT_SYMBOL(blk_init_queue_node);
561 
562 struct request_queue *
563 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
564 			 spinlock_t *lock)
565 {
566 	return blk_init_allocated_queue_node(q, rfn, lock, -1);
567 }
568 EXPORT_SYMBOL(blk_init_allocated_queue);
569 
570 struct request_queue *
571 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
572 			      spinlock_t *lock, int node_id)
573 {
574 	if (!q)
575 		return NULL;
576 
577 	q->node = node_id;
578 	if (blk_init_free_list(q))
579 		return NULL;
580 
581 	q->request_fn		= rfn;
582 	q->prep_rq_fn		= NULL;
583 	q->unprep_rq_fn		= NULL;
584 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
585 
586 	/* Override internal queue lock with supplied lock pointer */
587 	if (lock)
588 		q->queue_lock		= lock;
589 
590 	/*
591 	 * This also sets hw/phys segments, boundary and size
592 	 */
593 	blk_queue_make_request(q, blk_queue_bio);
594 
595 	q->sg_reserved_size = INT_MAX;
596 
597 	/*
598 	 * all done
599 	 */
600 	if (!elevator_init(q, NULL)) {
601 		blk_queue_congestion_threshold(q);
602 		return q;
603 	}
604 
605 	return NULL;
606 }
607 EXPORT_SYMBOL(blk_init_allocated_queue_node);
608 
609 int blk_get_queue(struct request_queue *q)
610 {
611 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
612 		kobject_get(&q->kobj);
613 		return 0;
614 	}
615 
616 	return 1;
617 }
618 EXPORT_SYMBOL(blk_get_queue);
619 
620 static inline void blk_free_request(struct request_queue *q, struct request *rq)
621 {
622 	if (rq->cmd_flags & REQ_ELVPRIV)
623 		elv_put_request(q, rq);
624 	mempool_free(rq, q->rq.rq_pool);
625 }
626 
627 static struct request *
628 blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
629 {
630 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
631 
632 	if (!rq)
633 		return NULL;
634 
635 	blk_rq_init(q, rq);
636 
637 	rq->cmd_flags = flags | REQ_ALLOCED;
638 
639 	if ((flags & REQ_ELVPRIV) &&
640 	    unlikely(elv_set_request(q, rq, gfp_mask))) {
641 		mempool_free(rq, q->rq.rq_pool);
642 		return NULL;
643 	}
644 
645 	return rq;
646 }
647 
648 /*
649  * ioc_batching returns true if the ioc is a valid batching request and
650  * should be given priority access to a request.
651  */
652 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
653 {
654 	if (!ioc)
655 		return 0;
656 
657 	/*
658 	 * Make sure the process is able to allocate at least 1 request
659 	 * even if the batch times out, otherwise we could theoretically
660 	 * lose wakeups.
661 	 */
662 	return ioc->nr_batch_requests == q->nr_batching ||
663 		(ioc->nr_batch_requests > 0
664 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
665 }
666 
667 /*
668  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
669  * will cause the process to be a "batcher" on all queues in the system. This
670  * is the behaviour we want though - once it gets a wakeup it should be given
671  * a nice run.
672  */
673 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
674 {
675 	if (!ioc || ioc_batching(q, ioc))
676 		return;
677 
678 	ioc->nr_batch_requests = q->nr_batching;
679 	ioc->last_waited = jiffies;
680 }
681 
682 static void __freed_request(struct request_queue *q, int sync)
683 {
684 	struct request_list *rl = &q->rq;
685 
686 	if (rl->count[sync] < queue_congestion_off_threshold(q))
687 		blk_clear_queue_congested(q, sync);
688 
689 	if (rl->count[sync] + 1 <= q->nr_requests) {
690 		if (waitqueue_active(&rl->wait[sync]))
691 			wake_up(&rl->wait[sync]);
692 
693 		blk_clear_queue_full(q, sync);
694 	}
695 }
696 
697 /*
698  * A request has just been released.  Account for it, update the full and
699  * congestion status, wake up any waiters.   Called under q->queue_lock.
700  */
701 static void freed_request(struct request_queue *q, unsigned int flags)
702 {
703 	struct request_list *rl = &q->rq;
704 	int sync = rw_is_sync(flags);
705 
706 	rl->count[sync]--;
707 	if (flags & REQ_ELVPRIV)
708 		rl->elvpriv--;
709 
710 	__freed_request(q, sync);
711 
712 	if (unlikely(rl->starved[sync ^ 1]))
713 		__freed_request(q, sync ^ 1);
714 }
715 
716 /*
717  * Determine if elevator data should be initialized when allocating the
718  * request associated with @bio.
719  */
720 static bool blk_rq_should_init_elevator(struct bio *bio)
721 {
722 	if (!bio)
723 		return true;
724 
725 	/*
726 	 * Flush requests do not use the elevator so skip initialization.
727 	 * This allows a request to share the flush and elevator data.
728 	 */
729 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
730 		return false;
731 
732 	return true;
733 }
734 
735 /**
736  * get_request - get a free request
737  * @q: request_queue to allocate request from
738  * @rw_flags: RW and SYNC flags
739  * @bio: bio to allocate request for (can be %NULL)
740  * @gfp_mask: allocation mask
741  *
742  * Get a free request from @q.  This function may fail under memory
743  * pressure or if @q is dead.
744  *
745  * Must be callled with @q->queue_lock held and,
746  * Returns %NULL on failure, with @q->queue_lock held.
747  * Returns !%NULL on success, with @q->queue_lock *not held*.
748  */
749 static struct request *get_request(struct request_queue *q, int rw_flags,
750 				   struct bio *bio, gfp_t gfp_mask)
751 {
752 	struct request *rq = NULL;
753 	struct request_list *rl = &q->rq;
754 	struct io_context *ioc = NULL;
755 	const bool is_sync = rw_is_sync(rw_flags) != 0;
756 	int may_queue;
757 
758 	if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
759 		return NULL;
760 
761 	may_queue = elv_may_queue(q, rw_flags);
762 	if (may_queue == ELV_MQUEUE_NO)
763 		goto rq_starved;
764 
765 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
766 		if (rl->count[is_sync]+1 >= q->nr_requests) {
767 			ioc = current_io_context(GFP_ATOMIC, q->node);
768 			/*
769 			 * The queue will fill after this allocation, so set
770 			 * it as full, and mark this process as "batching".
771 			 * This process will be allowed to complete a batch of
772 			 * requests, others will be blocked.
773 			 */
774 			if (!blk_queue_full(q, is_sync)) {
775 				ioc_set_batching(q, ioc);
776 				blk_set_queue_full(q, is_sync);
777 			} else {
778 				if (may_queue != ELV_MQUEUE_MUST
779 						&& !ioc_batching(q, ioc)) {
780 					/*
781 					 * The queue is full and the allocating
782 					 * process is not a "batcher", and not
783 					 * exempted by the IO scheduler
784 					 */
785 					goto out;
786 				}
787 			}
788 		}
789 		blk_set_queue_congested(q, is_sync);
790 	}
791 
792 	/*
793 	 * Only allow batching queuers to allocate up to 50% over the defined
794 	 * limit of requests, otherwise we could have thousands of requests
795 	 * allocated with any setting of ->nr_requests
796 	 */
797 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
798 		goto out;
799 
800 	rl->count[is_sync]++;
801 	rl->starved[is_sync] = 0;
802 
803 	if (blk_rq_should_init_elevator(bio) &&
804 	    !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
805 		rw_flags |= REQ_ELVPRIV;
806 		rl->elvpriv++;
807 	}
808 
809 	if (blk_queue_io_stat(q))
810 		rw_flags |= REQ_IO_STAT;
811 	spin_unlock_irq(q->queue_lock);
812 
813 	rq = blk_alloc_request(q, rw_flags, gfp_mask);
814 	if (unlikely(!rq)) {
815 		/*
816 		 * Allocation failed presumably due to memory. Undo anything
817 		 * we might have messed up.
818 		 *
819 		 * Allocating task should really be put onto the front of the
820 		 * wait queue, but this is pretty rare.
821 		 */
822 		spin_lock_irq(q->queue_lock);
823 		freed_request(q, rw_flags);
824 
825 		/*
826 		 * in the very unlikely event that allocation failed and no
827 		 * requests for this direction was pending, mark us starved
828 		 * so that freeing of a request in the other direction will
829 		 * notice us. another possible fix would be to split the
830 		 * rq mempool into READ and WRITE
831 		 */
832 rq_starved:
833 		if (unlikely(rl->count[is_sync] == 0))
834 			rl->starved[is_sync] = 1;
835 
836 		goto out;
837 	}
838 
839 	/*
840 	 * ioc may be NULL here, and ioc_batching will be false. That's
841 	 * OK, if the queue is under the request limit then requests need
842 	 * not count toward the nr_batch_requests limit. There will always
843 	 * be some limit enforced by BLK_BATCH_TIME.
844 	 */
845 	if (ioc_batching(q, ioc))
846 		ioc->nr_batch_requests--;
847 
848 	trace_block_getrq(q, bio, rw_flags & 1);
849 out:
850 	return rq;
851 }
852 
853 /**
854  * get_request_wait - get a free request with retry
855  * @q: request_queue to allocate request from
856  * @rw_flags: RW and SYNC flags
857  * @bio: bio to allocate request for (can be %NULL)
858  *
859  * Get a free request from @q.  This function keeps retrying under memory
860  * pressure and fails iff @q is dead.
861  *
862  * Must be callled with @q->queue_lock held and,
863  * Returns %NULL on failure, with @q->queue_lock held.
864  * Returns !%NULL on success, with @q->queue_lock *not held*.
865  */
866 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
867 					struct bio *bio)
868 {
869 	const bool is_sync = rw_is_sync(rw_flags) != 0;
870 	struct request *rq;
871 
872 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
873 	while (!rq) {
874 		DEFINE_WAIT(wait);
875 		struct io_context *ioc;
876 		struct request_list *rl = &q->rq;
877 
878 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
879 			return NULL;
880 
881 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
882 				TASK_UNINTERRUPTIBLE);
883 
884 		trace_block_sleeprq(q, bio, rw_flags & 1);
885 
886 		spin_unlock_irq(q->queue_lock);
887 		io_schedule();
888 
889 		/*
890 		 * After sleeping, we become a "batching" process and
891 		 * will be able to allocate at least one request, and
892 		 * up to a big batch of them for a small period time.
893 		 * See ioc_batching, ioc_set_batching
894 		 */
895 		ioc = current_io_context(GFP_NOIO, q->node);
896 		ioc_set_batching(q, ioc);
897 
898 		spin_lock_irq(q->queue_lock);
899 		finish_wait(&rl->wait[is_sync], &wait);
900 
901 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
902 	};
903 
904 	return rq;
905 }
906 
907 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
908 {
909 	struct request *rq;
910 
911 	BUG_ON(rw != READ && rw != WRITE);
912 
913 	spin_lock_irq(q->queue_lock);
914 	if (gfp_mask & __GFP_WAIT)
915 		rq = get_request_wait(q, rw, NULL);
916 	else
917 		rq = get_request(q, rw, NULL, gfp_mask);
918 	if (!rq)
919 		spin_unlock_irq(q->queue_lock);
920 	/* q->queue_lock is unlocked at this point */
921 
922 	return rq;
923 }
924 EXPORT_SYMBOL(blk_get_request);
925 
926 /**
927  * blk_make_request - given a bio, allocate a corresponding struct request.
928  * @q: target request queue
929  * @bio:  The bio describing the memory mappings that will be submitted for IO.
930  *        It may be a chained-bio properly constructed by block/bio layer.
931  * @gfp_mask: gfp flags to be used for memory allocation
932  *
933  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
934  * type commands. Where the struct request needs to be farther initialized by
935  * the caller. It is passed a &struct bio, which describes the memory info of
936  * the I/O transfer.
937  *
938  * The caller of blk_make_request must make sure that bi_io_vec
939  * are set to describe the memory buffers. That bio_data_dir() will return
940  * the needed direction of the request. (And all bio's in the passed bio-chain
941  * are properly set accordingly)
942  *
943  * If called under none-sleepable conditions, mapped bio buffers must not
944  * need bouncing, by calling the appropriate masked or flagged allocator,
945  * suitable for the target device. Otherwise the call to blk_queue_bounce will
946  * BUG.
947  *
948  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
949  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
950  * anything but the first bio in the chain. Otherwise you risk waiting for IO
951  * completion of a bio that hasn't been submitted yet, thus resulting in a
952  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
953  * of bio_alloc(), as that avoids the mempool deadlock.
954  * If possible a big IO should be split into smaller parts when allocation
955  * fails. Partial allocation should not be an error, or you risk a live-lock.
956  */
957 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
958 				 gfp_t gfp_mask)
959 {
960 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
961 
962 	if (unlikely(!rq))
963 		return ERR_PTR(-ENOMEM);
964 
965 	for_each_bio(bio) {
966 		struct bio *bounce_bio = bio;
967 		int ret;
968 
969 		blk_queue_bounce(q, &bounce_bio);
970 		ret = blk_rq_append_bio(q, rq, bounce_bio);
971 		if (unlikely(ret)) {
972 			blk_put_request(rq);
973 			return ERR_PTR(ret);
974 		}
975 	}
976 
977 	return rq;
978 }
979 EXPORT_SYMBOL(blk_make_request);
980 
981 /**
982  * blk_requeue_request - put a request back on queue
983  * @q:		request queue where request should be inserted
984  * @rq:		request to be inserted
985  *
986  * Description:
987  *    Drivers often keep queueing requests until the hardware cannot accept
988  *    more, when that condition happens we need to put the request back
989  *    on the queue. Must be called with queue lock held.
990  */
991 void blk_requeue_request(struct request_queue *q, struct request *rq)
992 {
993 	blk_delete_timer(rq);
994 	blk_clear_rq_complete(rq);
995 	trace_block_rq_requeue(q, rq);
996 
997 	if (blk_rq_tagged(rq))
998 		blk_queue_end_tag(q, rq);
999 
1000 	BUG_ON(blk_queued_rq(rq));
1001 
1002 	elv_requeue_request(q, rq);
1003 }
1004 EXPORT_SYMBOL(blk_requeue_request);
1005 
1006 static void add_acct_request(struct request_queue *q, struct request *rq,
1007 			     int where)
1008 {
1009 	drive_stat_acct(rq, 1);
1010 	__elv_add_request(q, rq, where);
1011 }
1012 
1013 /**
1014  * blk_insert_request - insert a special request into a request queue
1015  * @q:		request queue where request should be inserted
1016  * @rq:		request to be inserted
1017  * @at_head:	insert request at head or tail of queue
1018  * @data:	private data
1019  *
1020  * Description:
1021  *    Many block devices need to execute commands asynchronously, so they don't
1022  *    block the whole kernel from preemption during request execution.  This is
1023  *    accomplished normally by inserting aritficial requests tagged as
1024  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1025  *    be scheduled for actual execution by the request queue.
1026  *
1027  *    We have the option of inserting the head or the tail of the queue.
1028  *    Typically we use the tail for new ioctls and so forth.  We use the head
1029  *    of the queue for things like a QUEUE_FULL message from a device, or a
1030  *    host that is unable to accept a particular command.
1031  */
1032 void blk_insert_request(struct request_queue *q, struct request *rq,
1033 			int at_head, void *data)
1034 {
1035 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1036 	unsigned long flags;
1037 
1038 	/*
1039 	 * tell I/O scheduler that this isn't a regular read/write (ie it
1040 	 * must not attempt merges on this) and that it acts as a soft
1041 	 * barrier
1042 	 */
1043 	rq->cmd_type = REQ_TYPE_SPECIAL;
1044 
1045 	rq->special = data;
1046 
1047 	spin_lock_irqsave(q->queue_lock, flags);
1048 
1049 	/*
1050 	 * If command is tagged, release the tag
1051 	 */
1052 	if (blk_rq_tagged(rq))
1053 		blk_queue_end_tag(q, rq);
1054 
1055 	add_acct_request(q, rq, where);
1056 	__blk_run_queue(q);
1057 	spin_unlock_irqrestore(q->queue_lock, flags);
1058 }
1059 EXPORT_SYMBOL(blk_insert_request);
1060 
1061 static void part_round_stats_single(int cpu, struct hd_struct *part,
1062 				    unsigned long now)
1063 {
1064 	if (now == part->stamp)
1065 		return;
1066 
1067 	if (part_in_flight(part)) {
1068 		__part_stat_add(cpu, part, time_in_queue,
1069 				part_in_flight(part) * (now - part->stamp));
1070 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1071 	}
1072 	part->stamp = now;
1073 }
1074 
1075 /**
1076  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1077  * @cpu: cpu number for stats access
1078  * @part: target partition
1079  *
1080  * The average IO queue length and utilisation statistics are maintained
1081  * by observing the current state of the queue length and the amount of
1082  * time it has been in this state for.
1083  *
1084  * Normally, that accounting is done on IO completion, but that can result
1085  * in more than a second's worth of IO being accounted for within any one
1086  * second, leading to >100% utilisation.  To deal with that, we call this
1087  * function to do a round-off before returning the results when reading
1088  * /proc/diskstats.  This accounts immediately for all queue usage up to
1089  * the current jiffies and restarts the counters again.
1090  */
1091 void part_round_stats(int cpu, struct hd_struct *part)
1092 {
1093 	unsigned long now = jiffies;
1094 
1095 	if (part->partno)
1096 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1097 	part_round_stats_single(cpu, part, now);
1098 }
1099 EXPORT_SYMBOL_GPL(part_round_stats);
1100 
1101 /*
1102  * queue lock must be held
1103  */
1104 void __blk_put_request(struct request_queue *q, struct request *req)
1105 {
1106 	if (unlikely(!q))
1107 		return;
1108 	if (unlikely(--req->ref_count))
1109 		return;
1110 
1111 	elv_completed_request(q, req);
1112 
1113 	/* this is a bio leak */
1114 	WARN_ON(req->bio != NULL);
1115 
1116 	/*
1117 	 * Request may not have originated from ll_rw_blk. if not,
1118 	 * it didn't come out of our reserved rq pools
1119 	 */
1120 	if (req->cmd_flags & REQ_ALLOCED) {
1121 		unsigned int flags = req->cmd_flags;
1122 
1123 		BUG_ON(!list_empty(&req->queuelist));
1124 		BUG_ON(!hlist_unhashed(&req->hash));
1125 
1126 		blk_free_request(q, req);
1127 		freed_request(q, flags);
1128 	}
1129 }
1130 EXPORT_SYMBOL_GPL(__blk_put_request);
1131 
1132 void blk_put_request(struct request *req)
1133 {
1134 	unsigned long flags;
1135 	struct request_queue *q = req->q;
1136 
1137 	spin_lock_irqsave(q->queue_lock, flags);
1138 	__blk_put_request(q, req);
1139 	spin_unlock_irqrestore(q->queue_lock, flags);
1140 }
1141 EXPORT_SYMBOL(blk_put_request);
1142 
1143 /**
1144  * blk_add_request_payload - add a payload to a request
1145  * @rq: request to update
1146  * @page: page backing the payload
1147  * @len: length of the payload.
1148  *
1149  * This allows to later add a payload to an already submitted request by
1150  * a block driver.  The driver needs to take care of freeing the payload
1151  * itself.
1152  *
1153  * Note that this is a quite horrible hack and nothing but handling of
1154  * discard requests should ever use it.
1155  */
1156 void blk_add_request_payload(struct request *rq, struct page *page,
1157 		unsigned int len)
1158 {
1159 	struct bio *bio = rq->bio;
1160 
1161 	bio->bi_io_vec->bv_page = page;
1162 	bio->bi_io_vec->bv_offset = 0;
1163 	bio->bi_io_vec->bv_len = len;
1164 
1165 	bio->bi_size = len;
1166 	bio->bi_vcnt = 1;
1167 	bio->bi_phys_segments = 1;
1168 
1169 	rq->__data_len = rq->resid_len = len;
1170 	rq->nr_phys_segments = 1;
1171 	rq->buffer = bio_data(bio);
1172 }
1173 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1174 
1175 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1176 				   struct bio *bio)
1177 {
1178 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1179 
1180 	if (!ll_back_merge_fn(q, req, bio))
1181 		return false;
1182 
1183 	trace_block_bio_backmerge(q, bio);
1184 
1185 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1186 		blk_rq_set_mixed_merge(req);
1187 
1188 	req->biotail->bi_next = bio;
1189 	req->biotail = bio;
1190 	req->__data_len += bio->bi_size;
1191 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1192 
1193 	drive_stat_acct(req, 0);
1194 	elv_bio_merged(q, req, bio);
1195 	return true;
1196 }
1197 
1198 static bool bio_attempt_front_merge(struct request_queue *q,
1199 				    struct request *req, struct bio *bio)
1200 {
1201 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1202 
1203 	if (!ll_front_merge_fn(q, req, bio))
1204 		return false;
1205 
1206 	trace_block_bio_frontmerge(q, bio);
1207 
1208 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1209 		blk_rq_set_mixed_merge(req);
1210 
1211 	bio->bi_next = req->bio;
1212 	req->bio = bio;
1213 
1214 	/*
1215 	 * may not be valid. if the low level driver said
1216 	 * it didn't need a bounce buffer then it better
1217 	 * not touch req->buffer either...
1218 	 */
1219 	req->buffer = bio_data(bio);
1220 	req->__sector = bio->bi_sector;
1221 	req->__data_len += bio->bi_size;
1222 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1223 
1224 	drive_stat_acct(req, 0);
1225 	elv_bio_merged(q, req, bio);
1226 	return true;
1227 }
1228 
1229 /**
1230  * attempt_plug_merge - try to merge with %current's plugged list
1231  * @q: request_queue new bio is being queued at
1232  * @bio: new bio being queued
1233  * @request_count: out parameter for number of traversed plugged requests
1234  *
1235  * Determine whether @bio being queued on @q can be merged with a request
1236  * on %current's plugged list.  Returns %true if merge was successful,
1237  * otherwise %false.
1238  *
1239  * This function is called without @q->queue_lock; however, elevator is
1240  * accessed iff there already are requests on the plugged list which in
1241  * turn guarantees validity of the elevator.
1242  *
1243  * Note that, on successful merge, elevator operation
1244  * elevator_bio_merged_fn() will be called without queue lock.  Elevator
1245  * must be ready for this.
1246  */
1247 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1248 			       unsigned int *request_count)
1249 {
1250 	struct blk_plug *plug;
1251 	struct request *rq;
1252 	bool ret = false;
1253 
1254 	plug = current->plug;
1255 	if (!plug)
1256 		goto out;
1257 	*request_count = 0;
1258 
1259 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1260 		int el_ret;
1261 
1262 		(*request_count)++;
1263 
1264 		if (rq->q != q)
1265 			continue;
1266 
1267 		el_ret = elv_try_merge(rq, bio);
1268 		if (el_ret == ELEVATOR_BACK_MERGE) {
1269 			ret = bio_attempt_back_merge(q, rq, bio);
1270 			if (ret)
1271 				break;
1272 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1273 			ret = bio_attempt_front_merge(q, rq, bio);
1274 			if (ret)
1275 				break;
1276 		}
1277 	}
1278 out:
1279 	return ret;
1280 }
1281 
1282 void init_request_from_bio(struct request *req, struct bio *bio)
1283 {
1284 	req->cmd_type = REQ_TYPE_FS;
1285 
1286 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1287 	if (bio->bi_rw & REQ_RAHEAD)
1288 		req->cmd_flags |= REQ_FAILFAST_MASK;
1289 
1290 	req->errors = 0;
1291 	req->__sector = bio->bi_sector;
1292 	req->ioprio = bio_prio(bio);
1293 	blk_rq_bio_prep(req->q, req, bio);
1294 }
1295 
1296 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1297 {
1298 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1299 	struct blk_plug *plug;
1300 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1301 	struct request *req;
1302 	unsigned int request_count = 0;
1303 
1304 	/*
1305 	 * low level driver can indicate that it wants pages above a
1306 	 * certain limit bounced to low memory (ie for highmem, or even
1307 	 * ISA dma in theory)
1308 	 */
1309 	blk_queue_bounce(q, &bio);
1310 
1311 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1312 		spin_lock_irq(q->queue_lock);
1313 		where = ELEVATOR_INSERT_FLUSH;
1314 		goto get_rq;
1315 	}
1316 
1317 	/*
1318 	 * Check if we can merge with the plugged list before grabbing
1319 	 * any locks.
1320 	 */
1321 	if (attempt_plug_merge(q, bio, &request_count))
1322 		return;
1323 
1324 	spin_lock_irq(q->queue_lock);
1325 
1326 	el_ret = elv_merge(q, &req, bio);
1327 	if (el_ret == ELEVATOR_BACK_MERGE) {
1328 		if (bio_attempt_back_merge(q, req, bio)) {
1329 			if (!attempt_back_merge(q, req))
1330 				elv_merged_request(q, req, el_ret);
1331 			goto out_unlock;
1332 		}
1333 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1334 		if (bio_attempt_front_merge(q, req, bio)) {
1335 			if (!attempt_front_merge(q, req))
1336 				elv_merged_request(q, req, el_ret);
1337 			goto out_unlock;
1338 		}
1339 	}
1340 
1341 get_rq:
1342 	/*
1343 	 * This sync check and mask will be re-done in init_request_from_bio(),
1344 	 * but we need to set it earlier to expose the sync flag to the
1345 	 * rq allocator and io schedulers.
1346 	 */
1347 	rw_flags = bio_data_dir(bio);
1348 	if (sync)
1349 		rw_flags |= REQ_SYNC;
1350 
1351 	/*
1352 	 * Grab a free request. This is might sleep but can not fail.
1353 	 * Returns with the queue unlocked.
1354 	 */
1355 	req = get_request_wait(q, rw_flags, bio);
1356 	if (unlikely(!req)) {
1357 		bio_endio(bio, -ENODEV);	/* @q is dead */
1358 		goto out_unlock;
1359 	}
1360 
1361 	/*
1362 	 * After dropping the lock and possibly sleeping here, our request
1363 	 * may now be mergeable after it had proven unmergeable (above).
1364 	 * We don't worry about that case for efficiency. It won't happen
1365 	 * often, and the elevators are able to handle it.
1366 	 */
1367 	init_request_from_bio(req, bio);
1368 
1369 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1370 		req->cpu = raw_smp_processor_id();
1371 
1372 	plug = current->plug;
1373 	if (plug) {
1374 		/*
1375 		 * If this is the first request added after a plug, fire
1376 		 * of a plug trace. If others have been added before, check
1377 		 * if we have multiple devices in this plug. If so, make a
1378 		 * note to sort the list before dispatch.
1379 		 */
1380 		if (list_empty(&plug->list))
1381 			trace_block_plug(q);
1382 		else if (!plug->should_sort) {
1383 			struct request *__rq;
1384 
1385 			__rq = list_entry_rq(plug->list.prev);
1386 			if (__rq->q != q)
1387 				plug->should_sort = 1;
1388 		}
1389 		if (request_count >= BLK_MAX_REQUEST_COUNT)
1390 			blk_flush_plug_list(plug, false);
1391 		list_add_tail(&req->queuelist, &plug->list);
1392 		drive_stat_acct(req, 1);
1393 	} else {
1394 		spin_lock_irq(q->queue_lock);
1395 		add_acct_request(q, req, where);
1396 		__blk_run_queue(q);
1397 out_unlock:
1398 		spin_unlock_irq(q->queue_lock);
1399 	}
1400 }
1401 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1402 
1403 /*
1404  * If bio->bi_dev is a partition, remap the location
1405  */
1406 static inline void blk_partition_remap(struct bio *bio)
1407 {
1408 	struct block_device *bdev = bio->bi_bdev;
1409 
1410 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1411 		struct hd_struct *p = bdev->bd_part;
1412 
1413 		bio->bi_sector += p->start_sect;
1414 		bio->bi_bdev = bdev->bd_contains;
1415 
1416 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1417 				      bdev->bd_dev,
1418 				      bio->bi_sector - p->start_sect);
1419 	}
1420 }
1421 
1422 static void handle_bad_sector(struct bio *bio)
1423 {
1424 	char b[BDEVNAME_SIZE];
1425 
1426 	printk(KERN_INFO "attempt to access beyond end of device\n");
1427 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1428 			bdevname(bio->bi_bdev, b),
1429 			bio->bi_rw,
1430 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1431 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1432 
1433 	set_bit(BIO_EOF, &bio->bi_flags);
1434 }
1435 
1436 #ifdef CONFIG_FAIL_MAKE_REQUEST
1437 
1438 static DECLARE_FAULT_ATTR(fail_make_request);
1439 
1440 static int __init setup_fail_make_request(char *str)
1441 {
1442 	return setup_fault_attr(&fail_make_request, str);
1443 }
1444 __setup("fail_make_request=", setup_fail_make_request);
1445 
1446 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1447 {
1448 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1449 }
1450 
1451 static int __init fail_make_request_debugfs(void)
1452 {
1453 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1454 						NULL, &fail_make_request);
1455 
1456 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1457 }
1458 
1459 late_initcall(fail_make_request_debugfs);
1460 
1461 #else /* CONFIG_FAIL_MAKE_REQUEST */
1462 
1463 static inline bool should_fail_request(struct hd_struct *part,
1464 					unsigned int bytes)
1465 {
1466 	return false;
1467 }
1468 
1469 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1470 
1471 /*
1472  * Check whether this bio extends beyond the end of the device.
1473  */
1474 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1475 {
1476 	sector_t maxsector;
1477 
1478 	if (!nr_sectors)
1479 		return 0;
1480 
1481 	/* Test device or partition size, when known. */
1482 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1483 	if (maxsector) {
1484 		sector_t sector = bio->bi_sector;
1485 
1486 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1487 			/*
1488 			 * This may well happen - the kernel calls bread()
1489 			 * without checking the size of the device, e.g., when
1490 			 * mounting a device.
1491 			 */
1492 			handle_bad_sector(bio);
1493 			return 1;
1494 		}
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static noinline_for_stack bool
1501 generic_make_request_checks(struct bio *bio)
1502 {
1503 	struct request_queue *q;
1504 	int nr_sectors = bio_sectors(bio);
1505 	int err = -EIO;
1506 	char b[BDEVNAME_SIZE];
1507 	struct hd_struct *part;
1508 
1509 	might_sleep();
1510 
1511 	if (bio_check_eod(bio, nr_sectors))
1512 		goto end_io;
1513 
1514 	q = bdev_get_queue(bio->bi_bdev);
1515 	if (unlikely(!q)) {
1516 		printk(KERN_ERR
1517 		       "generic_make_request: Trying to access "
1518 			"nonexistent block-device %s (%Lu)\n",
1519 			bdevname(bio->bi_bdev, b),
1520 			(long long) bio->bi_sector);
1521 		goto end_io;
1522 	}
1523 
1524 	if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1525 		     nr_sectors > queue_max_hw_sectors(q))) {
1526 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1527 		       bdevname(bio->bi_bdev, b),
1528 		       bio_sectors(bio),
1529 		       queue_max_hw_sectors(q));
1530 		goto end_io;
1531 	}
1532 
1533 	part = bio->bi_bdev->bd_part;
1534 	if (should_fail_request(part, bio->bi_size) ||
1535 	    should_fail_request(&part_to_disk(part)->part0,
1536 				bio->bi_size))
1537 		goto end_io;
1538 
1539 	/*
1540 	 * If this device has partitions, remap block n
1541 	 * of partition p to block n+start(p) of the disk.
1542 	 */
1543 	blk_partition_remap(bio);
1544 
1545 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1546 		goto end_io;
1547 
1548 	if (bio_check_eod(bio, nr_sectors))
1549 		goto end_io;
1550 
1551 	/*
1552 	 * Filter flush bio's early so that make_request based
1553 	 * drivers without flush support don't have to worry
1554 	 * about them.
1555 	 */
1556 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1557 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1558 		if (!nr_sectors) {
1559 			err = 0;
1560 			goto end_io;
1561 		}
1562 	}
1563 
1564 	if ((bio->bi_rw & REQ_DISCARD) &&
1565 	    (!blk_queue_discard(q) ||
1566 	     ((bio->bi_rw & REQ_SECURE) &&
1567 	      !blk_queue_secdiscard(q)))) {
1568 		err = -EOPNOTSUPP;
1569 		goto end_io;
1570 	}
1571 
1572 	if (blk_throtl_bio(q, bio))
1573 		return false;	/* throttled, will be resubmitted later */
1574 
1575 	trace_block_bio_queue(q, bio);
1576 	return true;
1577 
1578 end_io:
1579 	bio_endio(bio, err);
1580 	return false;
1581 }
1582 
1583 /**
1584  * generic_make_request - hand a buffer to its device driver for I/O
1585  * @bio:  The bio describing the location in memory and on the device.
1586  *
1587  * generic_make_request() is used to make I/O requests of block
1588  * devices. It is passed a &struct bio, which describes the I/O that needs
1589  * to be done.
1590  *
1591  * generic_make_request() does not return any status.  The
1592  * success/failure status of the request, along with notification of
1593  * completion, is delivered asynchronously through the bio->bi_end_io
1594  * function described (one day) else where.
1595  *
1596  * The caller of generic_make_request must make sure that bi_io_vec
1597  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1598  * set to describe the device address, and the
1599  * bi_end_io and optionally bi_private are set to describe how
1600  * completion notification should be signaled.
1601  *
1602  * generic_make_request and the drivers it calls may use bi_next if this
1603  * bio happens to be merged with someone else, and may resubmit the bio to
1604  * a lower device by calling into generic_make_request recursively, which
1605  * means the bio should NOT be touched after the call to ->make_request_fn.
1606  */
1607 void generic_make_request(struct bio *bio)
1608 {
1609 	struct bio_list bio_list_on_stack;
1610 
1611 	if (!generic_make_request_checks(bio))
1612 		return;
1613 
1614 	/*
1615 	 * We only want one ->make_request_fn to be active at a time, else
1616 	 * stack usage with stacked devices could be a problem.  So use
1617 	 * current->bio_list to keep a list of requests submited by a
1618 	 * make_request_fn function.  current->bio_list is also used as a
1619 	 * flag to say if generic_make_request is currently active in this
1620 	 * task or not.  If it is NULL, then no make_request is active.  If
1621 	 * it is non-NULL, then a make_request is active, and new requests
1622 	 * should be added at the tail
1623 	 */
1624 	if (current->bio_list) {
1625 		bio_list_add(current->bio_list, bio);
1626 		return;
1627 	}
1628 
1629 	/* following loop may be a bit non-obvious, and so deserves some
1630 	 * explanation.
1631 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1632 	 * ensure that) so we have a list with a single bio.
1633 	 * We pretend that we have just taken it off a longer list, so
1634 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1635 	 * thus initialising the bio_list of new bios to be
1636 	 * added.  ->make_request() may indeed add some more bios
1637 	 * through a recursive call to generic_make_request.  If it
1638 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1639 	 * from the top.  In this case we really did just take the bio
1640 	 * of the top of the list (no pretending) and so remove it from
1641 	 * bio_list, and call into ->make_request() again.
1642 	 */
1643 	BUG_ON(bio->bi_next);
1644 	bio_list_init(&bio_list_on_stack);
1645 	current->bio_list = &bio_list_on_stack;
1646 	do {
1647 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1648 
1649 		q->make_request_fn(q, bio);
1650 
1651 		bio = bio_list_pop(current->bio_list);
1652 	} while (bio);
1653 	current->bio_list = NULL; /* deactivate */
1654 }
1655 EXPORT_SYMBOL(generic_make_request);
1656 
1657 /**
1658  * submit_bio - submit a bio to the block device layer for I/O
1659  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1660  * @bio: The &struct bio which describes the I/O
1661  *
1662  * submit_bio() is very similar in purpose to generic_make_request(), and
1663  * uses that function to do most of the work. Both are fairly rough
1664  * interfaces; @bio must be presetup and ready for I/O.
1665  *
1666  */
1667 void submit_bio(int rw, struct bio *bio)
1668 {
1669 	int count = bio_sectors(bio);
1670 
1671 	bio->bi_rw |= rw;
1672 
1673 	/*
1674 	 * If it's a regular read/write or a barrier with data attached,
1675 	 * go through the normal accounting stuff before submission.
1676 	 */
1677 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1678 		if (rw & WRITE) {
1679 			count_vm_events(PGPGOUT, count);
1680 		} else {
1681 			task_io_account_read(bio->bi_size);
1682 			count_vm_events(PGPGIN, count);
1683 		}
1684 
1685 		if (unlikely(block_dump)) {
1686 			char b[BDEVNAME_SIZE];
1687 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1688 			current->comm, task_pid_nr(current),
1689 				(rw & WRITE) ? "WRITE" : "READ",
1690 				(unsigned long long)bio->bi_sector,
1691 				bdevname(bio->bi_bdev, b),
1692 				count);
1693 		}
1694 	}
1695 
1696 	generic_make_request(bio);
1697 }
1698 EXPORT_SYMBOL(submit_bio);
1699 
1700 /**
1701  * blk_rq_check_limits - Helper function to check a request for the queue limit
1702  * @q:  the queue
1703  * @rq: the request being checked
1704  *
1705  * Description:
1706  *    @rq may have been made based on weaker limitations of upper-level queues
1707  *    in request stacking drivers, and it may violate the limitation of @q.
1708  *    Since the block layer and the underlying device driver trust @rq
1709  *    after it is inserted to @q, it should be checked against @q before
1710  *    the insertion using this generic function.
1711  *
1712  *    This function should also be useful for request stacking drivers
1713  *    in some cases below, so export this function.
1714  *    Request stacking drivers like request-based dm may change the queue
1715  *    limits while requests are in the queue (e.g. dm's table swapping).
1716  *    Such request stacking drivers should check those requests agaist
1717  *    the new queue limits again when they dispatch those requests,
1718  *    although such checkings are also done against the old queue limits
1719  *    when submitting requests.
1720  */
1721 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1722 {
1723 	if (rq->cmd_flags & REQ_DISCARD)
1724 		return 0;
1725 
1726 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1727 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1728 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1729 		return -EIO;
1730 	}
1731 
1732 	/*
1733 	 * queue's settings related to segment counting like q->bounce_pfn
1734 	 * may differ from that of other stacking queues.
1735 	 * Recalculate it to check the request correctly on this queue's
1736 	 * limitation.
1737 	 */
1738 	blk_recalc_rq_segments(rq);
1739 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1740 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1741 		return -EIO;
1742 	}
1743 
1744 	return 0;
1745 }
1746 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1747 
1748 /**
1749  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1750  * @q:  the queue to submit the request
1751  * @rq: the request being queued
1752  */
1753 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1754 {
1755 	unsigned long flags;
1756 	int where = ELEVATOR_INSERT_BACK;
1757 
1758 	if (blk_rq_check_limits(q, rq))
1759 		return -EIO;
1760 
1761 	if (rq->rq_disk &&
1762 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1763 		return -EIO;
1764 
1765 	spin_lock_irqsave(q->queue_lock, flags);
1766 
1767 	/*
1768 	 * Submitting request must be dequeued before calling this function
1769 	 * because it will be linked to another request_queue
1770 	 */
1771 	BUG_ON(blk_queued_rq(rq));
1772 
1773 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1774 		where = ELEVATOR_INSERT_FLUSH;
1775 
1776 	add_acct_request(q, rq, where);
1777 	if (where == ELEVATOR_INSERT_FLUSH)
1778 		__blk_run_queue(q);
1779 	spin_unlock_irqrestore(q->queue_lock, flags);
1780 
1781 	return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1784 
1785 /**
1786  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1787  * @rq: request to examine
1788  *
1789  * Description:
1790  *     A request could be merge of IOs which require different failure
1791  *     handling.  This function determines the number of bytes which
1792  *     can be failed from the beginning of the request without
1793  *     crossing into area which need to be retried further.
1794  *
1795  * Return:
1796  *     The number of bytes to fail.
1797  *
1798  * Context:
1799  *     queue_lock must be held.
1800  */
1801 unsigned int blk_rq_err_bytes(const struct request *rq)
1802 {
1803 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1804 	unsigned int bytes = 0;
1805 	struct bio *bio;
1806 
1807 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1808 		return blk_rq_bytes(rq);
1809 
1810 	/*
1811 	 * Currently the only 'mixing' which can happen is between
1812 	 * different fastfail types.  We can safely fail portions
1813 	 * which have all the failfast bits that the first one has -
1814 	 * the ones which are at least as eager to fail as the first
1815 	 * one.
1816 	 */
1817 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1818 		if ((bio->bi_rw & ff) != ff)
1819 			break;
1820 		bytes += bio->bi_size;
1821 	}
1822 
1823 	/* this could lead to infinite loop */
1824 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1825 	return bytes;
1826 }
1827 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1828 
1829 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1830 {
1831 	if (blk_do_io_stat(req)) {
1832 		const int rw = rq_data_dir(req);
1833 		struct hd_struct *part;
1834 		int cpu;
1835 
1836 		cpu = part_stat_lock();
1837 		part = req->part;
1838 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1839 		part_stat_unlock();
1840 	}
1841 }
1842 
1843 static void blk_account_io_done(struct request *req)
1844 {
1845 	/*
1846 	 * Account IO completion.  flush_rq isn't accounted as a
1847 	 * normal IO on queueing nor completion.  Accounting the
1848 	 * containing request is enough.
1849 	 */
1850 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1851 		unsigned long duration = jiffies - req->start_time;
1852 		const int rw = rq_data_dir(req);
1853 		struct hd_struct *part;
1854 		int cpu;
1855 
1856 		cpu = part_stat_lock();
1857 		part = req->part;
1858 
1859 		part_stat_inc(cpu, part, ios[rw]);
1860 		part_stat_add(cpu, part, ticks[rw], duration);
1861 		part_round_stats(cpu, part);
1862 		part_dec_in_flight(part, rw);
1863 
1864 		hd_struct_put(part);
1865 		part_stat_unlock();
1866 	}
1867 }
1868 
1869 /**
1870  * blk_peek_request - peek at the top of a request queue
1871  * @q: request queue to peek at
1872  *
1873  * Description:
1874  *     Return the request at the top of @q.  The returned request
1875  *     should be started using blk_start_request() before LLD starts
1876  *     processing it.
1877  *
1878  * Return:
1879  *     Pointer to the request at the top of @q if available.  Null
1880  *     otherwise.
1881  *
1882  * Context:
1883  *     queue_lock must be held.
1884  */
1885 struct request *blk_peek_request(struct request_queue *q)
1886 {
1887 	struct request *rq;
1888 	int ret;
1889 
1890 	while ((rq = __elv_next_request(q)) != NULL) {
1891 		if (!(rq->cmd_flags & REQ_STARTED)) {
1892 			/*
1893 			 * This is the first time the device driver
1894 			 * sees this request (possibly after
1895 			 * requeueing).  Notify IO scheduler.
1896 			 */
1897 			if (rq->cmd_flags & REQ_SORTED)
1898 				elv_activate_rq(q, rq);
1899 
1900 			/*
1901 			 * just mark as started even if we don't start
1902 			 * it, a request that has been delayed should
1903 			 * not be passed by new incoming requests
1904 			 */
1905 			rq->cmd_flags |= REQ_STARTED;
1906 			trace_block_rq_issue(q, rq);
1907 		}
1908 
1909 		if (!q->boundary_rq || q->boundary_rq == rq) {
1910 			q->end_sector = rq_end_sector(rq);
1911 			q->boundary_rq = NULL;
1912 		}
1913 
1914 		if (rq->cmd_flags & REQ_DONTPREP)
1915 			break;
1916 
1917 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1918 			/*
1919 			 * make sure space for the drain appears we
1920 			 * know we can do this because max_hw_segments
1921 			 * has been adjusted to be one fewer than the
1922 			 * device can handle
1923 			 */
1924 			rq->nr_phys_segments++;
1925 		}
1926 
1927 		if (!q->prep_rq_fn)
1928 			break;
1929 
1930 		ret = q->prep_rq_fn(q, rq);
1931 		if (ret == BLKPREP_OK) {
1932 			break;
1933 		} else if (ret == BLKPREP_DEFER) {
1934 			/*
1935 			 * the request may have been (partially) prepped.
1936 			 * we need to keep this request in the front to
1937 			 * avoid resource deadlock.  REQ_STARTED will
1938 			 * prevent other fs requests from passing this one.
1939 			 */
1940 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1941 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1942 				/*
1943 				 * remove the space for the drain we added
1944 				 * so that we don't add it again
1945 				 */
1946 				--rq->nr_phys_segments;
1947 			}
1948 
1949 			rq = NULL;
1950 			break;
1951 		} else if (ret == BLKPREP_KILL) {
1952 			rq->cmd_flags |= REQ_QUIET;
1953 			/*
1954 			 * Mark this request as started so we don't trigger
1955 			 * any debug logic in the end I/O path.
1956 			 */
1957 			blk_start_request(rq);
1958 			__blk_end_request_all(rq, -EIO);
1959 		} else {
1960 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1961 			break;
1962 		}
1963 	}
1964 
1965 	return rq;
1966 }
1967 EXPORT_SYMBOL(blk_peek_request);
1968 
1969 void blk_dequeue_request(struct request *rq)
1970 {
1971 	struct request_queue *q = rq->q;
1972 
1973 	BUG_ON(list_empty(&rq->queuelist));
1974 	BUG_ON(ELV_ON_HASH(rq));
1975 
1976 	list_del_init(&rq->queuelist);
1977 
1978 	/*
1979 	 * the time frame between a request being removed from the lists
1980 	 * and to it is freed is accounted as io that is in progress at
1981 	 * the driver side.
1982 	 */
1983 	if (blk_account_rq(rq)) {
1984 		q->in_flight[rq_is_sync(rq)]++;
1985 		set_io_start_time_ns(rq);
1986 	}
1987 }
1988 
1989 /**
1990  * blk_start_request - start request processing on the driver
1991  * @req: request to dequeue
1992  *
1993  * Description:
1994  *     Dequeue @req and start timeout timer on it.  This hands off the
1995  *     request to the driver.
1996  *
1997  *     Block internal functions which don't want to start timer should
1998  *     call blk_dequeue_request().
1999  *
2000  * Context:
2001  *     queue_lock must be held.
2002  */
2003 void blk_start_request(struct request *req)
2004 {
2005 	blk_dequeue_request(req);
2006 
2007 	/*
2008 	 * We are now handing the request to the hardware, initialize
2009 	 * resid_len to full count and add the timeout handler.
2010 	 */
2011 	req->resid_len = blk_rq_bytes(req);
2012 	if (unlikely(blk_bidi_rq(req)))
2013 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2014 
2015 	blk_add_timer(req);
2016 }
2017 EXPORT_SYMBOL(blk_start_request);
2018 
2019 /**
2020  * blk_fetch_request - fetch a request from a request queue
2021  * @q: request queue to fetch a request from
2022  *
2023  * Description:
2024  *     Return the request at the top of @q.  The request is started on
2025  *     return and LLD can start processing it immediately.
2026  *
2027  * Return:
2028  *     Pointer to the request at the top of @q if available.  Null
2029  *     otherwise.
2030  *
2031  * Context:
2032  *     queue_lock must be held.
2033  */
2034 struct request *blk_fetch_request(struct request_queue *q)
2035 {
2036 	struct request *rq;
2037 
2038 	rq = blk_peek_request(q);
2039 	if (rq)
2040 		blk_start_request(rq);
2041 	return rq;
2042 }
2043 EXPORT_SYMBOL(blk_fetch_request);
2044 
2045 /**
2046  * blk_update_request - Special helper function for request stacking drivers
2047  * @req:      the request being processed
2048  * @error:    %0 for success, < %0 for error
2049  * @nr_bytes: number of bytes to complete @req
2050  *
2051  * Description:
2052  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2053  *     the request structure even if @req doesn't have leftover.
2054  *     If @req has leftover, sets it up for the next range of segments.
2055  *
2056  *     This special helper function is only for request stacking drivers
2057  *     (e.g. request-based dm) so that they can handle partial completion.
2058  *     Actual device drivers should use blk_end_request instead.
2059  *
2060  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2061  *     %false return from this function.
2062  *
2063  * Return:
2064  *     %false - this request doesn't have any more data
2065  *     %true  - this request has more data
2066  **/
2067 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2068 {
2069 	int total_bytes, bio_nbytes, next_idx = 0;
2070 	struct bio *bio;
2071 
2072 	if (!req->bio)
2073 		return false;
2074 
2075 	trace_block_rq_complete(req->q, req);
2076 
2077 	/*
2078 	 * For fs requests, rq is just carrier of independent bio's
2079 	 * and each partial completion should be handled separately.
2080 	 * Reset per-request error on each partial completion.
2081 	 *
2082 	 * TODO: tj: This is too subtle.  It would be better to let
2083 	 * low level drivers do what they see fit.
2084 	 */
2085 	if (req->cmd_type == REQ_TYPE_FS)
2086 		req->errors = 0;
2087 
2088 	if (error && req->cmd_type == REQ_TYPE_FS &&
2089 	    !(req->cmd_flags & REQ_QUIET)) {
2090 		char *error_type;
2091 
2092 		switch (error) {
2093 		case -ENOLINK:
2094 			error_type = "recoverable transport";
2095 			break;
2096 		case -EREMOTEIO:
2097 			error_type = "critical target";
2098 			break;
2099 		case -EBADE:
2100 			error_type = "critical nexus";
2101 			break;
2102 		case -EIO:
2103 		default:
2104 			error_type = "I/O";
2105 			break;
2106 		}
2107 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2108 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2109 		       (unsigned long long)blk_rq_pos(req));
2110 	}
2111 
2112 	blk_account_io_completion(req, nr_bytes);
2113 
2114 	total_bytes = bio_nbytes = 0;
2115 	while ((bio = req->bio) != NULL) {
2116 		int nbytes;
2117 
2118 		if (nr_bytes >= bio->bi_size) {
2119 			req->bio = bio->bi_next;
2120 			nbytes = bio->bi_size;
2121 			req_bio_endio(req, bio, nbytes, error);
2122 			next_idx = 0;
2123 			bio_nbytes = 0;
2124 		} else {
2125 			int idx = bio->bi_idx + next_idx;
2126 
2127 			if (unlikely(idx >= bio->bi_vcnt)) {
2128 				blk_dump_rq_flags(req, "__end_that");
2129 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2130 				       __func__, idx, bio->bi_vcnt);
2131 				break;
2132 			}
2133 
2134 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2135 			BIO_BUG_ON(nbytes > bio->bi_size);
2136 
2137 			/*
2138 			 * not a complete bvec done
2139 			 */
2140 			if (unlikely(nbytes > nr_bytes)) {
2141 				bio_nbytes += nr_bytes;
2142 				total_bytes += nr_bytes;
2143 				break;
2144 			}
2145 
2146 			/*
2147 			 * advance to the next vector
2148 			 */
2149 			next_idx++;
2150 			bio_nbytes += nbytes;
2151 		}
2152 
2153 		total_bytes += nbytes;
2154 		nr_bytes -= nbytes;
2155 
2156 		bio = req->bio;
2157 		if (bio) {
2158 			/*
2159 			 * end more in this run, or just return 'not-done'
2160 			 */
2161 			if (unlikely(nr_bytes <= 0))
2162 				break;
2163 		}
2164 	}
2165 
2166 	/*
2167 	 * completely done
2168 	 */
2169 	if (!req->bio) {
2170 		/*
2171 		 * Reset counters so that the request stacking driver
2172 		 * can find how many bytes remain in the request
2173 		 * later.
2174 		 */
2175 		req->__data_len = 0;
2176 		return false;
2177 	}
2178 
2179 	/*
2180 	 * if the request wasn't completed, update state
2181 	 */
2182 	if (bio_nbytes) {
2183 		req_bio_endio(req, bio, bio_nbytes, error);
2184 		bio->bi_idx += next_idx;
2185 		bio_iovec(bio)->bv_offset += nr_bytes;
2186 		bio_iovec(bio)->bv_len -= nr_bytes;
2187 	}
2188 
2189 	req->__data_len -= total_bytes;
2190 	req->buffer = bio_data(req->bio);
2191 
2192 	/* update sector only for requests with clear definition of sector */
2193 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2194 		req->__sector += total_bytes >> 9;
2195 
2196 	/* mixed attributes always follow the first bio */
2197 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2198 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2199 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2200 	}
2201 
2202 	/*
2203 	 * If total number of sectors is less than the first segment
2204 	 * size, something has gone terribly wrong.
2205 	 */
2206 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2207 		blk_dump_rq_flags(req, "request botched");
2208 		req->__data_len = blk_rq_cur_bytes(req);
2209 	}
2210 
2211 	/* recalculate the number of segments */
2212 	blk_recalc_rq_segments(req);
2213 
2214 	return true;
2215 }
2216 EXPORT_SYMBOL_GPL(blk_update_request);
2217 
2218 static bool blk_update_bidi_request(struct request *rq, int error,
2219 				    unsigned int nr_bytes,
2220 				    unsigned int bidi_bytes)
2221 {
2222 	if (blk_update_request(rq, error, nr_bytes))
2223 		return true;
2224 
2225 	/* Bidi request must be completed as a whole */
2226 	if (unlikely(blk_bidi_rq(rq)) &&
2227 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2228 		return true;
2229 
2230 	if (blk_queue_add_random(rq->q))
2231 		add_disk_randomness(rq->rq_disk);
2232 
2233 	return false;
2234 }
2235 
2236 /**
2237  * blk_unprep_request - unprepare a request
2238  * @req:	the request
2239  *
2240  * This function makes a request ready for complete resubmission (or
2241  * completion).  It happens only after all error handling is complete,
2242  * so represents the appropriate moment to deallocate any resources
2243  * that were allocated to the request in the prep_rq_fn.  The queue
2244  * lock is held when calling this.
2245  */
2246 void blk_unprep_request(struct request *req)
2247 {
2248 	struct request_queue *q = req->q;
2249 
2250 	req->cmd_flags &= ~REQ_DONTPREP;
2251 	if (q->unprep_rq_fn)
2252 		q->unprep_rq_fn(q, req);
2253 }
2254 EXPORT_SYMBOL_GPL(blk_unprep_request);
2255 
2256 /*
2257  * queue lock must be held
2258  */
2259 static void blk_finish_request(struct request *req, int error)
2260 {
2261 	if (blk_rq_tagged(req))
2262 		blk_queue_end_tag(req->q, req);
2263 
2264 	BUG_ON(blk_queued_rq(req));
2265 
2266 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2267 		laptop_io_completion(&req->q->backing_dev_info);
2268 
2269 	blk_delete_timer(req);
2270 
2271 	if (req->cmd_flags & REQ_DONTPREP)
2272 		blk_unprep_request(req);
2273 
2274 
2275 	blk_account_io_done(req);
2276 
2277 	if (req->end_io)
2278 		req->end_io(req, error);
2279 	else {
2280 		if (blk_bidi_rq(req))
2281 			__blk_put_request(req->next_rq->q, req->next_rq);
2282 
2283 		__blk_put_request(req->q, req);
2284 	}
2285 }
2286 
2287 /**
2288  * blk_end_bidi_request - Complete a bidi request
2289  * @rq:         the request to complete
2290  * @error:      %0 for success, < %0 for error
2291  * @nr_bytes:   number of bytes to complete @rq
2292  * @bidi_bytes: number of bytes to complete @rq->next_rq
2293  *
2294  * Description:
2295  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2296  *     Drivers that supports bidi can safely call this member for any
2297  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2298  *     just ignored.
2299  *
2300  * Return:
2301  *     %false - we are done with this request
2302  *     %true  - still buffers pending for this request
2303  **/
2304 static bool blk_end_bidi_request(struct request *rq, int error,
2305 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2306 {
2307 	struct request_queue *q = rq->q;
2308 	unsigned long flags;
2309 
2310 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2311 		return true;
2312 
2313 	spin_lock_irqsave(q->queue_lock, flags);
2314 	blk_finish_request(rq, error);
2315 	spin_unlock_irqrestore(q->queue_lock, flags);
2316 
2317 	return false;
2318 }
2319 
2320 /**
2321  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2322  * @rq:         the request to complete
2323  * @error:      %0 for success, < %0 for error
2324  * @nr_bytes:   number of bytes to complete @rq
2325  * @bidi_bytes: number of bytes to complete @rq->next_rq
2326  *
2327  * Description:
2328  *     Identical to blk_end_bidi_request() except that queue lock is
2329  *     assumed to be locked on entry and remains so on return.
2330  *
2331  * Return:
2332  *     %false - we are done with this request
2333  *     %true  - still buffers pending for this request
2334  **/
2335 bool __blk_end_bidi_request(struct request *rq, int error,
2336 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2337 {
2338 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2339 		return true;
2340 
2341 	blk_finish_request(rq, error);
2342 
2343 	return false;
2344 }
2345 
2346 /**
2347  * blk_end_request - Helper function for drivers to complete the request.
2348  * @rq:       the request being processed
2349  * @error:    %0 for success, < %0 for error
2350  * @nr_bytes: number of bytes to complete
2351  *
2352  * Description:
2353  *     Ends I/O on a number of bytes attached to @rq.
2354  *     If @rq has leftover, sets it up for the next range of segments.
2355  *
2356  * Return:
2357  *     %false - we are done with this request
2358  *     %true  - still buffers pending for this request
2359  **/
2360 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2361 {
2362 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2363 }
2364 EXPORT_SYMBOL(blk_end_request);
2365 
2366 /**
2367  * blk_end_request_all - Helper function for drives to finish the request.
2368  * @rq: the request to finish
2369  * @error: %0 for success, < %0 for error
2370  *
2371  * Description:
2372  *     Completely finish @rq.
2373  */
2374 void blk_end_request_all(struct request *rq, int error)
2375 {
2376 	bool pending;
2377 	unsigned int bidi_bytes = 0;
2378 
2379 	if (unlikely(blk_bidi_rq(rq)))
2380 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2381 
2382 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2383 	BUG_ON(pending);
2384 }
2385 EXPORT_SYMBOL(blk_end_request_all);
2386 
2387 /**
2388  * blk_end_request_cur - Helper function to finish the current request chunk.
2389  * @rq: the request to finish the current chunk for
2390  * @error: %0 for success, < %0 for error
2391  *
2392  * Description:
2393  *     Complete the current consecutively mapped chunk from @rq.
2394  *
2395  * Return:
2396  *     %false - we are done with this request
2397  *     %true  - still buffers pending for this request
2398  */
2399 bool blk_end_request_cur(struct request *rq, int error)
2400 {
2401 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2402 }
2403 EXPORT_SYMBOL(blk_end_request_cur);
2404 
2405 /**
2406  * blk_end_request_err - Finish a request till the next failure boundary.
2407  * @rq: the request to finish till the next failure boundary for
2408  * @error: must be negative errno
2409  *
2410  * Description:
2411  *     Complete @rq till the next failure boundary.
2412  *
2413  * Return:
2414  *     %false - we are done with this request
2415  *     %true  - still buffers pending for this request
2416  */
2417 bool blk_end_request_err(struct request *rq, int error)
2418 {
2419 	WARN_ON(error >= 0);
2420 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2421 }
2422 EXPORT_SYMBOL_GPL(blk_end_request_err);
2423 
2424 /**
2425  * __blk_end_request - Helper function for drivers to complete the request.
2426  * @rq:       the request being processed
2427  * @error:    %0 for success, < %0 for error
2428  * @nr_bytes: number of bytes to complete
2429  *
2430  * Description:
2431  *     Must be called with queue lock held unlike blk_end_request().
2432  *
2433  * Return:
2434  *     %false - we are done with this request
2435  *     %true  - still buffers pending for this request
2436  **/
2437 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2438 {
2439 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2440 }
2441 EXPORT_SYMBOL(__blk_end_request);
2442 
2443 /**
2444  * __blk_end_request_all - Helper function for drives to finish the request.
2445  * @rq: the request to finish
2446  * @error: %0 for success, < %0 for error
2447  *
2448  * Description:
2449  *     Completely finish @rq.  Must be called with queue lock held.
2450  */
2451 void __blk_end_request_all(struct request *rq, int error)
2452 {
2453 	bool pending;
2454 	unsigned int bidi_bytes = 0;
2455 
2456 	if (unlikely(blk_bidi_rq(rq)))
2457 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2458 
2459 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2460 	BUG_ON(pending);
2461 }
2462 EXPORT_SYMBOL(__blk_end_request_all);
2463 
2464 /**
2465  * __blk_end_request_cur - Helper function to finish the current request chunk.
2466  * @rq: the request to finish the current chunk for
2467  * @error: %0 for success, < %0 for error
2468  *
2469  * Description:
2470  *     Complete the current consecutively mapped chunk from @rq.  Must
2471  *     be called with queue lock held.
2472  *
2473  * Return:
2474  *     %false - we are done with this request
2475  *     %true  - still buffers pending for this request
2476  */
2477 bool __blk_end_request_cur(struct request *rq, int error)
2478 {
2479 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2480 }
2481 EXPORT_SYMBOL(__blk_end_request_cur);
2482 
2483 /**
2484  * __blk_end_request_err - Finish a request till the next failure boundary.
2485  * @rq: the request to finish till the next failure boundary for
2486  * @error: must be negative errno
2487  *
2488  * Description:
2489  *     Complete @rq till the next failure boundary.  Must be called
2490  *     with queue lock held.
2491  *
2492  * Return:
2493  *     %false - we are done with this request
2494  *     %true  - still buffers pending for this request
2495  */
2496 bool __blk_end_request_err(struct request *rq, int error)
2497 {
2498 	WARN_ON(error >= 0);
2499 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2500 }
2501 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2502 
2503 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2504 		     struct bio *bio)
2505 {
2506 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2507 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2508 
2509 	if (bio_has_data(bio)) {
2510 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2511 		rq->buffer = bio_data(bio);
2512 	}
2513 	rq->__data_len = bio->bi_size;
2514 	rq->bio = rq->biotail = bio;
2515 
2516 	if (bio->bi_bdev)
2517 		rq->rq_disk = bio->bi_bdev->bd_disk;
2518 }
2519 
2520 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2521 /**
2522  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2523  * @rq: the request to be flushed
2524  *
2525  * Description:
2526  *     Flush all pages in @rq.
2527  */
2528 void rq_flush_dcache_pages(struct request *rq)
2529 {
2530 	struct req_iterator iter;
2531 	struct bio_vec *bvec;
2532 
2533 	rq_for_each_segment(bvec, rq, iter)
2534 		flush_dcache_page(bvec->bv_page);
2535 }
2536 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2537 #endif
2538 
2539 /**
2540  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2541  * @q : the queue of the device being checked
2542  *
2543  * Description:
2544  *    Check if underlying low-level drivers of a device are busy.
2545  *    If the drivers want to export their busy state, they must set own
2546  *    exporting function using blk_queue_lld_busy() first.
2547  *
2548  *    Basically, this function is used only by request stacking drivers
2549  *    to stop dispatching requests to underlying devices when underlying
2550  *    devices are busy.  This behavior helps more I/O merging on the queue
2551  *    of the request stacking driver and prevents I/O throughput regression
2552  *    on burst I/O load.
2553  *
2554  * Return:
2555  *    0 - Not busy (The request stacking driver should dispatch request)
2556  *    1 - Busy (The request stacking driver should stop dispatching request)
2557  */
2558 int blk_lld_busy(struct request_queue *q)
2559 {
2560 	if (q->lld_busy_fn)
2561 		return q->lld_busy_fn(q);
2562 
2563 	return 0;
2564 }
2565 EXPORT_SYMBOL_GPL(blk_lld_busy);
2566 
2567 /**
2568  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2569  * @rq: the clone request to be cleaned up
2570  *
2571  * Description:
2572  *     Free all bios in @rq for a cloned request.
2573  */
2574 void blk_rq_unprep_clone(struct request *rq)
2575 {
2576 	struct bio *bio;
2577 
2578 	while ((bio = rq->bio) != NULL) {
2579 		rq->bio = bio->bi_next;
2580 
2581 		bio_put(bio);
2582 	}
2583 }
2584 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2585 
2586 /*
2587  * Copy attributes of the original request to the clone request.
2588  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2589  */
2590 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2591 {
2592 	dst->cpu = src->cpu;
2593 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2594 	dst->cmd_type = src->cmd_type;
2595 	dst->__sector = blk_rq_pos(src);
2596 	dst->__data_len = blk_rq_bytes(src);
2597 	dst->nr_phys_segments = src->nr_phys_segments;
2598 	dst->ioprio = src->ioprio;
2599 	dst->extra_len = src->extra_len;
2600 }
2601 
2602 /**
2603  * blk_rq_prep_clone - Helper function to setup clone request
2604  * @rq: the request to be setup
2605  * @rq_src: original request to be cloned
2606  * @bs: bio_set that bios for clone are allocated from
2607  * @gfp_mask: memory allocation mask for bio
2608  * @bio_ctr: setup function to be called for each clone bio.
2609  *           Returns %0 for success, non %0 for failure.
2610  * @data: private data to be passed to @bio_ctr
2611  *
2612  * Description:
2613  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2614  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2615  *     are not copied, and copying such parts is the caller's responsibility.
2616  *     Also, pages which the original bios are pointing to are not copied
2617  *     and the cloned bios just point same pages.
2618  *     So cloned bios must be completed before original bios, which means
2619  *     the caller must complete @rq before @rq_src.
2620  */
2621 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2622 		      struct bio_set *bs, gfp_t gfp_mask,
2623 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2624 		      void *data)
2625 {
2626 	struct bio *bio, *bio_src;
2627 
2628 	if (!bs)
2629 		bs = fs_bio_set;
2630 
2631 	blk_rq_init(NULL, rq);
2632 
2633 	__rq_for_each_bio(bio_src, rq_src) {
2634 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2635 		if (!bio)
2636 			goto free_and_out;
2637 
2638 		__bio_clone(bio, bio_src);
2639 
2640 		if (bio_integrity(bio_src) &&
2641 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2642 			goto free_and_out;
2643 
2644 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2645 			goto free_and_out;
2646 
2647 		if (rq->bio) {
2648 			rq->biotail->bi_next = bio;
2649 			rq->biotail = bio;
2650 		} else
2651 			rq->bio = rq->biotail = bio;
2652 	}
2653 
2654 	__blk_rq_prep_clone(rq, rq_src);
2655 
2656 	return 0;
2657 
2658 free_and_out:
2659 	if (bio)
2660 		bio_free(bio, bs);
2661 	blk_rq_unprep_clone(rq);
2662 
2663 	return -ENOMEM;
2664 }
2665 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2666 
2667 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2668 {
2669 	return queue_work(kblockd_workqueue, work);
2670 }
2671 EXPORT_SYMBOL(kblockd_schedule_work);
2672 
2673 int kblockd_schedule_delayed_work(struct request_queue *q,
2674 			struct delayed_work *dwork, unsigned long delay)
2675 {
2676 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2677 }
2678 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2679 
2680 #define PLUG_MAGIC	0x91827364
2681 
2682 /**
2683  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2684  * @plug:	The &struct blk_plug that needs to be initialized
2685  *
2686  * Description:
2687  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2688  *   pending I/O should the task end up blocking between blk_start_plug() and
2689  *   blk_finish_plug(). This is important from a performance perspective, but
2690  *   also ensures that we don't deadlock. For instance, if the task is blocking
2691  *   for a memory allocation, memory reclaim could end up wanting to free a
2692  *   page belonging to that request that is currently residing in our private
2693  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2694  *   this kind of deadlock.
2695  */
2696 void blk_start_plug(struct blk_plug *plug)
2697 {
2698 	struct task_struct *tsk = current;
2699 
2700 	plug->magic = PLUG_MAGIC;
2701 	INIT_LIST_HEAD(&plug->list);
2702 	INIT_LIST_HEAD(&plug->cb_list);
2703 	plug->should_sort = 0;
2704 
2705 	/*
2706 	 * If this is a nested plug, don't actually assign it. It will be
2707 	 * flushed on its own.
2708 	 */
2709 	if (!tsk->plug) {
2710 		/*
2711 		 * Store ordering should not be needed here, since a potential
2712 		 * preempt will imply a full memory barrier
2713 		 */
2714 		tsk->plug = plug;
2715 	}
2716 }
2717 EXPORT_SYMBOL(blk_start_plug);
2718 
2719 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2720 {
2721 	struct request *rqa = container_of(a, struct request, queuelist);
2722 	struct request *rqb = container_of(b, struct request, queuelist);
2723 
2724 	return !(rqa->q <= rqb->q);
2725 }
2726 
2727 /*
2728  * If 'from_schedule' is true, then postpone the dispatch of requests
2729  * until a safe kblockd context. We due this to avoid accidental big
2730  * additional stack usage in driver dispatch, in places where the originally
2731  * plugger did not intend it.
2732  */
2733 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2734 			    bool from_schedule)
2735 	__releases(q->queue_lock)
2736 {
2737 	trace_block_unplug(q, depth, !from_schedule);
2738 
2739 	/*
2740 	 * If we are punting this to kblockd, then we can safely drop
2741 	 * the queue_lock before waking kblockd (which needs to take
2742 	 * this lock).
2743 	 */
2744 	if (from_schedule) {
2745 		spin_unlock(q->queue_lock);
2746 		blk_run_queue_async(q);
2747 	} else {
2748 		__blk_run_queue(q);
2749 		spin_unlock(q->queue_lock);
2750 	}
2751 
2752 }
2753 
2754 static void flush_plug_callbacks(struct blk_plug *plug)
2755 {
2756 	LIST_HEAD(callbacks);
2757 
2758 	if (list_empty(&plug->cb_list))
2759 		return;
2760 
2761 	list_splice_init(&plug->cb_list, &callbacks);
2762 
2763 	while (!list_empty(&callbacks)) {
2764 		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2765 							  struct blk_plug_cb,
2766 							  list);
2767 		list_del(&cb->list);
2768 		cb->callback(cb);
2769 	}
2770 }
2771 
2772 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2773 {
2774 	struct request_queue *q;
2775 	unsigned long flags;
2776 	struct request *rq;
2777 	LIST_HEAD(list);
2778 	unsigned int depth;
2779 
2780 	BUG_ON(plug->magic != PLUG_MAGIC);
2781 
2782 	flush_plug_callbacks(plug);
2783 	if (list_empty(&plug->list))
2784 		return;
2785 
2786 	list_splice_init(&plug->list, &list);
2787 
2788 	if (plug->should_sort) {
2789 		list_sort(NULL, &list, plug_rq_cmp);
2790 		plug->should_sort = 0;
2791 	}
2792 
2793 	q = NULL;
2794 	depth = 0;
2795 
2796 	/*
2797 	 * Save and disable interrupts here, to avoid doing it for every
2798 	 * queue lock we have to take.
2799 	 */
2800 	local_irq_save(flags);
2801 	while (!list_empty(&list)) {
2802 		rq = list_entry_rq(list.next);
2803 		list_del_init(&rq->queuelist);
2804 		BUG_ON(!rq->q);
2805 		if (rq->q != q) {
2806 			/*
2807 			 * This drops the queue lock
2808 			 */
2809 			if (q)
2810 				queue_unplugged(q, depth, from_schedule);
2811 			q = rq->q;
2812 			depth = 0;
2813 			spin_lock(q->queue_lock);
2814 		}
2815 		/*
2816 		 * rq is already accounted, so use raw insert
2817 		 */
2818 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2819 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2820 		else
2821 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2822 
2823 		depth++;
2824 	}
2825 
2826 	/*
2827 	 * This drops the queue lock
2828 	 */
2829 	if (q)
2830 		queue_unplugged(q, depth, from_schedule);
2831 
2832 	local_irq_restore(flags);
2833 }
2834 
2835 void blk_finish_plug(struct blk_plug *plug)
2836 {
2837 	blk_flush_plug_list(plug, false);
2838 
2839 	if (plug == current->plug)
2840 		current->plug = NULL;
2841 }
2842 EXPORT_SYMBOL(blk_finish_plug);
2843 
2844 int __init blk_dev_init(void)
2845 {
2846 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2847 			sizeof(((struct request *)0)->cmd_flags));
2848 
2849 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2850 	kblockd_workqueue = alloc_workqueue("kblockd",
2851 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2852 	if (!kblockd_workqueue)
2853 		panic("Failed to create kblockd\n");
2854 
2855 	request_cachep = kmem_cache_create("blkdev_requests",
2856 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2857 
2858 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2859 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2860 
2861 	return 0;
2862 }
2863