xref: /linux/block/blk-core.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/part_stat.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48 
49 #include "blk.h"
50 #include "blk-mq-sched.h"
51 #include "blk-pm.h"
52 #include "blk-throttle.h"
53 #include "blk-rq-qos.h"
54 
55 struct dentry *blk_debugfs_root;
56 
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63 
64 DEFINE_IDA(blk_queue_ida);
65 
66 /*
67  * For queue allocation
68  */
69 struct kmem_cache *blk_requestq_cachep;
70 struct kmem_cache *blk_requestq_srcu_cachep;
71 
72 /*
73  * Controlling structure to kblockd
74  */
75 static struct workqueue_struct *kblockd_workqueue;
76 
77 /**
78  * blk_queue_flag_set - atomically set a queue flag
79  * @flag: flag to be set
80  * @q: request queue
81  */
82 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
83 {
84 	set_bit(flag, &q->queue_flags);
85 }
86 EXPORT_SYMBOL(blk_queue_flag_set);
87 
88 /**
89  * blk_queue_flag_clear - atomically clear a queue flag
90  * @flag: flag to be cleared
91  * @q: request queue
92  */
93 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
94 {
95 	clear_bit(flag, &q->queue_flags);
96 }
97 EXPORT_SYMBOL(blk_queue_flag_clear);
98 
99 /**
100  * blk_queue_flag_test_and_set - atomically test and set a queue flag
101  * @flag: flag to be set
102  * @q: request queue
103  *
104  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
105  * the flag was already set.
106  */
107 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
108 {
109 	return test_and_set_bit(flag, &q->queue_flags);
110 }
111 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
112 
113 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
114 static const char *const blk_op_name[] = {
115 	REQ_OP_NAME(READ),
116 	REQ_OP_NAME(WRITE),
117 	REQ_OP_NAME(FLUSH),
118 	REQ_OP_NAME(DISCARD),
119 	REQ_OP_NAME(SECURE_ERASE),
120 	REQ_OP_NAME(ZONE_RESET),
121 	REQ_OP_NAME(ZONE_RESET_ALL),
122 	REQ_OP_NAME(ZONE_OPEN),
123 	REQ_OP_NAME(ZONE_CLOSE),
124 	REQ_OP_NAME(ZONE_FINISH),
125 	REQ_OP_NAME(ZONE_APPEND),
126 	REQ_OP_NAME(WRITE_SAME),
127 	REQ_OP_NAME(WRITE_ZEROES),
128 	REQ_OP_NAME(DRV_IN),
129 	REQ_OP_NAME(DRV_OUT),
130 };
131 #undef REQ_OP_NAME
132 
133 /**
134  * blk_op_str - Return string XXX in the REQ_OP_XXX.
135  * @op: REQ_OP_XXX.
136  *
137  * Description: Centralize block layer function to convert REQ_OP_XXX into
138  * string format. Useful in the debugging and tracing bio or request. For
139  * invalid REQ_OP_XXX it returns string "UNKNOWN".
140  */
141 inline const char *blk_op_str(unsigned int op)
142 {
143 	const char *op_str = "UNKNOWN";
144 
145 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
146 		op_str = blk_op_name[op];
147 
148 	return op_str;
149 }
150 EXPORT_SYMBOL_GPL(blk_op_str);
151 
152 static const struct {
153 	int		errno;
154 	const char	*name;
155 } blk_errors[] = {
156 	[BLK_STS_OK]		= { 0,		"" },
157 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
158 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
159 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
160 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
161 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
162 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
163 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
164 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
165 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
166 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
167 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
168 
169 	/* device mapper special case, should not leak out: */
170 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
171 
172 	/* zone device specific errors */
173 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
174 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
175 
176 	/* everything else not covered above: */
177 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
178 };
179 
180 blk_status_t errno_to_blk_status(int errno)
181 {
182 	int i;
183 
184 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
185 		if (blk_errors[i].errno == errno)
186 			return (__force blk_status_t)i;
187 	}
188 
189 	return BLK_STS_IOERR;
190 }
191 EXPORT_SYMBOL_GPL(errno_to_blk_status);
192 
193 int blk_status_to_errno(blk_status_t status)
194 {
195 	int idx = (__force int)status;
196 
197 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
198 		return -EIO;
199 	return blk_errors[idx].errno;
200 }
201 EXPORT_SYMBOL_GPL(blk_status_to_errno);
202 
203 const char *blk_status_to_str(blk_status_t status)
204 {
205 	int idx = (__force int)status;
206 
207 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
208 		return "<null>";
209 	return blk_errors[idx].name;
210 }
211 
212 /**
213  * blk_sync_queue - cancel any pending callbacks on a queue
214  * @q: the queue
215  *
216  * Description:
217  *     The block layer may perform asynchronous callback activity
218  *     on a queue, such as calling the unplug function after a timeout.
219  *     A block device may call blk_sync_queue to ensure that any
220  *     such activity is cancelled, thus allowing it to release resources
221  *     that the callbacks might use. The caller must already have made sure
222  *     that its ->submit_bio will not re-add plugging prior to calling
223  *     this function.
224  *
225  *     This function does not cancel any asynchronous activity arising
226  *     out of elevator or throttling code. That would require elevator_exit()
227  *     and blkcg_exit_queue() to be called with queue lock initialized.
228  *
229  */
230 void blk_sync_queue(struct request_queue *q)
231 {
232 	del_timer_sync(&q->timeout);
233 	cancel_work_sync(&q->timeout_work);
234 }
235 EXPORT_SYMBOL(blk_sync_queue);
236 
237 /**
238  * blk_set_pm_only - increment pm_only counter
239  * @q: request queue pointer
240  */
241 void blk_set_pm_only(struct request_queue *q)
242 {
243 	atomic_inc(&q->pm_only);
244 }
245 EXPORT_SYMBOL_GPL(blk_set_pm_only);
246 
247 void blk_clear_pm_only(struct request_queue *q)
248 {
249 	int pm_only;
250 
251 	pm_only = atomic_dec_return(&q->pm_only);
252 	WARN_ON_ONCE(pm_only < 0);
253 	if (pm_only == 0)
254 		wake_up_all(&q->mq_freeze_wq);
255 }
256 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
257 
258 /**
259  * blk_put_queue - decrement the request_queue refcount
260  * @q: the request_queue structure to decrement the refcount for
261  *
262  * Decrements the refcount of the request_queue kobject. When this reaches 0
263  * we'll have blk_release_queue() called.
264  *
265  * Context: Any context, but the last reference must not be dropped from
266  *          atomic context.
267  */
268 void blk_put_queue(struct request_queue *q)
269 {
270 	kobject_put(&q->kobj);
271 }
272 EXPORT_SYMBOL(blk_put_queue);
273 
274 void blk_queue_start_drain(struct request_queue *q)
275 {
276 	/*
277 	 * When queue DYING flag is set, we need to block new req
278 	 * entering queue, so we call blk_freeze_queue_start() to
279 	 * prevent I/O from crossing blk_queue_enter().
280 	 */
281 	blk_freeze_queue_start(q);
282 	if (queue_is_mq(q))
283 		blk_mq_wake_waiters(q);
284 	/* Make blk_queue_enter() reexamine the DYING flag. */
285 	wake_up_all(&q->mq_freeze_wq);
286 }
287 
288 /**
289  * blk_cleanup_queue - shutdown a request queue
290  * @q: request queue to shutdown
291  *
292  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
293  * put it.  All future requests will be failed immediately with -ENODEV.
294  *
295  * Context: can sleep
296  */
297 void blk_cleanup_queue(struct request_queue *q)
298 {
299 	/* cannot be called from atomic context */
300 	might_sleep();
301 
302 	WARN_ON_ONCE(blk_queue_registered(q));
303 
304 	/* mark @q DYING, no new request or merges will be allowed afterwards */
305 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
306 	blk_queue_start_drain(q);
307 
308 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
309 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
310 
311 	/*
312 	 * Drain all requests queued before DYING marking. Set DEAD flag to
313 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
314 	 * after draining finished.
315 	 */
316 	blk_freeze_queue(q);
317 
318 	/* cleanup rq qos structures for queue without disk */
319 	rq_qos_exit(q);
320 
321 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
322 
323 	blk_sync_queue(q);
324 	if (queue_is_mq(q)) {
325 		blk_mq_cancel_work_sync(q);
326 		blk_mq_exit_queue(q);
327 	}
328 
329 	/*
330 	 * In theory, request pool of sched_tags belongs to request queue.
331 	 * However, the current implementation requires tag_set for freeing
332 	 * requests, so free the pool now.
333 	 *
334 	 * Queue has become frozen, there can't be any in-queue requests, so
335 	 * it is safe to free requests now.
336 	 */
337 	mutex_lock(&q->sysfs_lock);
338 	if (q->elevator)
339 		blk_mq_sched_free_rqs(q);
340 	mutex_unlock(&q->sysfs_lock);
341 
342 	percpu_ref_exit(&q->q_usage_counter);
343 
344 	/* @q is and will stay empty, shutdown and put */
345 	blk_put_queue(q);
346 }
347 EXPORT_SYMBOL(blk_cleanup_queue);
348 
349 /**
350  * blk_queue_enter() - try to increase q->q_usage_counter
351  * @q: request queue pointer
352  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
353  */
354 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
355 {
356 	const bool pm = flags & BLK_MQ_REQ_PM;
357 
358 	while (!blk_try_enter_queue(q, pm)) {
359 		if (flags & BLK_MQ_REQ_NOWAIT)
360 			return -EBUSY;
361 
362 		/*
363 		 * read pair of barrier in blk_freeze_queue_start(), we need to
364 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
365 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
366 		 * following wait may never return if the two reads are
367 		 * reordered.
368 		 */
369 		smp_rmb();
370 		wait_event(q->mq_freeze_wq,
371 			   (!q->mq_freeze_depth &&
372 			    blk_pm_resume_queue(pm, q)) ||
373 			   blk_queue_dying(q));
374 		if (blk_queue_dying(q))
375 			return -ENODEV;
376 	}
377 
378 	return 0;
379 }
380 
381 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
382 {
383 	while (!blk_try_enter_queue(q, false)) {
384 		struct gendisk *disk = bio->bi_bdev->bd_disk;
385 
386 		if (bio->bi_opf & REQ_NOWAIT) {
387 			if (test_bit(GD_DEAD, &disk->state))
388 				goto dead;
389 			bio_wouldblock_error(bio);
390 			return -EBUSY;
391 		}
392 
393 		/*
394 		 * read pair of barrier in blk_freeze_queue_start(), we need to
395 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
396 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
397 		 * following wait may never return if the two reads are
398 		 * reordered.
399 		 */
400 		smp_rmb();
401 		wait_event(q->mq_freeze_wq,
402 			   (!q->mq_freeze_depth &&
403 			    blk_pm_resume_queue(false, q)) ||
404 			   test_bit(GD_DEAD, &disk->state));
405 		if (test_bit(GD_DEAD, &disk->state))
406 			goto dead;
407 	}
408 
409 	return 0;
410 dead:
411 	bio_io_error(bio);
412 	return -ENODEV;
413 }
414 
415 void blk_queue_exit(struct request_queue *q)
416 {
417 	percpu_ref_put(&q->q_usage_counter);
418 }
419 
420 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
421 {
422 	struct request_queue *q =
423 		container_of(ref, struct request_queue, q_usage_counter);
424 
425 	wake_up_all(&q->mq_freeze_wq);
426 }
427 
428 static void blk_rq_timed_out_timer(struct timer_list *t)
429 {
430 	struct request_queue *q = from_timer(q, t, timeout);
431 
432 	kblockd_schedule_work(&q->timeout_work);
433 }
434 
435 static void blk_timeout_work(struct work_struct *work)
436 {
437 }
438 
439 struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
440 {
441 	struct request_queue *q;
442 	int ret;
443 
444 	q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
445 			GFP_KERNEL | __GFP_ZERO, node_id);
446 	if (!q)
447 		return NULL;
448 
449 	if (alloc_srcu) {
450 		blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
451 		if (init_srcu_struct(q->srcu) != 0)
452 			goto fail_q;
453 	}
454 
455 	q->last_merge = NULL;
456 
457 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
458 	if (q->id < 0)
459 		goto fail_srcu;
460 
461 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
462 	if (ret)
463 		goto fail_id;
464 
465 	q->stats = blk_alloc_queue_stats();
466 	if (!q->stats)
467 		goto fail_split;
468 
469 	q->node = node_id;
470 
471 	atomic_set(&q->nr_active_requests_shared_tags, 0);
472 
473 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
474 	INIT_WORK(&q->timeout_work, blk_timeout_work);
475 	INIT_LIST_HEAD(&q->icq_list);
476 #ifdef CONFIG_BLK_CGROUP
477 	INIT_LIST_HEAD(&q->blkg_list);
478 #endif
479 
480 	kobject_init(&q->kobj, &blk_queue_ktype);
481 
482 	mutex_init(&q->debugfs_mutex);
483 	mutex_init(&q->sysfs_lock);
484 	mutex_init(&q->sysfs_dir_lock);
485 	spin_lock_init(&q->queue_lock);
486 
487 	init_waitqueue_head(&q->mq_freeze_wq);
488 	mutex_init(&q->mq_freeze_lock);
489 
490 	/*
491 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
492 	 * See blk_register_queue() for details.
493 	 */
494 	if (percpu_ref_init(&q->q_usage_counter,
495 				blk_queue_usage_counter_release,
496 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
497 		goto fail_stats;
498 
499 	if (blkcg_init_queue(q))
500 		goto fail_ref;
501 
502 	blk_queue_dma_alignment(q, 511);
503 	blk_set_default_limits(&q->limits);
504 	q->nr_requests = BLKDEV_DEFAULT_RQ;
505 
506 	return q;
507 
508 fail_ref:
509 	percpu_ref_exit(&q->q_usage_counter);
510 fail_stats:
511 	blk_free_queue_stats(q->stats);
512 fail_split:
513 	bioset_exit(&q->bio_split);
514 fail_id:
515 	ida_simple_remove(&blk_queue_ida, q->id);
516 fail_srcu:
517 	if (alloc_srcu)
518 		cleanup_srcu_struct(q->srcu);
519 fail_q:
520 	kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
521 	return NULL;
522 }
523 
524 /**
525  * blk_get_queue - increment the request_queue refcount
526  * @q: the request_queue structure to increment the refcount for
527  *
528  * Increment the refcount of the request_queue kobject.
529  *
530  * Context: Any context.
531  */
532 bool blk_get_queue(struct request_queue *q)
533 {
534 	if (likely(!blk_queue_dying(q))) {
535 		__blk_get_queue(q);
536 		return true;
537 	}
538 
539 	return false;
540 }
541 EXPORT_SYMBOL(blk_get_queue);
542 
543 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
544 {
545 	char b[BDEVNAME_SIZE];
546 
547 	pr_info_ratelimited("%s: attempt to access beyond end of device\n"
548 			    "%s: rw=%d, want=%llu, limit=%llu\n",
549 			    current->comm,
550 			    bio_devname(bio, b), bio->bi_opf,
551 			    bio_end_sector(bio), maxsector);
552 }
553 
554 #ifdef CONFIG_FAIL_MAKE_REQUEST
555 
556 static DECLARE_FAULT_ATTR(fail_make_request);
557 
558 static int __init setup_fail_make_request(char *str)
559 {
560 	return setup_fault_attr(&fail_make_request, str);
561 }
562 __setup("fail_make_request=", setup_fail_make_request);
563 
564 bool should_fail_request(struct block_device *part, unsigned int bytes)
565 {
566 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
567 }
568 
569 static int __init fail_make_request_debugfs(void)
570 {
571 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
572 						NULL, &fail_make_request);
573 
574 	return PTR_ERR_OR_ZERO(dir);
575 }
576 
577 late_initcall(fail_make_request_debugfs);
578 #endif /* CONFIG_FAIL_MAKE_REQUEST */
579 
580 static inline bool bio_check_ro(struct bio *bio)
581 {
582 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
583 		char b[BDEVNAME_SIZE];
584 
585 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
586 			return false;
587 
588 		WARN_ONCE(1,
589 		       "Trying to write to read-only block-device %s (partno %d)\n",
590 			bio_devname(bio, b), bio->bi_bdev->bd_partno);
591 		/* Older lvm-tools actually trigger this */
592 		return false;
593 	}
594 
595 	return false;
596 }
597 
598 static noinline int should_fail_bio(struct bio *bio)
599 {
600 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
601 		return -EIO;
602 	return 0;
603 }
604 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
605 
606 /*
607  * Check whether this bio extends beyond the end of the device or partition.
608  * This may well happen - the kernel calls bread() without checking the size of
609  * the device, e.g., when mounting a file system.
610  */
611 static inline int bio_check_eod(struct bio *bio)
612 {
613 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
614 	unsigned int nr_sectors = bio_sectors(bio);
615 
616 	if (nr_sectors && maxsector &&
617 	    (nr_sectors > maxsector ||
618 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
619 		handle_bad_sector(bio, maxsector);
620 		return -EIO;
621 	}
622 	return 0;
623 }
624 
625 /*
626  * Remap block n of partition p to block n+start(p) of the disk.
627  */
628 static int blk_partition_remap(struct bio *bio)
629 {
630 	struct block_device *p = bio->bi_bdev;
631 
632 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
633 		return -EIO;
634 	if (bio_sectors(bio)) {
635 		bio->bi_iter.bi_sector += p->bd_start_sect;
636 		trace_block_bio_remap(bio, p->bd_dev,
637 				      bio->bi_iter.bi_sector -
638 				      p->bd_start_sect);
639 	}
640 	bio_set_flag(bio, BIO_REMAPPED);
641 	return 0;
642 }
643 
644 /*
645  * Check write append to a zoned block device.
646  */
647 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
648 						 struct bio *bio)
649 {
650 	sector_t pos = bio->bi_iter.bi_sector;
651 	int nr_sectors = bio_sectors(bio);
652 
653 	/* Only applicable to zoned block devices */
654 	if (!blk_queue_is_zoned(q))
655 		return BLK_STS_NOTSUPP;
656 
657 	/* The bio sector must point to the start of a sequential zone */
658 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
659 	    !blk_queue_zone_is_seq(q, pos))
660 		return BLK_STS_IOERR;
661 
662 	/*
663 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
664 	 * split and could result in non-contiguous sectors being written in
665 	 * different zones.
666 	 */
667 	if (nr_sectors > q->limits.chunk_sectors)
668 		return BLK_STS_IOERR;
669 
670 	/* Make sure the BIO is small enough and will not get split */
671 	if (nr_sectors > q->limits.max_zone_append_sectors)
672 		return BLK_STS_IOERR;
673 
674 	bio->bi_opf |= REQ_NOMERGE;
675 
676 	return BLK_STS_OK;
677 }
678 
679 noinline_for_stack bool submit_bio_checks(struct bio *bio)
680 {
681 	struct block_device *bdev = bio->bi_bdev;
682 	struct request_queue *q = bdev_get_queue(bdev);
683 	blk_status_t status = BLK_STS_IOERR;
684 	struct blk_plug *plug;
685 
686 	might_sleep();
687 
688 	plug = blk_mq_plug(q, bio);
689 	if (plug && plug->nowait)
690 		bio->bi_opf |= REQ_NOWAIT;
691 
692 	/*
693 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
694 	 * if queue does not support NOWAIT.
695 	 */
696 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
697 		goto not_supported;
698 
699 	if (should_fail_bio(bio))
700 		goto end_io;
701 	if (unlikely(bio_check_ro(bio)))
702 		goto end_io;
703 	if (!bio_flagged(bio, BIO_REMAPPED)) {
704 		if (unlikely(bio_check_eod(bio)))
705 			goto end_io;
706 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
707 			goto end_io;
708 	}
709 
710 	/*
711 	 * Filter flush bio's early so that bio based drivers without flush
712 	 * support don't have to worry about them.
713 	 */
714 	if (op_is_flush(bio->bi_opf) &&
715 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
716 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
717 		if (!bio_sectors(bio)) {
718 			status = BLK_STS_OK;
719 			goto end_io;
720 		}
721 	}
722 
723 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
724 		bio_clear_polled(bio);
725 
726 	switch (bio_op(bio)) {
727 	case REQ_OP_DISCARD:
728 		if (!blk_queue_discard(q))
729 			goto not_supported;
730 		break;
731 	case REQ_OP_SECURE_ERASE:
732 		if (!blk_queue_secure_erase(q))
733 			goto not_supported;
734 		break;
735 	case REQ_OP_WRITE_SAME:
736 		if (!q->limits.max_write_same_sectors)
737 			goto not_supported;
738 		break;
739 	case REQ_OP_ZONE_APPEND:
740 		status = blk_check_zone_append(q, bio);
741 		if (status != BLK_STS_OK)
742 			goto end_io;
743 		break;
744 	case REQ_OP_ZONE_RESET:
745 	case REQ_OP_ZONE_OPEN:
746 	case REQ_OP_ZONE_CLOSE:
747 	case REQ_OP_ZONE_FINISH:
748 		if (!blk_queue_is_zoned(q))
749 			goto not_supported;
750 		break;
751 	case REQ_OP_ZONE_RESET_ALL:
752 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
753 			goto not_supported;
754 		break;
755 	case REQ_OP_WRITE_ZEROES:
756 		if (!q->limits.max_write_zeroes_sectors)
757 			goto not_supported;
758 		break;
759 	default:
760 		break;
761 	}
762 
763 	if (blk_throtl_bio(bio))
764 		return false;
765 
766 	blk_cgroup_bio_start(bio);
767 	blkcg_bio_issue_init(bio);
768 
769 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
770 		trace_block_bio_queue(bio);
771 		/* Now that enqueuing has been traced, we need to trace
772 		 * completion as well.
773 		 */
774 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
775 	}
776 	return true;
777 
778 not_supported:
779 	status = BLK_STS_NOTSUPP;
780 end_io:
781 	bio->bi_status = status;
782 	bio_endio(bio);
783 	return false;
784 }
785 
786 static void __submit_bio_fops(struct gendisk *disk, struct bio *bio)
787 {
788 	if (blk_crypto_bio_prep(&bio)) {
789 		if (likely(bio_queue_enter(bio) == 0)) {
790 			disk->fops->submit_bio(bio);
791 			blk_queue_exit(disk->queue);
792 		}
793 	}
794 }
795 
796 static void __submit_bio(struct bio *bio)
797 {
798 	struct gendisk *disk = bio->bi_bdev->bd_disk;
799 
800 	if (unlikely(!submit_bio_checks(bio)))
801 		return;
802 
803 	if (!disk->fops->submit_bio)
804 		blk_mq_submit_bio(bio);
805 	else
806 		__submit_bio_fops(disk, bio);
807 }
808 
809 /*
810  * The loop in this function may be a bit non-obvious, and so deserves some
811  * explanation:
812  *
813  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
814  *    that), so we have a list with a single bio.
815  *  - We pretend that we have just taken it off a longer list, so we assign
816  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
817  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
818  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
819  *    non-NULL value in bio_list and re-enter the loop from the top.
820  *  - In this case we really did just take the bio of the top of the list (no
821  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
822  *    again.
823  *
824  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
825  * bio_list_on_stack[1] contains bios that were submitted before the current
826  *	->submit_bio_bio, but that haven't been processed yet.
827  */
828 static void __submit_bio_noacct(struct bio *bio)
829 {
830 	struct bio_list bio_list_on_stack[2];
831 
832 	BUG_ON(bio->bi_next);
833 
834 	bio_list_init(&bio_list_on_stack[0]);
835 	current->bio_list = bio_list_on_stack;
836 
837 	do {
838 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
839 		struct bio_list lower, same;
840 
841 		/*
842 		 * Create a fresh bio_list for all subordinate requests.
843 		 */
844 		bio_list_on_stack[1] = bio_list_on_stack[0];
845 		bio_list_init(&bio_list_on_stack[0]);
846 
847 		__submit_bio(bio);
848 
849 		/*
850 		 * Sort new bios into those for a lower level and those for the
851 		 * same level.
852 		 */
853 		bio_list_init(&lower);
854 		bio_list_init(&same);
855 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
856 			if (q == bdev_get_queue(bio->bi_bdev))
857 				bio_list_add(&same, bio);
858 			else
859 				bio_list_add(&lower, bio);
860 
861 		/*
862 		 * Now assemble so we handle the lowest level first.
863 		 */
864 		bio_list_merge(&bio_list_on_stack[0], &lower);
865 		bio_list_merge(&bio_list_on_stack[0], &same);
866 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
867 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
868 
869 	current->bio_list = NULL;
870 }
871 
872 static void __submit_bio_noacct_mq(struct bio *bio)
873 {
874 	struct bio_list bio_list[2] = { };
875 
876 	current->bio_list = bio_list;
877 
878 	do {
879 		__submit_bio(bio);
880 	} while ((bio = bio_list_pop(&bio_list[0])));
881 
882 	current->bio_list = NULL;
883 }
884 
885 /**
886  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
887  * @bio:  The bio describing the location in memory and on the device.
888  *
889  * This is a version of submit_bio() that shall only be used for I/O that is
890  * resubmitted to lower level drivers by stacking block drivers.  All file
891  * systems and other upper level users of the block layer should use
892  * submit_bio() instead.
893  */
894 void submit_bio_noacct(struct bio *bio)
895 {
896 	/*
897 	 * We only want one ->submit_bio to be active at a time, else stack
898 	 * usage with stacked devices could be a problem.  Use current->bio_list
899 	 * to collect a list of requests submited by a ->submit_bio method while
900 	 * it is active, and then process them after it returned.
901 	 */
902 	if (current->bio_list)
903 		bio_list_add(&current->bio_list[0], bio);
904 	else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
905 		__submit_bio_noacct_mq(bio);
906 	else
907 		__submit_bio_noacct(bio);
908 }
909 EXPORT_SYMBOL(submit_bio_noacct);
910 
911 /**
912  * submit_bio - submit a bio to the block device layer for I/O
913  * @bio: The &struct bio which describes the I/O
914  *
915  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
916  * fully set up &struct bio that describes the I/O that needs to be done.  The
917  * bio will be send to the device described by the bi_bdev field.
918  *
919  * The success/failure status of the request, along with notification of
920  * completion, is delivered asynchronously through the ->bi_end_io() callback
921  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
922  * been called.
923  */
924 void submit_bio(struct bio *bio)
925 {
926 	if (blkcg_punt_bio_submit(bio))
927 		return;
928 
929 	/*
930 	 * If it's a regular read/write or a barrier with data attached,
931 	 * go through the normal accounting stuff before submission.
932 	 */
933 	if (bio_has_data(bio)) {
934 		unsigned int count;
935 
936 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
937 			count = queue_logical_block_size(
938 					bdev_get_queue(bio->bi_bdev)) >> 9;
939 		else
940 			count = bio_sectors(bio);
941 
942 		if (op_is_write(bio_op(bio))) {
943 			count_vm_events(PGPGOUT, count);
944 		} else {
945 			task_io_account_read(bio->bi_iter.bi_size);
946 			count_vm_events(PGPGIN, count);
947 		}
948 	}
949 
950 	/*
951 	 * If we're reading data that is part of the userspace workingset, count
952 	 * submission time as memory stall.  When the device is congested, or
953 	 * the submitting cgroup IO-throttled, submission can be a significant
954 	 * part of overall IO time.
955 	 */
956 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
957 	    bio_flagged(bio, BIO_WORKINGSET))) {
958 		unsigned long pflags;
959 
960 		psi_memstall_enter(&pflags);
961 		submit_bio_noacct(bio);
962 		psi_memstall_leave(&pflags);
963 		return;
964 	}
965 
966 	submit_bio_noacct(bio);
967 }
968 EXPORT_SYMBOL(submit_bio);
969 
970 /**
971  * bio_poll - poll for BIO completions
972  * @bio: bio to poll for
973  * @iob: batches of IO
974  * @flags: BLK_POLL_* flags that control the behavior
975  *
976  * Poll for completions on queue associated with the bio. Returns number of
977  * completed entries found.
978  *
979  * Note: the caller must either be the context that submitted @bio, or
980  * be in a RCU critical section to prevent freeing of @bio.
981  */
982 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
983 {
984 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
985 	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
986 	int ret;
987 
988 	if (cookie == BLK_QC_T_NONE ||
989 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
990 		return 0;
991 
992 	if (current->plug)
993 		blk_flush_plug(current->plug, false);
994 
995 	if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
996 		return 0;
997 	if (WARN_ON_ONCE(!queue_is_mq(q)))
998 		ret = 0;	/* not yet implemented, should not happen */
999 	else
1000 		ret = blk_mq_poll(q, cookie, iob, flags);
1001 	blk_queue_exit(q);
1002 	return ret;
1003 }
1004 EXPORT_SYMBOL_GPL(bio_poll);
1005 
1006 /*
1007  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
1008  * in iocb->private, and cleared before freeing the bio.
1009  */
1010 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
1011 		    unsigned int flags)
1012 {
1013 	struct bio *bio;
1014 	int ret = 0;
1015 
1016 	/*
1017 	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
1018 	 * point to a freshly allocated bio at this point.  If that happens
1019 	 * we have a few cases to consider:
1020 	 *
1021 	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
1022 	 *     simply nothing in this case
1023 	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
1024 	 *     this and return 0
1025 	 *  3) the bio points to a poll capable device, including but not
1026 	 *     limited to the one that the original bio pointed to.  In this
1027 	 *     case we will call into the actual poll method and poll for I/O,
1028 	 *     even if we don't need to, but it won't cause harm either.
1029 	 *
1030 	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
1031 	 * is still allocated. Because partitions hold a reference to the whole
1032 	 * device bdev and thus disk, the disk is also still valid.  Grabbing
1033 	 * a reference to the queue in bio_poll() ensures the hctxs and requests
1034 	 * are still valid as well.
1035 	 */
1036 	rcu_read_lock();
1037 	bio = READ_ONCE(kiocb->private);
1038 	if (bio && bio->bi_bdev)
1039 		ret = bio_poll(bio, iob, flags);
1040 	rcu_read_unlock();
1041 
1042 	return ret;
1043 }
1044 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1045 
1046 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
1047 {
1048 	unsigned long stamp;
1049 again:
1050 	stamp = READ_ONCE(part->bd_stamp);
1051 	if (unlikely(time_after(now, stamp))) {
1052 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1053 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1054 	}
1055 	if (part->bd_partno) {
1056 		part = bdev_whole(part);
1057 		goto again;
1058 	}
1059 }
1060 
1061 static unsigned long __part_start_io_acct(struct block_device *part,
1062 					  unsigned int sectors, unsigned int op,
1063 					  unsigned long start_time)
1064 {
1065 	const int sgrp = op_stat_group(op);
1066 
1067 	part_stat_lock();
1068 	update_io_ticks(part, start_time, false);
1069 	part_stat_inc(part, ios[sgrp]);
1070 	part_stat_add(part, sectors[sgrp], sectors);
1071 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1072 	part_stat_unlock();
1073 
1074 	return start_time;
1075 }
1076 
1077 /**
1078  * bio_start_io_acct_time - start I/O accounting for bio based drivers
1079  * @bio:	bio to start account for
1080  * @start_time:	start time that should be passed back to bio_end_io_acct().
1081  */
1082 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1083 {
1084 	__part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1085 			     bio_op(bio), start_time);
1086 }
1087 EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
1088 
1089 /**
1090  * bio_start_io_acct - start I/O accounting for bio based drivers
1091  * @bio:	bio to start account for
1092  *
1093  * Returns the start time that should be passed back to bio_end_io_acct().
1094  */
1095 unsigned long bio_start_io_acct(struct bio *bio)
1096 {
1097 	return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1098 				    bio_op(bio), jiffies);
1099 }
1100 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1101 
1102 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1103 				 unsigned int op)
1104 {
1105 	return __part_start_io_acct(disk->part0, sectors, op, jiffies);
1106 }
1107 EXPORT_SYMBOL(disk_start_io_acct);
1108 
1109 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1110 			       unsigned long start_time)
1111 {
1112 	const int sgrp = op_stat_group(op);
1113 	unsigned long now = READ_ONCE(jiffies);
1114 	unsigned long duration = now - start_time;
1115 
1116 	part_stat_lock();
1117 	update_io_ticks(part, now, true);
1118 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1119 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1120 	part_stat_unlock();
1121 }
1122 
1123 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1124 		struct block_device *orig_bdev)
1125 {
1126 	__part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1127 }
1128 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1129 
1130 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1131 		      unsigned long start_time)
1132 {
1133 	__part_end_io_acct(disk->part0, op, start_time);
1134 }
1135 EXPORT_SYMBOL(disk_end_io_acct);
1136 
1137 /**
1138  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1139  * @q : the queue of the device being checked
1140  *
1141  * Description:
1142  *    Check if underlying low-level drivers of a device are busy.
1143  *    If the drivers want to export their busy state, they must set own
1144  *    exporting function using blk_queue_lld_busy() first.
1145  *
1146  *    Basically, this function is used only by request stacking drivers
1147  *    to stop dispatching requests to underlying devices when underlying
1148  *    devices are busy.  This behavior helps more I/O merging on the queue
1149  *    of the request stacking driver and prevents I/O throughput regression
1150  *    on burst I/O load.
1151  *
1152  * Return:
1153  *    0 - Not busy (The request stacking driver should dispatch request)
1154  *    1 - Busy (The request stacking driver should stop dispatching request)
1155  */
1156 int blk_lld_busy(struct request_queue *q)
1157 {
1158 	if (queue_is_mq(q) && q->mq_ops->busy)
1159 		return q->mq_ops->busy(q);
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL_GPL(blk_lld_busy);
1164 
1165 int kblockd_schedule_work(struct work_struct *work)
1166 {
1167 	return queue_work(kblockd_workqueue, work);
1168 }
1169 EXPORT_SYMBOL(kblockd_schedule_work);
1170 
1171 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1172 				unsigned long delay)
1173 {
1174 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1175 }
1176 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1177 
1178 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1179 {
1180 	struct task_struct *tsk = current;
1181 
1182 	/*
1183 	 * If this is a nested plug, don't actually assign it.
1184 	 */
1185 	if (tsk->plug)
1186 		return;
1187 
1188 	plug->mq_list = NULL;
1189 	plug->cached_rq = NULL;
1190 	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1191 	plug->rq_count = 0;
1192 	plug->multiple_queues = false;
1193 	plug->has_elevator = false;
1194 	plug->nowait = false;
1195 	INIT_LIST_HEAD(&plug->cb_list);
1196 
1197 	/*
1198 	 * Store ordering should not be needed here, since a potential
1199 	 * preempt will imply a full memory barrier
1200 	 */
1201 	tsk->plug = plug;
1202 }
1203 
1204 /**
1205  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1206  * @plug:	The &struct blk_plug that needs to be initialized
1207  *
1208  * Description:
1209  *   blk_start_plug() indicates to the block layer an intent by the caller
1210  *   to submit multiple I/O requests in a batch.  The block layer may use
1211  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1212  *   is called.  However, the block layer may choose to submit requests
1213  *   before a call to blk_finish_plug() if the number of queued I/Os
1214  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1215  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1216  *   the task schedules (see below).
1217  *
1218  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1219  *   pending I/O should the task end up blocking between blk_start_plug() and
1220  *   blk_finish_plug(). This is important from a performance perspective, but
1221  *   also ensures that we don't deadlock. For instance, if the task is blocking
1222  *   for a memory allocation, memory reclaim could end up wanting to free a
1223  *   page belonging to that request that is currently residing in our private
1224  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1225  *   this kind of deadlock.
1226  */
1227 void blk_start_plug(struct blk_plug *plug)
1228 {
1229 	blk_start_plug_nr_ios(plug, 1);
1230 }
1231 EXPORT_SYMBOL(blk_start_plug);
1232 
1233 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1234 {
1235 	LIST_HEAD(callbacks);
1236 
1237 	while (!list_empty(&plug->cb_list)) {
1238 		list_splice_init(&plug->cb_list, &callbacks);
1239 
1240 		while (!list_empty(&callbacks)) {
1241 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1242 							  struct blk_plug_cb,
1243 							  list);
1244 			list_del(&cb->list);
1245 			cb->callback(cb, from_schedule);
1246 		}
1247 	}
1248 }
1249 
1250 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1251 				      int size)
1252 {
1253 	struct blk_plug *plug = current->plug;
1254 	struct blk_plug_cb *cb;
1255 
1256 	if (!plug)
1257 		return NULL;
1258 
1259 	list_for_each_entry(cb, &plug->cb_list, list)
1260 		if (cb->callback == unplug && cb->data == data)
1261 			return cb;
1262 
1263 	/* Not currently on the callback list */
1264 	BUG_ON(size < sizeof(*cb));
1265 	cb = kzalloc(size, GFP_ATOMIC);
1266 	if (cb) {
1267 		cb->data = data;
1268 		cb->callback = unplug;
1269 		list_add(&cb->list, &plug->cb_list);
1270 	}
1271 	return cb;
1272 }
1273 EXPORT_SYMBOL(blk_check_plugged);
1274 
1275 void blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1276 {
1277 	if (!list_empty(&plug->cb_list))
1278 		flush_plug_callbacks(plug, from_schedule);
1279 	if (!rq_list_empty(plug->mq_list))
1280 		blk_mq_flush_plug_list(plug, from_schedule);
1281 	/*
1282 	 * Unconditionally flush out cached requests, even if the unplug
1283 	 * event came from schedule. Since we know hold references to the
1284 	 * queue for cached requests, we don't want a blocked task holding
1285 	 * up a queue freeze/quiesce event.
1286 	 */
1287 	if (unlikely(!rq_list_empty(plug->cached_rq)))
1288 		blk_mq_free_plug_rqs(plug);
1289 }
1290 
1291 /**
1292  * blk_finish_plug - mark the end of a batch of submitted I/O
1293  * @plug:	The &struct blk_plug passed to blk_start_plug()
1294  *
1295  * Description:
1296  * Indicate that a batch of I/O submissions is complete.  This function
1297  * must be paired with an initial call to blk_start_plug().  The intent
1298  * is to allow the block layer to optimize I/O submission.  See the
1299  * documentation for blk_start_plug() for more information.
1300  */
1301 void blk_finish_plug(struct blk_plug *plug)
1302 {
1303 	if (plug == current->plug) {
1304 		blk_flush_plug(plug, false);
1305 		current->plug = NULL;
1306 	}
1307 }
1308 EXPORT_SYMBOL(blk_finish_plug);
1309 
1310 void blk_io_schedule(void)
1311 {
1312 	/* Prevent hang_check timer from firing at us during very long I/O */
1313 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1314 
1315 	if (timeout)
1316 		io_schedule_timeout(timeout);
1317 	else
1318 		io_schedule();
1319 }
1320 EXPORT_SYMBOL_GPL(blk_io_schedule);
1321 
1322 int __init blk_dev_init(void)
1323 {
1324 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1325 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1326 			sizeof_field(struct request, cmd_flags));
1327 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1328 			sizeof_field(struct bio, bi_opf));
1329 	BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
1330 			   __alignof__(struct request_queue)) !=
1331 		     sizeof(struct request_queue));
1332 
1333 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1334 	kblockd_workqueue = alloc_workqueue("kblockd",
1335 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1336 	if (!kblockd_workqueue)
1337 		panic("Failed to create kblockd\n");
1338 
1339 	blk_requestq_cachep = kmem_cache_create("request_queue",
1340 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1341 
1342 	blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
1343 			sizeof(struct request_queue) +
1344 			sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);
1345 
1346 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1347 
1348 	return 0;
1349 }
1350