1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 #include "blk-mq.h" 43 #include "blk-mq-sched.h" 44 #include "blk-wbt.h" 45 46 #ifdef CONFIG_DEBUG_FS 47 struct dentry *blk_debugfs_root; 48 #endif 49 50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 55 56 DEFINE_IDA(blk_queue_ida); 57 58 /* 59 * For the allocated request tables 60 */ 61 struct kmem_cache *request_cachep; 62 63 /* 64 * For queue allocation 65 */ 66 struct kmem_cache *blk_requestq_cachep; 67 68 /* 69 * Controlling structure to kblockd 70 */ 71 static struct workqueue_struct *kblockd_workqueue; 72 73 static void blk_clear_congested(struct request_list *rl, int sync) 74 { 75 #ifdef CONFIG_CGROUP_WRITEBACK 76 clear_wb_congested(rl->blkg->wb_congested, sync); 77 #else 78 /* 79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 80 * flip its congestion state for events on other blkcgs. 81 */ 82 if (rl == &rl->q->root_rl) 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 84 #endif 85 } 86 87 static void blk_set_congested(struct request_list *rl, int sync) 88 { 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 set_wb_congested(rl->blkg->wb_congested, sync); 91 #else 92 /* see blk_clear_congested() */ 93 if (rl == &rl->q->root_rl) 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 95 #endif 96 } 97 98 void blk_queue_congestion_threshold(struct request_queue *q) 99 { 100 int nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) + 1; 103 if (nr > q->nr_requests) 104 nr = q->nr_requests; 105 q->nr_congestion_on = nr; 106 107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 108 if (nr < 1) 109 nr = 1; 110 q->nr_congestion_off = nr; 111 } 112 113 void blk_rq_init(struct request_queue *q, struct request *rq) 114 { 115 memset(rq, 0, sizeof(*rq)); 116 117 INIT_LIST_HEAD(&rq->queuelist); 118 INIT_LIST_HEAD(&rq->timeout_list); 119 rq->cpu = -1; 120 rq->q = q; 121 rq->__sector = (sector_t) -1; 122 INIT_HLIST_NODE(&rq->hash); 123 RB_CLEAR_NODE(&rq->rb_node); 124 rq->tag = -1; 125 rq->internal_tag = -1; 126 rq->start_time = jiffies; 127 set_start_time_ns(rq); 128 rq->part = NULL; 129 } 130 EXPORT_SYMBOL(blk_rq_init); 131 132 static void req_bio_endio(struct request *rq, struct bio *bio, 133 unsigned int nbytes, int error) 134 { 135 if (error) 136 bio->bi_error = error; 137 138 if (unlikely(rq->rq_flags & RQF_QUIET)) 139 bio_set_flag(bio, BIO_QUIET); 140 141 bio_advance(bio, nbytes); 142 143 /* don't actually finish bio if it's part of flush sequence */ 144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 145 bio_endio(bio); 146 } 147 148 void blk_dump_rq_flags(struct request *rq, char *msg) 149 { 150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 151 rq->rq_disk ? rq->rq_disk->disk_name : "?", 152 (unsigned long long) rq->cmd_flags); 153 154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 155 (unsigned long long)blk_rq_pos(rq), 156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 157 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 158 rq->bio, rq->biotail, blk_rq_bytes(rq)); 159 } 160 EXPORT_SYMBOL(blk_dump_rq_flags); 161 162 static void blk_delay_work(struct work_struct *work) 163 { 164 struct request_queue *q; 165 166 q = container_of(work, struct request_queue, delay_work.work); 167 spin_lock_irq(q->queue_lock); 168 __blk_run_queue(q); 169 spin_unlock_irq(q->queue_lock); 170 } 171 172 /** 173 * blk_delay_queue - restart queueing after defined interval 174 * @q: The &struct request_queue in question 175 * @msecs: Delay in msecs 176 * 177 * Description: 178 * Sometimes queueing needs to be postponed for a little while, to allow 179 * resources to come back. This function will make sure that queueing is 180 * restarted around the specified time. Queue lock must be held. 181 */ 182 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 183 { 184 if (likely(!blk_queue_dead(q))) 185 queue_delayed_work(kblockd_workqueue, &q->delay_work, 186 msecs_to_jiffies(msecs)); 187 } 188 EXPORT_SYMBOL(blk_delay_queue); 189 190 /** 191 * blk_start_queue_async - asynchronously restart a previously stopped queue 192 * @q: The &struct request_queue in question 193 * 194 * Description: 195 * blk_start_queue_async() will clear the stop flag on the queue, and 196 * ensure that the request_fn for the queue is run from an async 197 * context. 198 **/ 199 void blk_start_queue_async(struct request_queue *q) 200 { 201 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 202 blk_run_queue_async(q); 203 } 204 EXPORT_SYMBOL(blk_start_queue_async); 205 206 /** 207 * blk_start_queue - restart a previously stopped queue 208 * @q: The &struct request_queue in question 209 * 210 * Description: 211 * blk_start_queue() will clear the stop flag on the queue, and call 212 * the request_fn for the queue if it was in a stopped state when 213 * entered. Also see blk_stop_queue(). Queue lock must be held. 214 **/ 215 void blk_start_queue(struct request_queue *q) 216 { 217 WARN_ON(!irqs_disabled()); 218 219 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 220 __blk_run_queue(q); 221 } 222 EXPORT_SYMBOL(blk_start_queue); 223 224 /** 225 * blk_stop_queue - stop a queue 226 * @q: The &struct request_queue in question 227 * 228 * Description: 229 * The Linux block layer assumes that a block driver will consume all 230 * entries on the request queue when the request_fn strategy is called. 231 * Often this will not happen, because of hardware limitations (queue 232 * depth settings). If a device driver gets a 'queue full' response, 233 * or if it simply chooses not to queue more I/O at one point, it can 234 * call this function to prevent the request_fn from being called until 235 * the driver has signalled it's ready to go again. This happens by calling 236 * blk_start_queue() to restart queue operations. Queue lock must be held. 237 **/ 238 void blk_stop_queue(struct request_queue *q) 239 { 240 cancel_delayed_work(&q->delay_work); 241 queue_flag_set(QUEUE_FLAG_STOPPED, q); 242 } 243 EXPORT_SYMBOL(blk_stop_queue); 244 245 /** 246 * blk_sync_queue - cancel any pending callbacks on a queue 247 * @q: the queue 248 * 249 * Description: 250 * The block layer may perform asynchronous callback activity 251 * on a queue, such as calling the unplug function after a timeout. 252 * A block device may call blk_sync_queue to ensure that any 253 * such activity is cancelled, thus allowing it to release resources 254 * that the callbacks might use. The caller must already have made sure 255 * that its ->make_request_fn will not re-add plugging prior to calling 256 * this function. 257 * 258 * This function does not cancel any asynchronous activity arising 259 * out of elevator or throttling code. That would require elevator_exit() 260 * and blkcg_exit_queue() to be called with queue lock initialized. 261 * 262 */ 263 void blk_sync_queue(struct request_queue *q) 264 { 265 del_timer_sync(&q->timeout); 266 267 if (q->mq_ops) { 268 struct blk_mq_hw_ctx *hctx; 269 int i; 270 271 queue_for_each_hw_ctx(q, hctx, i) { 272 cancel_work_sync(&hctx->run_work); 273 cancel_delayed_work_sync(&hctx->delay_work); 274 } 275 } else { 276 cancel_delayed_work_sync(&q->delay_work); 277 } 278 } 279 EXPORT_SYMBOL(blk_sync_queue); 280 281 /** 282 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 283 * @q: The queue to run 284 * 285 * Description: 286 * Invoke request handling on a queue if there are any pending requests. 287 * May be used to restart request handling after a request has completed. 288 * This variant runs the queue whether or not the queue has been 289 * stopped. Must be called with the queue lock held and interrupts 290 * disabled. See also @blk_run_queue. 291 */ 292 inline void __blk_run_queue_uncond(struct request_queue *q) 293 { 294 if (unlikely(blk_queue_dead(q))) 295 return; 296 297 /* 298 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 299 * the queue lock internally. As a result multiple threads may be 300 * running such a request function concurrently. Keep track of the 301 * number of active request_fn invocations such that blk_drain_queue() 302 * can wait until all these request_fn calls have finished. 303 */ 304 q->request_fn_active++; 305 q->request_fn(q); 306 q->request_fn_active--; 307 } 308 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 309 310 /** 311 * __blk_run_queue - run a single device queue 312 * @q: The queue to run 313 * 314 * Description: 315 * See @blk_run_queue. This variant must be called with the queue lock 316 * held and interrupts disabled. 317 */ 318 void __blk_run_queue(struct request_queue *q) 319 { 320 if (unlikely(blk_queue_stopped(q))) 321 return; 322 323 __blk_run_queue_uncond(q); 324 } 325 EXPORT_SYMBOL(__blk_run_queue); 326 327 /** 328 * blk_run_queue_async - run a single device queue in workqueue context 329 * @q: The queue to run 330 * 331 * Description: 332 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 333 * of us. The caller must hold the queue lock. 334 */ 335 void blk_run_queue_async(struct request_queue *q) 336 { 337 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 338 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 339 } 340 EXPORT_SYMBOL(blk_run_queue_async); 341 342 /** 343 * blk_run_queue - run a single device queue 344 * @q: The queue to run 345 * 346 * Description: 347 * Invoke request handling on this queue, if it has pending work to do. 348 * May be used to restart queueing when a request has completed. 349 */ 350 void blk_run_queue(struct request_queue *q) 351 { 352 unsigned long flags; 353 354 spin_lock_irqsave(q->queue_lock, flags); 355 __blk_run_queue(q); 356 spin_unlock_irqrestore(q->queue_lock, flags); 357 } 358 EXPORT_SYMBOL(blk_run_queue); 359 360 void blk_put_queue(struct request_queue *q) 361 { 362 kobject_put(&q->kobj); 363 } 364 EXPORT_SYMBOL(blk_put_queue); 365 366 /** 367 * __blk_drain_queue - drain requests from request_queue 368 * @q: queue to drain 369 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 370 * 371 * Drain requests from @q. If @drain_all is set, all requests are drained. 372 * If not, only ELVPRIV requests are drained. The caller is responsible 373 * for ensuring that no new requests which need to be drained are queued. 374 */ 375 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 376 __releases(q->queue_lock) 377 __acquires(q->queue_lock) 378 { 379 int i; 380 381 lockdep_assert_held(q->queue_lock); 382 383 while (true) { 384 bool drain = false; 385 386 /* 387 * The caller might be trying to drain @q before its 388 * elevator is initialized. 389 */ 390 if (q->elevator) 391 elv_drain_elevator(q); 392 393 blkcg_drain_queue(q); 394 395 /* 396 * This function might be called on a queue which failed 397 * driver init after queue creation or is not yet fully 398 * active yet. Some drivers (e.g. fd and loop) get unhappy 399 * in such cases. Kick queue iff dispatch queue has 400 * something on it and @q has request_fn set. 401 */ 402 if (!list_empty(&q->queue_head) && q->request_fn) 403 __blk_run_queue(q); 404 405 drain |= q->nr_rqs_elvpriv; 406 drain |= q->request_fn_active; 407 408 /* 409 * Unfortunately, requests are queued at and tracked from 410 * multiple places and there's no single counter which can 411 * be drained. Check all the queues and counters. 412 */ 413 if (drain_all) { 414 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 415 drain |= !list_empty(&q->queue_head); 416 for (i = 0; i < 2; i++) { 417 drain |= q->nr_rqs[i]; 418 drain |= q->in_flight[i]; 419 if (fq) 420 drain |= !list_empty(&fq->flush_queue[i]); 421 } 422 } 423 424 if (!drain) 425 break; 426 427 spin_unlock_irq(q->queue_lock); 428 429 msleep(10); 430 431 spin_lock_irq(q->queue_lock); 432 } 433 434 /* 435 * With queue marked dead, any woken up waiter will fail the 436 * allocation path, so the wakeup chaining is lost and we're 437 * left with hung waiters. We need to wake up those waiters. 438 */ 439 if (q->request_fn) { 440 struct request_list *rl; 441 442 blk_queue_for_each_rl(rl, q) 443 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 444 wake_up_all(&rl->wait[i]); 445 } 446 } 447 448 /** 449 * blk_queue_bypass_start - enter queue bypass mode 450 * @q: queue of interest 451 * 452 * In bypass mode, only the dispatch FIFO queue of @q is used. This 453 * function makes @q enter bypass mode and drains all requests which were 454 * throttled or issued before. On return, it's guaranteed that no request 455 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 456 * inside queue or RCU read lock. 457 */ 458 void blk_queue_bypass_start(struct request_queue *q) 459 { 460 spin_lock_irq(q->queue_lock); 461 q->bypass_depth++; 462 queue_flag_set(QUEUE_FLAG_BYPASS, q); 463 spin_unlock_irq(q->queue_lock); 464 465 /* 466 * Queues start drained. Skip actual draining till init is 467 * complete. This avoids lenghty delays during queue init which 468 * can happen many times during boot. 469 */ 470 if (blk_queue_init_done(q)) { 471 spin_lock_irq(q->queue_lock); 472 __blk_drain_queue(q, false); 473 spin_unlock_irq(q->queue_lock); 474 475 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 476 synchronize_rcu(); 477 } 478 } 479 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 480 481 /** 482 * blk_queue_bypass_end - leave queue bypass mode 483 * @q: queue of interest 484 * 485 * Leave bypass mode and restore the normal queueing behavior. 486 */ 487 void blk_queue_bypass_end(struct request_queue *q) 488 { 489 spin_lock_irq(q->queue_lock); 490 if (!--q->bypass_depth) 491 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 492 WARN_ON_ONCE(q->bypass_depth < 0); 493 spin_unlock_irq(q->queue_lock); 494 } 495 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 496 497 void blk_set_queue_dying(struct request_queue *q) 498 { 499 spin_lock_irq(q->queue_lock); 500 queue_flag_set(QUEUE_FLAG_DYING, q); 501 spin_unlock_irq(q->queue_lock); 502 503 if (q->mq_ops) 504 blk_mq_wake_waiters(q); 505 else { 506 struct request_list *rl; 507 508 spin_lock_irq(q->queue_lock); 509 blk_queue_for_each_rl(rl, q) { 510 if (rl->rq_pool) { 511 wake_up(&rl->wait[BLK_RW_SYNC]); 512 wake_up(&rl->wait[BLK_RW_ASYNC]); 513 } 514 } 515 spin_unlock_irq(q->queue_lock); 516 } 517 } 518 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 519 520 /** 521 * blk_cleanup_queue - shutdown a request queue 522 * @q: request queue to shutdown 523 * 524 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 525 * put it. All future requests will be failed immediately with -ENODEV. 526 */ 527 void blk_cleanup_queue(struct request_queue *q) 528 { 529 spinlock_t *lock = q->queue_lock; 530 531 /* mark @q DYING, no new request or merges will be allowed afterwards */ 532 mutex_lock(&q->sysfs_lock); 533 blk_set_queue_dying(q); 534 spin_lock_irq(lock); 535 536 /* 537 * A dying queue is permanently in bypass mode till released. Note 538 * that, unlike blk_queue_bypass_start(), we aren't performing 539 * synchronize_rcu() after entering bypass mode to avoid the delay 540 * as some drivers create and destroy a lot of queues while 541 * probing. This is still safe because blk_release_queue() will be 542 * called only after the queue refcnt drops to zero and nothing, 543 * RCU or not, would be traversing the queue by then. 544 */ 545 q->bypass_depth++; 546 queue_flag_set(QUEUE_FLAG_BYPASS, q); 547 548 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 549 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 550 queue_flag_set(QUEUE_FLAG_DYING, q); 551 spin_unlock_irq(lock); 552 mutex_unlock(&q->sysfs_lock); 553 554 /* 555 * Drain all requests queued before DYING marking. Set DEAD flag to 556 * prevent that q->request_fn() gets invoked after draining finished. 557 */ 558 blk_freeze_queue(q); 559 spin_lock_irq(lock); 560 if (!q->mq_ops) 561 __blk_drain_queue(q, true); 562 queue_flag_set(QUEUE_FLAG_DEAD, q); 563 spin_unlock_irq(lock); 564 565 /* for synchronous bio-based driver finish in-flight integrity i/o */ 566 blk_flush_integrity(); 567 568 /* @q won't process any more request, flush async actions */ 569 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 570 blk_sync_queue(q); 571 572 if (q->mq_ops) 573 blk_mq_free_queue(q); 574 percpu_ref_exit(&q->q_usage_counter); 575 576 spin_lock_irq(lock); 577 if (q->queue_lock != &q->__queue_lock) 578 q->queue_lock = &q->__queue_lock; 579 spin_unlock_irq(lock); 580 581 put_disk_devt(q->disk_devt); 582 583 /* @q is and will stay empty, shutdown and put */ 584 blk_put_queue(q); 585 } 586 EXPORT_SYMBOL(blk_cleanup_queue); 587 588 /* Allocate memory local to the request queue */ 589 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 590 { 591 struct request_queue *q = data; 592 593 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 594 } 595 596 static void free_request_simple(void *element, void *data) 597 { 598 kmem_cache_free(request_cachep, element); 599 } 600 601 static void *alloc_request_size(gfp_t gfp_mask, void *data) 602 { 603 struct request_queue *q = data; 604 struct request *rq; 605 606 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 607 q->node); 608 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 609 kfree(rq); 610 rq = NULL; 611 } 612 return rq; 613 } 614 615 static void free_request_size(void *element, void *data) 616 { 617 struct request_queue *q = data; 618 619 if (q->exit_rq_fn) 620 q->exit_rq_fn(q, element); 621 kfree(element); 622 } 623 624 int blk_init_rl(struct request_list *rl, struct request_queue *q, 625 gfp_t gfp_mask) 626 { 627 if (unlikely(rl->rq_pool)) 628 return 0; 629 630 rl->q = q; 631 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 632 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 633 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 634 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 635 636 if (q->cmd_size) { 637 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 638 alloc_request_size, free_request_size, 639 q, gfp_mask, q->node); 640 } else { 641 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 642 alloc_request_simple, free_request_simple, 643 q, gfp_mask, q->node); 644 } 645 if (!rl->rq_pool) 646 return -ENOMEM; 647 648 return 0; 649 } 650 651 void blk_exit_rl(struct request_list *rl) 652 { 653 if (rl->rq_pool) 654 mempool_destroy(rl->rq_pool); 655 } 656 657 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 658 { 659 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 660 } 661 EXPORT_SYMBOL(blk_alloc_queue); 662 663 int blk_queue_enter(struct request_queue *q, bool nowait) 664 { 665 while (true) { 666 int ret; 667 668 if (percpu_ref_tryget_live(&q->q_usage_counter)) 669 return 0; 670 671 if (nowait) 672 return -EBUSY; 673 674 ret = wait_event_interruptible(q->mq_freeze_wq, 675 !atomic_read(&q->mq_freeze_depth) || 676 blk_queue_dying(q)); 677 if (blk_queue_dying(q)) 678 return -ENODEV; 679 if (ret) 680 return ret; 681 } 682 } 683 684 void blk_queue_exit(struct request_queue *q) 685 { 686 percpu_ref_put(&q->q_usage_counter); 687 } 688 689 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 690 { 691 struct request_queue *q = 692 container_of(ref, struct request_queue, q_usage_counter); 693 694 wake_up_all(&q->mq_freeze_wq); 695 } 696 697 static void blk_rq_timed_out_timer(unsigned long data) 698 { 699 struct request_queue *q = (struct request_queue *)data; 700 701 kblockd_schedule_work(&q->timeout_work); 702 } 703 704 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 705 { 706 struct request_queue *q; 707 708 q = kmem_cache_alloc_node(blk_requestq_cachep, 709 gfp_mask | __GFP_ZERO, node_id); 710 if (!q) 711 return NULL; 712 713 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 714 if (q->id < 0) 715 goto fail_q; 716 717 q->bio_split = bioset_create(BIO_POOL_SIZE, 0); 718 if (!q->bio_split) 719 goto fail_id; 720 721 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 722 if (!q->backing_dev_info) 723 goto fail_split; 724 725 q->backing_dev_info->ra_pages = 726 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 727 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 728 q->backing_dev_info->name = "block"; 729 q->node = node_id; 730 731 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer, 732 laptop_mode_timer_fn, (unsigned long) q); 733 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 734 INIT_LIST_HEAD(&q->queue_head); 735 INIT_LIST_HEAD(&q->timeout_list); 736 INIT_LIST_HEAD(&q->icq_list); 737 #ifdef CONFIG_BLK_CGROUP 738 INIT_LIST_HEAD(&q->blkg_list); 739 #endif 740 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 741 742 kobject_init(&q->kobj, &blk_queue_ktype); 743 744 mutex_init(&q->sysfs_lock); 745 spin_lock_init(&q->__queue_lock); 746 747 /* 748 * By default initialize queue_lock to internal lock and driver can 749 * override it later if need be. 750 */ 751 q->queue_lock = &q->__queue_lock; 752 753 /* 754 * A queue starts its life with bypass turned on to avoid 755 * unnecessary bypass on/off overhead and nasty surprises during 756 * init. The initial bypass will be finished when the queue is 757 * registered by blk_register_queue(). 758 */ 759 q->bypass_depth = 1; 760 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 761 762 init_waitqueue_head(&q->mq_freeze_wq); 763 764 /* 765 * Init percpu_ref in atomic mode so that it's faster to shutdown. 766 * See blk_register_queue() for details. 767 */ 768 if (percpu_ref_init(&q->q_usage_counter, 769 blk_queue_usage_counter_release, 770 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 771 goto fail_bdi; 772 773 if (blkcg_init_queue(q)) 774 goto fail_ref; 775 776 return q; 777 778 fail_ref: 779 percpu_ref_exit(&q->q_usage_counter); 780 fail_bdi: 781 bdi_put(q->backing_dev_info); 782 fail_split: 783 bioset_free(q->bio_split); 784 fail_id: 785 ida_simple_remove(&blk_queue_ida, q->id); 786 fail_q: 787 kmem_cache_free(blk_requestq_cachep, q); 788 return NULL; 789 } 790 EXPORT_SYMBOL(blk_alloc_queue_node); 791 792 /** 793 * blk_init_queue - prepare a request queue for use with a block device 794 * @rfn: The function to be called to process requests that have been 795 * placed on the queue. 796 * @lock: Request queue spin lock 797 * 798 * Description: 799 * If a block device wishes to use the standard request handling procedures, 800 * which sorts requests and coalesces adjacent requests, then it must 801 * call blk_init_queue(). The function @rfn will be called when there 802 * are requests on the queue that need to be processed. If the device 803 * supports plugging, then @rfn may not be called immediately when requests 804 * are available on the queue, but may be called at some time later instead. 805 * Plugged queues are generally unplugged when a buffer belonging to one 806 * of the requests on the queue is needed, or due to memory pressure. 807 * 808 * @rfn is not required, or even expected, to remove all requests off the 809 * queue, but only as many as it can handle at a time. If it does leave 810 * requests on the queue, it is responsible for arranging that the requests 811 * get dealt with eventually. 812 * 813 * The queue spin lock must be held while manipulating the requests on the 814 * request queue; this lock will be taken also from interrupt context, so irq 815 * disabling is needed for it. 816 * 817 * Function returns a pointer to the initialized request queue, or %NULL if 818 * it didn't succeed. 819 * 820 * Note: 821 * blk_init_queue() must be paired with a blk_cleanup_queue() call 822 * when the block device is deactivated (such as at module unload). 823 **/ 824 825 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 826 { 827 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 828 } 829 EXPORT_SYMBOL(blk_init_queue); 830 831 struct request_queue * 832 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 833 { 834 struct request_queue *q; 835 836 q = blk_alloc_queue_node(GFP_KERNEL, node_id); 837 if (!q) 838 return NULL; 839 840 q->request_fn = rfn; 841 if (lock) 842 q->queue_lock = lock; 843 if (blk_init_allocated_queue(q) < 0) { 844 blk_cleanup_queue(q); 845 return NULL; 846 } 847 848 return q; 849 } 850 EXPORT_SYMBOL(blk_init_queue_node); 851 852 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 853 854 855 int blk_init_allocated_queue(struct request_queue *q) 856 { 857 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 858 if (!q->fq) 859 return -ENOMEM; 860 861 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 862 goto out_free_flush_queue; 863 864 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 865 goto out_exit_flush_rq; 866 867 INIT_WORK(&q->timeout_work, blk_timeout_work); 868 q->queue_flags |= QUEUE_FLAG_DEFAULT; 869 870 /* 871 * This also sets hw/phys segments, boundary and size 872 */ 873 blk_queue_make_request(q, blk_queue_bio); 874 875 q->sg_reserved_size = INT_MAX; 876 877 /* Protect q->elevator from elevator_change */ 878 mutex_lock(&q->sysfs_lock); 879 880 /* init elevator */ 881 if (elevator_init(q, NULL)) { 882 mutex_unlock(&q->sysfs_lock); 883 goto out_exit_flush_rq; 884 } 885 886 mutex_unlock(&q->sysfs_lock); 887 return 0; 888 889 out_exit_flush_rq: 890 if (q->exit_rq_fn) 891 q->exit_rq_fn(q, q->fq->flush_rq); 892 out_free_flush_queue: 893 blk_free_flush_queue(q->fq); 894 wbt_exit(q); 895 return -ENOMEM; 896 } 897 EXPORT_SYMBOL(blk_init_allocated_queue); 898 899 bool blk_get_queue(struct request_queue *q) 900 { 901 if (likely(!blk_queue_dying(q))) { 902 __blk_get_queue(q); 903 return true; 904 } 905 906 return false; 907 } 908 EXPORT_SYMBOL(blk_get_queue); 909 910 static inline void blk_free_request(struct request_list *rl, struct request *rq) 911 { 912 if (rq->rq_flags & RQF_ELVPRIV) { 913 elv_put_request(rl->q, rq); 914 if (rq->elv.icq) 915 put_io_context(rq->elv.icq->ioc); 916 } 917 918 mempool_free(rq, rl->rq_pool); 919 } 920 921 /* 922 * ioc_batching returns true if the ioc is a valid batching request and 923 * should be given priority access to a request. 924 */ 925 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 926 { 927 if (!ioc) 928 return 0; 929 930 /* 931 * Make sure the process is able to allocate at least 1 request 932 * even if the batch times out, otherwise we could theoretically 933 * lose wakeups. 934 */ 935 return ioc->nr_batch_requests == q->nr_batching || 936 (ioc->nr_batch_requests > 0 937 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 938 } 939 940 /* 941 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 942 * will cause the process to be a "batcher" on all queues in the system. This 943 * is the behaviour we want though - once it gets a wakeup it should be given 944 * a nice run. 945 */ 946 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 947 { 948 if (!ioc || ioc_batching(q, ioc)) 949 return; 950 951 ioc->nr_batch_requests = q->nr_batching; 952 ioc->last_waited = jiffies; 953 } 954 955 static void __freed_request(struct request_list *rl, int sync) 956 { 957 struct request_queue *q = rl->q; 958 959 if (rl->count[sync] < queue_congestion_off_threshold(q)) 960 blk_clear_congested(rl, sync); 961 962 if (rl->count[sync] + 1 <= q->nr_requests) { 963 if (waitqueue_active(&rl->wait[sync])) 964 wake_up(&rl->wait[sync]); 965 966 blk_clear_rl_full(rl, sync); 967 } 968 } 969 970 /* 971 * A request has just been released. Account for it, update the full and 972 * congestion status, wake up any waiters. Called under q->queue_lock. 973 */ 974 static void freed_request(struct request_list *rl, bool sync, 975 req_flags_t rq_flags) 976 { 977 struct request_queue *q = rl->q; 978 979 q->nr_rqs[sync]--; 980 rl->count[sync]--; 981 if (rq_flags & RQF_ELVPRIV) 982 q->nr_rqs_elvpriv--; 983 984 __freed_request(rl, sync); 985 986 if (unlikely(rl->starved[sync ^ 1])) 987 __freed_request(rl, sync ^ 1); 988 } 989 990 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 991 { 992 struct request_list *rl; 993 int on_thresh, off_thresh; 994 995 spin_lock_irq(q->queue_lock); 996 q->nr_requests = nr; 997 blk_queue_congestion_threshold(q); 998 on_thresh = queue_congestion_on_threshold(q); 999 off_thresh = queue_congestion_off_threshold(q); 1000 1001 blk_queue_for_each_rl(rl, q) { 1002 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1003 blk_set_congested(rl, BLK_RW_SYNC); 1004 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1005 blk_clear_congested(rl, BLK_RW_SYNC); 1006 1007 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1008 blk_set_congested(rl, BLK_RW_ASYNC); 1009 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1010 blk_clear_congested(rl, BLK_RW_ASYNC); 1011 1012 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1013 blk_set_rl_full(rl, BLK_RW_SYNC); 1014 } else { 1015 blk_clear_rl_full(rl, BLK_RW_SYNC); 1016 wake_up(&rl->wait[BLK_RW_SYNC]); 1017 } 1018 1019 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1020 blk_set_rl_full(rl, BLK_RW_ASYNC); 1021 } else { 1022 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1023 wake_up(&rl->wait[BLK_RW_ASYNC]); 1024 } 1025 } 1026 1027 spin_unlock_irq(q->queue_lock); 1028 return 0; 1029 } 1030 1031 /** 1032 * __get_request - get a free request 1033 * @rl: request list to allocate from 1034 * @op: operation and flags 1035 * @bio: bio to allocate request for (can be %NULL) 1036 * @gfp_mask: allocation mask 1037 * 1038 * Get a free request from @q. This function may fail under memory 1039 * pressure or if @q is dead. 1040 * 1041 * Must be called with @q->queue_lock held and, 1042 * Returns ERR_PTR on failure, with @q->queue_lock held. 1043 * Returns request pointer on success, with @q->queue_lock *not held*. 1044 */ 1045 static struct request *__get_request(struct request_list *rl, unsigned int op, 1046 struct bio *bio, gfp_t gfp_mask) 1047 { 1048 struct request_queue *q = rl->q; 1049 struct request *rq; 1050 struct elevator_type *et = q->elevator->type; 1051 struct io_context *ioc = rq_ioc(bio); 1052 struct io_cq *icq = NULL; 1053 const bool is_sync = op_is_sync(op); 1054 int may_queue; 1055 req_flags_t rq_flags = RQF_ALLOCED; 1056 1057 if (unlikely(blk_queue_dying(q))) 1058 return ERR_PTR(-ENODEV); 1059 1060 may_queue = elv_may_queue(q, op); 1061 if (may_queue == ELV_MQUEUE_NO) 1062 goto rq_starved; 1063 1064 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1065 if (rl->count[is_sync]+1 >= q->nr_requests) { 1066 /* 1067 * The queue will fill after this allocation, so set 1068 * it as full, and mark this process as "batching". 1069 * This process will be allowed to complete a batch of 1070 * requests, others will be blocked. 1071 */ 1072 if (!blk_rl_full(rl, is_sync)) { 1073 ioc_set_batching(q, ioc); 1074 blk_set_rl_full(rl, is_sync); 1075 } else { 1076 if (may_queue != ELV_MQUEUE_MUST 1077 && !ioc_batching(q, ioc)) { 1078 /* 1079 * The queue is full and the allocating 1080 * process is not a "batcher", and not 1081 * exempted by the IO scheduler 1082 */ 1083 return ERR_PTR(-ENOMEM); 1084 } 1085 } 1086 } 1087 blk_set_congested(rl, is_sync); 1088 } 1089 1090 /* 1091 * Only allow batching queuers to allocate up to 50% over the defined 1092 * limit of requests, otherwise we could have thousands of requests 1093 * allocated with any setting of ->nr_requests 1094 */ 1095 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1096 return ERR_PTR(-ENOMEM); 1097 1098 q->nr_rqs[is_sync]++; 1099 rl->count[is_sync]++; 1100 rl->starved[is_sync] = 0; 1101 1102 /* 1103 * Decide whether the new request will be managed by elevator. If 1104 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1105 * prevent the current elevator from being destroyed until the new 1106 * request is freed. This guarantees icq's won't be destroyed and 1107 * makes creating new ones safe. 1108 * 1109 * Flush requests do not use the elevator so skip initialization. 1110 * This allows a request to share the flush and elevator data. 1111 * 1112 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1113 * it will be created after releasing queue_lock. 1114 */ 1115 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1116 rq_flags |= RQF_ELVPRIV; 1117 q->nr_rqs_elvpriv++; 1118 if (et->icq_cache && ioc) 1119 icq = ioc_lookup_icq(ioc, q); 1120 } 1121 1122 if (blk_queue_io_stat(q)) 1123 rq_flags |= RQF_IO_STAT; 1124 spin_unlock_irq(q->queue_lock); 1125 1126 /* allocate and init request */ 1127 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1128 if (!rq) 1129 goto fail_alloc; 1130 1131 blk_rq_init(q, rq); 1132 blk_rq_set_rl(rq, rl); 1133 blk_rq_set_prio(rq, ioc); 1134 rq->cmd_flags = op; 1135 rq->rq_flags = rq_flags; 1136 1137 /* init elvpriv */ 1138 if (rq_flags & RQF_ELVPRIV) { 1139 if (unlikely(et->icq_cache && !icq)) { 1140 if (ioc) 1141 icq = ioc_create_icq(ioc, q, gfp_mask); 1142 if (!icq) 1143 goto fail_elvpriv; 1144 } 1145 1146 rq->elv.icq = icq; 1147 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1148 goto fail_elvpriv; 1149 1150 /* @rq->elv.icq holds io_context until @rq is freed */ 1151 if (icq) 1152 get_io_context(icq->ioc); 1153 } 1154 out: 1155 /* 1156 * ioc may be NULL here, and ioc_batching will be false. That's 1157 * OK, if the queue is under the request limit then requests need 1158 * not count toward the nr_batch_requests limit. There will always 1159 * be some limit enforced by BLK_BATCH_TIME. 1160 */ 1161 if (ioc_batching(q, ioc)) 1162 ioc->nr_batch_requests--; 1163 1164 trace_block_getrq(q, bio, op); 1165 return rq; 1166 1167 fail_elvpriv: 1168 /* 1169 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1170 * and may fail indefinitely under memory pressure and thus 1171 * shouldn't stall IO. Treat this request as !elvpriv. This will 1172 * disturb iosched and blkcg but weird is bettern than dead. 1173 */ 1174 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1175 __func__, dev_name(q->backing_dev_info->dev)); 1176 1177 rq->rq_flags &= ~RQF_ELVPRIV; 1178 rq->elv.icq = NULL; 1179 1180 spin_lock_irq(q->queue_lock); 1181 q->nr_rqs_elvpriv--; 1182 spin_unlock_irq(q->queue_lock); 1183 goto out; 1184 1185 fail_alloc: 1186 /* 1187 * Allocation failed presumably due to memory. Undo anything we 1188 * might have messed up. 1189 * 1190 * Allocating task should really be put onto the front of the wait 1191 * queue, but this is pretty rare. 1192 */ 1193 spin_lock_irq(q->queue_lock); 1194 freed_request(rl, is_sync, rq_flags); 1195 1196 /* 1197 * in the very unlikely event that allocation failed and no 1198 * requests for this direction was pending, mark us starved so that 1199 * freeing of a request in the other direction will notice 1200 * us. another possible fix would be to split the rq mempool into 1201 * READ and WRITE 1202 */ 1203 rq_starved: 1204 if (unlikely(rl->count[is_sync] == 0)) 1205 rl->starved[is_sync] = 1; 1206 return ERR_PTR(-ENOMEM); 1207 } 1208 1209 /** 1210 * get_request - get a free request 1211 * @q: request_queue to allocate request from 1212 * @op: operation and flags 1213 * @bio: bio to allocate request for (can be %NULL) 1214 * @gfp_mask: allocation mask 1215 * 1216 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1217 * this function keeps retrying under memory pressure and fails iff @q is dead. 1218 * 1219 * Must be called with @q->queue_lock held and, 1220 * Returns ERR_PTR on failure, with @q->queue_lock held. 1221 * Returns request pointer on success, with @q->queue_lock *not held*. 1222 */ 1223 static struct request *get_request(struct request_queue *q, unsigned int op, 1224 struct bio *bio, gfp_t gfp_mask) 1225 { 1226 const bool is_sync = op_is_sync(op); 1227 DEFINE_WAIT(wait); 1228 struct request_list *rl; 1229 struct request *rq; 1230 1231 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1232 retry: 1233 rq = __get_request(rl, op, bio, gfp_mask); 1234 if (!IS_ERR(rq)) 1235 return rq; 1236 1237 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1238 blk_put_rl(rl); 1239 return rq; 1240 } 1241 1242 /* wait on @rl and retry */ 1243 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1244 TASK_UNINTERRUPTIBLE); 1245 1246 trace_block_sleeprq(q, bio, op); 1247 1248 spin_unlock_irq(q->queue_lock); 1249 io_schedule(); 1250 1251 /* 1252 * After sleeping, we become a "batching" process and will be able 1253 * to allocate at least one request, and up to a big batch of them 1254 * for a small period time. See ioc_batching, ioc_set_batching 1255 */ 1256 ioc_set_batching(q, current->io_context); 1257 1258 spin_lock_irq(q->queue_lock); 1259 finish_wait(&rl->wait[is_sync], &wait); 1260 1261 goto retry; 1262 } 1263 1264 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1265 gfp_t gfp_mask) 1266 { 1267 struct request *rq; 1268 1269 /* create ioc upfront */ 1270 create_io_context(gfp_mask, q->node); 1271 1272 spin_lock_irq(q->queue_lock); 1273 rq = get_request(q, rw, NULL, gfp_mask); 1274 if (IS_ERR(rq)) { 1275 spin_unlock_irq(q->queue_lock); 1276 return rq; 1277 } 1278 1279 /* q->queue_lock is unlocked at this point */ 1280 rq->__data_len = 0; 1281 rq->__sector = (sector_t) -1; 1282 rq->bio = rq->biotail = NULL; 1283 return rq; 1284 } 1285 1286 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1287 { 1288 if (q->mq_ops) 1289 return blk_mq_alloc_request(q, rw, 1290 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1291 0 : BLK_MQ_REQ_NOWAIT); 1292 else 1293 return blk_old_get_request(q, rw, gfp_mask); 1294 } 1295 EXPORT_SYMBOL(blk_get_request); 1296 1297 /** 1298 * blk_requeue_request - put a request back on queue 1299 * @q: request queue where request should be inserted 1300 * @rq: request to be inserted 1301 * 1302 * Description: 1303 * Drivers often keep queueing requests until the hardware cannot accept 1304 * more, when that condition happens we need to put the request back 1305 * on the queue. Must be called with queue lock held. 1306 */ 1307 void blk_requeue_request(struct request_queue *q, struct request *rq) 1308 { 1309 blk_delete_timer(rq); 1310 blk_clear_rq_complete(rq); 1311 trace_block_rq_requeue(q, rq); 1312 wbt_requeue(q->rq_wb, &rq->issue_stat); 1313 1314 if (rq->rq_flags & RQF_QUEUED) 1315 blk_queue_end_tag(q, rq); 1316 1317 BUG_ON(blk_queued_rq(rq)); 1318 1319 elv_requeue_request(q, rq); 1320 } 1321 EXPORT_SYMBOL(blk_requeue_request); 1322 1323 static void add_acct_request(struct request_queue *q, struct request *rq, 1324 int where) 1325 { 1326 blk_account_io_start(rq, true); 1327 __elv_add_request(q, rq, where); 1328 } 1329 1330 static void part_round_stats_single(int cpu, struct hd_struct *part, 1331 unsigned long now) 1332 { 1333 int inflight; 1334 1335 if (now == part->stamp) 1336 return; 1337 1338 inflight = part_in_flight(part); 1339 if (inflight) { 1340 __part_stat_add(cpu, part, time_in_queue, 1341 inflight * (now - part->stamp)); 1342 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1343 } 1344 part->stamp = now; 1345 } 1346 1347 /** 1348 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1349 * @cpu: cpu number for stats access 1350 * @part: target partition 1351 * 1352 * The average IO queue length and utilisation statistics are maintained 1353 * by observing the current state of the queue length and the amount of 1354 * time it has been in this state for. 1355 * 1356 * Normally, that accounting is done on IO completion, but that can result 1357 * in more than a second's worth of IO being accounted for within any one 1358 * second, leading to >100% utilisation. To deal with that, we call this 1359 * function to do a round-off before returning the results when reading 1360 * /proc/diskstats. This accounts immediately for all queue usage up to 1361 * the current jiffies and restarts the counters again. 1362 */ 1363 void part_round_stats(int cpu, struct hd_struct *part) 1364 { 1365 unsigned long now = jiffies; 1366 1367 if (part->partno) 1368 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1369 part_round_stats_single(cpu, part, now); 1370 } 1371 EXPORT_SYMBOL_GPL(part_round_stats); 1372 1373 #ifdef CONFIG_PM 1374 static void blk_pm_put_request(struct request *rq) 1375 { 1376 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1377 pm_runtime_mark_last_busy(rq->q->dev); 1378 } 1379 #else 1380 static inline void blk_pm_put_request(struct request *rq) {} 1381 #endif 1382 1383 /* 1384 * queue lock must be held 1385 */ 1386 void __blk_put_request(struct request_queue *q, struct request *req) 1387 { 1388 req_flags_t rq_flags = req->rq_flags; 1389 1390 if (unlikely(!q)) 1391 return; 1392 1393 if (q->mq_ops) { 1394 blk_mq_free_request(req); 1395 return; 1396 } 1397 1398 blk_pm_put_request(req); 1399 1400 elv_completed_request(q, req); 1401 1402 /* this is a bio leak */ 1403 WARN_ON(req->bio != NULL); 1404 1405 wbt_done(q->rq_wb, &req->issue_stat); 1406 1407 /* 1408 * Request may not have originated from ll_rw_blk. if not, 1409 * it didn't come out of our reserved rq pools 1410 */ 1411 if (rq_flags & RQF_ALLOCED) { 1412 struct request_list *rl = blk_rq_rl(req); 1413 bool sync = op_is_sync(req->cmd_flags); 1414 1415 BUG_ON(!list_empty(&req->queuelist)); 1416 BUG_ON(ELV_ON_HASH(req)); 1417 1418 blk_free_request(rl, req); 1419 freed_request(rl, sync, rq_flags); 1420 blk_put_rl(rl); 1421 } 1422 } 1423 EXPORT_SYMBOL_GPL(__blk_put_request); 1424 1425 void blk_put_request(struct request *req) 1426 { 1427 struct request_queue *q = req->q; 1428 1429 if (q->mq_ops) 1430 blk_mq_free_request(req); 1431 else { 1432 unsigned long flags; 1433 1434 spin_lock_irqsave(q->queue_lock, flags); 1435 __blk_put_request(q, req); 1436 spin_unlock_irqrestore(q->queue_lock, flags); 1437 } 1438 } 1439 EXPORT_SYMBOL(blk_put_request); 1440 1441 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1442 struct bio *bio) 1443 { 1444 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1445 1446 if (!ll_back_merge_fn(q, req, bio)) 1447 return false; 1448 1449 trace_block_bio_backmerge(q, req, bio); 1450 1451 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1452 blk_rq_set_mixed_merge(req); 1453 1454 req->biotail->bi_next = bio; 1455 req->biotail = bio; 1456 req->__data_len += bio->bi_iter.bi_size; 1457 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1458 1459 blk_account_io_start(req, false); 1460 return true; 1461 } 1462 1463 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1464 struct bio *bio) 1465 { 1466 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1467 1468 if (!ll_front_merge_fn(q, req, bio)) 1469 return false; 1470 1471 trace_block_bio_frontmerge(q, req, bio); 1472 1473 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1474 blk_rq_set_mixed_merge(req); 1475 1476 bio->bi_next = req->bio; 1477 req->bio = bio; 1478 1479 req->__sector = bio->bi_iter.bi_sector; 1480 req->__data_len += bio->bi_iter.bi_size; 1481 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1482 1483 blk_account_io_start(req, false); 1484 return true; 1485 } 1486 1487 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1488 struct bio *bio) 1489 { 1490 unsigned short segments = blk_rq_nr_discard_segments(req); 1491 1492 if (segments >= queue_max_discard_segments(q)) 1493 goto no_merge; 1494 if (blk_rq_sectors(req) + bio_sectors(bio) > 1495 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1496 goto no_merge; 1497 1498 req->biotail->bi_next = bio; 1499 req->biotail = bio; 1500 req->__data_len += bio->bi_iter.bi_size; 1501 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1502 req->nr_phys_segments = segments + 1; 1503 1504 blk_account_io_start(req, false); 1505 return true; 1506 no_merge: 1507 req_set_nomerge(q, req); 1508 return false; 1509 } 1510 1511 /** 1512 * blk_attempt_plug_merge - try to merge with %current's plugged list 1513 * @q: request_queue new bio is being queued at 1514 * @bio: new bio being queued 1515 * @request_count: out parameter for number of traversed plugged requests 1516 * @same_queue_rq: pointer to &struct request that gets filled in when 1517 * another request associated with @q is found on the plug list 1518 * (optional, may be %NULL) 1519 * 1520 * Determine whether @bio being queued on @q can be merged with a request 1521 * on %current's plugged list. Returns %true if merge was successful, 1522 * otherwise %false. 1523 * 1524 * Plugging coalesces IOs from the same issuer for the same purpose without 1525 * going through @q->queue_lock. As such it's more of an issuing mechanism 1526 * than scheduling, and the request, while may have elvpriv data, is not 1527 * added on the elevator at this point. In addition, we don't have 1528 * reliable access to the elevator outside queue lock. Only check basic 1529 * merging parameters without querying the elevator. 1530 * 1531 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1532 */ 1533 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1534 unsigned int *request_count, 1535 struct request **same_queue_rq) 1536 { 1537 struct blk_plug *plug; 1538 struct request *rq; 1539 struct list_head *plug_list; 1540 1541 plug = current->plug; 1542 if (!plug) 1543 return false; 1544 *request_count = 0; 1545 1546 if (q->mq_ops) 1547 plug_list = &plug->mq_list; 1548 else 1549 plug_list = &plug->list; 1550 1551 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1552 bool merged = false; 1553 1554 if (rq->q == q) { 1555 (*request_count)++; 1556 /* 1557 * Only blk-mq multiple hardware queues case checks the 1558 * rq in the same queue, there should be only one such 1559 * rq in a queue 1560 **/ 1561 if (same_queue_rq) 1562 *same_queue_rq = rq; 1563 } 1564 1565 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1566 continue; 1567 1568 switch (blk_try_merge(rq, bio)) { 1569 case ELEVATOR_BACK_MERGE: 1570 merged = bio_attempt_back_merge(q, rq, bio); 1571 break; 1572 case ELEVATOR_FRONT_MERGE: 1573 merged = bio_attempt_front_merge(q, rq, bio); 1574 break; 1575 case ELEVATOR_DISCARD_MERGE: 1576 merged = bio_attempt_discard_merge(q, rq, bio); 1577 break; 1578 default: 1579 break; 1580 } 1581 1582 if (merged) 1583 return true; 1584 } 1585 1586 return false; 1587 } 1588 1589 unsigned int blk_plug_queued_count(struct request_queue *q) 1590 { 1591 struct blk_plug *plug; 1592 struct request *rq; 1593 struct list_head *plug_list; 1594 unsigned int ret = 0; 1595 1596 plug = current->plug; 1597 if (!plug) 1598 goto out; 1599 1600 if (q->mq_ops) 1601 plug_list = &plug->mq_list; 1602 else 1603 plug_list = &plug->list; 1604 1605 list_for_each_entry(rq, plug_list, queuelist) { 1606 if (rq->q == q) 1607 ret++; 1608 } 1609 out: 1610 return ret; 1611 } 1612 1613 void init_request_from_bio(struct request *req, struct bio *bio) 1614 { 1615 if (bio->bi_opf & REQ_RAHEAD) 1616 req->cmd_flags |= REQ_FAILFAST_MASK; 1617 1618 req->errors = 0; 1619 req->__sector = bio->bi_iter.bi_sector; 1620 if (ioprio_valid(bio_prio(bio))) 1621 req->ioprio = bio_prio(bio); 1622 blk_rq_bio_prep(req->q, req, bio); 1623 } 1624 1625 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1626 { 1627 struct blk_plug *plug; 1628 int where = ELEVATOR_INSERT_SORT; 1629 struct request *req, *free; 1630 unsigned int request_count = 0; 1631 unsigned int wb_acct; 1632 1633 /* 1634 * low level driver can indicate that it wants pages above a 1635 * certain limit bounced to low memory (ie for highmem, or even 1636 * ISA dma in theory) 1637 */ 1638 blk_queue_bounce(q, &bio); 1639 1640 blk_queue_split(q, &bio, q->bio_split); 1641 1642 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1643 bio->bi_error = -EIO; 1644 bio_endio(bio); 1645 return BLK_QC_T_NONE; 1646 } 1647 1648 if (op_is_flush(bio->bi_opf)) { 1649 spin_lock_irq(q->queue_lock); 1650 where = ELEVATOR_INSERT_FLUSH; 1651 goto get_rq; 1652 } 1653 1654 /* 1655 * Check if we can merge with the plugged list before grabbing 1656 * any locks. 1657 */ 1658 if (!blk_queue_nomerges(q)) { 1659 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1660 return BLK_QC_T_NONE; 1661 } else 1662 request_count = blk_plug_queued_count(q); 1663 1664 spin_lock_irq(q->queue_lock); 1665 1666 switch (elv_merge(q, &req, bio)) { 1667 case ELEVATOR_BACK_MERGE: 1668 if (!bio_attempt_back_merge(q, req, bio)) 1669 break; 1670 elv_bio_merged(q, req, bio); 1671 free = attempt_back_merge(q, req); 1672 if (free) 1673 __blk_put_request(q, free); 1674 else 1675 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 1676 goto out_unlock; 1677 case ELEVATOR_FRONT_MERGE: 1678 if (!bio_attempt_front_merge(q, req, bio)) 1679 break; 1680 elv_bio_merged(q, req, bio); 1681 free = attempt_front_merge(q, req); 1682 if (free) 1683 __blk_put_request(q, free); 1684 else 1685 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 1686 goto out_unlock; 1687 default: 1688 break; 1689 } 1690 1691 get_rq: 1692 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1693 1694 /* 1695 * Grab a free request. This is might sleep but can not fail. 1696 * Returns with the queue unlocked. 1697 */ 1698 req = get_request(q, bio->bi_opf, bio, GFP_NOIO); 1699 if (IS_ERR(req)) { 1700 __wbt_done(q->rq_wb, wb_acct); 1701 bio->bi_error = PTR_ERR(req); 1702 bio_endio(bio); 1703 goto out_unlock; 1704 } 1705 1706 wbt_track(&req->issue_stat, wb_acct); 1707 1708 /* 1709 * After dropping the lock and possibly sleeping here, our request 1710 * may now be mergeable after it had proven unmergeable (above). 1711 * We don't worry about that case for efficiency. It won't happen 1712 * often, and the elevators are able to handle it. 1713 */ 1714 init_request_from_bio(req, bio); 1715 1716 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1717 req->cpu = raw_smp_processor_id(); 1718 1719 plug = current->plug; 1720 if (plug) { 1721 /* 1722 * If this is the first request added after a plug, fire 1723 * of a plug trace. 1724 * 1725 * @request_count may become stale because of schedule 1726 * out, so check plug list again. 1727 */ 1728 if (!request_count || list_empty(&plug->list)) 1729 trace_block_plug(q); 1730 else { 1731 struct request *last = list_entry_rq(plug->list.prev); 1732 if (request_count >= BLK_MAX_REQUEST_COUNT || 1733 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 1734 blk_flush_plug_list(plug, false); 1735 trace_block_plug(q); 1736 } 1737 } 1738 list_add_tail(&req->queuelist, &plug->list); 1739 blk_account_io_start(req, true); 1740 } else { 1741 spin_lock_irq(q->queue_lock); 1742 add_acct_request(q, req, where); 1743 __blk_run_queue(q); 1744 out_unlock: 1745 spin_unlock_irq(q->queue_lock); 1746 } 1747 1748 return BLK_QC_T_NONE; 1749 } 1750 1751 /* 1752 * If bio->bi_dev is a partition, remap the location 1753 */ 1754 static inline void blk_partition_remap(struct bio *bio) 1755 { 1756 struct block_device *bdev = bio->bi_bdev; 1757 1758 /* 1759 * Zone reset does not include bi_size so bio_sectors() is always 0. 1760 * Include a test for the reset op code and perform the remap if needed. 1761 */ 1762 if (bdev != bdev->bd_contains && 1763 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) { 1764 struct hd_struct *p = bdev->bd_part; 1765 1766 bio->bi_iter.bi_sector += p->start_sect; 1767 bio->bi_bdev = bdev->bd_contains; 1768 1769 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1770 bdev->bd_dev, 1771 bio->bi_iter.bi_sector - p->start_sect); 1772 } 1773 } 1774 1775 static void handle_bad_sector(struct bio *bio) 1776 { 1777 char b[BDEVNAME_SIZE]; 1778 1779 printk(KERN_INFO "attempt to access beyond end of device\n"); 1780 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 1781 bdevname(bio->bi_bdev, b), 1782 bio->bi_opf, 1783 (unsigned long long)bio_end_sector(bio), 1784 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1785 } 1786 1787 #ifdef CONFIG_FAIL_MAKE_REQUEST 1788 1789 static DECLARE_FAULT_ATTR(fail_make_request); 1790 1791 static int __init setup_fail_make_request(char *str) 1792 { 1793 return setup_fault_attr(&fail_make_request, str); 1794 } 1795 __setup("fail_make_request=", setup_fail_make_request); 1796 1797 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1798 { 1799 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1800 } 1801 1802 static int __init fail_make_request_debugfs(void) 1803 { 1804 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1805 NULL, &fail_make_request); 1806 1807 return PTR_ERR_OR_ZERO(dir); 1808 } 1809 1810 late_initcall(fail_make_request_debugfs); 1811 1812 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1813 1814 static inline bool should_fail_request(struct hd_struct *part, 1815 unsigned int bytes) 1816 { 1817 return false; 1818 } 1819 1820 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1821 1822 /* 1823 * Check whether this bio extends beyond the end of the device. 1824 */ 1825 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1826 { 1827 sector_t maxsector; 1828 1829 if (!nr_sectors) 1830 return 0; 1831 1832 /* Test device or partition size, when known. */ 1833 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1834 if (maxsector) { 1835 sector_t sector = bio->bi_iter.bi_sector; 1836 1837 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1838 /* 1839 * This may well happen - the kernel calls bread() 1840 * without checking the size of the device, e.g., when 1841 * mounting a device. 1842 */ 1843 handle_bad_sector(bio); 1844 return 1; 1845 } 1846 } 1847 1848 return 0; 1849 } 1850 1851 static noinline_for_stack bool 1852 generic_make_request_checks(struct bio *bio) 1853 { 1854 struct request_queue *q; 1855 int nr_sectors = bio_sectors(bio); 1856 int err = -EIO; 1857 char b[BDEVNAME_SIZE]; 1858 struct hd_struct *part; 1859 1860 might_sleep(); 1861 1862 if (bio_check_eod(bio, nr_sectors)) 1863 goto end_io; 1864 1865 q = bdev_get_queue(bio->bi_bdev); 1866 if (unlikely(!q)) { 1867 printk(KERN_ERR 1868 "generic_make_request: Trying to access " 1869 "nonexistent block-device %s (%Lu)\n", 1870 bdevname(bio->bi_bdev, b), 1871 (long long) bio->bi_iter.bi_sector); 1872 goto end_io; 1873 } 1874 1875 part = bio->bi_bdev->bd_part; 1876 if (should_fail_request(part, bio->bi_iter.bi_size) || 1877 should_fail_request(&part_to_disk(part)->part0, 1878 bio->bi_iter.bi_size)) 1879 goto end_io; 1880 1881 /* 1882 * If this device has partitions, remap block n 1883 * of partition p to block n+start(p) of the disk. 1884 */ 1885 blk_partition_remap(bio); 1886 1887 if (bio_check_eod(bio, nr_sectors)) 1888 goto end_io; 1889 1890 /* 1891 * Filter flush bio's early so that make_request based 1892 * drivers without flush support don't have to worry 1893 * about them. 1894 */ 1895 if (op_is_flush(bio->bi_opf) && 1896 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 1897 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 1898 if (!nr_sectors) { 1899 err = 0; 1900 goto end_io; 1901 } 1902 } 1903 1904 switch (bio_op(bio)) { 1905 case REQ_OP_DISCARD: 1906 if (!blk_queue_discard(q)) 1907 goto not_supported; 1908 break; 1909 case REQ_OP_SECURE_ERASE: 1910 if (!blk_queue_secure_erase(q)) 1911 goto not_supported; 1912 break; 1913 case REQ_OP_WRITE_SAME: 1914 if (!bdev_write_same(bio->bi_bdev)) 1915 goto not_supported; 1916 break; 1917 case REQ_OP_ZONE_REPORT: 1918 case REQ_OP_ZONE_RESET: 1919 if (!bdev_is_zoned(bio->bi_bdev)) 1920 goto not_supported; 1921 break; 1922 case REQ_OP_WRITE_ZEROES: 1923 if (!bdev_write_zeroes_sectors(bio->bi_bdev)) 1924 goto not_supported; 1925 break; 1926 default: 1927 break; 1928 } 1929 1930 /* 1931 * Various block parts want %current->io_context and lazy ioc 1932 * allocation ends up trading a lot of pain for a small amount of 1933 * memory. Just allocate it upfront. This may fail and block 1934 * layer knows how to live with it. 1935 */ 1936 create_io_context(GFP_ATOMIC, q->node); 1937 1938 if (!blkcg_bio_issue_check(q, bio)) 1939 return false; 1940 1941 trace_block_bio_queue(q, bio); 1942 return true; 1943 1944 not_supported: 1945 err = -EOPNOTSUPP; 1946 end_io: 1947 bio->bi_error = err; 1948 bio_endio(bio); 1949 return false; 1950 } 1951 1952 /** 1953 * generic_make_request - hand a buffer to its device driver for I/O 1954 * @bio: The bio describing the location in memory and on the device. 1955 * 1956 * generic_make_request() is used to make I/O requests of block 1957 * devices. It is passed a &struct bio, which describes the I/O that needs 1958 * to be done. 1959 * 1960 * generic_make_request() does not return any status. The 1961 * success/failure status of the request, along with notification of 1962 * completion, is delivered asynchronously through the bio->bi_end_io 1963 * function described (one day) else where. 1964 * 1965 * The caller of generic_make_request must make sure that bi_io_vec 1966 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1967 * set to describe the device address, and the 1968 * bi_end_io and optionally bi_private are set to describe how 1969 * completion notification should be signaled. 1970 * 1971 * generic_make_request and the drivers it calls may use bi_next if this 1972 * bio happens to be merged with someone else, and may resubmit the bio to 1973 * a lower device by calling into generic_make_request recursively, which 1974 * means the bio should NOT be touched after the call to ->make_request_fn. 1975 */ 1976 blk_qc_t generic_make_request(struct bio *bio) 1977 { 1978 struct bio_list bio_list_on_stack; 1979 blk_qc_t ret = BLK_QC_T_NONE; 1980 1981 if (!generic_make_request_checks(bio)) 1982 goto out; 1983 1984 /* 1985 * We only want one ->make_request_fn to be active at a time, else 1986 * stack usage with stacked devices could be a problem. So use 1987 * current->bio_list to keep a list of requests submited by a 1988 * make_request_fn function. current->bio_list is also used as a 1989 * flag to say if generic_make_request is currently active in this 1990 * task or not. If it is NULL, then no make_request is active. If 1991 * it is non-NULL, then a make_request is active, and new requests 1992 * should be added at the tail 1993 */ 1994 if (current->bio_list) { 1995 bio_list_add(current->bio_list, bio); 1996 goto out; 1997 } 1998 1999 /* following loop may be a bit non-obvious, and so deserves some 2000 * explanation. 2001 * Before entering the loop, bio->bi_next is NULL (as all callers 2002 * ensure that) so we have a list with a single bio. 2003 * We pretend that we have just taken it off a longer list, so 2004 * we assign bio_list to a pointer to the bio_list_on_stack, 2005 * thus initialising the bio_list of new bios to be 2006 * added. ->make_request() may indeed add some more bios 2007 * through a recursive call to generic_make_request. If it 2008 * did, we find a non-NULL value in bio_list and re-enter the loop 2009 * from the top. In this case we really did just take the bio 2010 * of the top of the list (no pretending) and so remove it from 2011 * bio_list, and call into ->make_request() again. 2012 */ 2013 BUG_ON(bio->bi_next); 2014 bio_list_init(&bio_list_on_stack); 2015 current->bio_list = &bio_list_on_stack; 2016 do { 2017 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2018 2019 if (likely(blk_queue_enter(q, false) == 0)) { 2020 ret = q->make_request_fn(q, bio); 2021 2022 blk_queue_exit(q); 2023 2024 bio = bio_list_pop(current->bio_list); 2025 } else { 2026 struct bio *bio_next = bio_list_pop(current->bio_list); 2027 2028 bio_io_error(bio); 2029 bio = bio_next; 2030 } 2031 } while (bio); 2032 current->bio_list = NULL; /* deactivate */ 2033 2034 out: 2035 return ret; 2036 } 2037 EXPORT_SYMBOL(generic_make_request); 2038 2039 /** 2040 * submit_bio - submit a bio to the block device layer for I/O 2041 * @bio: The &struct bio which describes the I/O 2042 * 2043 * submit_bio() is very similar in purpose to generic_make_request(), and 2044 * uses that function to do most of the work. Both are fairly rough 2045 * interfaces; @bio must be presetup and ready for I/O. 2046 * 2047 */ 2048 blk_qc_t submit_bio(struct bio *bio) 2049 { 2050 /* 2051 * If it's a regular read/write or a barrier with data attached, 2052 * go through the normal accounting stuff before submission. 2053 */ 2054 if (bio_has_data(bio)) { 2055 unsigned int count; 2056 2057 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2058 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2059 else 2060 count = bio_sectors(bio); 2061 2062 if (op_is_write(bio_op(bio))) { 2063 count_vm_events(PGPGOUT, count); 2064 } else { 2065 task_io_account_read(bio->bi_iter.bi_size); 2066 count_vm_events(PGPGIN, count); 2067 } 2068 2069 if (unlikely(block_dump)) { 2070 char b[BDEVNAME_SIZE]; 2071 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2072 current->comm, task_pid_nr(current), 2073 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2074 (unsigned long long)bio->bi_iter.bi_sector, 2075 bdevname(bio->bi_bdev, b), 2076 count); 2077 } 2078 } 2079 2080 return generic_make_request(bio); 2081 } 2082 EXPORT_SYMBOL(submit_bio); 2083 2084 /** 2085 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2086 * for new the queue limits 2087 * @q: the queue 2088 * @rq: the request being checked 2089 * 2090 * Description: 2091 * @rq may have been made based on weaker limitations of upper-level queues 2092 * in request stacking drivers, and it may violate the limitation of @q. 2093 * Since the block layer and the underlying device driver trust @rq 2094 * after it is inserted to @q, it should be checked against @q before 2095 * the insertion using this generic function. 2096 * 2097 * Request stacking drivers like request-based dm may change the queue 2098 * limits when retrying requests on other queues. Those requests need 2099 * to be checked against the new queue limits again during dispatch. 2100 */ 2101 static int blk_cloned_rq_check_limits(struct request_queue *q, 2102 struct request *rq) 2103 { 2104 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2105 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2106 return -EIO; 2107 } 2108 2109 /* 2110 * queue's settings related to segment counting like q->bounce_pfn 2111 * may differ from that of other stacking queues. 2112 * Recalculate it to check the request correctly on this queue's 2113 * limitation. 2114 */ 2115 blk_recalc_rq_segments(rq); 2116 if (rq->nr_phys_segments > queue_max_segments(q)) { 2117 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2118 return -EIO; 2119 } 2120 2121 return 0; 2122 } 2123 2124 /** 2125 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2126 * @q: the queue to submit the request 2127 * @rq: the request being queued 2128 */ 2129 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2130 { 2131 unsigned long flags; 2132 int where = ELEVATOR_INSERT_BACK; 2133 2134 if (blk_cloned_rq_check_limits(q, rq)) 2135 return -EIO; 2136 2137 if (rq->rq_disk && 2138 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2139 return -EIO; 2140 2141 if (q->mq_ops) { 2142 if (blk_queue_io_stat(q)) 2143 blk_account_io_start(rq, true); 2144 blk_mq_sched_insert_request(rq, false, true, false, false); 2145 return 0; 2146 } 2147 2148 spin_lock_irqsave(q->queue_lock, flags); 2149 if (unlikely(blk_queue_dying(q))) { 2150 spin_unlock_irqrestore(q->queue_lock, flags); 2151 return -ENODEV; 2152 } 2153 2154 /* 2155 * Submitting request must be dequeued before calling this function 2156 * because it will be linked to another request_queue 2157 */ 2158 BUG_ON(blk_queued_rq(rq)); 2159 2160 if (op_is_flush(rq->cmd_flags)) 2161 where = ELEVATOR_INSERT_FLUSH; 2162 2163 add_acct_request(q, rq, where); 2164 if (where == ELEVATOR_INSERT_FLUSH) 2165 __blk_run_queue(q); 2166 spin_unlock_irqrestore(q->queue_lock, flags); 2167 2168 return 0; 2169 } 2170 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2171 2172 /** 2173 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2174 * @rq: request to examine 2175 * 2176 * Description: 2177 * A request could be merge of IOs which require different failure 2178 * handling. This function determines the number of bytes which 2179 * can be failed from the beginning of the request without 2180 * crossing into area which need to be retried further. 2181 * 2182 * Return: 2183 * The number of bytes to fail. 2184 * 2185 * Context: 2186 * queue_lock must be held. 2187 */ 2188 unsigned int blk_rq_err_bytes(const struct request *rq) 2189 { 2190 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2191 unsigned int bytes = 0; 2192 struct bio *bio; 2193 2194 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2195 return blk_rq_bytes(rq); 2196 2197 /* 2198 * Currently the only 'mixing' which can happen is between 2199 * different fastfail types. We can safely fail portions 2200 * which have all the failfast bits that the first one has - 2201 * the ones which are at least as eager to fail as the first 2202 * one. 2203 */ 2204 for (bio = rq->bio; bio; bio = bio->bi_next) { 2205 if ((bio->bi_opf & ff) != ff) 2206 break; 2207 bytes += bio->bi_iter.bi_size; 2208 } 2209 2210 /* this could lead to infinite loop */ 2211 BUG_ON(blk_rq_bytes(rq) && !bytes); 2212 return bytes; 2213 } 2214 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2215 2216 void blk_account_io_completion(struct request *req, unsigned int bytes) 2217 { 2218 if (blk_do_io_stat(req)) { 2219 const int rw = rq_data_dir(req); 2220 struct hd_struct *part; 2221 int cpu; 2222 2223 cpu = part_stat_lock(); 2224 part = req->part; 2225 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2226 part_stat_unlock(); 2227 } 2228 } 2229 2230 void blk_account_io_done(struct request *req) 2231 { 2232 /* 2233 * Account IO completion. flush_rq isn't accounted as a 2234 * normal IO on queueing nor completion. Accounting the 2235 * containing request is enough. 2236 */ 2237 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2238 unsigned long duration = jiffies - req->start_time; 2239 const int rw = rq_data_dir(req); 2240 struct hd_struct *part; 2241 int cpu; 2242 2243 cpu = part_stat_lock(); 2244 part = req->part; 2245 2246 part_stat_inc(cpu, part, ios[rw]); 2247 part_stat_add(cpu, part, ticks[rw], duration); 2248 part_round_stats(cpu, part); 2249 part_dec_in_flight(part, rw); 2250 2251 hd_struct_put(part); 2252 part_stat_unlock(); 2253 } 2254 } 2255 2256 #ifdef CONFIG_PM 2257 /* 2258 * Don't process normal requests when queue is suspended 2259 * or in the process of suspending/resuming 2260 */ 2261 static struct request *blk_pm_peek_request(struct request_queue *q, 2262 struct request *rq) 2263 { 2264 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2265 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM)))) 2266 return NULL; 2267 else 2268 return rq; 2269 } 2270 #else 2271 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2272 struct request *rq) 2273 { 2274 return rq; 2275 } 2276 #endif 2277 2278 void blk_account_io_start(struct request *rq, bool new_io) 2279 { 2280 struct hd_struct *part; 2281 int rw = rq_data_dir(rq); 2282 int cpu; 2283 2284 if (!blk_do_io_stat(rq)) 2285 return; 2286 2287 cpu = part_stat_lock(); 2288 2289 if (!new_io) { 2290 part = rq->part; 2291 part_stat_inc(cpu, part, merges[rw]); 2292 } else { 2293 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2294 if (!hd_struct_try_get(part)) { 2295 /* 2296 * The partition is already being removed, 2297 * the request will be accounted on the disk only 2298 * 2299 * We take a reference on disk->part0 although that 2300 * partition will never be deleted, so we can treat 2301 * it as any other partition. 2302 */ 2303 part = &rq->rq_disk->part0; 2304 hd_struct_get(part); 2305 } 2306 part_round_stats(cpu, part); 2307 part_inc_in_flight(part, rw); 2308 rq->part = part; 2309 } 2310 2311 part_stat_unlock(); 2312 } 2313 2314 /** 2315 * blk_peek_request - peek at the top of a request queue 2316 * @q: request queue to peek at 2317 * 2318 * Description: 2319 * Return the request at the top of @q. The returned request 2320 * should be started using blk_start_request() before LLD starts 2321 * processing it. 2322 * 2323 * Return: 2324 * Pointer to the request at the top of @q if available. Null 2325 * otherwise. 2326 * 2327 * Context: 2328 * queue_lock must be held. 2329 */ 2330 struct request *blk_peek_request(struct request_queue *q) 2331 { 2332 struct request *rq; 2333 int ret; 2334 2335 while ((rq = __elv_next_request(q)) != NULL) { 2336 2337 rq = blk_pm_peek_request(q, rq); 2338 if (!rq) 2339 break; 2340 2341 if (!(rq->rq_flags & RQF_STARTED)) { 2342 /* 2343 * This is the first time the device driver 2344 * sees this request (possibly after 2345 * requeueing). Notify IO scheduler. 2346 */ 2347 if (rq->rq_flags & RQF_SORTED) 2348 elv_activate_rq(q, rq); 2349 2350 /* 2351 * just mark as started even if we don't start 2352 * it, a request that has been delayed should 2353 * not be passed by new incoming requests 2354 */ 2355 rq->rq_flags |= RQF_STARTED; 2356 trace_block_rq_issue(q, rq); 2357 } 2358 2359 if (!q->boundary_rq || q->boundary_rq == rq) { 2360 q->end_sector = rq_end_sector(rq); 2361 q->boundary_rq = NULL; 2362 } 2363 2364 if (rq->rq_flags & RQF_DONTPREP) 2365 break; 2366 2367 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2368 /* 2369 * make sure space for the drain appears we 2370 * know we can do this because max_hw_segments 2371 * has been adjusted to be one fewer than the 2372 * device can handle 2373 */ 2374 rq->nr_phys_segments++; 2375 } 2376 2377 if (!q->prep_rq_fn) 2378 break; 2379 2380 ret = q->prep_rq_fn(q, rq); 2381 if (ret == BLKPREP_OK) { 2382 break; 2383 } else if (ret == BLKPREP_DEFER) { 2384 /* 2385 * the request may have been (partially) prepped. 2386 * we need to keep this request in the front to 2387 * avoid resource deadlock. RQF_STARTED will 2388 * prevent other fs requests from passing this one. 2389 */ 2390 if (q->dma_drain_size && blk_rq_bytes(rq) && 2391 !(rq->rq_flags & RQF_DONTPREP)) { 2392 /* 2393 * remove the space for the drain we added 2394 * so that we don't add it again 2395 */ 2396 --rq->nr_phys_segments; 2397 } 2398 2399 rq = NULL; 2400 break; 2401 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2402 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO; 2403 2404 rq->rq_flags |= RQF_QUIET; 2405 /* 2406 * Mark this request as started so we don't trigger 2407 * any debug logic in the end I/O path. 2408 */ 2409 blk_start_request(rq); 2410 __blk_end_request_all(rq, err); 2411 } else { 2412 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2413 break; 2414 } 2415 } 2416 2417 return rq; 2418 } 2419 EXPORT_SYMBOL(blk_peek_request); 2420 2421 void blk_dequeue_request(struct request *rq) 2422 { 2423 struct request_queue *q = rq->q; 2424 2425 BUG_ON(list_empty(&rq->queuelist)); 2426 BUG_ON(ELV_ON_HASH(rq)); 2427 2428 list_del_init(&rq->queuelist); 2429 2430 /* 2431 * the time frame between a request being removed from the lists 2432 * and to it is freed is accounted as io that is in progress at 2433 * the driver side. 2434 */ 2435 if (blk_account_rq(rq)) { 2436 q->in_flight[rq_is_sync(rq)]++; 2437 set_io_start_time_ns(rq); 2438 } 2439 } 2440 2441 /** 2442 * blk_start_request - start request processing on the driver 2443 * @req: request to dequeue 2444 * 2445 * Description: 2446 * Dequeue @req and start timeout timer on it. This hands off the 2447 * request to the driver. 2448 * 2449 * Block internal functions which don't want to start timer should 2450 * call blk_dequeue_request(). 2451 * 2452 * Context: 2453 * queue_lock must be held. 2454 */ 2455 void blk_start_request(struct request *req) 2456 { 2457 blk_dequeue_request(req); 2458 2459 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2460 blk_stat_set_issue_time(&req->issue_stat); 2461 req->rq_flags |= RQF_STATS; 2462 wbt_issue(req->q->rq_wb, &req->issue_stat); 2463 } 2464 2465 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2466 blk_add_timer(req); 2467 } 2468 EXPORT_SYMBOL(blk_start_request); 2469 2470 /** 2471 * blk_fetch_request - fetch a request from a request queue 2472 * @q: request queue to fetch a request from 2473 * 2474 * Description: 2475 * Return the request at the top of @q. The request is started on 2476 * return and LLD can start processing it immediately. 2477 * 2478 * Return: 2479 * Pointer to the request at the top of @q if available. Null 2480 * otherwise. 2481 * 2482 * Context: 2483 * queue_lock must be held. 2484 */ 2485 struct request *blk_fetch_request(struct request_queue *q) 2486 { 2487 struct request *rq; 2488 2489 rq = blk_peek_request(q); 2490 if (rq) 2491 blk_start_request(rq); 2492 return rq; 2493 } 2494 EXPORT_SYMBOL(blk_fetch_request); 2495 2496 /** 2497 * blk_update_request - Special helper function for request stacking drivers 2498 * @req: the request being processed 2499 * @error: %0 for success, < %0 for error 2500 * @nr_bytes: number of bytes to complete @req 2501 * 2502 * Description: 2503 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2504 * the request structure even if @req doesn't have leftover. 2505 * If @req has leftover, sets it up for the next range of segments. 2506 * 2507 * This special helper function is only for request stacking drivers 2508 * (e.g. request-based dm) so that they can handle partial completion. 2509 * Actual device drivers should use blk_end_request instead. 2510 * 2511 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2512 * %false return from this function. 2513 * 2514 * Return: 2515 * %false - this request doesn't have any more data 2516 * %true - this request has more data 2517 **/ 2518 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2519 { 2520 int total_bytes; 2521 2522 trace_block_rq_complete(req->q, req, nr_bytes); 2523 2524 if (!req->bio) 2525 return false; 2526 2527 /* 2528 * For fs requests, rq is just carrier of independent bio's 2529 * and each partial completion should be handled separately. 2530 * Reset per-request error on each partial completion. 2531 * 2532 * TODO: tj: This is too subtle. It would be better to let 2533 * low level drivers do what they see fit. 2534 */ 2535 if (!blk_rq_is_passthrough(req)) 2536 req->errors = 0; 2537 2538 if (error && !blk_rq_is_passthrough(req) && 2539 !(req->rq_flags & RQF_QUIET)) { 2540 char *error_type; 2541 2542 switch (error) { 2543 case -ENOLINK: 2544 error_type = "recoverable transport"; 2545 break; 2546 case -EREMOTEIO: 2547 error_type = "critical target"; 2548 break; 2549 case -EBADE: 2550 error_type = "critical nexus"; 2551 break; 2552 case -ETIMEDOUT: 2553 error_type = "timeout"; 2554 break; 2555 case -ENOSPC: 2556 error_type = "critical space allocation"; 2557 break; 2558 case -ENODATA: 2559 error_type = "critical medium"; 2560 break; 2561 case -EIO: 2562 default: 2563 error_type = "I/O"; 2564 break; 2565 } 2566 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2567 __func__, error_type, req->rq_disk ? 2568 req->rq_disk->disk_name : "?", 2569 (unsigned long long)blk_rq_pos(req)); 2570 2571 } 2572 2573 blk_account_io_completion(req, nr_bytes); 2574 2575 total_bytes = 0; 2576 while (req->bio) { 2577 struct bio *bio = req->bio; 2578 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2579 2580 if (bio_bytes == bio->bi_iter.bi_size) 2581 req->bio = bio->bi_next; 2582 2583 req_bio_endio(req, bio, bio_bytes, error); 2584 2585 total_bytes += bio_bytes; 2586 nr_bytes -= bio_bytes; 2587 2588 if (!nr_bytes) 2589 break; 2590 } 2591 2592 /* 2593 * completely done 2594 */ 2595 if (!req->bio) { 2596 /* 2597 * Reset counters so that the request stacking driver 2598 * can find how many bytes remain in the request 2599 * later. 2600 */ 2601 req->__data_len = 0; 2602 return false; 2603 } 2604 2605 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD); 2606 2607 req->__data_len -= total_bytes; 2608 2609 /* update sector only for requests with clear definition of sector */ 2610 if (!blk_rq_is_passthrough(req)) 2611 req->__sector += total_bytes >> 9; 2612 2613 /* mixed attributes always follow the first bio */ 2614 if (req->rq_flags & RQF_MIXED_MERGE) { 2615 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2616 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 2617 } 2618 2619 /* 2620 * If total number of sectors is less than the first segment 2621 * size, something has gone terribly wrong. 2622 */ 2623 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2624 blk_dump_rq_flags(req, "request botched"); 2625 req->__data_len = blk_rq_cur_bytes(req); 2626 } 2627 2628 /* recalculate the number of segments */ 2629 blk_recalc_rq_segments(req); 2630 2631 return true; 2632 } 2633 EXPORT_SYMBOL_GPL(blk_update_request); 2634 2635 static bool blk_update_bidi_request(struct request *rq, int error, 2636 unsigned int nr_bytes, 2637 unsigned int bidi_bytes) 2638 { 2639 if (blk_update_request(rq, error, nr_bytes)) 2640 return true; 2641 2642 /* Bidi request must be completed as a whole */ 2643 if (unlikely(blk_bidi_rq(rq)) && 2644 blk_update_request(rq->next_rq, error, bidi_bytes)) 2645 return true; 2646 2647 if (blk_queue_add_random(rq->q)) 2648 add_disk_randomness(rq->rq_disk); 2649 2650 return false; 2651 } 2652 2653 /** 2654 * blk_unprep_request - unprepare a request 2655 * @req: the request 2656 * 2657 * This function makes a request ready for complete resubmission (or 2658 * completion). It happens only after all error handling is complete, 2659 * so represents the appropriate moment to deallocate any resources 2660 * that were allocated to the request in the prep_rq_fn. The queue 2661 * lock is held when calling this. 2662 */ 2663 void blk_unprep_request(struct request *req) 2664 { 2665 struct request_queue *q = req->q; 2666 2667 req->rq_flags &= ~RQF_DONTPREP; 2668 if (q->unprep_rq_fn) 2669 q->unprep_rq_fn(q, req); 2670 } 2671 EXPORT_SYMBOL_GPL(blk_unprep_request); 2672 2673 /* 2674 * queue lock must be held 2675 */ 2676 void blk_finish_request(struct request *req, int error) 2677 { 2678 struct request_queue *q = req->q; 2679 2680 if (req->rq_flags & RQF_STATS) 2681 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req); 2682 2683 if (req->rq_flags & RQF_QUEUED) 2684 blk_queue_end_tag(q, req); 2685 2686 BUG_ON(blk_queued_rq(req)); 2687 2688 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 2689 laptop_io_completion(req->q->backing_dev_info); 2690 2691 blk_delete_timer(req); 2692 2693 if (req->rq_flags & RQF_DONTPREP) 2694 blk_unprep_request(req); 2695 2696 blk_account_io_done(req); 2697 2698 if (req->end_io) { 2699 wbt_done(req->q->rq_wb, &req->issue_stat); 2700 req->end_io(req, error); 2701 } else { 2702 if (blk_bidi_rq(req)) 2703 __blk_put_request(req->next_rq->q, req->next_rq); 2704 2705 __blk_put_request(q, req); 2706 } 2707 } 2708 EXPORT_SYMBOL(blk_finish_request); 2709 2710 /** 2711 * blk_end_bidi_request - Complete a bidi request 2712 * @rq: the request to complete 2713 * @error: %0 for success, < %0 for error 2714 * @nr_bytes: number of bytes to complete @rq 2715 * @bidi_bytes: number of bytes to complete @rq->next_rq 2716 * 2717 * Description: 2718 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2719 * Drivers that supports bidi can safely call this member for any 2720 * type of request, bidi or uni. In the later case @bidi_bytes is 2721 * just ignored. 2722 * 2723 * Return: 2724 * %false - we are done with this request 2725 * %true - still buffers pending for this request 2726 **/ 2727 static bool blk_end_bidi_request(struct request *rq, int error, 2728 unsigned int nr_bytes, unsigned int bidi_bytes) 2729 { 2730 struct request_queue *q = rq->q; 2731 unsigned long flags; 2732 2733 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2734 return true; 2735 2736 spin_lock_irqsave(q->queue_lock, flags); 2737 blk_finish_request(rq, error); 2738 spin_unlock_irqrestore(q->queue_lock, flags); 2739 2740 return false; 2741 } 2742 2743 /** 2744 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2745 * @rq: the request to complete 2746 * @error: %0 for success, < %0 for error 2747 * @nr_bytes: number of bytes to complete @rq 2748 * @bidi_bytes: number of bytes to complete @rq->next_rq 2749 * 2750 * Description: 2751 * Identical to blk_end_bidi_request() except that queue lock is 2752 * assumed to be locked on entry and remains so on return. 2753 * 2754 * Return: 2755 * %false - we are done with this request 2756 * %true - still buffers pending for this request 2757 **/ 2758 bool __blk_end_bidi_request(struct request *rq, int error, 2759 unsigned int nr_bytes, unsigned int bidi_bytes) 2760 { 2761 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2762 return true; 2763 2764 blk_finish_request(rq, error); 2765 2766 return false; 2767 } 2768 2769 /** 2770 * blk_end_request - Helper function for drivers to complete the request. 2771 * @rq: the request being processed 2772 * @error: %0 for success, < %0 for error 2773 * @nr_bytes: number of bytes to complete 2774 * 2775 * Description: 2776 * Ends I/O on a number of bytes attached to @rq. 2777 * If @rq has leftover, sets it up for the next range of segments. 2778 * 2779 * Return: 2780 * %false - we are done with this request 2781 * %true - still buffers pending for this request 2782 **/ 2783 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2784 { 2785 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2786 } 2787 EXPORT_SYMBOL(blk_end_request); 2788 2789 /** 2790 * blk_end_request_all - Helper function for drives to finish the request. 2791 * @rq: the request to finish 2792 * @error: %0 for success, < %0 for error 2793 * 2794 * Description: 2795 * Completely finish @rq. 2796 */ 2797 void blk_end_request_all(struct request *rq, int error) 2798 { 2799 bool pending; 2800 unsigned int bidi_bytes = 0; 2801 2802 if (unlikely(blk_bidi_rq(rq))) 2803 bidi_bytes = blk_rq_bytes(rq->next_rq); 2804 2805 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2806 BUG_ON(pending); 2807 } 2808 EXPORT_SYMBOL(blk_end_request_all); 2809 2810 /** 2811 * blk_end_request_cur - Helper function to finish the current request chunk. 2812 * @rq: the request to finish the current chunk for 2813 * @error: %0 for success, < %0 for error 2814 * 2815 * Description: 2816 * Complete the current consecutively mapped chunk from @rq. 2817 * 2818 * Return: 2819 * %false - we are done with this request 2820 * %true - still buffers pending for this request 2821 */ 2822 bool blk_end_request_cur(struct request *rq, int error) 2823 { 2824 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2825 } 2826 EXPORT_SYMBOL(blk_end_request_cur); 2827 2828 /** 2829 * blk_end_request_err - Finish a request till the next failure boundary. 2830 * @rq: the request to finish till the next failure boundary for 2831 * @error: must be negative errno 2832 * 2833 * Description: 2834 * Complete @rq till the next failure boundary. 2835 * 2836 * Return: 2837 * %false - we are done with this request 2838 * %true - still buffers pending for this request 2839 */ 2840 bool blk_end_request_err(struct request *rq, int error) 2841 { 2842 WARN_ON(error >= 0); 2843 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2844 } 2845 EXPORT_SYMBOL_GPL(blk_end_request_err); 2846 2847 /** 2848 * __blk_end_request - Helper function for drivers to complete the request. 2849 * @rq: the request being processed 2850 * @error: %0 for success, < %0 for error 2851 * @nr_bytes: number of bytes to complete 2852 * 2853 * Description: 2854 * Must be called with queue lock held unlike blk_end_request(). 2855 * 2856 * Return: 2857 * %false - we are done with this request 2858 * %true - still buffers pending for this request 2859 **/ 2860 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2861 { 2862 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2863 } 2864 EXPORT_SYMBOL(__blk_end_request); 2865 2866 /** 2867 * __blk_end_request_all - Helper function for drives to finish the request. 2868 * @rq: the request to finish 2869 * @error: %0 for success, < %0 for error 2870 * 2871 * Description: 2872 * Completely finish @rq. Must be called with queue lock held. 2873 */ 2874 void __blk_end_request_all(struct request *rq, int error) 2875 { 2876 bool pending; 2877 unsigned int bidi_bytes = 0; 2878 2879 if (unlikely(blk_bidi_rq(rq))) 2880 bidi_bytes = blk_rq_bytes(rq->next_rq); 2881 2882 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2883 BUG_ON(pending); 2884 } 2885 EXPORT_SYMBOL(__blk_end_request_all); 2886 2887 /** 2888 * __blk_end_request_cur - Helper function to finish the current request chunk. 2889 * @rq: the request to finish the current chunk for 2890 * @error: %0 for success, < %0 for error 2891 * 2892 * Description: 2893 * Complete the current consecutively mapped chunk from @rq. Must 2894 * be called with queue lock held. 2895 * 2896 * Return: 2897 * %false - we are done with this request 2898 * %true - still buffers pending for this request 2899 */ 2900 bool __blk_end_request_cur(struct request *rq, int error) 2901 { 2902 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2903 } 2904 EXPORT_SYMBOL(__blk_end_request_cur); 2905 2906 /** 2907 * __blk_end_request_err - Finish a request till the next failure boundary. 2908 * @rq: the request to finish till the next failure boundary for 2909 * @error: must be negative errno 2910 * 2911 * Description: 2912 * Complete @rq till the next failure boundary. Must be called 2913 * with queue lock held. 2914 * 2915 * Return: 2916 * %false - we are done with this request 2917 * %true - still buffers pending for this request 2918 */ 2919 bool __blk_end_request_err(struct request *rq, int error) 2920 { 2921 WARN_ON(error >= 0); 2922 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2923 } 2924 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2925 2926 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2927 struct bio *bio) 2928 { 2929 if (bio_has_data(bio)) 2930 rq->nr_phys_segments = bio_phys_segments(q, bio); 2931 2932 rq->__data_len = bio->bi_iter.bi_size; 2933 rq->bio = rq->biotail = bio; 2934 2935 if (bio->bi_bdev) 2936 rq->rq_disk = bio->bi_bdev->bd_disk; 2937 } 2938 2939 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2940 /** 2941 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2942 * @rq: the request to be flushed 2943 * 2944 * Description: 2945 * Flush all pages in @rq. 2946 */ 2947 void rq_flush_dcache_pages(struct request *rq) 2948 { 2949 struct req_iterator iter; 2950 struct bio_vec bvec; 2951 2952 rq_for_each_segment(bvec, rq, iter) 2953 flush_dcache_page(bvec.bv_page); 2954 } 2955 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2956 #endif 2957 2958 /** 2959 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2960 * @q : the queue of the device being checked 2961 * 2962 * Description: 2963 * Check if underlying low-level drivers of a device are busy. 2964 * If the drivers want to export their busy state, they must set own 2965 * exporting function using blk_queue_lld_busy() first. 2966 * 2967 * Basically, this function is used only by request stacking drivers 2968 * to stop dispatching requests to underlying devices when underlying 2969 * devices are busy. This behavior helps more I/O merging on the queue 2970 * of the request stacking driver and prevents I/O throughput regression 2971 * on burst I/O load. 2972 * 2973 * Return: 2974 * 0 - Not busy (The request stacking driver should dispatch request) 2975 * 1 - Busy (The request stacking driver should stop dispatching request) 2976 */ 2977 int blk_lld_busy(struct request_queue *q) 2978 { 2979 if (q->lld_busy_fn) 2980 return q->lld_busy_fn(q); 2981 2982 return 0; 2983 } 2984 EXPORT_SYMBOL_GPL(blk_lld_busy); 2985 2986 /** 2987 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2988 * @rq: the clone request to be cleaned up 2989 * 2990 * Description: 2991 * Free all bios in @rq for a cloned request. 2992 */ 2993 void blk_rq_unprep_clone(struct request *rq) 2994 { 2995 struct bio *bio; 2996 2997 while ((bio = rq->bio) != NULL) { 2998 rq->bio = bio->bi_next; 2999 3000 bio_put(bio); 3001 } 3002 } 3003 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3004 3005 /* 3006 * Copy attributes of the original request to the clone request. 3007 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3008 */ 3009 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3010 { 3011 dst->cpu = src->cpu; 3012 dst->__sector = blk_rq_pos(src); 3013 dst->__data_len = blk_rq_bytes(src); 3014 dst->nr_phys_segments = src->nr_phys_segments; 3015 dst->ioprio = src->ioprio; 3016 dst->extra_len = src->extra_len; 3017 } 3018 3019 /** 3020 * blk_rq_prep_clone - Helper function to setup clone request 3021 * @rq: the request to be setup 3022 * @rq_src: original request to be cloned 3023 * @bs: bio_set that bios for clone are allocated from 3024 * @gfp_mask: memory allocation mask for bio 3025 * @bio_ctr: setup function to be called for each clone bio. 3026 * Returns %0 for success, non %0 for failure. 3027 * @data: private data to be passed to @bio_ctr 3028 * 3029 * Description: 3030 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3031 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3032 * are not copied, and copying such parts is the caller's responsibility. 3033 * Also, pages which the original bios are pointing to are not copied 3034 * and the cloned bios just point same pages. 3035 * So cloned bios must be completed before original bios, which means 3036 * the caller must complete @rq before @rq_src. 3037 */ 3038 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3039 struct bio_set *bs, gfp_t gfp_mask, 3040 int (*bio_ctr)(struct bio *, struct bio *, void *), 3041 void *data) 3042 { 3043 struct bio *bio, *bio_src; 3044 3045 if (!bs) 3046 bs = fs_bio_set; 3047 3048 __rq_for_each_bio(bio_src, rq_src) { 3049 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3050 if (!bio) 3051 goto free_and_out; 3052 3053 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3054 goto free_and_out; 3055 3056 if (rq->bio) { 3057 rq->biotail->bi_next = bio; 3058 rq->biotail = bio; 3059 } else 3060 rq->bio = rq->biotail = bio; 3061 } 3062 3063 __blk_rq_prep_clone(rq, rq_src); 3064 3065 return 0; 3066 3067 free_and_out: 3068 if (bio) 3069 bio_put(bio); 3070 blk_rq_unprep_clone(rq); 3071 3072 return -ENOMEM; 3073 } 3074 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3075 3076 int kblockd_schedule_work(struct work_struct *work) 3077 { 3078 return queue_work(kblockd_workqueue, work); 3079 } 3080 EXPORT_SYMBOL(kblockd_schedule_work); 3081 3082 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3083 { 3084 return queue_work_on(cpu, kblockd_workqueue, work); 3085 } 3086 EXPORT_SYMBOL(kblockd_schedule_work_on); 3087 3088 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3089 unsigned long delay) 3090 { 3091 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3092 } 3093 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3094 3095 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3096 unsigned long delay) 3097 { 3098 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3099 } 3100 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3101 3102 /** 3103 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3104 * @plug: The &struct blk_plug that needs to be initialized 3105 * 3106 * Description: 3107 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3108 * pending I/O should the task end up blocking between blk_start_plug() and 3109 * blk_finish_plug(). This is important from a performance perspective, but 3110 * also ensures that we don't deadlock. For instance, if the task is blocking 3111 * for a memory allocation, memory reclaim could end up wanting to free a 3112 * page belonging to that request that is currently residing in our private 3113 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3114 * this kind of deadlock. 3115 */ 3116 void blk_start_plug(struct blk_plug *plug) 3117 { 3118 struct task_struct *tsk = current; 3119 3120 /* 3121 * If this is a nested plug, don't actually assign it. 3122 */ 3123 if (tsk->plug) 3124 return; 3125 3126 INIT_LIST_HEAD(&plug->list); 3127 INIT_LIST_HEAD(&plug->mq_list); 3128 INIT_LIST_HEAD(&plug->cb_list); 3129 /* 3130 * Store ordering should not be needed here, since a potential 3131 * preempt will imply a full memory barrier 3132 */ 3133 tsk->plug = plug; 3134 } 3135 EXPORT_SYMBOL(blk_start_plug); 3136 3137 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3138 { 3139 struct request *rqa = container_of(a, struct request, queuelist); 3140 struct request *rqb = container_of(b, struct request, queuelist); 3141 3142 return !(rqa->q < rqb->q || 3143 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3144 } 3145 3146 /* 3147 * If 'from_schedule' is true, then postpone the dispatch of requests 3148 * until a safe kblockd context. We due this to avoid accidental big 3149 * additional stack usage in driver dispatch, in places where the originally 3150 * plugger did not intend it. 3151 */ 3152 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3153 bool from_schedule) 3154 __releases(q->queue_lock) 3155 { 3156 trace_block_unplug(q, depth, !from_schedule); 3157 3158 if (from_schedule) 3159 blk_run_queue_async(q); 3160 else 3161 __blk_run_queue(q); 3162 spin_unlock(q->queue_lock); 3163 } 3164 3165 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3166 { 3167 LIST_HEAD(callbacks); 3168 3169 while (!list_empty(&plug->cb_list)) { 3170 list_splice_init(&plug->cb_list, &callbacks); 3171 3172 while (!list_empty(&callbacks)) { 3173 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3174 struct blk_plug_cb, 3175 list); 3176 list_del(&cb->list); 3177 cb->callback(cb, from_schedule); 3178 } 3179 } 3180 } 3181 3182 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3183 int size) 3184 { 3185 struct blk_plug *plug = current->plug; 3186 struct blk_plug_cb *cb; 3187 3188 if (!plug) 3189 return NULL; 3190 3191 list_for_each_entry(cb, &plug->cb_list, list) 3192 if (cb->callback == unplug && cb->data == data) 3193 return cb; 3194 3195 /* Not currently on the callback list */ 3196 BUG_ON(size < sizeof(*cb)); 3197 cb = kzalloc(size, GFP_ATOMIC); 3198 if (cb) { 3199 cb->data = data; 3200 cb->callback = unplug; 3201 list_add(&cb->list, &plug->cb_list); 3202 } 3203 return cb; 3204 } 3205 EXPORT_SYMBOL(blk_check_plugged); 3206 3207 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3208 { 3209 struct request_queue *q; 3210 unsigned long flags; 3211 struct request *rq; 3212 LIST_HEAD(list); 3213 unsigned int depth; 3214 3215 flush_plug_callbacks(plug, from_schedule); 3216 3217 if (!list_empty(&plug->mq_list)) 3218 blk_mq_flush_plug_list(plug, from_schedule); 3219 3220 if (list_empty(&plug->list)) 3221 return; 3222 3223 list_splice_init(&plug->list, &list); 3224 3225 list_sort(NULL, &list, plug_rq_cmp); 3226 3227 q = NULL; 3228 depth = 0; 3229 3230 /* 3231 * Save and disable interrupts here, to avoid doing it for every 3232 * queue lock we have to take. 3233 */ 3234 local_irq_save(flags); 3235 while (!list_empty(&list)) { 3236 rq = list_entry_rq(list.next); 3237 list_del_init(&rq->queuelist); 3238 BUG_ON(!rq->q); 3239 if (rq->q != q) { 3240 /* 3241 * This drops the queue lock 3242 */ 3243 if (q) 3244 queue_unplugged(q, depth, from_schedule); 3245 q = rq->q; 3246 depth = 0; 3247 spin_lock(q->queue_lock); 3248 } 3249 3250 /* 3251 * Short-circuit if @q is dead 3252 */ 3253 if (unlikely(blk_queue_dying(q))) { 3254 __blk_end_request_all(rq, -ENODEV); 3255 continue; 3256 } 3257 3258 /* 3259 * rq is already accounted, so use raw insert 3260 */ 3261 if (op_is_flush(rq->cmd_flags)) 3262 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3263 else 3264 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3265 3266 depth++; 3267 } 3268 3269 /* 3270 * This drops the queue lock 3271 */ 3272 if (q) 3273 queue_unplugged(q, depth, from_schedule); 3274 3275 local_irq_restore(flags); 3276 } 3277 3278 void blk_finish_plug(struct blk_plug *plug) 3279 { 3280 if (plug != current->plug) 3281 return; 3282 blk_flush_plug_list(plug, false); 3283 3284 current->plug = NULL; 3285 } 3286 EXPORT_SYMBOL(blk_finish_plug); 3287 3288 #ifdef CONFIG_PM 3289 /** 3290 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3291 * @q: the queue of the device 3292 * @dev: the device the queue belongs to 3293 * 3294 * Description: 3295 * Initialize runtime-PM-related fields for @q and start auto suspend for 3296 * @dev. Drivers that want to take advantage of request-based runtime PM 3297 * should call this function after @dev has been initialized, and its 3298 * request queue @q has been allocated, and runtime PM for it can not happen 3299 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3300 * cases, driver should call this function before any I/O has taken place. 3301 * 3302 * This function takes care of setting up using auto suspend for the device, 3303 * the autosuspend delay is set to -1 to make runtime suspend impossible 3304 * until an updated value is either set by user or by driver. Drivers do 3305 * not need to touch other autosuspend settings. 3306 * 3307 * The block layer runtime PM is request based, so only works for drivers 3308 * that use request as their IO unit instead of those directly use bio's. 3309 */ 3310 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3311 { 3312 q->dev = dev; 3313 q->rpm_status = RPM_ACTIVE; 3314 pm_runtime_set_autosuspend_delay(q->dev, -1); 3315 pm_runtime_use_autosuspend(q->dev); 3316 } 3317 EXPORT_SYMBOL(blk_pm_runtime_init); 3318 3319 /** 3320 * blk_pre_runtime_suspend - Pre runtime suspend check 3321 * @q: the queue of the device 3322 * 3323 * Description: 3324 * This function will check if runtime suspend is allowed for the device 3325 * by examining if there are any requests pending in the queue. If there 3326 * are requests pending, the device can not be runtime suspended; otherwise, 3327 * the queue's status will be updated to SUSPENDING and the driver can 3328 * proceed to suspend the device. 3329 * 3330 * For the not allowed case, we mark last busy for the device so that 3331 * runtime PM core will try to autosuspend it some time later. 3332 * 3333 * This function should be called near the start of the device's 3334 * runtime_suspend callback. 3335 * 3336 * Return: 3337 * 0 - OK to runtime suspend the device 3338 * -EBUSY - Device should not be runtime suspended 3339 */ 3340 int blk_pre_runtime_suspend(struct request_queue *q) 3341 { 3342 int ret = 0; 3343 3344 if (!q->dev) 3345 return ret; 3346 3347 spin_lock_irq(q->queue_lock); 3348 if (q->nr_pending) { 3349 ret = -EBUSY; 3350 pm_runtime_mark_last_busy(q->dev); 3351 } else { 3352 q->rpm_status = RPM_SUSPENDING; 3353 } 3354 spin_unlock_irq(q->queue_lock); 3355 return ret; 3356 } 3357 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3358 3359 /** 3360 * blk_post_runtime_suspend - Post runtime suspend processing 3361 * @q: the queue of the device 3362 * @err: return value of the device's runtime_suspend function 3363 * 3364 * Description: 3365 * Update the queue's runtime status according to the return value of the 3366 * device's runtime suspend function and mark last busy for the device so 3367 * that PM core will try to auto suspend the device at a later time. 3368 * 3369 * This function should be called near the end of the device's 3370 * runtime_suspend callback. 3371 */ 3372 void blk_post_runtime_suspend(struct request_queue *q, int err) 3373 { 3374 if (!q->dev) 3375 return; 3376 3377 spin_lock_irq(q->queue_lock); 3378 if (!err) { 3379 q->rpm_status = RPM_SUSPENDED; 3380 } else { 3381 q->rpm_status = RPM_ACTIVE; 3382 pm_runtime_mark_last_busy(q->dev); 3383 } 3384 spin_unlock_irq(q->queue_lock); 3385 } 3386 EXPORT_SYMBOL(blk_post_runtime_suspend); 3387 3388 /** 3389 * blk_pre_runtime_resume - Pre runtime resume processing 3390 * @q: the queue of the device 3391 * 3392 * Description: 3393 * Update the queue's runtime status to RESUMING in preparation for the 3394 * runtime resume of the device. 3395 * 3396 * This function should be called near the start of the device's 3397 * runtime_resume callback. 3398 */ 3399 void blk_pre_runtime_resume(struct request_queue *q) 3400 { 3401 if (!q->dev) 3402 return; 3403 3404 spin_lock_irq(q->queue_lock); 3405 q->rpm_status = RPM_RESUMING; 3406 spin_unlock_irq(q->queue_lock); 3407 } 3408 EXPORT_SYMBOL(blk_pre_runtime_resume); 3409 3410 /** 3411 * blk_post_runtime_resume - Post runtime resume processing 3412 * @q: the queue of the device 3413 * @err: return value of the device's runtime_resume function 3414 * 3415 * Description: 3416 * Update the queue's runtime status according to the return value of the 3417 * device's runtime_resume function. If it is successfully resumed, process 3418 * the requests that are queued into the device's queue when it is resuming 3419 * and then mark last busy and initiate autosuspend for it. 3420 * 3421 * This function should be called near the end of the device's 3422 * runtime_resume callback. 3423 */ 3424 void blk_post_runtime_resume(struct request_queue *q, int err) 3425 { 3426 if (!q->dev) 3427 return; 3428 3429 spin_lock_irq(q->queue_lock); 3430 if (!err) { 3431 q->rpm_status = RPM_ACTIVE; 3432 __blk_run_queue(q); 3433 pm_runtime_mark_last_busy(q->dev); 3434 pm_request_autosuspend(q->dev); 3435 } else { 3436 q->rpm_status = RPM_SUSPENDED; 3437 } 3438 spin_unlock_irq(q->queue_lock); 3439 } 3440 EXPORT_SYMBOL(blk_post_runtime_resume); 3441 3442 /** 3443 * blk_set_runtime_active - Force runtime status of the queue to be active 3444 * @q: the queue of the device 3445 * 3446 * If the device is left runtime suspended during system suspend the resume 3447 * hook typically resumes the device and corrects runtime status 3448 * accordingly. However, that does not affect the queue runtime PM status 3449 * which is still "suspended". This prevents processing requests from the 3450 * queue. 3451 * 3452 * This function can be used in driver's resume hook to correct queue 3453 * runtime PM status and re-enable peeking requests from the queue. It 3454 * should be called before first request is added to the queue. 3455 */ 3456 void blk_set_runtime_active(struct request_queue *q) 3457 { 3458 spin_lock_irq(q->queue_lock); 3459 q->rpm_status = RPM_ACTIVE; 3460 pm_runtime_mark_last_busy(q->dev); 3461 pm_request_autosuspend(q->dev); 3462 spin_unlock_irq(q->queue_lock); 3463 } 3464 EXPORT_SYMBOL(blk_set_runtime_active); 3465 #endif 3466 3467 int __init blk_dev_init(void) 3468 { 3469 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3470 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3471 FIELD_SIZEOF(struct request, cmd_flags)); 3472 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3473 FIELD_SIZEOF(struct bio, bi_opf)); 3474 3475 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3476 kblockd_workqueue = alloc_workqueue("kblockd", 3477 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3478 if (!kblockd_workqueue) 3479 panic("Failed to create kblockd\n"); 3480 3481 request_cachep = kmem_cache_create("blkdev_requests", 3482 sizeof(struct request), 0, SLAB_PANIC, NULL); 3483 3484 blk_requestq_cachep = kmem_cache_create("request_queue", 3485 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3486 3487 #ifdef CONFIG_DEBUG_FS 3488 blk_debugfs_root = debugfs_create_dir("block", NULL); 3489 #endif 3490 3491 return 0; 3492 } 3493