1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/block.h> 33 34 #include "blk.h" 35 36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 39 40 static int __make_request(struct request_queue *q, struct bio *bio); 41 42 /* 43 * For the allocated request tables 44 */ 45 static struct kmem_cache *request_cachep; 46 47 /* 48 * For queue allocation 49 */ 50 struct kmem_cache *blk_requestq_cachep; 51 52 /* 53 * Controlling structure to kblockd 54 */ 55 static struct workqueue_struct *kblockd_workqueue; 56 57 static void drive_stat_acct(struct request *rq, int new_io) 58 { 59 struct hd_struct *part; 60 int rw = rq_data_dir(rq); 61 int cpu; 62 63 if (!blk_do_io_stat(rq)) 64 return; 65 66 cpu = part_stat_lock(); 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 68 69 if (!new_io) 70 part_stat_inc(cpu, part, merges[rw]); 71 else { 72 part_round_stats(cpu, part); 73 part_inc_in_flight(part, rw); 74 } 75 76 part_stat_unlock(); 77 } 78 79 void blk_queue_congestion_threshold(struct request_queue *q) 80 { 81 int nr; 82 83 nr = q->nr_requests - (q->nr_requests / 8) + 1; 84 if (nr > q->nr_requests) 85 nr = q->nr_requests; 86 q->nr_congestion_on = nr; 87 88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 89 if (nr < 1) 90 nr = 1; 91 q->nr_congestion_off = nr; 92 } 93 94 /** 95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 96 * @bdev: device 97 * 98 * Locates the passed device's request queue and returns the address of its 99 * backing_dev_info 100 * 101 * Will return NULL if the request queue cannot be located. 102 */ 103 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 104 { 105 struct backing_dev_info *ret = NULL; 106 struct request_queue *q = bdev_get_queue(bdev); 107 108 if (q) 109 ret = &q->backing_dev_info; 110 return ret; 111 } 112 EXPORT_SYMBOL(blk_get_backing_dev_info); 113 114 void blk_rq_init(struct request_queue *q, struct request *rq) 115 { 116 memset(rq, 0, sizeof(*rq)); 117 118 INIT_LIST_HEAD(&rq->queuelist); 119 INIT_LIST_HEAD(&rq->timeout_list); 120 rq->cpu = -1; 121 rq->q = q; 122 rq->__sector = (sector_t) -1; 123 INIT_HLIST_NODE(&rq->hash); 124 RB_CLEAR_NODE(&rq->rb_node); 125 rq->cmd = rq->__cmd; 126 rq->cmd_len = BLK_MAX_CDB; 127 rq->tag = -1; 128 rq->ref_count = 1; 129 rq->start_time = jiffies; 130 } 131 EXPORT_SYMBOL(blk_rq_init); 132 133 static void req_bio_endio(struct request *rq, struct bio *bio, 134 unsigned int nbytes, int error) 135 { 136 struct request_queue *q = rq->q; 137 138 if (&q->bar_rq != rq) { 139 if (error) 140 clear_bit(BIO_UPTODATE, &bio->bi_flags); 141 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 142 error = -EIO; 143 144 if (unlikely(nbytes > bio->bi_size)) { 145 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 146 __func__, nbytes, bio->bi_size); 147 nbytes = bio->bi_size; 148 } 149 150 if (unlikely(rq->cmd_flags & REQ_QUIET)) 151 set_bit(BIO_QUIET, &bio->bi_flags); 152 153 bio->bi_size -= nbytes; 154 bio->bi_sector += (nbytes >> 9); 155 156 if (bio_integrity(bio)) 157 bio_integrity_advance(bio, nbytes); 158 159 if (bio->bi_size == 0) 160 bio_endio(bio, error); 161 } else { 162 163 /* 164 * Okay, this is the barrier request in progress, just 165 * record the error; 166 */ 167 if (error && !q->orderr) 168 q->orderr = error; 169 } 170 } 171 172 void blk_dump_rq_flags(struct request *rq, char *msg) 173 { 174 int bit; 175 176 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 177 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 178 rq->cmd_flags); 179 180 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 181 (unsigned long long)blk_rq_pos(rq), 182 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 183 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 184 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 185 186 if (blk_pc_request(rq)) { 187 printk(KERN_INFO " cdb: "); 188 for (bit = 0; bit < BLK_MAX_CDB; bit++) 189 printk("%02x ", rq->cmd[bit]); 190 printk("\n"); 191 } 192 } 193 EXPORT_SYMBOL(blk_dump_rq_flags); 194 195 /* 196 * "plug" the device if there are no outstanding requests: this will 197 * force the transfer to start only after we have put all the requests 198 * on the list. 199 * 200 * This is called with interrupts off and no requests on the queue and 201 * with the queue lock held. 202 */ 203 void blk_plug_device(struct request_queue *q) 204 { 205 WARN_ON(!irqs_disabled()); 206 207 /* 208 * don't plug a stopped queue, it must be paired with blk_start_queue() 209 * which will restart the queueing 210 */ 211 if (blk_queue_stopped(q)) 212 return; 213 214 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 215 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 216 trace_block_plug(q); 217 } 218 } 219 EXPORT_SYMBOL(blk_plug_device); 220 221 /** 222 * blk_plug_device_unlocked - plug a device without queue lock held 223 * @q: The &struct request_queue to plug 224 * 225 * Description: 226 * Like @blk_plug_device(), but grabs the queue lock and disables 227 * interrupts. 228 **/ 229 void blk_plug_device_unlocked(struct request_queue *q) 230 { 231 unsigned long flags; 232 233 spin_lock_irqsave(q->queue_lock, flags); 234 blk_plug_device(q); 235 spin_unlock_irqrestore(q->queue_lock, flags); 236 } 237 EXPORT_SYMBOL(blk_plug_device_unlocked); 238 239 /* 240 * remove the queue from the plugged list, if present. called with 241 * queue lock held and interrupts disabled. 242 */ 243 int blk_remove_plug(struct request_queue *q) 244 { 245 WARN_ON(!irqs_disabled()); 246 247 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 248 return 0; 249 250 del_timer(&q->unplug_timer); 251 return 1; 252 } 253 EXPORT_SYMBOL(blk_remove_plug); 254 255 /* 256 * remove the plug and let it rip.. 257 */ 258 void __generic_unplug_device(struct request_queue *q) 259 { 260 if (unlikely(blk_queue_stopped(q))) 261 return; 262 if (!blk_remove_plug(q) && !blk_queue_nonrot(q)) 263 return; 264 265 q->request_fn(q); 266 } 267 268 /** 269 * generic_unplug_device - fire a request queue 270 * @q: The &struct request_queue in question 271 * 272 * Description: 273 * Linux uses plugging to build bigger requests queues before letting 274 * the device have at them. If a queue is plugged, the I/O scheduler 275 * is still adding and merging requests on the queue. Once the queue 276 * gets unplugged, the request_fn defined for the queue is invoked and 277 * transfers started. 278 **/ 279 void generic_unplug_device(struct request_queue *q) 280 { 281 if (blk_queue_plugged(q)) { 282 spin_lock_irq(q->queue_lock); 283 __generic_unplug_device(q); 284 spin_unlock_irq(q->queue_lock); 285 } 286 } 287 EXPORT_SYMBOL(generic_unplug_device); 288 289 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 290 struct page *page) 291 { 292 struct request_queue *q = bdi->unplug_io_data; 293 294 blk_unplug(q); 295 } 296 297 void blk_unplug_work(struct work_struct *work) 298 { 299 struct request_queue *q = 300 container_of(work, struct request_queue, unplug_work); 301 302 trace_block_unplug_io(q); 303 q->unplug_fn(q); 304 } 305 306 void blk_unplug_timeout(unsigned long data) 307 { 308 struct request_queue *q = (struct request_queue *)data; 309 310 trace_block_unplug_timer(q); 311 kblockd_schedule_work(q, &q->unplug_work); 312 } 313 314 void blk_unplug(struct request_queue *q) 315 { 316 /* 317 * devices don't necessarily have an ->unplug_fn defined 318 */ 319 if (q->unplug_fn) { 320 trace_block_unplug_io(q); 321 q->unplug_fn(q); 322 } 323 } 324 EXPORT_SYMBOL(blk_unplug); 325 326 /** 327 * blk_start_queue - restart a previously stopped queue 328 * @q: The &struct request_queue in question 329 * 330 * Description: 331 * blk_start_queue() will clear the stop flag on the queue, and call 332 * the request_fn for the queue if it was in a stopped state when 333 * entered. Also see blk_stop_queue(). Queue lock must be held. 334 **/ 335 void blk_start_queue(struct request_queue *q) 336 { 337 WARN_ON(!irqs_disabled()); 338 339 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 340 __blk_run_queue(q); 341 } 342 EXPORT_SYMBOL(blk_start_queue); 343 344 /** 345 * blk_stop_queue - stop a queue 346 * @q: The &struct request_queue in question 347 * 348 * Description: 349 * The Linux block layer assumes that a block driver will consume all 350 * entries on the request queue when the request_fn strategy is called. 351 * Often this will not happen, because of hardware limitations (queue 352 * depth settings). If a device driver gets a 'queue full' response, 353 * or if it simply chooses not to queue more I/O at one point, it can 354 * call this function to prevent the request_fn from being called until 355 * the driver has signalled it's ready to go again. This happens by calling 356 * blk_start_queue() to restart queue operations. Queue lock must be held. 357 **/ 358 void blk_stop_queue(struct request_queue *q) 359 { 360 blk_remove_plug(q); 361 queue_flag_set(QUEUE_FLAG_STOPPED, q); 362 } 363 EXPORT_SYMBOL(blk_stop_queue); 364 365 /** 366 * blk_sync_queue - cancel any pending callbacks on a queue 367 * @q: the queue 368 * 369 * Description: 370 * The block layer may perform asynchronous callback activity 371 * on a queue, such as calling the unplug function after a timeout. 372 * A block device may call blk_sync_queue to ensure that any 373 * such activity is cancelled, thus allowing it to release resources 374 * that the callbacks might use. The caller must already have made sure 375 * that its ->make_request_fn will not re-add plugging prior to calling 376 * this function. 377 * 378 */ 379 void blk_sync_queue(struct request_queue *q) 380 { 381 del_timer_sync(&q->unplug_timer); 382 del_timer_sync(&q->timeout); 383 cancel_work_sync(&q->unplug_work); 384 } 385 EXPORT_SYMBOL(blk_sync_queue); 386 387 /** 388 * __blk_run_queue - run a single device queue 389 * @q: The queue to run 390 * 391 * Description: 392 * See @blk_run_queue. This variant must be called with the queue lock 393 * held and interrupts disabled. 394 * 395 */ 396 void __blk_run_queue(struct request_queue *q) 397 { 398 blk_remove_plug(q); 399 400 if (unlikely(blk_queue_stopped(q))) 401 return; 402 403 if (elv_queue_empty(q)) 404 return; 405 406 /* 407 * Only recurse once to avoid overrunning the stack, let the unplug 408 * handling reinvoke the handler shortly if we already got there. 409 */ 410 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 411 q->request_fn(q); 412 queue_flag_clear(QUEUE_FLAG_REENTER, q); 413 } else { 414 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 415 kblockd_schedule_work(q, &q->unplug_work); 416 } 417 } 418 EXPORT_SYMBOL(__blk_run_queue); 419 420 /** 421 * blk_run_queue - run a single device queue 422 * @q: The queue to run 423 * 424 * Description: 425 * Invoke request handling on this queue, if it has pending work to do. 426 * May be used to restart queueing when a request has completed. 427 */ 428 void blk_run_queue(struct request_queue *q) 429 { 430 unsigned long flags; 431 432 spin_lock_irqsave(q->queue_lock, flags); 433 __blk_run_queue(q); 434 spin_unlock_irqrestore(q->queue_lock, flags); 435 } 436 EXPORT_SYMBOL(blk_run_queue); 437 438 void blk_put_queue(struct request_queue *q) 439 { 440 kobject_put(&q->kobj); 441 } 442 443 void blk_cleanup_queue(struct request_queue *q) 444 { 445 /* 446 * We know we have process context here, so we can be a little 447 * cautious and ensure that pending block actions on this device 448 * are done before moving on. Going into this function, we should 449 * not have processes doing IO to this device. 450 */ 451 blk_sync_queue(q); 452 453 mutex_lock(&q->sysfs_lock); 454 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 455 mutex_unlock(&q->sysfs_lock); 456 457 if (q->elevator) 458 elevator_exit(q->elevator); 459 460 blk_put_queue(q); 461 } 462 EXPORT_SYMBOL(blk_cleanup_queue); 463 464 static int blk_init_free_list(struct request_queue *q) 465 { 466 struct request_list *rl = &q->rq; 467 468 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 469 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 470 rl->elvpriv = 0; 471 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 472 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 473 474 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 475 mempool_free_slab, request_cachep, q->node); 476 477 if (!rl->rq_pool) 478 return -ENOMEM; 479 480 return 0; 481 } 482 483 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 484 { 485 return blk_alloc_queue_node(gfp_mask, -1); 486 } 487 EXPORT_SYMBOL(blk_alloc_queue); 488 489 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 490 { 491 struct request_queue *q; 492 int err; 493 494 q = kmem_cache_alloc_node(blk_requestq_cachep, 495 gfp_mask | __GFP_ZERO, node_id); 496 if (!q) 497 return NULL; 498 499 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 500 q->backing_dev_info.unplug_io_data = q; 501 q->backing_dev_info.ra_pages = 502 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 503 q->backing_dev_info.state = 0; 504 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 505 q->backing_dev_info.name = "block"; 506 507 err = bdi_init(&q->backing_dev_info); 508 if (err) { 509 kmem_cache_free(blk_requestq_cachep, q); 510 return NULL; 511 } 512 513 init_timer(&q->unplug_timer); 514 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 515 INIT_LIST_HEAD(&q->timeout_list); 516 INIT_WORK(&q->unplug_work, blk_unplug_work); 517 518 kobject_init(&q->kobj, &blk_queue_ktype); 519 520 mutex_init(&q->sysfs_lock); 521 spin_lock_init(&q->__queue_lock); 522 523 return q; 524 } 525 EXPORT_SYMBOL(blk_alloc_queue_node); 526 527 /** 528 * blk_init_queue - prepare a request queue for use with a block device 529 * @rfn: The function to be called to process requests that have been 530 * placed on the queue. 531 * @lock: Request queue spin lock 532 * 533 * Description: 534 * If a block device wishes to use the standard request handling procedures, 535 * which sorts requests and coalesces adjacent requests, then it must 536 * call blk_init_queue(). The function @rfn will be called when there 537 * are requests on the queue that need to be processed. If the device 538 * supports plugging, then @rfn may not be called immediately when requests 539 * are available on the queue, but may be called at some time later instead. 540 * Plugged queues are generally unplugged when a buffer belonging to one 541 * of the requests on the queue is needed, or due to memory pressure. 542 * 543 * @rfn is not required, or even expected, to remove all requests off the 544 * queue, but only as many as it can handle at a time. If it does leave 545 * requests on the queue, it is responsible for arranging that the requests 546 * get dealt with eventually. 547 * 548 * The queue spin lock must be held while manipulating the requests on the 549 * request queue; this lock will be taken also from interrupt context, so irq 550 * disabling is needed for it. 551 * 552 * Function returns a pointer to the initialized request queue, or %NULL if 553 * it didn't succeed. 554 * 555 * Note: 556 * blk_init_queue() must be paired with a blk_cleanup_queue() call 557 * when the block device is deactivated (such as at module unload). 558 **/ 559 560 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 561 { 562 return blk_init_queue_node(rfn, lock, -1); 563 } 564 EXPORT_SYMBOL(blk_init_queue); 565 566 struct request_queue * 567 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 568 { 569 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 570 571 if (!q) 572 return NULL; 573 574 q->node = node_id; 575 if (blk_init_free_list(q)) { 576 kmem_cache_free(blk_requestq_cachep, q); 577 return NULL; 578 } 579 580 q->request_fn = rfn; 581 q->prep_rq_fn = NULL; 582 q->unplug_fn = generic_unplug_device; 583 q->queue_flags = QUEUE_FLAG_DEFAULT; 584 q->queue_lock = lock; 585 586 /* 587 * This also sets hw/phys segments, boundary and size 588 */ 589 blk_queue_make_request(q, __make_request); 590 591 q->sg_reserved_size = INT_MAX; 592 593 /* 594 * all done 595 */ 596 if (!elevator_init(q, NULL)) { 597 blk_queue_congestion_threshold(q); 598 return q; 599 } 600 601 blk_put_queue(q); 602 return NULL; 603 } 604 EXPORT_SYMBOL(blk_init_queue_node); 605 606 int blk_get_queue(struct request_queue *q) 607 { 608 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 609 kobject_get(&q->kobj); 610 return 0; 611 } 612 613 return 1; 614 } 615 616 static inline void blk_free_request(struct request_queue *q, struct request *rq) 617 { 618 if (rq->cmd_flags & REQ_ELVPRIV) 619 elv_put_request(q, rq); 620 mempool_free(rq, q->rq.rq_pool); 621 } 622 623 static struct request * 624 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 625 { 626 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 627 628 if (!rq) 629 return NULL; 630 631 blk_rq_init(q, rq); 632 633 rq->cmd_flags = flags | REQ_ALLOCED; 634 635 if (priv) { 636 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 637 mempool_free(rq, q->rq.rq_pool); 638 return NULL; 639 } 640 rq->cmd_flags |= REQ_ELVPRIV; 641 } 642 643 return rq; 644 } 645 646 /* 647 * ioc_batching returns true if the ioc is a valid batching request and 648 * should be given priority access to a request. 649 */ 650 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 651 { 652 if (!ioc) 653 return 0; 654 655 /* 656 * Make sure the process is able to allocate at least 1 request 657 * even if the batch times out, otherwise we could theoretically 658 * lose wakeups. 659 */ 660 return ioc->nr_batch_requests == q->nr_batching || 661 (ioc->nr_batch_requests > 0 662 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 663 } 664 665 /* 666 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 667 * will cause the process to be a "batcher" on all queues in the system. This 668 * is the behaviour we want though - once it gets a wakeup it should be given 669 * a nice run. 670 */ 671 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 672 { 673 if (!ioc || ioc_batching(q, ioc)) 674 return; 675 676 ioc->nr_batch_requests = q->nr_batching; 677 ioc->last_waited = jiffies; 678 } 679 680 static void __freed_request(struct request_queue *q, int sync) 681 { 682 struct request_list *rl = &q->rq; 683 684 if (rl->count[sync] < queue_congestion_off_threshold(q)) 685 blk_clear_queue_congested(q, sync); 686 687 if (rl->count[sync] + 1 <= q->nr_requests) { 688 if (waitqueue_active(&rl->wait[sync])) 689 wake_up(&rl->wait[sync]); 690 691 blk_clear_queue_full(q, sync); 692 } 693 } 694 695 /* 696 * A request has just been released. Account for it, update the full and 697 * congestion status, wake up any waiters. Called under q->queue_lock. 698 */ 699 static void freed_request(struct request_queue *q, int sync, int priv) 700 { 701 struct request_list *rl = &q->rq; 702 703 rl->count[sync]--; 704 if (priv) 705 rl->elvpriv--; 706 707 __freed_request(q, sync); 708 709 if (unlikely(rl->starved[sync ^ 1])) 710 __freed_request(q, sync ^ 1); 711 } 712 713 /* 714 * Get a free request, queue_lock must be held. 715 * Returns NULL on failure, with queue_lock held. 716 * Returns !NULL on success, with queue_lock *not held*. 717 */ 718 static struct request *get_request(struct request_queue *q, int rw_flags, 719 struct bio *bio, gfp_t gfp_mask) 720 { 721 struct request *rq = NULL; 722 struct request_list *rl = &q->rq; 723 struct io_context *ioc = NULL; 724 const bool is_sync = rw_is_sync(rw_flags) != 0; 725 int may_queue, priv; 726 727 may_queue = elv_may_queue(q, rw_flags); 728 if (may_queue == ELV_MQUEUE_NO) 729 goto rq_starved; 730 731 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 732 if (rl->count[is_sync]+1 >= q->nr_requests) { 733 ioc = current_io_context(GFP_ATOMIC, q->node); 734 /* 735 * The queue will fill after this allocation, so set 736 * it as full, and mark this process as "batching". 737 * This process will be allowed to complete a batch of 738 * requests, others will be blocked. 739 */ 740 if (!blk_queue_full(q, is_sync)) { 741 ioc_set_batching(q, ioc); 742 blk_set_queue_full(q, is_sync); 743 } else { 744 if (may_queue != ELV_MQUEUE_MUST 745 && !ioc_batching(q, ioc)) { 746 /* 747 * The queue is full and the allocating 748 * process is not a "batcher", and not 749 * exempted by the IO scheduler 750 */ 751 goto out; 752 } 753 } 754 } 755 blk_set_queue_congested(q, is_sync); 756 } 757 758 /* 759 * Only allow batching queuers to allocate up to 50% over the defined 760 * limit of requests, otherwise we could have thousands of requests 761 * allocated with any setting of ->nr_requests 762 */ 763 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 764 goto out; 765 766 rl->count[is_sync]++; 767 rl->starved[is_sync] = 0; 768 769 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 770 if (priv) 771 rl->elvpriv++; 772 773 if (blk_queue_io_stat(q)) 774 rw_flags |= REQ_IO_STAT; 775 spin_unlock_irq(q->queue_lock); 776 777 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 778 if (unlikely(!rq)) { 779 /* 780 * Allocation failed presumably due to memory. Undo anything 781 * we might have messed up. 782 * 783 * Allocating task should really be put onto the front of the 784 * wait queue, but this is pretty rare. 785 */ 786 spin_lock_irq(q->queue_lock); 787 freed_request(q, is_sync, priv); 788 789 /* 790 * in the very unlikely event that allocation failed and no 791 * requests for this direction was pending, mark us starved 792 * so that freeing of a request in the other direction will 793 * notice us. another possible fix would be to split the 794 * rq mempool into READ and WRITE 795 */ 796 rq_starved: 797 if (unlikely(rl->count[is_sync] == 0)) 798 rl->starved[is_sync] = 1; 799 800 goto out; 801 } 802 803 /* 804 * ioc may be NULL here, and ioc_batching will be false. That's 805 * OK, if the queue is under the request limit then requests need 806 * not count toward the nr_batch_requests limit. There will always 807 * be some limit enforced by BLK_BATCH_TIME. 808 */ 809 if (ioc_batching(q, ioc)) 810 ioc->nr_batch_requests--; 811 812 trace_block_getrq(q, bio, rw_flags & 1); 813 out: 814 return rq; 815 } 816 817 /* 818 * No available requests for this queue, unplug the device and wait for some 819 * requests to become available. 820 * 821 * Called with q->queue_lock held, and returns with it unlocked. 822 */ 823 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 824 struct bio *bio) 825 { 826 const bool is_sync = rw_is_sync(rw_flags) != 0; 827 struct request *rq; 828 829 rq = get_request(q, rw_flags, bio, GFP_NOIO); 830 while (!rq) { 831 DEFINE_WAIT(wait); 832 struct io_context *ioc; 833 struct request_list *rl = &q->rq; 834 835 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 836 TASK_UNINTERRUPTIBLE); 837 838 trace_block_sleeprq(q, bio, rw_flags & 1); 839 840 __generic_unplug_device(q); 841 spin_unlock_irq(q->queue_lock); 842 io_schedule(); 843 844 /* 845 * After sleeping, we become a "batching" process and 846 * will be able to allocate at least one request, and 847 * up to a big batch of them for a small period time. 848 * See ioc_batching, ioc_set_batching 849 */ 850 ioc = current_io_context(GFP_NOIO, q->node); 851 ioc_set_batching(q, ioc); 852 853 spin_lock_irq(q->queue_lock); 854 finish_wait(&rl->wait[is_sync], &wait); 855 856 rq = get_request(q, rw_flags, bio, GFP_NOIO); 857 }; 858 859 return rq; 860 } 861 862 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 863 { 864 struct request *rq; 865 866 BUG_ON(rw != READ && rw != WRITE); 867 868 spin_lock_irq(q->queue_lock); 869 if (gfp_mask & __GFP_WAIT) { 870 rq = get_request_wait(q, rw, NULL); 871 } else { 872 rq = get_request(q, rw, NULL, gfp_mask); 873 if (!rq) 874 spin_unlock_irq(q->queue_lock); 875 } 876 /* q->queue_lock is unlocked at this point */ 877 878 return rq; 879 } 880 EXPORT_SYMBOL(blk_get_request); 881 882 /** 883 * blk_make_request - given a bio, allocate a corresponding struct request. 884 * @q: target request queue 885 * @bio: The bio describing the memory mappings that will be submitted for IO. 886 * It may be a chained-bio properly constructed by block/bio layer. 887 * @gfp_mask: gfp flags to be used for memory allocation 888 * 889 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 890 * type commands. Where the struct request needs to be farther initialized by 891 * the caller. It is passed a &struct bio, which describes the memory info of 892 * the I/O transfer. 893 * 894 * The caller of blk_make_request must make sure that bi_io_vec 895 * are set to describe the memory buffers. That bio_data_dir() will return 896 * the needed direction of the request. (And all bio's in the passed bio-chain 897 * are properly set accordingly) 898 * 899 * If called under none-sleepable conditions, mapped bio buffers must not 900 * need bouncing, by calling the appropriate masked or flagged allocator, 901 * suitable for the target device. Otherwise the call to blk_queue_bounce will 902 * BUG. 903 * 904 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 905 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 906 * anything but the first bio in the chain. Otherwise you risk waiting for IO 907 * completion of a bio that hasn't been submitted yet, thus resulting in a 908 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 909 * of bio_alloc(), as that avoids the mempool deadlock. 910 * If possible a big IO should be split into smaller parts when allocation 911 * fails. Partial allocation should not be an error, or you risk a live-lock. 912 */ 913 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 914 gfp_t gfp_mask) 915 { 916 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 917 918 if (unlikely(!rq)) 919 return ERR_PTR(-ENOMEM); 920 921 for_each_bio(bio) { 922 struct bio *bounce_bio = bio; 923 int ret; 924 925 blk_queue_bounce(q, &bounce_bio); 926 ret = blk_rq_append_bio(q, rq, bounce_bio); 927 if (unlikely(ret)) { 928 blk_put_request(rq); 929 return ERR_PTR(ret); 930 } 931 } 932 933 return rq; 934 } 935 EXPORT_SYMBOL(blk_make_request); 936 937 /** 938 * blk_requeue_request - put a request back on queue 939 * @q: request queue where request should be inserted 940 * @rq: request to be inserted 941 * 942 * Description: 943 * Drivers often keep queueing requests until the hardware cannot accept 944 * more, when that condition happens we need to put the request back 945 * on the queue. Must be called with queue lock held. 946 */ 947 void blk_requeue_request(struct request_queue *q, struct request *rq) 948 { 949 blk_delete_timer(rq); 950 blk_clear_rq_complete(rq); 951 trace_block_rq_requeue(q, rq); 952 953 if (blk_rq_tagged(rq)) 954 blk_queue_end_tag(q, rq); 955 956 BUG_ON(blk_queued_rq(rq)); 957 958 elv_requeue_request(q, rq); 959 } 960 EXPORT_SYMBOL(blk_requeue_request); 961 962 /** 963 * blk_insert_request - insert a special request into a request queue 964 * @q: request queue where request should be inserted 965 * @rq: request to be inserted 966 * @at_head: insert request at head or tail of queue 967 * @data: private data 968 * 969 * Description: 970 * Many block devices need to execute commands asynchronously, so they don't 971 * block the whole kernel from preemption during request execution. This is 972 * accomplished normally by inserting aritficial requests tagged as 973 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 974 * be scheduled for actual execution by the request queue. 975 * 976 * We have the option of inserting the head or the tail of the queue. 977 * Typically we use the tail for new ioctls and so forth. We use the head 978 * of the queue for things like a QUEUE_FULL message from a device, or a 979 * host that is unable to accept a particular command. 980 */ 981 void blk_insert_request(struct request_queue *q, struct request *rq, 982 int at_head, void *data) 983 { 984 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 985 unsigned long flags; 986 987 /* 988 * tell I/O scheduler that this isn't a regular read/write (ie it 989 * must not attempt merges on this) and that it acts as a soft 990 * barrier 991 */ 992 rq->cmd_type = REQ_TYPE_SPECIAL; 993 994 rq->special = data; 995 996 spin_lock_irqsave(q->queue_lock, flags); 997 998 /* 999 * If command is tagged, release the tag 1000 */ 1001 if (blk_rq_tagged(rq)) 1002 blk_queue_end_tag(q, rq); 1003 1004 drive_stat_acct(rq, 1); 1005 __elv_add_request(q, rq, where, 0); 1006 __blk_run_queue(q); 1007 spin_unlock_irqrestore(q->queue_lock, flags); 1008 } 1009 EXPORT_SYMBOL(blk_insert_request); 1010 1011 /* 1012 * add-request adds a request to the linked list. 1013 * queue lock is held and interrupts disabled, as we muck with the 1014 * request queue list. 1015 */ 1016 static inline void add_request(struct request_queue *q, struct request *req) 1017 { 1018 drive_stat_acct(req, 1); 1019 1020 /* 1021 * elevator indicated where it wants this request to be 1022 * inserted at elevator_merge time 1023 */ 1024 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 1025 } 1026 1027 static void part_round_stats_single(int cpu, struct hd_struct *part, 1028 unsigned long now) 1029 { 1030 if (now == part->stamp) 1031 return; 1032 1033 if (part_in_flight(part)) { 1034 __part_stat_add(cpu, part, time_in_queue, 1035 part_in_flight(part) * (now - part->stamp)); 1036 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1037 } 1038 part->stamp = now; 1039 } 1040 1041 /** 1042 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1043 * @cpu: cpu number for stats access 1044 * @part: target partition 1045 * 1046 * The average IO queue length and utilisation statistics are maintained 1047 * by observing the current state of the queue length and the amount of 1048 * time it has been in this state for. 1049 * 1050 * Normally, that accounting is done on IO completion, but that can result 1051 * in more than a second's worth of IO being accounted for within any one 1052 * second, leading to >100% utilisation. To deal with that, we call this 1053 * function to do a round-off before returning the results when reading 1054 * /proc/diskstats. This accounts immediately for all queue usage up to 1055 * the current jiffies and restarts the counters again. 1056 */ 1057 void part_round_stats(int cpu, struct hd_struct *part) 1058 { 1059 unsigned long now = jiffies; 1060 1061 if (part->partno) 1062 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1063 part_round_stats_single(cpu, part, now); 1064 } 1065 EXPORT_SYMBOL_GPL(part_round_stats); 1066 1067 /* 1068 * queue lock must be held 1069 */ 1070 void __blk_put_request(struct request_queue *q, struct request *req) 1071 { 1072 if (unlikely(!q)) 1073 return; 1074 if (unlikely(--req->ref_count)) 1075 return; 1076 1077 elv_completed_request(q, req); 1078 1079 /* this is a bio leak */ 1080 WARN_ON(req->bio != NULL); 1081 1082 /* 1083 * Request may not have originated from ll_rw_blk. if not, 1084 * it didn't come out of our reserved rq pools 1085 */ 1086 if (req->cmd_flags & REQ_ALLOCED) { 1087 int is_sync = rq_is_sync(req) != 0; 1088 int priv = req->cmd_flags & REQ_ELVPRIV; 1089 1090 BUG_ON(!list_empty(&req->queuelist)); 1091 BUG_ON(!hlist_unhashed(&req->hash)); 1092 1093 blk_free_request(q, req); 1094 freed_request(q, is_sync, priv); 1095 } 1096 } 1097 EXPORT_SYMBOL_GPL(__blk_put_request); 1098 1099 void blk_put_request(struct request *req) 1100 { 1101 unsigned long flags; 1102 struct request_queue *q = req->q; 1103 1104 spin_lock_irqsave(q->queue_lock, flags); 1105 __blk_put_request(q, req); 1106 spin_unlock_irqrestore(q->queue_lock, flags); 1107 } 1108 EXPORT_SYMBOL(blk_put_request); 1109 1110 void init_request_from_bio(struct request *req, struct bio *bio) 1111 { 1112 req->cpu = bio->bi_comp_cpu; 1113 req->cmd_type = REQ_TYPE_FS; 1114 1115 /* 1116 * Inherit FAILFAST from bio (for read-ahead, and explicit 1117 * FAILFAST). FAILFAST flags are identical for req and bio. 1118 */ 1119 if (bio_rw_flagged(bio, BIO_RW_AHEAD)) 1120 req->cmd_flags |= REQ_FAILFAST_MASK; 1121 else 1122 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK; 1123 1124 if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) { 1125 req->cmd_flags |= REQ_DISCARD; 1126 if (bio_rw_flagged(bio, BIO_RW_BARRIER)) 1127 req->cmd_flags |= REQ_SOFTBARRIER; 1128 } else if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) 1129 req->cmd_flags |= REQ_HARDBARRIER; 1130 1131 if (bio_rw_flagged(bio, BIO_RW_SYNCIO)) 1132 req->cmd_flags |= REQ_RW_SYNC; 1133 if (bio_rw_flagged(bio, BIO_RW_META)) 1134 req->cmd_flags |= REQ_RW_META; 1135 if (bio_rw_flagged(bio, BIO_RW_NOIDLE)) 1136 req->cmd_flags |= REQ_NOIDLE; 1137 1138 req->errors = 0; 1139 req->__sector = bio->bi_sector; 1140 req->ioprio = bio_prio(bio); 1141 blk_rq_bio_prep(req->q, req, bio); 1142 } 1143 1144 /* 1145 * Only disabling plugging for non-rotational devices if it does tagging 1146 * as well, otherwise we do need the proper merging 1147 */ 1148 static inline bool queue_should_plug(struct request_queue *q) 1149 { 1150 return !(blk_queue_nonrot(q) && blk_queue_tagged(q)); 1151 } 1152 1153 static int __make_request(struct request_queue *q, struct bio *bio) 1154 { 1155 struct request *req; 1156 int el_ret; 1157 unsigned int bytes = bio->bi_size; 1158 const unsigned short prio = bio_prio(bio); 1159 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO); 1160 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG); 1161 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1162 int rw_flags; 1163 1164 if (bio_rw_flagged(bio, BIO_RW_BARRIER) && 1165 (q->next_ordered == QUEUE_ORDERED_NONE)) { 1166 bio_endio(bio, -EOPNOTSUPP); 1167 return 0; 1168 } 1169 /* 1170 * low level driver can indicate that it wants pages above a 1171 * certain limit bounced to low memory (ie for highmem, or even 1172 * ISA dma in theory) 1173 */ 1174 blk_queue_bounce(q, &bio); 1175 1176 spin_lock_irq(q->queue_lock); 1177 1178 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q)) 1179 goto get_rq; 1180 1181 el_ret = elv_merge(q, &req, bio); 1182 switch (el_ret) { 1183 case ELEVATOR_BACK_MERGE: 1184 BUG_ON(!rq_mergeable(req)); 1185 1186 if (!ll_back_merge_fn(q, req, bio)) 1187 break; 1188 1189 trace_block_bio_backmerge(q, bio); 1190 1191 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1192 blk_rq_set_mixed_merge(req); 1193 1194 req->biotail->bi_next = bio; 1195 req->biotail = bio; 1196 req->__data_len += bytes; 1197 req->ioprio = ioprio_best(req->ioprio, prio); 1198 if (!blk_rq_cpu_valid(req)) 1199 req->cpu = bio->bi_comp_cpu; 1200 drive_stat_acct(req, 0); 1201 if (!attempt_back_merge(q, req)) 1202 elv_merged_request(q, req, el_ret); 1203 goto out; 1204 1205 case ELEVATOR_FRONT_MERGE: 1206 BUG_ON(!rq_mergeable(req)); 1207 1208 if (!ll_front_merge_fn(q, req, bio)) 1209 break; 1210 1211 trace_block_bio_frontmerge(q, bio); 1212 1213 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) { 1214 blk_rq_set_mixed_merge(req); 1215 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1216 req->cmd_flags |= ff; 1217 } 1218 1219 bio->bi_next = req->bio; 1220 req->bio = bio; 1221 1222 /* 1223 * may not be valid. if the low level driver said 1224 * it didn't need a bounce buffer then it better 1225 * not touch req->buffer either... 1226 */ 1227 req->buffer = bio_data(bio); 1228 req->__sector = bio->bi_sector; 1229 req->__data_len += bytes; 1230 req->ioprio = ioprio_best(req->ioprio, prio); 1231 if (!blk_rq_cpu_valid(req)) 1232 req->cpu = bio->bi_comp_cpu; 1233 drive_stat_acct(req, 0); 1234 if (!attempt_front_merge(q, req)) 1235 elv_merged_request(q, req, el_ret); 1236 goto out; 1237 1238 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1239 default: 1240 ; 1241 } 1242 1243 get_rq: 1244 /* 1245 * This sync check and mask will be re-done in init_request_from_bio(), 1246 * but we need to set it earlier to expose the sync flag to the 1247 * rq allocator and io schedulers. 1248 */ 1249 rw_flags = bio_data_dir(bio); 1250 if (sync) 1251 rw_flags |= REQ_RW_SYNC; 1252 1253 /* 1254 * Grab a free request. This is might sleep but can not fail. 1255 * Returns with the queue unlocked. 1256 */ 1257 req = get_request_wait(q, rw_flags, bio); 1258 1259 /* 1260 * After dropping the lock and possibly sleeping here, our request 1261 * may now be mergeable after it had proven unmergeable (above). 1262 * We don't worry about that case for efficiency. It won't happen 1263 * often, and the elevators are able to handle it. 1264 */ 1265 init_request_from_bio(req, bio); 1266 1267 spin_lock_irq(q->queue_lock); 1268 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1269 bio_flagged(bio, BIO_CPU_AFFINE)) 1270 req->cpu = blk_cpu_to_group(smp_processor_id()); 1271 if (queue_should_plug(q) && elv_queue_empty(q)) 1272 blk_plug_device(q); 1273 add_request(q, req); 1274 out: 1275 if (unplug || !queue_should_plug(q)) 1276 __generic_unplug_device(q); 1277 spin_unlock_irq(q->queue_lock); 1278 return 0; 1279 } 1280 1281 /* 1282 * If bio->bi_dev is a partition, remap the location 1283 */ 1284 static inline void blk_partition_remap(struct bio *bio) 1285 { 1286 struct block_device *bdev = bio->bi_bdev; 1287 1288 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1289 struct hd_struct *p = bdev->bd_part; 1290 1291 bio->bi_sector += p->start_sect; 1292 bio->bi_bdev = bdev->bd_contains; 1293 1294 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio, 1295 bdev->bd_dev, 1296 bio->bi_sector - p->start_sect); 1297 } 1298 } 1299 1300 static void handle_bad_sector(struct bio *bio) 1301 { 1302 char b[BDEVNAME_SIZE]; 1303 1304 printk(KERN_INFO "attempt to access beyond end of device\n"); 1305 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1306 bdevname(bio->bi_bdev, b), 1307 bio->bi_rw, 1308 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1309 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1310 1311 set_bit(BIO_EOF, &bio->bi_flags); 1312 } 1313 1314 #ifdef CONFIG_FAIL_MAKE_REQUEST 1315 1316 static DECLARE_FAULT_ATTR(fail_make_request); 1317 1318 static int __init setup_fail_make_request(char *str) 1319 { 1320 return setup_fault_attr(&fail_make_request, str); 1321 } 1322 __setup("fail_make_request=", setup_fail_make_request); 1323 1324 static int should_fail_request(struct bio *bio) 1325 { 1326 struct hd_struct *part = bio->bi_bdev->bd_part; 1327 1328 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1329 return should_fail(&fail_make_request, bio->bi_size); 1330 1331 return 0; 1332 } 1333 1334 static int __init fail_make_request_debugfs(void) 1335 { 1336 return init_fault_attr_dentries(&fail_make_request, 1337 "fail_make_request"); 1338 } 1339 1340 late_initcall(fail_make_request_debugfs); 1341 1342 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1343 1344 static inline int should_fail_request(struct bio *bio) 1345 { 1346 return 0; 1347 } 1348 1349 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1350 1351 /* 1352 * Check whether this bio extends beyond the end of the device. 1353 */ 1354 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1355 { 1356 sector_t maxsector; 1357 1358 if (!nr_sectors) 1359 return 0; 1360 1361 /* Test device or partition size, when known. */ 1362 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1363 if (maxsector) { 1364 sector_t sector = bio->bi_sector; 1365 1366 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1367 /* 1368 * This may well happen - the kernel calls bread() 1369 * without checking the size of the device, e.g., when 1370 * mounting a device. 1371 */ 1372 handle_bad_sector(bio); 1373 return 1; 1374 } 1375 } 1376 1377 return 0; 1378 } 1379 1380 /** 1381 * generic_make_request - hand a buffer to its device driver for I/O 1382 * @bio: The bio describing the location in memory and on the device. 1383 * 1384 * generic_make_request() is used to make I/O requests of block 1385 * devices. It is passed a &struct bio, which describes the I/O that needs 1386 * to be done. 1387 * 1388 * generic_make_request() does not return any status. The 1389 * success/failure status of the request, along with notification of 1390 * completion, is delivered asynchronously through the bio->bi_end_io 1391 * function described (one day) else where. 1392 * 1393 * The caller of generic_make_request must make sure that bi_io_vec 1394 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1395 * set to describe the device address, and the 1396 * bi_end_io and optionally bi_private are set to describe how 1397 * completion notification should be signaled. 1398 * 1399 * generic_make_request and the drivers it calls may use bi_next if this 1400 * bio happens to be merged with someone else, and may change bi_dev and 1401 * bi_sector for remaps as it sees fit. So the values of these fields 1402 * should NOT be depended on after the call to generic_make_request. 1403 */ 1404 static inline void __generic_make_request(struct bio *bio) 1405 { 1406 struct request_queue *q; 1407 sector_t old_sector; 1408 int ret, nr_sectors = bio_sectors(bio); 1409 dev_t old_dev; 1410 int err = -EIO; 1411 1412 might_sleep(); 1413 1414 if (bio_check_eod(bio, nr_sectors)) 1415 goto end_io; 1416 1417 /* 1418 * Resolve the mapping until finished. (drivers are 1419 * still free to implement/resolve their own stacking 1420 * by explicitly returning 0) 1421 * 1422 * NOTE: we don't repeat the blk_size check for each new device. 1423 * Stacking drivers are expected to know what they are doing. 1424 */ 1425 old_sector = -1; 1426 old_dev = 0; 1427 do { 1428 char b[BDEVNAME_SIZE]; 1429 1430 q = bdev_get_queue(bio->bi_bdev); 1431 if (unlikely(!q)) { 1432 printk(KERN_ERR 1433 "generic_make_request: Trying to access " 1434 "nonexistent block-device %s (%Lu)\n", 1435 bdevname(bio->bi_bdev, b), 1436 (long long) bio->bi_sector); 1437 goto end_io; 1438 } 1439 1440 if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) && 1441 nr_sectors > queue_max_hw_sectors(q))) { 1442 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1443 bdevname(bio->bi_bdev, b), 1444 bio_sectors(bio), 1445 queue_max_hw_sectors(q)); 1446 goto end_io; 1447 } 1448 1449 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1450 goto end_io; 1451 1452 if (should_fail_request(bio)) 1453 goto end_io; 1454 1455 /* 1456 * If this device has partitions, remap block n 1457 * of partition p to block n+start(p) of the disk. 1458 */ 1459 blk_partition_remap(bio); 1460 1461 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1462 goto end_io; 1463 1464 if (old_sector != -1) 1465 trace_block_remap(q, bio, old_dev, old_sector); 1466 1467 old_sector = bio->bi_sector; 1468 old_dev = bio->bi_bdev->bd_dev; 1469 1470 if (bio_check_eod(bio, nr_sectors)) 1471 goto end_io; 1472 1473 if (bio_rw_flagged(bio, BIO_RW_DISCARD) && 1474 !blk_queue_discard(q)) { 1475 err = -EOPNOTSUPP; 1476 goto end_io; 1477 } 1478 1479 trace_block_bio_queue(q, bio); 1480 1481 ret = q->make_request_fn(q, bio); 1482 } while (ret); 1483 1484 return; 1485 1486 end_io: 1487 bio_endio(bio, err); 1488 } 1489 1490 /* 1491 * We only want one ->make_request_fn to be active at a time, 1492 * else stack usage with stacked devices could be a problem. 1493 * So use current->bio_list to keep a list of requests 1494 * submited by a make_request_fn function. 1495 * current->bio_list is also used as a flag to say if 1496 * generic_make_request is currently active in this task or not. 1497 * If it is NULL, then no make_request is active. If it is non-NULL, 1498 * then a make_request is active, and new requests should be added 1499 * at the tail 1500 */ 1501 void generic_make_request(struct bio *bio) 1502 { 1503 struct bio_list bio_list_on_stack; 1504 1505 if (current->bio_list) { 1506 /* make_request is active */ 1507 bio_list_add(current->bio_list, bio); 1508 return; 1509 } 1510 /* following loop may be a bit non-obvious, and so deserves some 1511 * explanation. 1512 * Before entering the loop, bio->bi_next is NULL (as all callers 1513 * ensure that) so we have a list with a single bio. 1514 * We pretend that we have just taken it off a longer list, so 1515 * we assign bio_list to a pointer to the bio_list_on_stack, 1516 * thus initialising the bio_list of new bios to be 1517 * added. __generic_make_request may indeed add some more bios 1518 * through a recursive call to generic_make_request. If it 1519 * did, we find a non-NULL value in bio_list and re-enter the loop 1520 * from the top. In this case we really did just take the bio 1521 * of the top of the list (no pretending) and so remove it from 1522 * bio_list, and call into __generic_make_request again. 1523 * 1524 * The loop was structured like this to make only one call to 1525 * __generic_make_request (which is important as it is large and 1526 * inlined) and to keep the structure simple. 1527 */ 1528 BUG_ON(bio->bi_next); 1529 bio_list_init(&bio_list_on_stack); 1530 current->bio_list = &bio_list_on_stack; 1531 do { 1532 __generic_make_request(bio); 1533 bio = bio_list_pop(current->bio_list); 1534 } while (bio); 1535 current->bio_list = NULL; /* deactivate */ 1536 } 1537 EXPORT_SYMBOL(generic_make_request); 1538 1539 /** 1540 * submit_bio - submit a bio to the block device layer for I/O 1541 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1542 * @bio: The &struct bio which describes the I/O 1543 * 1544 * submit_bio() is very similar in purpose to generic_make_request(), and 1545 * uses that function to do most of the work. Both are fairly rough 1546 * interfaces; @bio must be presetup and ready for I/O. 1547 * 1548 */ 1549 void submit_bio(int rw, struct bio *bio) 1550 { 1551 int count = bio_sectors(bio); 1552 1553 bio->bi_rw |= rw; 1554 1555 /* 1556 * If it's a regular read/write or a barrier with data attached, 1557 * go through the normal accounting stuff before submission. 1558 */ 1559 if (bio_has_data(bio)) { 1560 if (rw & WRITE) { 1561 count_vm_events(PGPGOUT, count); 1562 } else { 1563 task_io_account_read(bio->bi_size); 1564 count_vm_events(PGPGIN, count); 1565 } 1566 1567 if (unlikely(block_dump)) { 1568 char b[BDEVNAME_SIZE]; 1569 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1570 current->comm, task_pid_nr(current), 1571 (rw & WRITE) ? "WRITE" : "READ", 1572 (unsigned long long)bio->bi_sector, 1573 bdevname(bio->bi_bdev, b)); 1574 } 1575 } 1576 1577 generic_make_request(bio); 1578 } 1579 EXPORT_SYMBOL(submit_bio); 1580 1581 /** 1582 * blk_rq_check_limits - Helper function to check a request for the queue limit 1583 * @q: the queue 1584 * @rq: the request being checked 1585 * 1586 * Description: 1587 * @rq may have been made based on weaker limitations of upper-level queues 1588 * in request stacking drivers, and it may violate the limitation of @q. 1589 * Since the block layer and the underlying device driver trust @rq 1590 * after it is inserted to @q, it should be checked against @q before 1591 * the insertion using this generic function. 1592 * 1593 * This function should also be useful for request stacking drivers 1594 * in some cases below, so export this fuction. 1595 * Request stacking drivers like request-based dm may change the queue 1596 * limits while requests are in the queue (e.g. dm's table swapping). 1597 * Such request stacking drivers should check those requests agaist 1598 * the new queue limits again when they dispatch those requests, 1599 * although such checkings are also done against the old queue limits 1600 * when submitting requests. 1601 */ 1602 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1603 { 1604 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1605 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1606 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1607 return -EIO; 1608 } 1609 1610 /* 1611 * queue's settings related to segment counting like q->bounce_pfn 1612 * may differ from that of other stacking queues. 1613 * Recalculate it to check the request correctly on this queue's 1614 * limitation. 1615 */ 1616 blk_recalc_rq_segments(rq); 1617 if (rq->nr_phys_segments > queue_max_segments(q)) { 1618 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1619 return -EIO; 1620 } 1621 1622 return 0; 1623 } 1624 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1625 1626 /** 1627 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1628 * @q: the queue to submit the request 1629 * @rq: the request being queued 1630 */ 1631 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1632 { 1633 unsigned long flags; 1634 1635 if (blk_rq_check_limits(q, rq)) 1636 return -EIO; 1637 1638 #ifdef CONFIG_FAIL_MAKE_REQUEST 1639 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1640 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1641 return -EIO; 1642 #endif 1643 1644 spin_lock_irqsave(q->queue_lock, flags); 1645 1646 /* 1647 * Submitting request must be dequeued before calling this function 1648 * because it will be linked to another request_queue 1649 */ 1650 BUG_ON(blk_queued_rq(rq)); 1651 1652 drive_stat_acct(rq, 1); 1653 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1654 1655 spin_unlock_irqrestore(q->queue_lock, flags); 1656 1657 return 0; 1658 } 1659 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1660 1661 /** 1662 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1663 * @rq: request to examine 1664 * 1665 * Description: 1666 * A request could be merge of IOs which require different failure 1667 * handling. This function determines the number of bytes which 1668 * can be failed from the beginning of the request without 1669 * crossing into area which need to be retried further. 1670 * 1671 * Return: 1672 * The number of bytes to fail. 1673 * 1674 * Context: 1675 * queue_lock must be held. 1676 */ 1677 unsigned int blk_rq_err_bytes(const struct request *rq) 1678 { 1679 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1680 unsigned int bytes = 0; 1681 struct bio *bio; 1682 1683 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1684 return blk_rq_bytes(rq); 1685 1686 /* 1687 * Currently the only 'mixing' which can happen is between 1688 * different fastfail types. We can safely fail portions 1689 * which have all the failfast bits that the first one has - 1690 * the ones which are at least as eager to fail as the first 1691 * one. 1692 */ 1693 for (bio = rq->bio; bio; bio = bio->bi_next) { 1694 if ((bio->bi_rw & ff) != ff) 1695 break; 1696 bytes += bio->bi_size; 1697 } 1698 1699 /* this could lead to infinite loop */ 1700 BUG_ON(blk_rq_bytes(rq) && !bytes); 1701 return bytes; 1702 } 1703 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1704 1705 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1706 { 1707 if (blk_do_io_stat(req)) { 1708 const int rw = rq_data_dir(req); 1709 struct hd_struct *part; 1710 int cpu; 1711 1712 cpu = part_stat_lock(); 1713 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req)); 1714 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1715 part_stat_unlock(); 1716 } 1717 } 1718 1719 static void blk_account_io_done(struct request *req) 1720 { 1721 /* 1722 * Account IO completion. bar_rq isn't accounted as a normal 1723 * IO on queueing nor completion. Accounting the containing 1724 * request is enough. 1725 */ 1726 if (blk_do_io_stat(req) && req != &req->q->bar_rq) { 1727 unsigned long duration = jiffies - req->start_time; 1728 const int rw = rq_data_dir(req); 1729 struct hd_struct *part; 1730 int cpu; 1731 1732 cpu = part_stat_lock(); 1733 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req)); 1734 1735 part_stat_inc(cpu, part, ios[rw]); 1736 part_stat_add(cpu, part, ticks[rw], duration); 1737 part_round_stats(cpu, part); 1738 part_dec_in_flight(part, rw); 1739 1740 part_stat_unlock(); 1741 } 1742 } 1743 1744 /** 1745 * blk_peek_request - peek at the top of a request queue 1746 * @q: request queue to peek at 1747 * 1748 * Description: 1749 * Return the request at the top of @q. The returned request 1750 * should be started using blk_start_request() before LLD starts 1751 * processing it. 1752 * 1753 * Return: 1754 * Pointer to the request at the top of @q if available. Null 1755 * otherwise. 1756 * 1757 * Context: 1758 * queue_lock must be held. 1759 */ 1760 struct request *blk_peek_request(struct request_queue *q) 1761 { 1762 struct request *rq; 1763 int ret; 1764 1765 while ((rq = __elv_next_request(q)) != NULL) { 1766 if (!(rq->cmd_flags & REQ_STARTED)) { 1767 /* 1768 * This is the first time the device driver 1769 * sees this request (possibly after 1770 * requeueing). Notify IO scheduler. 1771 */ 1772 if (blk_sorted_rq(rq)) 1773 elv_activate_rq(q, rq); 1774 1775 /* 1776 * just mark as started even if we don't start 1777 * it, a request that has been delayed should 1778 * not be passed by new incoming requests 1779 */ 1780 rq->cmd_flags |= REQ_STARTED; 1781 trace_block_rq_issue(q, rq); 1782 } 1783 1784 if (!q->boundary_rq || q->boundary_rq == rq) { 1785 q->end_sector = rq_end_sector(rq); 1786 q->boundary_rq = NULL; 1787 } 1788 1789 if (rq->cmd_flags & REQ_DONTPREP) 1790 break; 1791 1792 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1793 /* 1794 * make sure space for the drain appears we 1795 * know we can do this because max_hw_segments 1796 * has been adjusted to be one fewer than the 1797 * device can handle 1798 */ 1799 rq->nr_phys_segments++; 1800 } 1801 1802 if (!q->prep_rq_fn) 1803 break; 1804 1805 ret = q->prep_rq_fn(q, rq); 1806 if (ret == BLKPREP_OK) { 1807 break; 1808 } else if (ret == BLKPREP_DEFER) { 1809 /* 1810 * the request may have been (partially) prepped. 1811 * we need to keep this request in the front to 1812 * avoid resource deadlock. REQ_STARTED will 1813 * prevent other fs requests from passing this one. 1814 */ 1815 if (q->dma_drain_size && blk_rq_bytes(rq) && 1816 !(rq->cmd_flags & REQ_DONTPREP)) { 1817 /* 1818 * remove the space for the drain we added 1819 * so that we don't add it again 1820 */ 1821 --rq->nr_phys_segments; 1822 } 1823 1824 rq = NULL; 1825 break; 1826 } else if (ret == BLKPREP_KILL) { 1827 rq->cmd_flags |= REQ_QUIET; 1828 /* 1829 * Mark this request as started so we don't trigger 1830 * any debug logic in the end I/O path. 1831 */ 1832 blk_start_request(rq); 1833 __blk_end_request_all(rq, -EIO); 1834 } else { 1835 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1836 break; 1837 } 1838 } 1839 1840 return rq; 1841 } 1842 EXPORT_SYMBOL(blk_peek_request); 1843 1844 void blk_dequeue_request(struct request *rq) 1845 { 1846 struct request_queue *q = rq->q; 1847 1848 BUG_ON(list_empty(&rq->queuelist)); 1849 BUG_ON(ELV_ON_HASH(rq)); 1850 1851 list_del_init(&rq->queuelist); 1852 1853 /* 1854 * the time frame between a request being removed from the lists 1855 * and to it is freed is accounted as io that is in progress at 1856 * the driver side. 1857 */ 1858 if (blk_account_rq(rq)) 1859 q->in_flight[rq_is_sync(rq)]++; 1860 } 1861 1862 /** 1863 * blk_start_request - start request processing on the driver 1864 * @req: request to dequeue 1865 * 1866 * Description: 1867 * Dequeue @req and start timeout timer on it. This hands off the 1868 * request to the driver. 1869 * 1870 * Block internal functions which don't want to start timer should 1871 * call blk_dequeue_request(). 1872 * 1873 * Context: 1874 * queue_lock must be held. 1875 */ 1876 void blk_start_request(struct request *req) 1877 { 1878 blk_dequeue_request(req); 1879 1880 /* 1881 * We are now handing the request to the hardware, initialize 1882 * resid_len to full count and add the timeout handler. 1883 */ 1884 req->resid_len = blk_rq_bytes(req); 1885 if (unlikely(blk_bidi_rq(req))) 1886 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1887 1888 blk_add_timer(req); 1889 } 1890 EXPORT_SYMBOL(blk_start_request); 1891 1892 /** 1893 * blk_fetch_request - fetch a request from a request queue 1894 * @q: request queue to fetch a request from 1895 * 1896 * Description: 1897 * Return the request at the top of @q. The request is started on 1898 * return and LLD can start processing it immediately. 1899 * 1900 * Return: 1901 * Pointer to the request at the top of @q if available. Null 1902 * otherwise. 1903 * 1904 * Context: 1905 * queue_lock must be held. 1906 */ 1907 struct request *blk_fetch_request(struct request_queue *q) 1908 { 1909 struct request *rq; 1910 1911 rq = blk_peek_request(q); 1912 if (rq) 1913 blk_start_request(rq); 1914 return rq; 1915 } 1916 EXPORT_SYMBOL(blk_fetch_request); 1917 1918 /** 1919 * blk_update_request - Special helper function for request stacking drivers 1920 * @req: the request being processed 1921 * @error: %0 for success, < %0 for error 1922 * @nr_bytes: number of bytes to complete @req 1923 * 1924 * Description: 1925 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1926 * the request structure even if @req doesn't have leftover. 1927 * If @req has leftover, sets it up for the next range of segments. 1928 * 1929 * This special helper function is only for request stacking drivers 1930 * (e.g. request-based dm) so that they can handle partial completion. 1931 * Actual device drivers should use blk_end_request instead. 1932 * 1933 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1934 * %false return from this function. 1935 * 1936 * Return: 1937 * %false - this request doesn't have any more data 1938 * %true - this request has more data 1939 **/ 1940 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 1941 { 1942 int total_bytes, bio_nbytes, next_idx = 0; 1943 struct bio *bio; 1944 1945 if (!req->bio) 1946 return false; 1947 1948 trace_block_rq_complete(req->q, req); 1949 1950 /* 1951 * For fs requests, rq is just carrier of independent bio's 1952 * and each partial completion should be handled separately. 1953 * Reset per-request error on each partial completion. 1954 * 1955 * TODO: tj: This is too subtle. It would be better to let 1956 * low level drivers do what they see fit. 1957 */ 1958 if (blk_fs_request(req)) 1959 req->errors = 0; 1960 1961 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1962 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1963 req->rq_disk ? req->rq_disk->disk_name : "?", 1964 (unsigned long long)blk_rq_pos(req)); 1965 } 1966 1967 blk_account_io_completion(req, nr_bytes); 1968 1969 total_bytes = bio_nbytes = 0; 1970 while ((bio = req->bio) != NULL) { 1971 int nbytes; 1972 1973 if (nr_bytes >= bio->bi_size) { 1974 req->bio = bio->bi_next; 1975 nbytes = bio->bi_size; 1976 req_bio_endio(req, bio, nbytes, error); 1977 next_idx = 0; 1978 bio_nbytes = 0; 1979 } else { 1980 int idx = bio->bi_idx + next_idx; 1981 1982 if (unlikely(idx >= bio->bi_vcnt)) { 1983 blk_dump_rq_flags(req, "__end_that"); 1984 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1985 __func__, idx, bio->bi_vcnt); 1986 break; 1987 } 1988 1989 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1990 BIO_BUG_ON(nbytes > bio->bi_size); 1991 1992 /* 1993 * not a complete bvec done 1994 */ 1995 if (unlikely(nbytes > nr_bytes)) { 1996 bio_nbytes += nr_bytes; 1997 total_bytes += nr_bytes; 1998 break; 1999 } 2000 2001 /* 2002 * advance to the next vector 2003 */ 2004 next_idx++; 2005 bio_nbytes += nbytes; 2006 } 2007 2008 total_bytes += nbytes; 2009 nr_bytes -= nbytes; 2010 2011 bio = req->bio; 2012 if (bio) { 2013 /* 2014 * end more in this run, or just return 'not-done' 2015 */ 2016 if (unlikely(nr_bytes <= 0)) 2017 break; 2018 } 2019 } 2020 2021 /* 2022 * completely done 2023 */ 2024 if (!req->bio) { 2025 /* 2026 * Reset counters so that the request stacking driver 2027 * can find how many bytes remain in the request 2028 * later. 2029 */ 2030 req->__data_len = 0; 2031 return false; 2032 } 2033 2034 /* 2035 * if the request wasn't completed, update state 2036 */ 2037 if (bio_nbytes) { 2038 req_bio_endio(req, bio, bio_nbytes, error); 2039 bio->bi_idx += next_idx; 2040 bio_iovec(bio)->bv_offset += nr_bytes; 2041 bio_iovec(bio)->bv_len -= nr_bytes; 2042 } 2043 2044 req->__data_len -= total_bytes; 2045 req->buffer = bio_data(req->bio); 2046 2047 /* update sector only for requests with clear definition of sector */ 2048 if (blk_fs_request(req) || blk_discard_rq(req)) 2049 req->__sector += total_bytes >> 9; 2050 2051 /* mixed attributes always follow the first bio */ 2052 if (req->cmd_flags & REQ_MIXED_MERGE) { 2053 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2054 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2055 } 2056 2057 /* 2058 * If total number of sectors is less than the first segment 2059 * size, something has gone terribly wrong. 2060 */ 2061 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2062 printk(KERN_ERR "blk: request botched\n"); 2063 req->__data_len = blk_rq_cur_bytes(req); 2064 } 2065 2066 /* recalculate the number of segments */ 2067 blk_recalc_rq_segments(req); 2068 2069 return true; 2070 } 2071 EXPORT_SYMBOL_GPL(blk_update_request); 2072 2073 static bool blk_update_bidi_request(struct request *rq, int error, 2074 unsigned int nr_bytes, 2075 unsigned int bidi_bytes) 2076 { 2077 if (blk_update_request(rq, error, nr_bytes)) 2078 return true; 2079 2080 /* Bidi request must be completed as a whole */ 2081 if (unlikely(blk_bidi_rq(rq)) && 2082 blk_update_request(rq->next_rq, error, bidi_bytes)) 2083 return true; 2084 2085 add_disk_randomness(rq->rq_disk); 2086 2087 return false; 2088 } 2089 2090 /* 2091 * queue lock must be held 2092 */ 2093 static void blk_finish_request(struct request *req, int error) 2094 { 2095 if (blk_rq_tagged(req)) 2096 blk_queue_end_tag(req->q, req); 2097 2098 BUG_ON(blk_queued_rq(req)); 2099 2100 if (unlikely(laptop_mode) && blk_fs_request(req)) 2101 laptop_io_completion(); 2102 2103 blk_delete_timer(req); 2104 2105 blk_account_io_done(req); 2106 2107 if (req->end_io) 2108 req->end_io(req, error); 2109 else { 2110 if (blk_bidi_rq(req)) 2111 __blk_put_request(req->next_rq->q, req->next_rq); 2112 2113 __blk_put_request(req->q, req); 2114 } 2115 } 2116 2117 /** 2118 * blk_end_bidi_request - Complete a bidi request 2119 * @rq: the request to complete 2120 * @error: %0 for success, < %0 for error 2121 * @nr_bytes: number of bytes to complete @rq 2122 * @bidi_bytes: number of bytes to complete @rq->next_rq 2123 * 2124 * Description: 2125 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2126 * Drivers that supports bidi can safely call this member for any 2127 * type of request, bidi or uni. In the later case @bidi_bytes is 2128 * just ignored. 2129 * 2130 * Return: 2131 * %false - we are done with this request 2132 * %true - still buffers pending for this request 2133 **/ 2134 static bool blk_end_bidi_request(struct request *rq, int error, 2135 unsigned int nr_bytes, unsigned int bidi_bytes) 2136 { 2137 struct request_queue *q = rq->q; 2138 unsigned long flags; 2139 2140 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2141 return true; 2142 2143 spin_lock_irqsave(q->queue_lock, flags); 2144 blk_finish_request(rq, error); 2145 spin_unlock_irqrestore(q->queue_lock, flags); 2146 2147 return false; 2148 } 2149 2150 /** 2151 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2152 * @rq: the request to complete 2153 * @error: %0 for success, < %0 for error 2154 * @nr_bytes: number of bytes to complete @rq 2155 * @bidi_bytes: number of bytes to complete @rq->next_rq 2156 * 2157 * Description: 2158 * Identical to blk_end_bidi_request() except that queue lock is 2159 * assumed to be locked on entry and remains so on return. 2160 * 2161 * Return: 2162 * %false - we are done with this request 2163 * %true - still buffers pending for this request 2164 **/ 2165 static bool __blk_end_bidi_request(struct request *rq, int error, 2166 unsigned int nr_bytes, unsigned int bidi_bytes) 2167 { 2168 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2169 return true; 2170 2171 blk_finish_request(rq, error); 2172 2173 return false; 2174 } 2175 2176 /** 2177 * blk_end_request - Helper function for drivers to complete the request. 2178 * @rq: the request being processed 2179 * @error: %0 for success, < %0 for error 2180 * @nr_bytes: number of bytes to complete 2181 * 2182 * Description: 2183 * Ends I/O on a number of bytes attached to @rq. 2184 * If @rq has leftover, sets it up for the next range of segments. 2185 * 2186 * Return: 2187 * %false - we are done with this request 2188 * %true - still buffers pending for this request 2189 **/ 2190 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2191 { 2192 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2193 } 2194 EXPORT_SYMBOL(blk_end_request); 2195 2196 /** 2197 * blk_end_request_all - Helper function for drives to finish the request. 2198 * @rq: the request to finish 2199 * @error: %0 for success, < %0 for error 2200 * 2201 * Description: 2202 * Completely finish @rq. 2203 */ 2204 void blk_end_request_all(struct request *rq, int error) 2205 { 2206 bool pending; 2207 unsigned int bidi_bytes = 0; 2208 2209 if (unlikely(blk_bidi_rq(rq))) 2210 bidi_bytes = blk_rq_bytes(rq->next_rq); 2211 2212 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2213 BUG_ON(pending); 2214 } 2215 EXPORT_SYMBOL(blk_end_request_all); 2216 2217 /** 2218 * blk_end_request_cur - Helper function to finish the current request chunk. 2219 * @rq: the request to finish the current chunk for 2220 * @error: %0 for success, < %0 for error 2221 * 2222 * Description: 2223 * Complete the current consecutively mapped chunk from @rq. 2224 * 2225 * Return: 2226 * %false - we are done with this request 2227 * %true - still buffers pending for this request 2228 */ 2229 bool blk_end_request_cur(struct request *rq, int error) 2230 { 2231 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2232 } 2233 EXPORT_SYMBOL(blk_end_request_cur); 2234 2235 /** 2236 * blk_end_request_err - Finish a request till the next failure boundary. 2237 * @rq: the request to finish till the next failure boundary for 2238 * @error: must be negative errno 2239 * 2240 * Description: 2241 * Complete @rq till the next failure boundary. 2242 * 2243 * Return: 2244 * %false - we are done with this request 2245 * %true - still buffers pending for this request 2246 */ 2247 bool blk_end_request_err(struct request *rq, int error) 2248 { 2249 WARN_ON(error >= 0); 2250 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2251 } 2252 EXPORT_SYMBOL_GPL(blk_end_request_err); 2253 2254 /** 2255 * __blk_end_request - Helper function for drivers to complete the request. 2256 * @rq: the request being processed 2257 * @error: %0 for success, < %0 for error 2258 * @nr_bytes: number of bytes to complete 2259 * 2260 * Description: 2261 * Must be called with queue lock held unlike blk_end_request(). 2262 * 2263 * Return: 2264 * %false - we are done with this request 2265 * %true - still buffers pending for this request 2266 **/ 2267 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2268 { 2269 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2270 } 2271 EXPORT_SYMBOL(__blk_end_request); 2272 2273 /** 2274 * __blk_end_request_all - Helper function for drives to finish the request. 2275 * @rq: the request to finish 2276 * @error: %0 for success, < %0 for error 2277 * 2278 * Description: 2279 * Completely finish @rq. Must be called with queue lock held. 2280 */ 2281 void __blk_end_request_all(struct request *rq, int error) 2282 { 2283 bool pending; 2284 unsigned int bidi_bytes = 0; 2285 2286 if (unlikely(blk_bidi_rq(rq))) 2287 bidi_bytes = blk_rq_bytes(rq->next_rq); 2288 2289 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2290 BUG_ON(pending); 2291 } 2292 EXPORT_SYMBOL(__blk_end_request_all); 2293 2294 /** 2295 * __blk_end_request_cur - Helper function to finish the current request chunk. 2296 * @rq: the request to finish the current chunk for 2297 * @error: %0 for success, < %0 for error 2298 * 2299 * Description: 2300 * Complete the current consecutively mapped chunk from @rq. Must 2301 * be called with queue lock held. 2302 * 2303 * Return: 2304 * %false - we are done with this request 2305 * %true - still buffers pending for this request 2306 */ 2307 bool __blk_end_request_cur(struct request *rq, int error) 2308 { 2309 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2310 } 2311 EXPORT_SYMBOL(__blk_end_request_cur); 2312 2313 /** 2314 * __blk_end_request_err - Finish a request till the next failure boundary. 2315 * @rq: the request to finish till the next failure boundary for 2316 * @error: must be negative errno 2317 * 2318 * Description: 2319 * Complete @rq till the next failure boundary. Must be called 2320 * with queue lock held. 2321 * 2322 * Return: 2323 * %false - we are done with this request 2324 * %true - still buffers pending for this request 2325 */ 2326 bool __blk_end_request_err(struct request *rq, int error) 2327 { 2328 WARN_ON(error >= 0); 2329 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2330 } 2331 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2332 2333 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2334 struct bio *bio) 2335 { 2336 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2337 rq->cmd_flags |= bio->bi_rw & REQ_RW; 2338 2339 if (bio_has_data(bio)) { 2340 rq->nr_phys_segments = bio_phys_segments(q, bio); 2341 rq->buffer = bio_data(bio); 2342 } 2343 rq->__data_len = bio->bi_size; 2344 rq->bio = rq->biotail = bio; 2345 2346 if (bio->bi_bdev) 2347 rq->rq_disk = bio->bi_bdev->bd_disk; 2348 } 2349 2350 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2351 /** 2352 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2353 * @rq: the request to be flushed 2354 * 2355 * Description: 2356 * Flush all pages in @rq. 2357 */ 2358 void rq_flush_dcache_pages(struct request *rq) 2359 { 2360 struct req_iterator iter; 2361 struct bio_vec *bvec; 2362 2363 rq_for_each_segment(bvec, rq, iter) 2364 flush_dcache_page(bvec->bv_page); 2365 } 2366 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2367 #endif 2368 2369 /** 2370 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2371 * @q : the queue of the device being checked 2372 * 2373 * Description: 2374 * Check if underlying low-level drivers of a device are busy. 2375 * If the drivers want to export their busy state, they must set own 2376 * exporting function using blk_queue_lld_busy() first. 2377 * 2378 * Basically, this function is used only by request stacking drivers 2379 * to stop dispatching requests to underlying devices when underlying 2380 * devices are busy. This behavior helps more I/O merging on the queue 2381 * of the request stacking driver and prevents I/O throughput regression 2382 * on burst I/O load. 2383 * 2384 * Return: 2385 * 0 - Not busy (The request stacking driver should dispatch request) 2386 * 1 - Busy (The request stacking driver should stop dispatching request) 2387 */ 2388 int blk_lld_busy(struct request_queue *q) 2389 { 2390 if (q->lld_busy_fn) 2391 return q->lld_busy_fn(q); 2392 2393 return 0; 2394 } 2395 EXPORT_SYMBOL_GPL(blk_lld_busy); 2396 2397 /** 2398 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2399 * @rq: the clone request to be cleaned up 2400 * 2401 * Description: 2402 * Free all bios in @rq for a cloned request. 2403 */ 2404 void blk_rq_unprep_clone(struct request *rq) 2405 { 2406 struct bio *bio; 2407 2408 while ((bio = rq->bio) != NULL) { 2409 rq->bio = bio->bi_next; 2410 2411 bio_put(bio); 2412 } 2413 } 2414 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2415 2416 /* 2417 * Copy attributes of the original request to the clone request. 2418 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2419 */ 2420 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2421 { 2422 dst->cpu = src->cpu; 2423 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE); 2424 dst->cmd_type = src->cmd_type; 2425 dst->__sector = blk_rq_pos(src); 2426 dst->__data_len = blk_rq_bytes(src); 2427 dst->nr_phys_segments = src->nr_phys_segments; 2428 dst->ioprio = src->ioprio; 2429 dst->extra_len = src->extra_len; 2430 } 2431 2432 /** 2433 * blk_rq_prep_clone - Helper function to setup clone request 2434 * @rq: the request to be setup 2435 * @rq_src: original request to be cloned 2436 * @bs: bio_set that bios for clone are allocated from 2437 * @gfp_mask: memory allocation mask for bio 2438 * @bio_ctr: setup function to be called for each clone bio. 2439 * Returns %0 for success, non %0 for failure. 2440 * @data: private data to be passed to @bio_ctr 2441 * 2442 * Description: 2443 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2444 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2445 * are not copied, and copying such parts is the caller's responsibility. 2446 * Also, pages which the original bios are pointing to are not copied 2447 * and the cloned bios just point same pages. 2448 * So cloned bios must be completed before original bios, which means 2449 * the caller must complete @rq before @rq_src. 2450 */ 2451 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2452 struct bio_set *bs, gfp_t gfp_mask, 2453 int (*bio_ctr)(struct bio *, struct bio *, void *), 2454 void *data) 2455 { 2456 struct bio *bio, *bio_src; 2457 2458 if (!bs) 2459 bs = fs_bio_set; 2460 2461 blk_rq_init(NULL, rq); 2462 2463 __rq_for_each_bio(bio_src, rq_src) { 2464 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2465 if (!bio) 2466 goto free_and_out; 2467 2468 __bio_clone(bio, bio_src); 2469 2470 if (bio_integrity(bio_src) && 2471 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2472 goto free_and_out; 2473 2474 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2475 goto free_and_out; 2476 2477 if (rq->bio) { 2478 rq->biotail->bi_next = bio; 2479 rq->biotail = bio; 2480 } else 2481 rq->bio = rq->biotail = bio; 2482 } 2483 2484 __blk_rq_prep_clone(rq, rq_src); 2485 2486 return 0; 2487 2488 free_and_out: 2489 if (bio) 2490 bio_free(bio, bs); 2491 blk_rq_unprep_clone(rq); 2492 2493 return -ENOMEM; 2494 } 2495 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2496 2497 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2498 { 2499 return queue_work(kblockd_workqueue, work); 2500 } 2501 EXPORT_SYMBOL(kblockd_schedule_work); 2502 2503 int __init blk_dev_init(void) 2504 { 2505 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2506 sizeof(((struct request *)0)->cmd_flags)); 2507 2508 kblockd_workqueue = create_workqueue("kblockd"); 2509 if (!kblockd_workqueue) 2510 panic("Failed to create kblockd\n"); 2511 2512 request_cachep = kmem_cache_create("blkdev_requests", 2513 sizeof(struct request), 0, SLAB_PANIC, NULL); 2514 2515 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2516 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2517 2518 return 0; 2519 } 2520 2521