xref: /linux/block/blk-core.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
36 
37 #include "blk.h"
38 #include "blk-cgroup.h"
39 
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43 
44 DEFINE_IDA(blk_queue_ida);
45 
46 /*
47  * For the allocated request tables
48  */
49 static struct kmem_cache *request_cachep;
50 
51 /*
52  * For queue allocation
53  */
54 struct kmem_cache *blk_requestq_cachep;
55 
56 /*
57  * Controlling structure to kblockd
58  */
59 static struct workqueue_struct *kblockd_workqueue;
60 
61 static void drive_stat_acct(struct request *rq, int new_io)
62 {
63 	struct hd_struct *part;
64 	int rw = rq_data_dir(rq);
65 	int cpu;
66 
67 	if (!blk_do_io_stat(rq))
68 		return;
69 
70 	cpu = part_stat_lock();
71 
72 	if (!new_io) {
73 		part = rq->part;
74 		part_stat_inc(cpu, part, merges[rw]);
75 	} else {
76 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 		if (!hd_struct_try_get(part)) {
78 			/*
79 			 * The partition is already being removed,
80 			 * the request will be accounted on the disk only
81 			 *
82 			 * We take a reference on disk->part0 although that
83 			 * partition will never be deleted, so we can treat
84 			 * it as any other partition.
85 			 */
86 			part = &rq->rq_disk->part0;
87 			hd_struct_get(part);
88 		}
89 		part_round_stats(cpu, part);
90 		part_inc_in_flight(part, rw);
91 		rq->part = part;
92 	}
93 
94 	part_stat_unlock();
95 }
96 
97 void blk_queue_congestion_threshold(struct request_queue *q)
98 {
99 	int nr;
100 
101 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 	if (nr > q->nr_requests)
103 		nr = q->nr_requests;
104 	q->nr_congestion_on = nr;
105 
106 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 	if (nr < 1)
108 		nr = 1;
109 	q->nr_congestion_off = nr;
110 }
111 
112 /**
113  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114  * @bdev:	device
115  *
116  * Locates the passed device's request queue and returns the address of its
117  * backing_dev_info
118  *
119  * Will return NULL if the request queue cannot be located.
120  */
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 {
123 	struct backing_dev_info *ret = NULL;
124 	struct request_queue *q = bdev_get_queue(bdev);
125 
126 	if (q)
127 		ret = &q->backing_dev_info;
128 	return ret;
129 }
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
131 
132 void blk_rq_init(struct request_queue *q, struct request *rq)
133 {
134 	memset(rq, 0, sizeof(*rq));
135 
136 	INIT_LIST_HEAD(&rq->queuelist);
137 	INIT_LIST_HEAD(&rq->timeout_list);
138 	rq->cpu = -1;
139 	rq->q = q;
140 	rq->__sector = (sector_t) -1;
141 	INIT_HLIST_NODE(&rq->hash);
142 	RB_CLEAR_NODE(&rq->rb_node);
143 	rq->cmd = rq->__cmd;
144 	rq->cmd_len = BLK_MAX_CDB;
145 	rq->tag = -1;
146 	rq->ref_count = 1;
147 	rq->start_time = jiffies;
148 	set_start_time_ns(rq);
149 	rq->part = NULL;
150 }
151 EXPORT_SYMBOL(blk_rq_init);
152 
153 static void req_bio_endio(struct request *rq, struct bio *bio,
154 			  unsigned int nbytes, int error)
155 {
156 	if (error)
157 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 		error = -EIO;
160 
161 	if (unlikely(nbytes > bio->bi_size)) {
162 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 		       __func__, nbytes, bio->bi_size);
164 		nbytes = bio->bi_size;
165 	}
166 
167 	if (unlikely(rq->cmd_flags & REQ_QUIET))
168 		set_bit(BIO_QUIET, &bio->bi_flags);
169 
170 	bio->bi_size -= nbytes;
171 	bio->bi_sector += (nbytes >> 9);
172 
173 	if (bio_integrity(bio))
174 		bio_integrity_advance(bio, nbytes);
175 
176 	/* don't actually finish bio if it's part of flush sequence */
177 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 		bio_endio(bio, error);
179 }
180 
181 void blk_dump_rq_flags(struct request *rq, char *msg)
182 {
183 	int bit;
184 
185 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 		rq->cmd_flags);
188 
189 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
190 	       (unsigned long long)blk_rq_pos(rq),
191 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
193 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194 
195 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 		printk(KERN_INFO "  cdb: ");
197 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 			printk("%02x ", rq->cmd[bit]);
199 		printk("\n");
200 	}
201 }
202 EXPORT_SYMBOL(blk_dump_rq_flags);
203 
204 static void blk_delay_work(struct work_struct *work)
205 {
206 	struct request_queue *q;
207 
208 	q = container_of(work, struct request_queue, delay_work.work);
209 	spin_lock_irq(q->queue_lock);
210 	__blk_run_queue(q);
211 	spin_unlock_irq(q->queue_lock);
212 }
213 
214 /**
215  * blk_delay_queue - restart queueing after defined interval
216  * @q:		The &struct request_queue in question
217  * @msecs:	Delay in msecs
218  *
219  * Description:
220  *   Sometimes queueing needs to be postponed for a little while, to allow
221  *   resources to come back. This function will make sure that queueing is
222  *   restarted around the specified time.
223  */
224 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225 {
226 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 				msecs_to_jiffies(msecs));
228 }
229 EXPORT_SYMBOL(blk_delay_queue);
230 
231 /**
232  * blk_start_queue - restart a previously stopped queue
233  * @q:    The &struct request_queue in question
234  *
235  * Description:
236  *   blk_start_queue() will clear the stop flag on the queue, and call
237  *   the request_fn for the queue if it was in a stopped state when
238  *   entered. Also see blk_stop_queue(). Queue lock must be held.
239  **/
240 void blk_start_queue(struct request_queue *q)
241 {
242 	WARN_ON(!irqs_disabled());
243 
244 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 	__blk_run_queue(q);
246 }
247 EXPORT_SYMBOL(blk_start_queue);
248 
249 /**
250  * blk_stop_queue - stop a queue
251  * @q:    The &struct request_queue in question
252  *
253  * Description:
254  *   The Linux block layer assumes that a block driver will consume all
255  *   entries on the request queue when the request_fn strategy is called.
256  *   Often this will not happen, because of hardware limitations (queue
257  *   depth settings). If a device driver gets a 'queue full' response,
258  *   or if it simply chooses not to queue more I/O at one point, it can
259  *   call this function to prevent the request_fn from being called until
260  *   the driver has signalled it's ready to go again. This happens by calling
261  *   blk_start_queue() to restart queue operations. Queue lock must be held.
262  **/
263 void blk_stop_queue(struct request_queue *q)
264 {
265 	__cancel_delayed_work(&q->delay_work);
266 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
267 }
268 EXPORT_SYMBOL(blk_stop_queue);
269 
270 /**
271  * blk_sync_queue - cancel any pending callbacks on a queue
272  * @q: the queue
273  *
274  * Description:
275  *     The block layer may perform asynchronous callback activity
276  *     on a queue, such as calling the unplug function after a timeout.
277  *     A block device may call blk_sync_queue to ensure that any
278  *     such activity is cancelled, thus allowing it to release resources
279  *     that the callbacks might use. The caller must already have made sure
280  *     that its ->make_request_fn will not re-add plugging prior to calling
281  *     this function.
282  *
283  *     This function does not cancel any asynchronous activity arising
284  *     out of elevator or throttling code. That would require elevaotor_exit()
285  *     and blkcg_exit_queue() to be called with queue lock initialized.
286  *
287  */
288 void blk_sync_queue(struct request_queue *q)
289 {
290 	del_timer_sync(&q->timeout);
291 	cancel_delayed_work_sync(&q->delay_work);
292 }
293 EXPORT_SYMBOL(blk_sync_queue);
294 
295 /**
296  * __blk_run_queue - run a single device queue
297  * @q:	The queue to run
298  *
299  * Description:
300  *    See @blk_run_queue. This variant must be called with the queue lock
301  *    held and interrupts disabled.
302  */
303 void __blk_run_queue(struct request_queue *q)
304 {
305 	if (unlikely(blk_queue_stopped(q)))
306 		return;
307 
308 	q->request_fn(q);
309 }
310 EXPORT_SYMBOL(__blk_run_queue);
311 
312 /**
313  * blk_run_queue_async - run a single device queue in workqueue context
314  * @q:	The queue to run
315  *
316  * Description:
317  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318  *    of us.
319  */
320 void blk_run_queue_async(struct request_queue *q)
321 {
322 	if (likely(!blk_queue_stopped(q))) {
323 		__cancel_delayed_work(&q->delay_work);
324 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
325 	}
326 }
327 EXPORT_SYMBOL(blk_run_queue_async);
328 
329 /**
330  * blk_run_queue - run a single device queue
331  * @q: The queue to run
332  *
333  * Description:
334  *    Invoke request handling on this queue, if it has pending work to do.
335  *    May be used to restart queueing when a request has completed.
336  */
337 void blk_run_queue(struct request_queue *q)
338 {
339 	unsigned long flags;
340 
341 	spin_lock_irqsave(q->queue_lock, flags);
342 	__blk_run_queue(q);
343 	spin_unlock_irqrestore(q->queue_lock, flags);
344 }
345 EXPORT_SYMBOL(blk_run_queue);
346 
347 void blk_put_queue(struct request_queue *q)
348 {
349 	kobject_put(&q->kobj);
350 }
351 EXPORT_SYMBOL(blk_put_queue);
352 
353 /**
354  * blk_drain_queue - drain requests from request_queue
355  * @q: queue to drain
356  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
357  *
358  * Drain requests from @q.  If @drain_all is set, all requests are drained.
359  * If not, only ELVPRIV requests are drained.  The caller is responsible
360  * for ensuring that no new requests which need to be drained are queued.
361  */
362 void blk_drain_queue(struct request_queue *q, bool drain_all)
363 {
364 	int i;
365 
366 	while (true) {
367 		bool drain = false;
368 
369 		spin_lock_irq(q->queue_lock);
370 
371 		/*
372 		 * The caller might be trying to drain @q before its
373 		 * elevator is initialized.
374 		 */
375 		if (q->elevator)
376 			elv_drain_elevator(q);
377 
378 		blkcg_drain_queue(q);
379 
380 		/*
381 		 * This function might be called on a queue which failed
382 		 * driver init after queue creation or is not yet fully
383 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
384 		 * in such cases.  Kick queue iff dispatch queue has
385 		 * something on it and @q has request_fn set.
386 		 */
387 		if (!list_empty(&q->queue_head) && q->request_fn)
388 			__blk_run_queue(q);
389 
390 		drain |= q->nr_rqs_elvpriv;
391 
392 		/*
393 		 * Unfortunately, requests are queued at and tracked from
394 		 * multiple places and there's no single counter which can
395 		 * be drained.  Check all the queues and counters.
396 		 */
397 		if (drain_all) {
398 			drain |= !list_empty(&q->queue_head);
399 			for (i = 0; i < 2; i++) {
400 				drain |= q->nr_rqs[i];
401 				drain |= q->in_flight[i];
402 				drain |= !list_empty(&q->flush_queue[i]);
403 			}
404 		}
405 
406 		spin_unlock_irq(q->queue_lock);
407 
408 		if (!drain)
409 			break;
410 		msleep(10);
411 	}
412 
413 	/*
414 	 * With queue marked dead, any woken up waiter will fail the
415 	 * allocation path, so the wakeup chaining is lost and we're
416 	 * left with hung waiters. We need to wake up those waiters.
417 	 */
418 	if (q->request_fn) {
419 		struct request_list *rl;
420 
421 		spin_lock_irq(q->queue_lock);
422 
423 		blk_queue_for_each_rl(rl, q)
424 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 				wake_up_all(&rl->wait[i]);
426 
427 		spin_unlock_irq(q->queue_lock);
428 	}
429 }
430 
431 /**
432  * blk_queue_bypass_start - enter queue bypass mode
433  * @q: queue of interest
434  *
435  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
436  * function makes @q enter bypass mode and drains all requests which were
437  * throttled or issued before.  On return, it's guaranteed that no request
438  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
439  * inside queue or RCU read lock.
440  */
441 void blk_queue_bypass_start(struct request_queue *q)
442 {
443 	bool drain;
444 
445 	spin_lock_irq(q->queue_lock);
446 	drain = !q->bypass_depth++;
447 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
448 	spin_unlock_irq(q->queue_lock);
449 
450 	if (drain) {
451 		blk_drain_queue(q, false);
452 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
453 		synchronize_rcu();
454 	}
455 }
456 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457 
458 /**
459  * blk_queue_bypass_end - leave queue bypass mode
460  * @q: queue of interest
461  *
462  * Leave bypass mode and restore the normal queueing behavior.
463  */
464 void blk_queue_bypass_end(struct request_queue *q)
465 {
466 	spin_lock_irq(q->queue_lock);
467 	if (!--q->bypass_depth)
468 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
469 	WARN_ON_ONCE(q->bypass_depth < 0);
470 	spin_unlock_irq(q->queue_lock);
471 }
472 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473 
474 /**
475  * blk_cleanup_queue - shutdown a request queue
476  * @q: request queue to shutdown
477  *
478  * Mark @q DEAD, drain all pending requests, destroy and put it.  All
479  * future requests will be failed immediately with -ENODEV.
480  */
481 void blk_cleanup_queue(struct request_queue *q)
482 {
483 	spinlock_t *lock = q->queue_lock;
484 
485 	/* mark @q DEAD, no new request or merges will be allowed afterwards */
486 	mutex_lock(&q->sysfs_lock);
487 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
488 	spin_lock_irq(lock);
489 
490 	/*
491 	 * Dead queue is permanently in bypass mode till released.  Note
492 	 * that, unlike blk_queue_bypass_start(), we aren't performing
493 	 * synchronize_rcu() after entering bypass mode to avoid the delay
494 	 * as some drivers create and destroy a lot of queues while
495 	 * probing.  This is still safe because blk_release_queue() will be
496 	 * called only after the queue refcnt drops to zero and nothing,
497 	 * RCU or not, would be traversing the queue by then.
498 	 */
499 	q->bypass_depth++;
500 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
501 
502 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
503 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
504 	queue_flag_set(QUEUE_FLAG_DEAD, q);
505 	spin_unlock_irq(lock);
506 	mutex_unlock(&q->sysfs_lock);
507 
508 	/* drain all requests queued before DEAD marking */
509 	blk_drain_queue(q, true);
510 
511 	/* @q won't process any more request, flush async actions */
512 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
513 	blk_sync_queue(q);
514 
515 	spin_lock_irq(lock);
516 	if (q->queue_lock != &q->__queue_lock)
517 		q->queue_lock = &q->__queue_lock;
518 	spin_unlock_irq(lock);
519 
520 	/* @q is and will stay empty, shutdown and put */
521 	blk_put_queue(q);
522 }
523 EXPORT_SYMBOL(blk_cleanup_queue);
524 
525 int blk_init_rl(struct request_list *rl, struct request_queue *q,
526 		gfp_t gfp_mask)
527 {
528 	if (unlikely(rl->rq_pool))
529 		return 0;
530 
531 	rl->q = q;
532 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
533 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
534 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
535 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
536 
537 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
538 					  mempool_free_slab, request_cachep,
539 					  gfp_mask, q->node);
540 	if (!rl->rq_pool)
541 		return -ENOMEM;
542 
543 	return 0;
544 }
545 
546 void blk_exit_rl(struct request_list *rl)
547 {
548 	if (rl->rq_pool)
549 		mempool_destroy(rl->rq_pool);
550 }
551 
552 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
553 {
554 	return blk_alloc_queue_node(gfp_mask, -1);
555 }
556 EXPORT_SYMBOL(blk_alloc_queue);
557 
558 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
559 {
560 	struct request_queue *q;
561 	int err;
562 
563 	q = kmem_cache_alloc_node(blk_requestq_cachep,
564 				gfp_mask | __GFP_ZERO, node_id);
565 	if (!q)
566 		return NULL;
567 
568 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
569 	if (q->id < 0)
570 		goto fail_q;
571 
572 	q->backing_dev_info.ra_pages =
573 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
574 	q->backing_dev_info.state = 0;
575 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
576 	q->backing_dev_info.name = "block";
577 	q->node = node_id;
578 
579 	err = bdi_init(&q->backing_dev_info);
580 	if (err)
581 		goto fail_id;
582 
583 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
584 		    laptop_mode_timer_fn, (unsigned long) q);
585 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
586 	INIT_LIST_HEAD(&q->queue_head);
587 	INIT_LIST_HEAD(&q->timeout_list);
588 	INIT_LIST_HEAD(&q->icq_list);
589 #ifdef CONFIG_BLK_CGROUP
590 	INIT_LIST_HEAD(&q->blkg_list);
591 #endif
592 	INIT_LIST_HEAD(&q->flush_queue[0]);
593 	INIT_LIST_HEAD(&q->flush_queue[1]);
594 	INIT_LIST_HEAD(&q->flush_data_in_flight);
595 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
596 
597 	kobject_init(&q->kobj, &blk_queue_ktype);
598 
599 	mutex_init(&q->sysfs_lock);
600 	spin_lock_init(&q->__queue_lock);
601 
602 	/*
603 	 * By default initialize queue_lock to internal lock and driver can
604 	 * override it later if need be.
605 	 */
606 	q->queue_lock = &q->__queue_lock;
607 
608 	/*
609 	 * A queue starts its life with bypass turned on to avoid
610 	 * unnecessary bypass on/off overhead and nasty surprises during
611 	 * init.  The initial bypass will be finished at the end of
612 	 * blk_init_allocated_queue().
613 	 */
614 	q->bypass_depth = 1;
615 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
616 
617 	if (blkcg_init_queue(q))
618 		goto fail_id;
619 
620 	return q;
621 
622 fail_id:
623 	ida_simple_remove(&blk_queue_ida, q->id);
624 fail_q:
625 	kmem_cache_free(blk_requestq_cachep, q);
626 	return NULL;
627 }
628 EXPORT_SYMBOL(blk_alloc_queue_node);
629 
630 /**
631  * blk_init_queue  - prepare a request queue for use with a block device
632  * @rfn:  The function to be called to process requests that have been
633  *        placed on the queue.
634  * @lock: Request queue spin lock
635  *
636  * Description:
637  *    If a block device wishes to use the standard request handling procedures,
638  *    which sorts requests and coalesces adjacent requests, then it must
639  *    call blk_init_queue().  The function @rfn will be called when there
640  *    are requests on the queue that need to be processed.  If the device
641  *    supports plugging, then @rfn may not be called immediately when requests
642  *    are available on the queue, but may be called at some time later instead.
643  *    Plugged queues are generally unplugged when a buffer belonging to one
644  *    of the requests on the queue is needed, or due to memory pressure.
645  *
646  *    @rfn is not required, or even expected, to remove all requests off the
647  *    queue, but only as many as it can handle at a time.  If it does leave
648  *    requests on the queue, it is responsible for arranging that the requests
649  *    get dealt with eventually.
650  *
651  *    The queue spin lock must be held while manipulating the requests on the
652  *    request queue; this lock will be taken also from interrupt context, so irq
653  *    disabling is needed for it.
654  *
655  *    Function returns a pointer to the initialized request queue, or %NULL if
656  *    it didn't succeed.
657  *
658  * Note:
659  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
660  *    when the block device is deactivated (such as at module unload).
661  **/
662 
663 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
664 {
665 	return blk_init_queue_node(rfn, lock, -1);
666 }
667 EXPORT_SYMBOL(blk_init_queue);
668 
669 struct request_queue *
670 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
671 {
672 	struct request_queue *uninit_q, *q;
673 
674 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
675 	if (!uninit_q)
676 		return NULL;
677 
678 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
679 	if (!q)
680 		blk_cleanup_queue(uninit_q);
681 
682 	return q;
683 }
684 EXPORT_SYMBOL(blk_init_queue_node);
685 
686 struct request_queue *
687 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
688 			 spinlock_t *lock)
689 {
690 	if (!q)
691 		return NULL;
692 
693 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
694 		return NULL;
695 
696 	q->request_fn		= rfn;
697 	q->prep_rq_fn		= NULL;
698 	q->unprep_rq_fn		= NULL;
699 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
700 
701 	/* Override internal queue lock with supplied lock pointer */
702 	if (lock)
703 		q->queue_lock		= lock;
704 
705 	/*
706 	 * This also sets hw/phys segments, boundary and size
707 	 */
708 	blk_queue_make_request(q, blk_queue_bio);
709 
710 	q->sg_reserved_size = INT_MAX;
711 
712 	/* init elevator */
713 	if (elevator_init(q, NULL))
714 		return NULL;
715 
716 	blk_queue_congestion_threshold(q);
717 
718 	/* all done, end the initial bypass */
719 	blk_queue_bypass_end(q);
720 	return q;
721 }
722 EXPORT_SYMBOL(blk_init_allocated_queue);
723 
724 bool blk_get_queue(struct request_queue *q)
725 {
726 	if (likely(!blk_queue_dead(q))) {
727 		__blk_get_queue(q);
728 		return true;
729 	}
730 
731 	return false;
732 }
733 EXPORT_SYMBOL(blk_get_queue);
734 
735 static inline void blk_free_request(struct request_list *rl, struct request *rq)
736 {
737 	if (rq->cmd_flags & REQ_ELVPRIV) {
738 		elv_put_request(rl->q, rq);
739 		if (rq->elv.icq)
740 			put_io_context(rq->elv.icq->ioc);
741 	}
742 
743 	mempool_free(rq, rl->rq_pool);
744 }
745 
746 /*
747  * ioc_batching returns true if the ioc is a valid batching request and
748  * should be given priority access to a request.
749  */
750 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
751 {
752 	if (!ioc)
753 		return 0;
754 
755 	/*
756 	 * Make sure the process is able to allocate at least 1 request
757 	 * even if the batch times out, otherwise we could theoretically
758 	 * lose wakeups.
759 	 */
760 	return ioc->nr_batch_requests == q->nr_batching ||
761 		(ioc->nr_batch_requests > 0
762 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
763 }
764 
765 /*
766  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
767  * will cause the process to be a "batcher" on all queues in the system. This
768  * is the behaviour we want though - once it gets a wakeup it should be given
769  * a nice run.
770  */
771 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
772 {
773 	if (!ioc || ioc_batching(q, ioc))
774 		return;
775 
776 	ioc->nr_batch_requests = q->nr_batching;
777 	ioc->last_waited = jiffies;
778 }
779 
780 static void __freed_request(struct request_list *rl, int sync)
781 {
782 	struct request_queue *q = rl->q;
783 
784 	/*
785 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
786 	 * blkcg anyway, just use root blkcg state.
787 	 */
788 	if (rl == &q->root_rl &&
789 	    rl->count[sync] < queue_congestion_off_threshold(q))
790 		blk_clear_queue_congested(q, sync);
791 
792 	if (rl->count[sync] + 1 <= q->nr_requests) {
793 		if (waitqueue_active(&rl->wait[sync]))
794 			wake_up(&rl->wait[sync]);
795 
796 		blk_clear_rl_full(rl, sync);
797 	}
798 }
799 
800 /*
801  * A request has just been released.  Account for it, update the full and
802  * congestion status, wake up any waiters.   Called under q->queue_lock.
803  */
804 static void freed_request(struct request_list *rl, unsigned int flags)
805 {
806 	struct request_queue *q = rl->q;
807 	int sync = rw_is_sync(flags);
808 
809 	q->nr_rqs[sync]--;
810 	rl->count[sync]--;
811 	if (flags & REQ_ELVPRIV)
812 		q->nr_rqs_elvpriv--;
813 
814 	__freed_request(rl, sync);
815 
816 	if (unlikely(rl->starved[sync ^ 1]))
817 		__freed_request(rl, sync ^ 1);
818 }
819 
820 /*
821  * Determine if elevator data should be initialized when allocating the
822  * request associated with @bio.
823  */
824 static bool blk_rq_should_init_elevator(struct bio *bio)
825 {
826 	if (!bio)
827 		return true;
828 
829 	/*
830 	 * Flush requests do not use the elevator so skip initialization.
831 	 * This allows a request to share the flush and elevator data.
832 	 */
833 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
834 		return false;
835 
836 	return true;
837 }
838 
839 /**
840  * rq_ioc - determine io_context for request allocation
841  * @bio: request being allocated is for this bio (can be %NULL)
842  *
843  * Determine io_context to use for request allocation for @bio.  May return
844  * %NULL if %current->io_context doesn't exist.
845  */
846 static struct io_context *rq_ioc(struct bio *bio)
847 {
848 #ifdef CONFIG_BLK_CGROUP
849 	if (bio && bio->bi_ioc)
850 		return bio->bi_ioc;
851 #endif
852 	return current->io_context;
853 }
854 
855 /**
856  * __get_request - get a free request
857  * @rl: request list to allocate from
858  * @rw_flags: RW and SYNC flags
859  * @bio: bio to allocate request for (can be %NULL)
860  * @gfp_mask: allocation mask
861  *
862  * Get a free request from @q.  This function may fail under memory
863  * pressure or if @q is dead.
864  *
865  * Must be callled with @q->queue_lock held and,
866  * Returns %NULL on failure, with @q->queue_lock held.
867  * Returns !%NULL on success, with @q->queue_lock *not held*.
868  */
869 static struct request *__get_request(struct request_list *rl, int rw_flags,
870 				     struct bio *bio, gfp_t gfp_mask)
871 {
872 	struct request_queue *q = rl->q;
873 	struct request *rq;
874 	struct elevator_type *et = q->elevator->type;
875 	struct io_context *ioc = rq_ioc(bio);
876 	struct io_cq *icq = NULL;
877 	const bool is_sync = rw_is_sync(rw_flags) != 0;
878 	int may_queue;
879 
880 	if (unlikely(blk_queue_dead(q)))
881 		return NULL;
882 
883 	may_queue = elv_may_queue(q, rw_flags);
884 	if (may_queue == ELV_MQUEUE_NO)
885 		goto rq_starved;
886 
887 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
888 		if (rl->count[is_sync]+1 >= q->nr_requests) {
889 			/*
890 			 * The queue will fill after this allocation, so set
891 			 * it as full, and mark this process as "batching".
892 			 * This process will be allowed to complete a batch of
893 			 * requests, others will be blocked.
894 			 */
895 			if (!blk_rl_full(rl, is_sync)) {
896 				ioc_set_batching(q, ioc);
897 				blk_set_rl_full(rl, is_sync);
898 			} else {
899 				if (may_queue != ELV_MQUEUE_MUST
900 						&& !ioc_batching(q, ioc)) {
901 					/*
902 					 * The queue is full and the allocating
903 					 * process is not a "batcher", and not
904 					 * exempted by the IO scheduler
905 					 */
906 					return NULL;
907 				}
908 			}
909 		}
910 		/*
911 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
912 		 * root blkcg anyway, just use root blkcg state.
913 		 */
914 		if (rl == &q->root_rl)
915 			blk_set_queue_congested(q, is_sync);
916 	}
917 
918 	/*
919 	 * Only allow batching queuers to allocate up to 50% over the defined
920 	 * limit of requests, otherwise we could have thousands of requests
921 	 * allocated with any setting of ->nr_requests
922 	 */
923 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
924 		return NULL;
925 
926 	q->nr_rqs[is_sync]++;
927 	rl->count[is_sync]++;
928 	rl->starved[is_sync] = 0;
929 
930 	/*
931 	 * Decide whether the new request will be managed by elevator.  If
932 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
933 	 * prevent the current elevator from being destroyed until the new
934 	 * request is freed.  This guarantees icq's won't be destroyed and
935 	 * makes creating new ones safe.
936 	 *
937 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
938 	 * it will be created after releasing queue_lock.
939 	 */
940 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
941 		rw_flags |= REQ_ELVPRIV;
942 		q->nr_rqs_elvpriv++;
943 		if (et->icq_cache && ioc)
944 			icq = ioc_lookup_icq(ioc, q);
945 	}
946 
947 	if (blk_queue_io_stat(q))
948 		rw_flags |= REQ_IO_STAT;
949 	spin_unlock_irq(q->queue_lock);
950 
951 	/* allocate and init request */
952 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
953 	if (!rq)
954 		goto fail_alloc;
955 
956 	blk_rq_init(q, rq);
957 	blk_rq_set_rl(rq, rl);
958 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
959 
960 	/* init elvpriv */
961 	if (rw_flags & REQ_ELVPRIV) {
962 		if (unlikely(et->icq_cache && !icq)) {
963 			if (ioc)
964 				icq = ioc_create_icq(ioc, q, gfp_mask);
965 			if (!icq)
966 				goto fail_elvpriv;
967 		}
968 
969 		rq->elv.icq = icq;
970 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
971 			goto fail_elvpriv;
972 
973 		/* @rq->elv.icq holds io_context until @rq is freed */
974 		if (icq)
975 			get_io_context(icq->ioc);
976 	}
977 out:
978 	/*
979 	 * ioc may be NULL here, and ioc_batching will be false. That's
980 	 * OK, if the queue is under the request limit then requests need
981 	 * not count toward the nr_batch_requests limit. There will always
982 	 * be some limit enforced by BLK_BATCH_TIME.
983 	 */
984 	if (ioc_batching(q, ioc))
985 		ioc->nr_batch_requests--;
986 
987 	trace_block_getrq(q, bio, rw_flags & 1);
988 	return rq;
989 
990 fail_elvpriv:
991 	/*
992 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
993 	 * and may fail indefinitely under memory pressure and thus
994 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
995 	 * disturb iosched and blkcg but weird is bettern than dead.
996 	 */
997 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
998 			   dev_name(q->backing_dev_info.dev));
999 
1000 	rq->cmd_flags &= ~REQ_ELVPRIV;
1001 	rq->elv.icq = NULL;
1002 
1003 	spin_lock_irq(q->queue_lock);
1004 	q->nr_rqs_elvpriv--;
1005 	spin_unlock_irq(q->queue_lock);
1006 	goto out;
1007 
1008 fail_alloc:
1009 	/*
1010 	 * Allocation failed presumably due to memory. Undo anything we
1011 	 * might have messed up.
1012 	 *
1013 	 * Allocating task should really be put onto the front of the wait
1014 	 * queue, but this is pretty rare.
1015 	 */
1016 	spin_lock_irq(q->queue_lock);
1017 	freed_request(rl, rw_flags);
1018 
1019 	/*
1020 	 * in the very unlikely event that allocation failed and no
1021 	 * requests for this direction was pending, mark us starved so that
1022 	 * freeing of a request in the other direction will notice
1023 	 * us. another possible fix would be to split the rq mempool into
1024 	 * READ and WRITE
1025 	 */
1026 rq_starved:
1027 	if (unlikely(rl->count[is_sync] == 0))
1028 		rl->starved[is_sync] = 1;
1029 	return NULL;
1030 }
1031 
1032 /**
1033  * get_request - get a free request
1034  * @q: request_queue to allocate request from
1035  * @rw_flags: RW and SYNC flags
1036  * @bio: bio to allocate request for (can be %NULL)
1037  * @gfp_mask: allocation mask
1038  *
1039  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1040  * function keeps retrying under memory pressure and fails iff @q is dead.
1041  *
1042  * Must be callled with @q->queue_lock held and,
1043  * Returns %NULL on failure, with @q->queue_lock held.
1044  * Returns !%NULL on success, with @q->queue_lock *not held*.
1045  */
1046 static struct request *get_request(struct request_queue *q, int rw_flags,
1047 				   struct bio *bio, gfp_t gfp_mask)
1048 {
1049 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1050 	DEFINE_WAIT(wait);
1051 	struct request_list *rl;
1052 	struct request *rq;
1053 
1054 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1055 retry:
1056 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1057 	if (rq)
1058 		return rq;
1059 
1060 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q))) {
1061 		blk_put_rl(rl);
1062 		return NULL;
1063 	}
1064 
1065 	/* wait on @rl and retry */
1066 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1067 				  TASK_UNINTERRUPTIBLE);
1068 
1069 	trace_block_sleeprq(q, bio, rw_flags & 1);
1070 
1071 	spin_unlock_irq(q->queue_lock);
1072 	io_schedule();
1073 
1074 	/*
1075 	 * After sleeping, we become a "batching" process and will be able
1076 	 * to allocate at least one request, and up to a big batch of them
1077 	 * for a small period time.  See ioc_batching, ioc_set_batching
1078 	 */
1079 	ioc_set_batching(q, current->io_context);
1080 
1081 	spin_lock_irq(q->queue_lock);
1082 	finish_wait(&rl->wait[is_sync], &wait);
1083 
1084 	goto retry;
1085 }
1086 
1087 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1088 {
1089 	struct request *rq;
1090 
1091 	BUG_ON(rw != READ && rw != WRITE);
1092 
1093 	/* create ioc upfront */
1094 	create_io_context(gfp_mask, q->node);
1095 
1096 	spin_lock_irq(q->queue_lock);
1097 	rq = get_request(q, rw, NULL, gfp_mask);
1098 	if (!rq)
1099 		spin_unlock_irq(q->queue_lock);
1100 	/* q->queue_lock is unlocked at this point */
1101 
1102 	return rq;
1103 }
1104 EXPORT_SYMBOL(blk_get_request);
1105 
1106 /**
1107  * blk_make_request - given a bio, allocate a corresponding struct request.
1108  * @q: target request queue
1109  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1110  *        It may be a chained-bio properly constructed by block/bio layer.
1111  * @gfp_mask: gfp flags to be used for memory allocation
1112  *
1113  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1114  * type commands. Where the struct request needs to be farther initialized by
1115  * the caller. It is passed a &struct bio, which describes the memory info of
1116  * the I/O transfer.
1117  *
1118  * The caller of blk_make_request must make sure that bi_io_vec
1119  * are set to describe the memory buffers. That bio_data_dir() will return
1120  * the needed direction of the request. (And all bio's in the passed bio-chain
1121  * are properly set accordingly)
1122  *
1123  * If called under none-sleepable conditions, mapped bio buffers must not
1124  * need bouncing, by calling the appropriate masked or flagged allocator,
1125  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1126  * BUG.
1127  *
1128  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1129  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1130  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1131  * completion of a bio that hasn't been submitted yet, thus resulting in a
1132  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1133  * of bio_alloc(), as that avoids the mempool deadlock.
1134  * If possible a big IO should be split into smaller parts when allocation
1135  * fails. Partial allocation should not be an error, or you risk a live-lock.
1136  */
1137 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1138 				 gfp_t gfp_mask)
1139 {
1140 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1141 
1142 	if (unlikely(!rq))
1143 		return ERR_PTR(-ENOMEM);
1144 
1145 	for_each_bio(bio) {
1146 		struct bio *bounce_bio = bio;
1147 		int ret;
1148 
1149 		blk_queue_bounce(q, &bounce_bio);
1150 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1151 		if (unlikely(ret)) {
1152 			blk_put_request(rq);
1153 			return ERR_PTR(ret);
1154 		}
1155 	}
1156 
1157 	return rq;
1158 }
1159 EXPORT_SYMBOL(blk_make_request);
1160 
1161 /**
1162  * blk_requeue_request - put a request back on queue
1163  * @q:		request queue where request should be inserted
1164  * @rq:		request to be inserted
1165  *
1166  * Description:
1167  *    Drivers often keep queueing requests until the hardware cannot accept
1168  *    more, when that condition happens we need to put the request back
1169  *    on the queue. Must be called with queue lock held.
1170  */
1171 void blk_requeue_request(struct request_queue *q, struct request *rq)
1172 {
1173 	blk_delete_timer(rq);
1174 	blk_clear_rq_complete(rq);
1175 	trace_block_rq_requeue(q, rq);
1176 
1177 	if (blk_rq_tagged(rq))
1178 		blk_queue_end_tag(q, rq);
1179 
1180 	BUG_ON(blk_queued_rq(rq));
1181 
1182 	elv_requeue_request(q, rq);
1183 }
1184 EXPORT_SYMBOL(blk_requeue_request);
1185 
1186 static void add_acct_request(struct request_queue *q, struct request *rq,
1187 			     int where)
1188 {
1189 	drive_stat_acct(rq, 1);
1190 	__elv_add_request(q, rq, where);
1191 }
1192 
1193 static void part_round_stats_single(int cpu, struct hd_struct *part,
1194 				    unsigned long now)
1195 {
1196 	if (now == part->stamp)
1197 		return;
1198 
1199 	if (part_in_flight(part)) {
1200 		__part_stat_add(cpu, part, time_in_queue,
1201 				part_in_flight(part) * (now - part->stamp));
1202 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1203 	}
1204 	part->stamp = now;
1205 }
1206 
1207 /**
1208  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1209  * @cpu: cpu number for stats access
1210  * @part: target partition
1211  *
1212  * The average IO queue length and utilisation statistics are maintained
1213  * by observing the current state of the queue length and the amount of
1214  * time it has been in this state for.
1215  *
1216  * Normally, that accounting is done on IO completion, but that can result
1217  * in more than a second's worth of IO being accounted for within any one
1218  * second, leading to >100% utilisation.  To deal with that, we call this
1219  * function to do a round-off before returning the results when reading
1220  * /proc/diskstats.  This accounts immediately for all queue usage up to
1221  * the current jiffies and restarts the counters again.
1222  */
1223 void part_round_stats(int cpu, struct hd_struct *part)
1224 {
1225 	unsigned long now = jiffies;
1226 
1227 	if (part->partno)
1228 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1229 	part_round_stats_single(cpu, part, now);
1230 }
1231 EXPORT_SYMBOL_GPL(part_round_stats);
1232 
1233 /*
1234  * queue lock must be held
1235  */
1236 void __blk_put_request(struct request_queue *q, struct request *req)
1237 {
1238 	if (unlikely(!q))
1239 		return;
1240 	if (unlikely(--req->ref_count))
1241 		return;
1242 
1243 	elv_completed_request(q, req);
1244 
1245 	/* this is a bio leak */
1246 	WARN_ON(req->bio != NULL);
1247 
1248 	/*
1249 	 * Request may not have originated from ll_rw_blk. if not,
1250 	 * it didn't come out of our reserved rq pools
1251 	 */
1252 	if (req->cmd_flags & REQ_ALLOCED) {
1253 		unsigned int flags = req->cmd_flags;
1254 		struct request_list *rl = blk_rq_rl(req);
1255 
1256 		BUG_ON(!list_empty(&req->queuelist));
1257 		BUG_ON(!hlist_unhashed(&req->hash));
1258 
1259 		blk_free_request(rl, req);
1260 		freed_request(rl, flags);
1261 		blk_put_rl(rl);
1262 	}
1263 }
1264 EXPORT_SYMBOL_GPL(__blk_put_request);
1265 
1266 void blk_put_request(struct request *req)
1267 {
1268 	unsigned long flags;
1269 	struct request_queue *q = req->q;
1270 
1271 	spin_lock_irqsave(q->queue_lock, flags);
1272 	__blk_put_request(q, req);
1273 	spin_unlock_irqrestore(q->queue_lock, flags);
1274 }
1275 EXPORT_SYMBOL(blk_put_request);
1276 
1277 /**
1278  * blk_add_request_payload - add a payload to a request
1279  * @rq: request to update
1280  * @page: page backing the payload
1281  * @len: length of the payload.
1282  *
1283  * This allows to later add a payload to an already submitted request by
1284  * a block driver.  The driver needs to take care of freeing the payload
1285  * itself.
1286  *
1287  * Note that this is a quite horrible hack and nothing but handling of
1288  * discard requests should ever use it.
1289  */
1290 void blk_add_request_payload(struct request *rq, struct page *page,
1291 		unsigned int len)
1292 {
1293 	struct bio *bio = rq->bio;
1294 
1295 	bio->bi_io_vec->bv_page = page;
1296 	bio->bi_io_vec->bv_offset = 0;
1297 	bio->bi_io_vec->bv_len = len;
1298 
1299 	bio->bi_size = len;
1300 	bio->bi_vcnt = 1;
1301 	bio->bi_phys_segments = 1;
1302 
1303 	rq->__data_len = rq->resid_len = len;
1304 	rq->nr_phys_segments = 1;
1305 	rq->buffer = bio_data(bio);
1306 }
1307 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1308 
1309 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1310 				   struct bio *bio)
1311 {
1312 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1313 
1314 	if (!ll_back_merge_fn(q, req, bio))
1315 		return false;
1316 
1317 	trace_block_bio_backmerge(q, bio);
1318 
1319 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1320 		blk_rq_set_mixed_merge(req);
1321 
1322 	req->biotail->bi_next = bio;
1323 	req->biotail = bio;
1324 	req->__data_len += bio->bi_size;
1325 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1326 
1327 	drive_stat_acct(req, 0);
1328 	return true;
1329 }
1330 
1331 static bool bio_attempt_front_merge(struct request_queue *q,
1332 				    struct request *req, struct bio *bio)
1333 {
1334 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1335 
1336 	if (!ll_front_merge_fn(q, req, bio))
1337 		return false;
1338 
1339 	trace_block_bio_frontmerge(q, bio);
1340 
1341 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1342 		blk_rq_set_mixed_merge(req);
1343 
1344 	bio->bi_next = req->bio;
1345 	req->bio = bio;
1346 
1347 	/*
1348 	 * may not be valid. if the low level driver said
1349 	 * it didn't need a bounce buffer then it better
1350 	 * not touch req->buffer either...
1351 	 */
1352 	req->buffer = bio_data(bio);
1353 	req->__sector = bio->bi_sector;
1354 	req->__data_len += bio->bi_size;
1355 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1356 
1357 	drive_stat_acct(req, 0);
1358 	return true;
1359 }
1360 
1361 /**
1362  * attempt_plug_merge - try to merge with %current's plugged list
1363  * @q: request_queue new bio is being queued at
1364  * @bio: new bio being queued
1365  * @request_count: out parameter for number of traversed plugged requests
1366  *
1367  * Determine whether @bio being queued on @q can be merged with a request
1368  * on %current's plugged list.  Returns %true if merge was successful,
1369  * otherwise %false.
1370  *
1371  * Plugging coalesces IOs from the same issuer for the same purpose without
1372  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1373  * than scheduling, and the request, while may have elvpriv data, is not
1374  * added on the elevator at this point.  In addition, we don't have
1375  * reliable access to the elevator outside queue lock.  Only check basic
1376  * merging parameters without querying the elevator.
1377  */
1378 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1379 			       unsigned int *request_count)
1380 {
1381 	struct blk_plug *plug;
1382 	struct request *rq;
1383 	bool ret = false;
1384 
1385 	plug = current->plug;
1386 	if (!plug)
1387 		goto out;
1388 	*request_count = 0;
1389 
1390 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1391 		int el_ret;
1392 
1393 		if (rq->q == q)
1394 			(*request_count)++;
1395 
1396 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1397 			continue;
1398 
1399 		el_ret = blk_try_merge(rq, bio);
1400 		if (el_ret == ELEVATOR_BACK_MERGE) {
1401 			ret = bio_attempt_back_merge(q, rq, bio);
1402 			if (ret)
1403 				break;
1404 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1405 			ret = bio_attempt_front_merge(q, rq, bio);
1406 			if (ret)
1407 				break;
1408 		}
1409 	}
1410 out:
1411 	return ret;
1412 }
1413 
1414 void init_request_from_bio(struct request *req, struct bio *bio)
1415 {
1416 	req->cmd_type = REQ_TYPE_FS;
1417 
1418 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1419 	if (bio->bi_rw & REQ_RAHEAD)
1420 		req->cmd_flags |= REQ_FAILFAST_MASK;
1421 
1422 	req->errors = 0;
1423 	req->__sector = bio->bi_sector;
1424 	req->ioprio = bio_prio(bio);
1425 	blk_rq_bio_prep(req->q, req, bio);
1426 }
1427 
1428 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1429 {
1430 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1431 	struct blk_plug *plug;
1432 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1433 	struct request *req;
1434 	unsigned int request_count = 0;
1435 
1436 	/*
1437 	 * low level driver can indicate that it wants pages above a
1438 	 * certain limit bounced to low memory (ie for highmem, or even
1439 	 * ISA dma in theory)
1440 	 */
1441 	blk_queue_bounce(q, &bio);
1442 
1443 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1444 		spin_lock_irq(q->queue_lock);
1445 		where = ELEVATOR_INSERT_FLUSH;
1446 		goto get_rq;
1447 	}
1448 
1449 	/*
1450 	 * Check if we can merge with the plugged list before grabbing
1451 	 * any locks.
1452 	 */
1453 	if (attempt_plug_merge(q, bio, &request_count))
1454 		return;
1455 
1456 	spin_lock_irq(q->queue_lock);
1457 
1458 	el_ret = elv_merge(q, &req, bio);
1459 	if (el_ret == ELEVATOR_BACK_MERGE) {
1460 		if (bio_attempt_back_merge(q, req, bio)) {
1461 			elv_bio_merged(q, req, bio);
1462 			if (!attempt_back_merge(q, req))
1463 				elv_merged_request(q, req, el_ret);
1464 			goto out_unlock;
1465 		}
1466 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1467 		if (bio_attempt_front_merge(q, req, bio)) {
1468 			elv_bio_merged(q, req, bio);
1469 			if (!attempt_front_merge(q, req))
1470 				elv_merged_request(q, req, el_ret);
1471 			goto out_unlock;
1472 		}
1473 	}
1474 
1475 get_rq:
1476 	/*
1477 	 * This sync check and mask will be re-done in init_request_from_bio(),
1478 	 * but we need to set it earlier to expose the sync flag to the
1479 	 * rq allocator and io schedulers.
1480 	 */
1481 	rw_flags = bio_data_dir(bio);
1482 	if (sync)
1483 		rw_flags |= REQ_SYNC;
1484 
1485 	/*
1486 	 * Grab a free request. This is might sleep but can not fail.
1487 	 * Returns with the queue unlocked.
1488 	 */
1489 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1490 	if (unlikely(!req)) {
1491 		bio_endio(bio, -ENODEV);	/* @q is dead */
1492 		goto out_unlock;
1493 	}
1494 
1495 	/*
1496 	 * After dropping the lock and possibly sleeping here, our request
1497 	 * may now be mergeable after it had proven unmergeable (above).
1498 	 * We don't worry about that case for efficiency. It won't happen
1499 	 * often, and the elevators are able to handle it.
1500 	 */
1501 	init_request_from_bio(req, bio);
1502 
1503 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1504 		req->cpu = raw_smp_processor_id();
1505 
1506 	plug = current->plug;
1507 	if (plug) {
1508 		/*
1509 		 * If this is the first request added after a plug, fire
1510 		 * of a plug trace. If others have been added before, check
1511 		 * if we have multiple devices in this plug. If so, make a
1512 		 * note to sort the list before dispatch.
1513 		 */
1514 		if (list_empty(&plug->list))
1515 			trace_block_plug(q);
1516 		else {
1517 			if (!plug->should_sort) {
1518 				struct request *__rq;
1519 
1520 				__rq = list_entry_rq(plug->list.prev);
1521 				if (__rq->q != q)
1522 					plug->should_sort = 1;
1523 			}
1524 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1525 				blk_flush_plug_list(plug, false);
1526 				trace_block_plug(q);
1527 			}
1528 		}
1529 		list_add_tail(&req->queuelist, &plug->list);
1530 		drive_stat_acct(req, 1);
1531 	} else {
1532 		spin_lock_irq(q->queue_lock);
1533 		add_acct_request(q, req, where);
1534 		__blk_run_queue(q);
1535 out_unlock:
1536 		spin_unlock_irq(q->queue_lock);
1537 	}
1538 }
1539 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1540 
1541 /*
1542  * If bio->bi_dev is a partition, remap the location
1543  */
1544 static inline void blk_partition_remap(struct bio *bio)
1545 {
1546 	struct block_device *bdev = bio->bi_bdev;
1547 
1548 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1549 		struct hd_struct *p = bdev->bd_part;
1550 
1551 		bio->bi_sector += p->start_sect;
1552 		bio->bi_bdev = bdev->bd_contains;
1553 
1554 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1555 				      bdev->bd_dev,
1556 				      bio->bi_sector - p->start_sect);
1557 	}
1558 }
1559 
1560 static void handle_bad_sector(struct bio *bio)
1561 {
1562 	char b[BDEVNAME_SIZE];
1563 
1564 	printk(KERN_INFO "attempt to access beyond end of device\n");
1565 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1566 			bdevname(bio->bi_bdev, b),
1567 			bio->bi_rw,
1568 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1569 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1570 
1571 	set_bit(BIO_EOF, &bio->bi_flags);
1572 }
1573 
1574 #ifdef CONFIG_FAIL_MAKE_REQUEST
1575 
1576 static DECLARE_FAULT_ATTR(fail_make_request);
1577 
1578 static int __init setup_fail_make_request(char *str)
1579 {
1580 	return setup_fault_attr(&fail_make_request, str);
1581 }
1582 __setup("fail_make_request=", setup_fail_make_request);
1583 
1584 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1585 {
1586 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1587 }
1588 
1589 static int __init fail_make_request_debugfs(void)
1590 {
1591 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1592 						NULL, &fail_make_request);
1593 
1594 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1595 }
1596 
1597 late_initcall(fail_make_request_debugfs);
1598 
1599 #else /* CONFIG_FAIL_MAKE_REQUEST */
1600 
1601 static inline bool should_fail_request(struct hd_struct *part,
1602 					unsigned int bytes)
1603 {
1604 	return false;
1605 }
1606 
1607 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1608 
1609 /*
1610  * Check whether this bio extends beyond the end of the device.
1611  */
1612 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1613 {
1614 	sector_t maxsector;
1615 
1616 	if (!nr_sectors)
1617 		return 0;
1618 
1619 	/* Test device or partition size, when known. */
1620 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1621 	if (maxsector) {
1622 		sector_t sector = bio->bi_sector;
1623 
1624 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1625 			/*
1626 			 * This may well happen - the kernel calls bread()
1627 			 * without checking the size of the device, e.g., when
1628 			 * mounting a device.
1629 			 */
1630 			handle_bad_sector(bio);
1631 			return 1;
1632 		}
1633 	}
1634 
1635 	return 0;
1636 }
1637 
1638 static noinline_for_stack bool
1639 generic_make_request_checks(struct bio *bio)
1640 {
1641 	struct request_queue *q;
1642 	int nr_sectors = bio_sectors(bio);
1643 	int err = -EIO;
1644 	char b[BDEVNAME_SIZE];
1645 	struct hd_struct *part;
1646 
1647 	might_sleep();
1648 
1649 	if (bio_check_eod(bio, nr_sectors))
1650 		goto end_io;
1651 
1652 	q = bdev_get_queue(bio->bi_bdev);
1653 	if (unlikely(!q)) {
1654 		printk(KERN_ERR
1655 		       "generic_make_request: Trying to access "
1656 			"nonexistent block-device %s (%Lu)\n",
1657 			bdevname(bio->bi_bdev, b),
1658 			(long long) bio->bi_sector);
1659 		goto end_io;
1660 	}
1661 
1662 	if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1663 		     nr_sectors > queue_max_hw_sectors(q))) {
1664 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1665 		       bdevname(bio->bi_bdev, b),
1666 		       bio_sectors(bio),
1667 		       queue_max_hw_sectors(q));
1668 		goto end_io;
1669 	}
1670 
1671 	part = bio->bi_bdev->bd_part;
1672 	if (should_fail_request(part, bio->bi_size) ||
1673 	    should_fail_request(&part_to_disk(part)->part0,
1674 				bio->bi_size))
1675 		goto end_io;
1676 
1677 	/*
1678 	 * If this device has partitions, remap block n
1679 	 * of partition p to block n+start(p) of the disk.
1680 	 */
1681 	blk_partition_remap(bio);
1682 
1683 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1684 		goto end_io;
1685 
1686 	if (bio_check_eod(bio, nr_sectors))
1687 		goto end_io;
1688 
1689 	/*
1690 	 * Filter flush bio's early so that make_request based
1691 	 * drivers without flush support don't have to worry
1692 	 * about them.
1693 	 */
1694 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1695 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1696 		if (!nr_sectors) {
1697 			err = 0;
1698 			goto end_io;
1699 		}
1700 	}
1701 
1702 	if ((bio->bi_rw & REQ_DISCARD) &&
1703 	    (!blk_queue_discard(q) ||
1704 	     ((bio->bi_rw & REQ_SECURE) &&
1705 	      !blk_queue_secdiscard(q)))) {
1706 		err = -EOPNOTSUPP;
1707 		goto end_io;
1708 	}
1709 
1710 	/*
1711 	 * Various block parts want %current->io_context and lazy ioc
1712 	 * allocation ends up trading a lot of pain for a small amount of
1713 	 * memory.  Just allocate it upfront.  This may fail and block
1714 	 * layer knows how to live with it.
1715 	 */
1716 	create_io_context(GFP_ATOMIC, q->node);
1717 
1718 	if (blk_throtl_bio(q, bio))
1719 		return false;	/* throttled, will be resubmitted later */
1720 
1721 	trace_block_bio_queue(q, bio);
1722 	return true;
1723 
1724 end_io:
1725 	bio_endio(bio, err);
1726 	return false;
1727 }
1728 
1729 /**
1730  * generic_make_request - hand a buffer to its device driver for I/O
1731  * @bio:  The bio describing the location in memory and on the device.
1732  *
1733  * generic_make_request() is used to make I/O requests of block
1734  * devices. It is passed a &struct bio, which describes the I/O that needs
1735  * to be done.
1736  *
1737  * generic_make_request() does not return any status.  The
1738  * success/failure status of the request, along with notification of
1739  * completion, is delivered asynchronously through the bio->bi_end_io
1740  * function described (one day) else where.
1741  *
1742  * The caller of generic_make_request must make sure that bi_io_vec
1743  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1744  * set to describe the device address, and the
1745  * bi_end_io and optionally bi_private are set to describe how
1746  * completion notification should be signaled.
1747  *
1748  * generic_make_request and the drivers it calls may use bi_next if this
1749  * bio happens to be merged with someone else, and may resubmit the bio to
1750  * a lower device by calling into generic_make_request recursively, which
1751  * means the bio should NOT be touched after the call to ->make_request_fn.
1752  */
1753 void generic_make_request(struct bio *bio)
1754 {
1755 	struct bio_list bio_list_on_stack;
1756 
1757 	if (!generic_make_request_checks(bio))
1758 		return;
1759 
1760 	/*
1761 	 * We only want one ->make_request_fn to be active at a time, else
1762 	 * stack usage with stacked devices could be a problem.  So use
1763 	 * current->bio_list to keep a list of requests submited by a
1764 	 * make_request_fn function.  current->bio_list is also used as a
1765 	 * flag to say if generic_make_request is currently active in this
1766 	 * task or not.  If it is NULL, then no make_request is active.  If
1767 	 * it is non-NULL, then a make_request is active, and new requests
1768 	 * should be added at the tail
1769 	 */
1770 	if (current->bio_list) {
1771 		bio_list_add(current->bio_list, bio);
1772 		return;
1773 	}
1774 
1775 	/* following loop may be a bit non-obvious, and so deserves some
1776 	 * explanation.
1777 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1778 	 * ensure that) so we have a list with a single bio.
1779 	 * We pretend that we have just taken it off a longer list, so
1780 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1781 	 * thus initialising the bio_list of new bios to be
1782 	 * added.  ->make_request() may indeed add some more bios
1783 	 * through a recursive call to generic_make_request.  If it
1784 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1785 	 * from the top.  In this case we really did just take the bio
1786 	 * of the top of the list (no pretending) and so remove it from
1787 	 * bio_list, and call into ->make_request() again.
1788 	 */
1789 	BUG_ON(bio->bi_next);
1790 	bio_list_init(&bio_list_on_stack);
1791 	current->bio_list = &bio_list_on_stack;
1792 	do {
1793 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1794 
1795 		q->make_request_fn(q, bio);
1796 
1797 		bio = bio_list_pop(current->bio_list);
1798 	} while (bio);
1799 	current->bio_list = NULL; /* deactivate */
1800 }
1801 EXPORT_SYMBOL(generic_make_request);
1802 
1803 /**
1804  * submit_bio - submit a bio to the block device layer for I/O
1805  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1806  * @bio: The &struct bio which describes the I/O
1807  *
1808  * submit_bio() is very similar in purpose to generic_make_request(), and
1809  * uses that function to do most of the work. Both are fairly rough
1810  * interfaces; @bio must be presetup and ready for I/O.
1811  *
1812  */
1813 void submit_bio(int rw, struct bio *bio)
1814 {
1815 	int count = bio_sectors(bio);
1816 
1817 	bio->bi_rw |= rw;
1818 
1819 	/*
1820 	 * If it's a regular read/write or a barrier with data attached,
1821 	 * go through the normal accounting stuff before submission.
1822 	 */
1823 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1824 		if (rw & WRITE) {
1825 			count_vm_events(PGPGOUT, count);
1826 		} else {
1827 			task_io_account_read(bio->bi_size);
1828 			count_vm_events(PGPGIN, count);
1829 		}
1830 
1831 		if (unlikely(block_dump)) {
1832 			char b[BDEVNAME_SIZE];
1833 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1834 			current->comm, task_pid_nr(current),
1835 				(rw & WRITE) ? "WRITE" : "READ",
1836 				(unsigned long long)bio->bi_sector,
1837 				bdevname(bio->bi_bdev, b),
1838 				count);
1839 		}
1840 	}
1841 
1842 	generic_make_request(bio);
1843 }
1844 EXPORT_SYMBOL(submit_bio);
1845 
1846 /**
1847  * blk_rq_check_limits - Helper function to check a request for the queue limit
1848  * @q:  the queue
1849  * @rq: the request being checked
1850  *
1851  * Description:
1852  *    @rq may have been made based on weaker limitations of upper-level queues
1853  *    in request stacking drivers, and it may violate the limitation of @q.
1854  *    Since the block layer and the underlying device driver trust @rq
1855  *    after it is inserted to @q, it should be checked against @q before
1856  *    the insertion using this generic function.
1857  *
1858  *    This function should also be useful for request stacking drivers
1859  *    in some cases below, so export this function.
1860  *    Request stacking drivers like request-based dm may change the queue
1861  *    limits while requests are in the queue (e.g. dm's table swapping).
1862  *    Such request stacking drivers should check those requests agaist
1863  *    the new queue limits again when they dispatch those requests,
1864  *    although such checkings are also done against the old queue limits
1865  *    when submitting requests.
1866  */
1867 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1868 {
1869 	if (rq->cmd_flags & REQ_DISCARD)
1870 		return 0;
1871 
1872 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1873 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1874 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1875 		return -EIO;
1876 	}
1877 
1878 	/*
1879 	 * queue's settings related to segment counting like q->bounce_pfn
1880 	 * may differ from that of other stacking queues.
1881 	 * Recalculate it to check the request correctly on this queue's
1882 	 * limitation.
1883 	 */
1884 	blk_recalc_rq_segments(rq);
1885 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1886 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1887 		return -EIO;
1888 	}
1889 
1890 	return 0;
1891 }
1892 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1893 
1894 /**
1895  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1896  * @q:  the queue to submit the request
1897  * @rq: the request being queued
1898  */
1899 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1900 {
1901 	unsigned long flags;
1902 	int where = ELEVATOR_INSERT_BACK;
1903 
1904 	if (blk_rq_check_limits(q, rq))
1905 		return -EIO;
1906 
1907 	if (rq->rq_disk &&
1908 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1909 		return -EIO;
1910 
1911 	spin_lock_irqsave(q->queue_lock, flags);
1912 	if (unlikely(blk_queue_dead(q))) {
1913 		spin_unlock_irqrestore(q->queue_lock, flags);
1914 		return -ENODEV;
1915 	}
1916 
1917 	/*
1918 	 * Submitting request must be dequeued before calling this function
1919 	 * because it will be linked to another request_queue
1920 	 */
1921 	BUG_ON(blk_queued_rq(rq));
1922 
1923 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1924 		where = ELEVATOR_INSERT_FLUSH;
1925 
1926 	add_acct_request(q, rq, where);
1927 	if (where == ELEVATOR_INSERT_FLUSH)
1928 		__blk_run_queue(q);
1929 	spin_unlock_irqrestore(q->queue_lock, flags);
1930 
1931 	return 0;
1932 }
1933 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1934 
1935 /**
1936  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1937  * @rq: request to examine
1938  *
1939  * Description:
1940  *     A request could be merge of IOs which require different failure
1941  *     handling.  This function determines the number of bytes which
1942  *     can be failed from the beginning of the request without
1943  *     crossing into area which need to be retried further.
1944  *
1945  * Return:
1946  *     The number of bytes to fail.
1947  *
1948  * Context:
1949  *     queue_lock must be held.
1950  */
1951 unsigned int blk_rq_err_bytes(const struct request *rq)
1952 {
1953 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1954 	unsigned int bytes = 0;
1955 	struct bio *bio;
1956 
1957 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1958 		return blk_rq_bytes(rq);
1959 
1960 	/*
1961 	 * Currently the only 'mixing' which can happen is between
1962 	 * different fastfail types.  We can safely fail portions
1963 	 * which have all the failfast bits that the first one has -
1964 	 * the ones which are at least as eager to fail as the first
1965 	 * one.
1966 	 */
1967 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1968 		if ((bio->bi_rw & ff) != ff)
1969 			break;
1970 		bytes += bio->bi_size;
1971 	}
1972 
1973 	/* this could lead to infinite loop */
1974 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1975 	return bytes;
1976 }
1977 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1978 
1979 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1980 {
1981 	if (blk_do_io_stat(req)) {
1982 		const int rw = rq_data_dir(req);
1983 		struct hd_struct *part;
1984 		int cpu;
1985 
1986 		cpu = part_stat_lock();
1987 		part = req->part;
1988 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1989 		part_stat_unlock();
1990 	}
1991 }
1992 
1993 static void blk_account_io_done(struct request *req)
1994 {
1995 	/*
1996 	 * Account IO completion.  flush_rq isn't accounted as a
1997 	 * normal IO on queueing nor completion.  Accounting the
1998 	 * containing request is enough.
1999 	 */
2000 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2001 		unsigned long duration = jiffies - req->start_time;
2002 		const int rw = rq_data_dir(req);
2003 		struct hd_struct *part;
2004 		int cpu;
2005 
2006 		cpu = part_stat_lock();
2007 		part = req->part;
2008 
2009 		part_stat_inc(cpu, part, ios[rw]);
2010 		part_stat_add(cpu, part, ticks[rw], duration);
2011 		part_round_stats(cpu, part);
2012 		part_dec_in_flight(part, rw);
2013 
2014 		hd_struct_put(part);
2015 		part_stat_unlock();
2016 	}
2017 }
2018 
2019 /**
2020  * blk_peek_request - peek at the top of a request queue
2021  * @q: request queue to peek at
2022  *
2023  * Description:
2024  *     Return the request at the top of @q.  The returned request
2025  *     should be started using blk_start_request() before LLD starts
2026  *     processing it.
2027  *
2028  * Return:
2029  *     Pointer to the request at the top of @q if available.  Null
2030  *     otherwise.
2031  *
2032  * Context:
2033  *     queue_lock must be held.
2034  */
2035 struct request *blk_peek_request(struct request_queue *q)
2036 {
2037 	struct request *rq;
2038 	int ret;
2039 
2040 	while ((rq = __elv_next_request(q)) != NULL) {
2041 		if (!(rq->cmd_flags & REQ_STARTED)) {
2042 			/*
2043 			 * This is the first time the device driver
2044 			 * sees this request (possibly after
2045 			 * requeueing).  Notify IO scheduler.
2046 			 */
2047 			if (rq->cmd_flags & REQ_SORTED)
2048 				elv_activate_rq(q, rq);
2049 
2050 			/*
2051 			 * just mark as started even if we don't start
2052 			 * it, a request that has been delayed should
2053 			 * not be passed by new incoming requests
2054 			 */
2055 			rq->cmd_flags |= REQ_STARTED;
2056 			trace_block_rq_issue(q, rq);
2057 		}
2058 
2059 		if (!q->boundary_rq || q->boundary_rq == rq) {
2060 			q->end_sector = rq_end_sector(rq);
2061 			q->boundary_rq = NULL;
2062 		}
2063 
2064 		if (rq->cmd_flags & REQ_DONTPREP)
2065 			break;
2066 
2067 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2068 			/*
2069 			 * make sure space for the drain appears we
2070 			 * know we can do this because max_hw_segments
2071 			 * has been adjusted to be one fewer than the
2072 			 * device can handle
2073 			 */
2074 			rq->nr_phys_segments++;
2075 		}
2076 
2077 		if (!q->prep_rq_fn)
2078 			break;
2079 
2080 		ret = q->prep_rq_fn(q, rq);
2081 		if (ret == BLKPREP_OK) {
2082 			break;
2083 		} else if (ret == BLKPREP_DEFER) {
2084 			/*
2085 			 * the request may have been (partially) prepped.
2086 			 * we need to keep this request in the front to
2087 			 * avoid resource deadlock.  REQ_STARTED will
2088 			 * prevent other fs requests from passing this one.
2089 			 */
2090 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2091 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2092 				/*
2093 				 * remove the space for the drain we added
2094 				 * so that we don't add it again
2095 				 */
2096 				--rq->nr_phys_segments;
2097 			}
2098 
2099 			rq = NULL;
2100 			break;
2101 		} else if (ret == BLKPREP_KILL) {
2102 			rq->cmd_flags |= REQ_QUIET;
2103 			/*
2104 			 * Mark this request as started so we don't trigger
2105 			 * any debug logic in the end I/O path.
2106 			 */
2107 			blk_start_request(rq);
2108 			__blk_end_request_all(rq, -EIO);
2109 		} else {
2110 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2111 			break;
2112 		}
2113 	}
2114 
2115 	return rq;
2116 }
2117 EXPORT_SYMBOL(blk_peek_request);
2118 
2119 void blk_dequeue_request(struct request *rq)
2120 {
2121 	struct request_queue *q = rq->q;
2122 
2123 	BUG_ON(list_empty(&rq->queuelist));
2124 	BUG_ON(ELV_ON_HASH(rq));
2125 
2126 	list_del_init(&rq->queuelist);
2127 
2128 	/*
2129 	 * the time frame between a request being removed from the lists
2130 	 * and to it is freed is accounted as io that is in progress at
2131 	 * the driver side.
2132 	 */
2133 	if (blk_account_rq(rq)) {
2134 		q->in_flight[rq_is_sync(rq)]++;
2135 		set_io_start_time_ns(rq);
2136 	}
2137 }
2138 
2139 /**
2140  * blk_start_request - start request processing on the driver
2141  * @req: request to dequeue
2142  *
2143  * Description:
2144  *     Dequeue @req and start timeout timer on it.  This hands off the
2145  *     request to the driver.
2146  *
2147  *     Block internal functions which don't want to start timer should
2148  *     call blk_dequeue_request().
2149  *
2150  * Context:
2151  *     queue_lock must be held.
2152  */
2153 void blk_start_request(struct request *req)
2154 {
2155 	blk_dequeue_request(req);
2156 
2157 	/*
2158 	 * We are now handing the request to the hardware, initialize
2159 	 * resid_len to full count and add the timeout handler.
2160 	 */
2161 	req->resid_len = blk_rq_bytes(req);
2162 	if (unlikely(blk_bidi_rq(req)))
2163 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2164 
2165 	blk_add_timer(req);
2166 }
2167 EXPORT_SYMBOL(blk_start_request);
2168 
2169 /**
2170  * blk_fetch_request - fetch a request from a request queue
2171  * @q: request queue to fetch a request from
2172  *
2173  * Description:
2174  *     Return the request at the top of @q.  The request is started on
2175  *     return and LLD can start processing it immediately.
2176  *
2177  * Return:
2178  *     Pointer to the request at the top of @q if available.  Null
2179  *     otherwise.
2180  *
2181  * Context:
2182  *     queue_lock must be held.
2183  */
2184 struct request *blk_fetch_request(struct request_queue *q)
2185 {
2186 	struct request *rq;
2187 
2188 	rq = blk_peek_request(q);
2189 	if (rq)
2190 		blk_start_request(rq);
2191 	return rq;
2192 }
2193 EXPORT_SYMBOL(blk_fetch_request);
2194 
2195 /**
2196  * blk_update_request - Special helper function for request stacking drivers
2197  * @req:      the request being processed
2198  * @error:    %0 for success, < %0 for error
2199  * @nr_bytes: number of bytes to complete @req
2200  *
2201  * Description:
2202  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2203  *     the request structure even if @req doesn't have leftover.
2204  *     If @req has leftover, sets it up for the next range of segments.
2205  *
2206  *     This special helper function is only for request stacking drivers
2207  *     (e.g. request-based dm) so that they can handle partial completion.
2208  *     Actual device drivers should use blk_end_request instead.
2209  *
2210  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2211  *     %false return from this function.
2212  *
2213  * Return:
2214  *     %false - this request doesn't have any more data
2215  *     %true  - this request has more data
2216  **/
2217 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2218 {
2219 	int total_bytes, bio_nbytes, next_idx = 0;
2220 	struct bio *bio;
2221 
2222 	if (!req->bio)
2223 		return false;
2224 
2225 	trace_block_rq_complete(req->q, req);
2226 
2227 	/*
2228 	 * For fs requests, rq is just carrier of independent bio's
2229 	 * and each partial completion should be handled separately.
2230 	 * Reset per-request error on each partial completion.
2231 	 *
2232 	 * TODO: tj: This is too subtle.  It would be better to let
2233 	 * low level drivers do what they see fit.
2234 	 */
2235 	if (req->cmd_type == REQ_TYPE_FS)
2236 		req->errors = 0;
2237 
2238 	if (error && req->cmd_type == REQ_TYPE_FS &&
2239 	    !(req->cmd_flags & REQ_QUIET)) {
2240 		char *error_type;
2241 
2242 		switch (error) {
2243 		case -ENOLINK:
2244 			error_type = "recoverable transport";
2245 			break;
2246 		case -EREMOTEIO:
2247 			error_type = "critical target";
2248 			break;
2249 		case -EBADE:
2250 			error_type = "critical nexus";
2251 			break;
2252 		case -EIO:
2253 		default:
2254 			error_type = "I/O";
2255 			break;
2256 		}
2257 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2258 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2259 		       (unsigned long long)blk_rq_pos(req));
2260 	}
2261 
2262 	blk_account_io_completion(req, nr_bytes);
2263 
2264 	total_bytes = bio_nbytes = 0;
2265 	while ((bio = req->bio) != NULL) {
2266 		int nbytes;
2267 
2268 		if (nr_bytes >= bio->bi_size) {
2269 			req->bio = bio->bi_next;
2270 			nbytes = bio->bi_size;
2271 			req_bio_endio(req, bio, nbytes, error);
2272 			next_idx = 0;
2273 			bio_nbytes = 0;
2274 		} else {
2275 			int idx = bio->bi_idx + next_idx;
2276 
2277 			if (unlikely(idx >= bio->bi_vcnt)) {
2278 				blk_dump_rq_flags(req, "__end_that");
2279 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2280 				       __func__, idx, bio->bi_vcnt);
2281 				break;
2282 			}
2283 
2284 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2285 			BIO_BUG_ON(nbytes > bio->bi_size);
2286 
2287 			/*
2288 			 * not a complete bvec done
2289 			 */
2290 			if (unlikely(nbytes > nr_bytes)) {
2291 				bio_nbytes += nr_bytes;
2292 				total_bytes += nr_bytes;
2293 				break;
2294 			}
2295 
2296 			/*
2297 			 * advance to the next vector
2298 			 */
2299 			next_idx++;
2300 			bio_nbytes += nbytes;
2301 		}
2302 
2303 		total_bytes += nbytes;
2304 		nr_bytes -= nbytes;
2305 
2306 		bio = req->bio;
2307 		if (bio) {
2308 			/*
2309 			 * end more in this run, or just return 'not-done'
2310 			 */
2311 			if (unlikely(nr_bytes <= 0))
2312 				break;
2313 		}
2314 	}
2315 
2316 	/*
2317 	 * completely done
2318 	 */
2319 	if (!req->bio) {
2320 		/*
2321 		 * Reset counters so that the request stacking driver
2322 		 * can find how many bytes remain in the request
2323 		 * later.
2324 		 */
2325 		req->__data_len = 0;
2326 		return false;
2327 	}
2328 
2329 	/*
2330 	 * if the request wasn't completed, update state
2331 	 */
2332 	if (bio_nbytes) {
2333 		req_bio_endio(req, bio, bio_nbytes, error);
2334 		bio->bi_idx += next_idx;
2335 		bio_iovec(bio)->bv_offset += nr_bytes;
2336 		bio_iovec(bio)->bv_len -= nr_bytes;
2337 	}
2338 
2339 	req->__data_len -= total_bytes;
2340 	req->buffer = bio_data(req->bio);
2341 
2342 	/* update sector only for requests with clear definition of sector */
2343 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2344 		req->__sector += total_bytes >> 9;
2345 
2346 	/* mixed attributes always follow the first bio */
2347 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2348 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2349 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2350 	}
2351 
2352 	/*
2353 	 * If total number of sectors is less than the first segment
2354 	 * size, something has gone terribly wrong.
2355 	 */
2356 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2357 		blk_dump_rq_flags(req, "request botched");
2358 		req->__data_len = blk_rq_cur_bytes(req);
2359 	}
2360 
2361 	/* recalculate the number of segments */
2362 	blk_recalc_rq_segments(req);
2363 
2364 	return true;
2365 }
2366 EXPORT_SYMBOL_GPL(blk_update_request);
2367 
2368 static bool blk_update_bidi_request(struct request *rq, int error,
2369 				    unsigned int nr_bytes,
2370 				    unsigned int bidi_bytes)
2371 {
2372 	if (blk_update_request(rq, error, nr_bytes))
2373 		return true;
2374 
2375 	/* Bidi request must be completed as a whole */
2376 	if (unlikely(blk_bidi_rq(rq)) &&
2377 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2378 		return true;
2379 
2380 	if (blk_queue_add_random(rq->q))
2381 		add_disk_randomness(rq->rq_disk);
2382 
2383 	return false;
2384 }
2385 
2386 /**
2387  * blk_unprep_request - unprepare a request
2388  * @req:	the request
2389  *
2390  * This function makes a request ready for complete resubmission (or
2391  * completion).  It happens only after all error handling is complete,
2392  * so represents the appropriate moment to deallocate any resources
2393  * that were allocated to the request in the prep_rq_fn.  The queue
2394  * lock is held when calling this.
2395  */
2396 void blk_unprep_request(struct request *req)
2397 {
2398 	struct request_queue *q = req->q;
2399 
2400 	req->cmd_flags &= ~REQ_DONTPREP;
2401 	if (q->unprep_rq_fn)
2402 		q->unprep_rq_fn(q, req);
2403 }
2404 EXPORT_SYMBOL_GPL(blk_unprep_request);
2405 
2406 /*
2407  * queue lock must be held
2408  */
2409 static void blk_finish_request(struct request *req, int error)
2410 {
2411 	if (blk_rq_tagged(req))
2412 		blk_queue_end_tag(req->q, req);
2413 
2414 	BUG_ON(blk_queued_rq(req));
2415 
2416 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2417 		laptop_io_completion(&req->q->backing_dev_info);
2418 
2419 	blk_delete_timer(req);
2420 
2421 	if (req->cmd_flags & REQ_DONTPREP)
2422 		blk_unprep_request(req);
2423 
2424 
2425 	blk_account_io_done(req);
2426 
2427 	if (req->end_io)
2428 		req->end_io(req, error);
2429 	else {
2430 		if (blk_bidi_rq(req))
2431 			__blk_put_request(req->next_rq->q, req->next_rq);
2432 
2433 		__blk_put_request(req->q, req);
2434 	}
2435 }
2436 
2437 /**
2438  * blk_end_bidi_request - Complete a bidi request
2439  * @rq:         the request to complete
2440  * @error:      %0 for success, < %0 for error
2441  * @nr_bytes:   number of bytes to complete @rq
2442  * @bidi_bytes: number of bytes to complete @rq->next_rq
2443  *
2444  * Description:
2445  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2446  *     Drivers that supports bidi can safely call this member for any
2447  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2448  *     just ignored.
2449  *
2450  * Return:
2451  *     %false - we are done with this request
2452  *     %true  - still buffers pending for this request
2453  **/
2454 static bool blk_end_bidi_request(struct request *rq, int error,
2455 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2456 {
2457 	struct request_queue *q = rq->q;
2458 	unsigned long flags;
2459 
2460 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2461 		return true;
2462 
2463 	spin_lock_irqsave(q->queue_lock, flags);
2464 	blk_finish_request(rq, error);
2465 	spin_unlock_irqrestore(q->queue_lock, flags);
2466 
2467 	return false;
2468 }
2469 
2470 /**
2471  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2472  * @rq:         the request to complete
2473  * @error:      %0 for success, < %0 for error
2474  * @nr_bytes:   number of bytes to complete @rq
2475  * @bidi_bytes: number of bytes to complete @rq->next_rq
2476  *
2477  * Description:
2478  *     Identical to blk_end_bidi_request() except that queue lock is
2479  *     assumed to be locked on entry and remains so on return.
2480  *
2481  * Return:
2482  *     %false - we are done with this request
2483  *     %true  - still buffers pending for this request
2484  **/
2485 bool __blk_end_bidi_request(struct request *rq, int error,
2486 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2487 {
2488 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2489 		return true;
2490 
2491 	blk_finish_request(rq, error);
2492 
2493 	return false;
2494 }
2495 
2496 /**
2497  * blk_end_request - Helper function for drivers to complete the request.
2498  * @rq:       the request being processed
2499  * @error:    %0 for success, < %0 for error
2500  * @nr_bytes: number of bytes to complete
2501  *
2502  * Description:
2503  *     Ends I/O on a number of bytes attached to @rq.
2504  *     If @rq has leftover, sets it up for the next range of segments.
2505  *
2506  * Return:
2507  *     %false - we are done with this request
2508  *     %true  - still buffers pending for this request
2509  **/
2510 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2511 {
2512 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2513 }
2514 EXPORT_SYMBOL(blk_end_request);
2515 
2516 /**
2517  * blk_end_request_all - Helper function for drives to finish the request.
2518  * @rq: the request to finish
2519  * @error: %0 for success, < %0 for error
2520  *
2521  * Description:
2522  *     Completely finish @rq.
2523  */
2524 void blk_end_request_all(struct request *rq, int error)
2525 {
2526 	bool pending;
2527 	unsigned int bidi_bytes = 0;
2528 
2529 	if (unlikely(blk_bidi_rq(rq)))
2530 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2531 
2532 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2533 	BUG_ON(pending);
2534 }
2535 EXPORT_SYMBOL(blk_end_request_all);
2536 
2537 /**
2538  * blk_end_request_cur - Helper function to finish the current request chunk.
2539  * @rq: the request to finish the current chunk for
2540  * @error: %0 for success, < %0 for error
2541  *
2542  * Description:
2543  *     Complete the current consecutively mapped chunk from @rq.
2544  *
2545  * Return:
2546  *     %false - we are done with this request
2547  *     %true  - still buffers pending for this request
2548  */
2549 bool blk_end_request_cur(struct request *rq, int error)
2550 {
2551 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2552 }
2553 EXPORT_SYMBOL(blk_end_request_cur);
2554 
2555 /**
2556  * blk_end_request_err - Finish a request till the next failure boundary.
2557  * @rq: the request to finish till the next failure boundary for
2558  * @error: must be negative errno
2559  *
2560  * Description:
2561  *     Complete @rq till the next failure boundary.
2562  *
2563  * Return:
2564  *     %false - we are done with this request
2565  *     %true  - still buffers pending for this request
2566  */
2567 bool blk_end_request_err(struct request *rq, int error)
2568 {
2569 	WARN_ON(error >= 0);
2570 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2571 }
2572 EXPORT_SYMBOL_GPL(blk_end_request_err);
2573 
2574 /**
2575  * __blk_end_request - Helper function for drivers to complete the request.
2576  * @rq:       the request being processed
2577  * @error:    %0 for success, < %0 for error
2578  * @nr_bytes: number of bytes to complete
2579  *
2580  * Description:
2581  *     Must be called with queue lock held unlike blk_end_request().
2582  *
2583  * Return:
2584  *     %false - we are done with this request
2585  *     %true  - still buffers pending for this request
2586  **/
2587 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2588 {
2589 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2590 }
2591 EXPORT_SYMBOL(__blk_end_request);
2592 
2593 /**
2594  * __blk_end_request_all - Helper function for drives to finish the request.
2595  * @rq: the request to finish
2596  * @error: %0 for success, < %0 for error
2597  *
2598  * Description:
2599  *     Completely finish @rq.  Must be called with queue lock held.
2600  */
2601 void __blk_end_request_all(struct request *rq, int error)
2602 {
2603 	bool pending;
2604 	unsigned int bidi_bytes = 0;
2605 
2606 	if (unlikely(blk_bidi_rq(rq)))
2607 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2608 
2609 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2610 	BUG_ON(pending);
2611 }
2612 EXPORT_SYMBOL(__blk_end_request_all);
2613 
2614 /**
2615  * __blk_end_request_cur - Helper function to finish the current request chunk.
2616  * @rq: the request to finish the current chunk for
2617  * @error: %0 for success, < %0 for error
2618  *
2619  * Description:
2620  *     Complete the current consecutively mapped chunk from @rq.  Must
2621  *     be called with queue lock held.
2622  *
2623  * Return:
2624  *     %false - we are done with this request
2625  *     %true  - still buffers pending for this request
2626  */
2627 bool __blk_end_request_cur(struct request *rq, int error)
2628 {
2629 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2630 }
2631 EXPORT_SYMBOL(__blk_end_request_cur);
2632 
2633 /**
2634  * __blk_end_request_err - Finish a request till the next failure boundary.
2635  * @rq: the request to finish till the next failure boundary for
2636  * @error: must be negative errno
2637  *
2638  * Description:
2639  *     Complete @rq till the next failure boundary.  Must be called
2640  *     with queue lock held.
2641  *
2642  * Return:
2643  *     %false - we are done with this request
2644  *     %true  - still buffers pending for this request
2645  */
2646 bool __blk_end_request_err(struct request *rq, int error)
2647 {
2648 	WARN_ON(error >= 0);
2649 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2650 }
2651 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2652 
2653 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2654 		     struct bio *bio)
2655 {
2656 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2657 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2658 
2659 	if (bio_has_data(bio)) {
2660 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2661 		rq->buffer = bio_data(bio);
2662 	}
2663 	rq->__data_len = bio->bi_size;
2664 	rq->bio = rq->biotail = bio;
2665 
2666 	if (bio->bi_bdev)
2667 		rq->rq_disk = bio->bi_bdev->bd_disk;
2668 }
2669 
2670 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2671 /**
2672  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2673  * @rq: the request to be flushed
2674  *
2675  * Description:
2676  *     Flush all pages in @rq.
2677  */
2678 void rq_flush_dcache_pages(struct request *rq)
2679 {
2680 	struct req_iterator iter;
2681 	struct bio_vec *bvec;
2682 
2683 	rq_for_each_segment(bvec, rq, iter)
2684 		flush_dcache_page(bvec->bv_page);
2685 }
2686 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2687 #endif
2688 
2689 /**
2690  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2691  * @q : the queue of the device being checked
2692  *
2693  * Description:
2694  *    Check if underlying low-level drivers of a device are busy.
2695  *    If the drivers want to export their busy state, they must set own
2696  *    exporting function using blk_queue_lld_busy() first.
2697  *
2698  *    Basically, this function is used only by request stacking drivers
2699  *    to stop dispatching requests to underlying devices when underlying
2700  *    devices are busy.  This behavior helps more I/O merging on the queue
2701  *    of the request stacking driver and prevents I/O throughput regression
2702  *    on burst I/O load.
2703  *
2704  * Return:
2705  *    0 - Not busy (The request stacking driver should dispatch request)
2706  *    1 - Busy (The request stacking driver should stop dispatching request)
2707  */
2708 int blk_lld_busy(struct request_queue *q)
2709 {
2710 	if (q->lld_busy_fn)
2711 		return q->lld_busy_fn(q);
2712 
2713 	return 0;
2714 }
2715 EXPORT_SYMBOL_GPL(blk_lld_busy);
2716 
2717 /**
2718  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2719  * @rq: the clone request to be cleaned up
2720  *
2721  * Description:
2722  *     Free all bios in @rq for a cloned request.
2723  */
2724 void blk_rq_unprep_clone(struct request *rq)
2725 {
2726 	struct bio *bio;
2727 
2728 	while ((bio = rq->bio) != NULL) {
2729 		rq->bio = bio->bi_next;
2730 
2731 		bio_put(bio);
2732 	}
2733 }
2734 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2735 
2736 /*
2737  * Copy attributes of the original request to the clone request.
2738  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2739  */
2740 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2741 {
2742 	dst->cpu = src->cpu;
2743 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2744 	dst->cmd_type = src->cmd_type;
2745 	dst->__sector = blk_rq_pos(src);
2746 	dst->__data_len = blk_rq_bytes(src);
2747 	dst->nr_phys_segments = src->nr_phys_segments;
2748 	dst->ioprio = src->ioprio;
2749 	dst->extra_len = src->extra_len;
2750 }
2751 
2752 /**
2753  * blk_rq_prep_clone - Helper function to setup clone request
2754  * @rq: the request to be setup
2755  * @rq_src: original request to be cloned
2756  * @bs: bio_set that bios for clone are allocated from
2757  * @gfp_mask: memory allocation mask for bio
2758  * @bio_ctr: setup function to be called for each clone bio.
2759  *           Returns %0 for success, non %0 for failure.
2760  * @data: private data to be passed to @bio_ctr
2761  *
2762  * Description:
2763  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2764  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2765  *     are not copied, and copying such parts is the caller's responsibility.
2766  *     Also, pages which the original bios are pointing to are not copied
2767  *     and the cloned bios just point same pages.
2768  *     So cloned bios must be completed before original bios, which means
2769  *     the caller must complete @rq before @rq_src.
2770  */
2771 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2772 		      struct bio_set *bs, gfp_t gfp_mask,
2773 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2774 		      void *data)
2775 {
2776 	struct bio *bio, *bio_src;
2777 
2778 	if (!bs)
2779 		bs = fs_bio_set;
2780 
2781 	blk_rq_init(NULL, rq);
2782 
2783 	__rq_for_each_bio(bio_src, rq_src) {
2784 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2785 		if (!bio)
2786 			goto free_and_out;
2787 
2788 		__bio_clone(bio, bio_src);
2789 
2790 		if (bio_integrity(bio_src) &&
2791 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2792 			goto free_and_out;
2793 
2794 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2795 			goto free_and_out;
2796 
2797 		if (rq->bio) {
2798 			rq->biotail->bi_next = bio;
2799 			rq->biotail = bio;
2800 		} else
2801 			rq->bio = rq->biotail = bio;
2802 	}
2803 
2804 	__blk_rq_prep_clone(rq, rq_src);
2805 
2806 	return 0;
2807 
2808 free_and_out:
2809 	if (bio)
2810 		bio_free(bio, bs);
2811 	blk_rq_unprep_clone(rq);
2812 
2813 	return -ENOMEM;
2814 }
2815 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2816 
2817 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2818 {
2819 	return queue_work(kblockd_workqueue, work);
2820 }
2821 EXPORT_SYMBOL(kblockd_schedule_work);
2822 
2823 int kblockd_schedule_delayed_work(struct request_queue *q,
2824 			struct delayed_work *dwork, unsigned long delay)
2825 {
2826 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2827 }
2828 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2829 
2830 #define PLUG_MAGIC	0x91827364
2831 
2832 /**
2833  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2834  * @plug:	The &struct blk_plug that needs to be initialized
2835  *
2836  * Description:
2837  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2838  *   pending I/O should the task end up blocking between blk_start_plug() and
2839  *   blk_finish_plug(). This is important from a performance perspective, but
2840  *   also ensures that we don't deadlock. For instance, if the task is blocking
2841  *   for a memory allocation, memory reclaim could end up wanting to free a
2842  *   page belonging to that request that is currently residing in our private
2843  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2844  *   this kind of deadlock.
2845  */
2846 void blk_start_plug(struct blk_plug *plug)
2847 {
2848 	struct task_struct *tsk = current;
2849 
2850 	plug->magic = PLUG_MAGIC;
2851 	INIT_LIST_HEAD(&plug->list);
2852 	INIT_LIST_HEAD(&plug->cb_list);
2853 	plug->should_sort = 0;
2854 
2855 	/*
2856 	 * If this is a nested plug, don't actually assign it. It will be
2857 	 * flushed on its own.
2858 	 */
2859 	if (!tsk->plug) {
2860 		/*
2861 		 * Store ordering should not be needed here, since a potential
2862 		 * preempt will imply a full memory barrier
2863 		 */
2864 		tsk->plug = plug;
2865 	}
2866 }
2867 EXPORT_SYMBOL(blk_start_plug);
2868 
2869 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2870 {
2871 	struct request *rqa = container_of(a, struct request, queuelist);
2872 	struct request *rqb = container_of(b, struct request, queuelist);
2873 
2874 	return !(rqa->q <= rqb->q);
2875 }
2876 
2877 /*
2878  * If 'from_schedule' is true, then postpone the dispatch of requests
2879  * until a safe kblockd context. We due this to avoid accidental big
2880  * additional stack usage in driver dispatch, in places where the originally
2881  * plugger did not intend it.
2882  */
2883 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2884 			    bool from_schedule)
2885 	__releases(q->queue_lock)
2886 {
2887 	trace_block_unplug(q, depth, !from_schedule);
2888 
2889 	/*
2890 	 * Don't mess with dead queue.
2891 	 */
2892 	if (unlikely(blk_queue_dead(q))) {
2893 		spin_unlock(q->queue_lock);
2894 		return;
2895 	}
2896 
2897 	/*
2898 	 * If we are punting this to kblockd, then we can safely drop
2899 	 * the queue_lock before waking kblockd (which needs to take
2900 	 * this lock).
2901 	 */
2902 	if (from_schedule) {
2903 		spin_unlock(q->queue_lock);
2904 		blk_run_queue_async(q);
2905 	} else {
2906 		__blk_run_queue(q);
2907 		spin_unlock(q->queue_lock);
2908 	}
2909 
2910 }
2911 
2912 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2913 {
2914 	LIST_HEAD(callbacks);
2915 
2916 	while (!list_empty(&plug->cb_list)) {
2917 		list_splice_init(&plug->cb_list, &callbacks);
2918 
2919 		while (!list_empty(&callbacks)) {
2920 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2921 							  struct blk_plug_cb,
2922 							  list);
2923 			list_del(&cb->list);
2924 			cb->callback(cb, from_schedule);
2925 		}
2926 	}
2927 }
2928 
2929 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2930 				      int size)
2931 {
2932 	struct blk_plug *plug = current->plug;
2933 	struct blk_plug_cb *cb;
2934 
2935 	if (!plug)
2936 		return NULL;
2937 
2938 	list_for_each_entry(cb, &plug->cb_list, list)
2939 		if (cb->callback == unplug && cb->data == data)
2940 			return cb;
2941 
2942 	/* Not currently on the callback list */
2943 	BUG_ON(size < sizeof(*cb));
2944 	cb = kzalloc(size, GFP_ATOMIC);
2945 	if (cb) {
2946 		cb->data = data;
2947 		cb->callback = unplug;
2948 		list_add(&cb->list, &plug->cb_list);
2949 	}
2950 	return cb;
2951 }
2952 EXPORT_SYMBOL(blk_check_plugged);
2953 
2954 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2955 {
2956 	struct request_queue *q;
2957 	unsigned long flags;
2958 	struct request *rq;
2959 	LIST_HEAD(list);
2960 	unsigned int depth;
2961 
2962 	BUG_ON(plug->magic != PLUG_MAGIC);
2963 
2964 	flush_plug_callbacks(plug, from_schedule);
2965 	if (list_empty(&plug->list))
2966 		return;
2967 
2968 	list_splice_init(&plug->list, &list);
2969 
2970 	if (plug->should_sort) {
2971 		list_sort(NULL, &list, plug_rq_cmp);
2972 		plug->should_sort = 0;
2973 	}
2974 
2975 	q = NULL;
2976 	depth = 0;
2977 
2978 	/*
2979 	 * Save and disable interrupts here, to avoid doing it for every
2980 	 * queue lock we have to take.
2981 	 */
2982 	local_irq_save(flags);
2983 	while (!list_empty(&list)) {
2984 		rq = list_entry_rq(list.next);
2985 		list_del_init(&rq->queuelist);
2986 		BUG_ON(!rq->q);
2987 		if (rq->q != q) {
2988 			/*
2989 			 * This drops the queue lock
2990 			 */
2991 			if (q)
2992 				queue_unplugged(q, depth, from_schedule);
2993 			q = rq->q;
2994 			depth = 0;
2995 			spin_lock(q->queue_lock);
2996 		}
2997 
2998 		/*
2999 		 * Short-circuit if @q is dead
3000 		 */
3001 		if (unlikely(blk_queue_dead(q))) {
3002 			__blk_end_request_all(rq, -ENODEV);
3003 			continue;
3004 		}
3005 
3006 		/*
3007 		 * rq is already accounted, so use raw insert
3008 		 */
3009 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3010 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3011 		else
3012 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3013 
3014 		depth++;
3015 	}
3016 
3017 	/*
3018 	 * This drops the queue lock
3019 	 */
3020 	if (q)
3021 		queue_unplugged(q, depth, from_schedule);
3022 
3023 	local_irq_restore(flags);
3024 }
3025 
3026 void blk_finish_plug(struct blk_plug *plug)
3027 {
3028 	blk_flush_plug_list(plug, false);
3029 
3030 	if (plug == current->plug)
3031 		current->plug = NULL;
3032 }
3033 EXPORT_SYMBOL(blk_finish_plug);
3034 
3035 int __init blk_dev_init(void)
3036 {
3037 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3038 			sizeof(((struct request *)0)->cmd_flags));
3039 
3040 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3041 	kblockd_workqueue = alloc_workqueue("kblockd",
3042 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3043 	if (!kblockd_workqueue)
3044 		panic("Failed to create kblockd\n");
3045 
3046 	request_cachep = kmem_cache_create("blkdev_requests",
3047 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3048 
3049 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3050 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3051 
3052 	return 0;
3053 }
3054