1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/block.h> 39 40 #include "blk.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 48 49 DEFINE_IDA(blk_queue_ida); 50 51 /* 52 * For the allocated request tables 53 */ 54 struct kmem_cache *request_cachep = NULL; 55 56 /* 57 * For queue allocation 58 */ 59 struct kmem_cache *blk_requestq_cachep; 60 61 /* 62 * Controlling structure to kblockd 63 */ 64 static struct workqueue_struct *kblockd_workqueue; 65 66 static void blk_clear_congested(struct request_list *rl, int sync) 67 { 68 #ifdef CONFIG_CGROUP_WRITEBACK 69 clear_wb_congested(rl->blkg->wb_congested, sync); 70 #else 71 /* 72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 73 * flip its congestion state for events on other blkcgs. 74 */ 75 if (rl == &rl->q->root_rl) 76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 77 #endif 78 } 79 80 static void blk_set_congested(struct request_list *rl, int sync) 81 { 82 #ifdef CONFIG_CGROUP_WRITEBACK 83 set_wb_congested(rl->blkg->wb_congested, sync); 84 #else 85 /* see blk_clear_congested() */ 86 if (rl == &rl->q->root_rl) 87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync); 88 #endif 89 } 90 91 void blk_queue_congestion_threshold(struct request_queue *q) 92 { 93 int nr; 94 95 nr = q->nr_requests - (q->nr_requests / 8) + 1; 96 if (nr > q->nr_requests) 97 nr = q->nr_requests; 98 q->nr_congestion_on = nr; 99 100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 101 if (nr < 1) 102 nr = 1; 103 q->nr_congestion_off = nr; 104 } 105 106 /** 107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 108 * @bdev: device 109 * 110 * Locates the passed device's request queue and returns the address of its 111 * backing_dev_info. This function can only be called if @bdev is opened 112 * and the return value is never NULL. 113 */ 114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 115 { 116 struct request_queue *q = bdev_get_queue(bdev); 117 118 return &q->backing_dev_info; 119 } 120 EXPORT_SYMBOL(blk_get_backing_dev_info); 121 122 void blk_rq_init(struct request_queue *q, struct request *rq) 123 { 124 memset(rq, 0, sizeof(*rq)); 125 126 INIT_LIST_HEAD(&rq->queuelist); 127 INIT_LIST_HEAD(&rq->timeout_list); 128 rq->cpu = -1; 129 rq->q = q; 130 rq->__sector = (sector_t) -1; 131 INIT_HLIST_NODE(&rq->hash); 132 RB_CLEAR_NODE(&rq->rb_node); 133 rq->cmd = rq->__cmd; 134 rq->cmd_len = BLK_MAX_CDB; 135 rq->tag = -1; 136 rq->start_time = jiffies; 137 set_start_time_ns(rq); 138 rq->part = NULL; 139 } 140 EXPORT_SYMBOL(blk_rq_init); 141 142 static void req_bio_endio(struct request *rq, struct bio *bio, 143 unsigned int nbytes, int error) 144 { 145 if (error) 146 clear_bit(BIO_UPTODATE, &bio->bi_flags); 147 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 148 error = -EIO; 149 150 if (unlikely(rq->cmd_flags & REQ_QUIET)) 151 set_bit(BIO_QUIET, &bio->bi_flags); 152 153 bio_advance(bio, nbytes); 154 155 /* don't actually finish bio if it's part of flush sequence */ 156 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 157 bio_endio(bio, error); 158 } 159 160 void blk_dump_rq_flags(struct request *rq, char *msg) 161 { 162 int bit; 163 164 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 165 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 166 (unsigned long long) rq->cmd_flags); 167 168 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 169 (unsigned long long)blk_rq_pos(rq), 170 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 171 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 172 rq->bio, rq->biotail, blk_rq_bytes(rq)); 173 174 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 175 printk(KERN_INFO " cdb: "); 176 for (bit = 0; bit < BLK_MAX_CDB; bit++) 177 printk("%02x ", rq->cmd[bit]); 178 printk("\n"); 179 } 180 } 181 EXPORT_SYMBOL(blk_dump_rq_flags); 182 183 static void blk_delay_work(struct work_struct *work) 184 { 185 struct request_queue *q; 186 187 q = container_of(work, struct request_queue, delay_work.work); 188 spin_lock_irq(q->queue_lock); 189 __blk_run_queue(q); 190 spin_unlock_irq(q->queue_lock); 191 } 192 193 /** 194 * blk_delay_queue - restart queueing after defined interval 195 * @q: The &struct request_queue in question 196 * @msecs: Delay in msecs 197 * 198 * Description: 199 * Sometimes queueing needs to be postponed for a little while, to allow 200 * resources to come back. This function will make sure that queueing is 201 * restarted around the specified time. Queue lock must be held. 202 */ 203 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 204 { 205 if (likely(!blk_queue_dead(q))) 206 queue_delayed_work(kblockd_workqueue, &q->delay_work, 207 msecs_to_jiffies(msecs)); 208 } 209 EXPORT_SYMBOL(blk_delay_queue); 210 211 /** 212 * blk_start_queue - restart a previously stopped queue 213 * @q: The &struct request_queue in question 214 * 215 * Description: 216 * blk_start_queue() will clear the stop flag on the queue, and call 217 * the request_fn for the queue if it was in a stopped state when 218 * entered. Also see blk_stop_queue(). Queue lock must be held. 219 **/ 220 void blk_start_queue(struct request_queue *q) 221 { 222 WARN_ON(!irqs_disabled()); 223 224 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 225 __blk_run_queue(q); 226 } 227 EXPORT_SYMBOL(blk_start_queue); 228 229 /** 230 * blk_stop_queue - stop a queue 231 * @q: The &struct request_queue in question 232 * 233 * Description: 234 * The Linux block layer assumes that a block driver will consume all 235 * entries on the request queue when the request_fn strategy is called. 236 * Often this will not happen, because of hardware limitations (queue 237 * depth settings). If a device driver gets a 'queue full' response, 238 * or if it simply chooses not to queue more I/O at one point, it can 239 * call this function to prevent the request_fn from being called until 240 * the driver has signalled it's ready to go again. This happens by calling 241 * blk_start_queue() to restart queue operations. Queue lock must be held. 242 **/ 243 void blk_stop_queue(struct request_queue *q) 244 { 245 cancel_delayed_work(&q->delay_work); 246 queue_flag_set(QUEUE_FLAG_STOPPED, q); 247 } 248 EXPORT_SYMBOL(blk_stop_queue); 249 250 /** 251 * blk_sync_queue - cancel any pending callbacks on a queue 252 * @q: the queue 253 * 254 * Description: 255 * The block layer may perform asynchronous callback activity 256 * on a queue, such as calling the unplug function after a timeout. 257 * A block device may call blk_sync_queue to ensure that any 258 * such activity is cancelled, thus allowing it to release resources 259 * that the callbacks might use. The caller must already have made sure 260 * that its ->make_request_fn will not re-add plugging prior to calling 261 * this function. 262 * 263 * This function does not cancel any asynchronous activity arising 264 * out of elevator or throttling code. That would require elevator_exit() 265 * and blkcg_exit_queue() to be called with queue lock initialized. 266 * 267 */ 268 void blk_sync_queue(struct request_queue *q) 269 { 270 del_timer_sync(&q->timeout); 271 272 if (q->mq_ops) { 273 struct blk_mq_hw_ctx *hctx; 274 int i; 275 276 queue_for_each_hw_ctx(q, hctx, i) { 277 cancel_delayed_work_sync(&hctx->run_work); 278 cancel_delayed_work_sync(&hctx->delay_work); 279 } 280 } else { 281 cancel_delayed_work_sync(&q->delay_work); 282 } 283 } 284 EXPORT_SYMBOL(blk_sync_queue); 285 286 /** 287 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 288 * @q: The queue to run 289 * 290 * Description: 291 * Invoke request handling on a queue if there are any pending requests. 292 * May be used to restart request handling after a request has completed. 293 * This variant runs the queue whether or not the queue has been 294 * stopped. Must be called with the queue lock held and interrupts 295 * disabled. See also @blk_run_queue. 296 */ 297 inline void __blk_run_queue_uncond(struct request_queue *q) 298 { 299 if (unlikely(blk_queue_dead(q))) 300 return; 301 302 /* 303 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 304 * the queue lock internally. As a result multiple threads may be 305 * running such a request function concurrently. Keep track of the 306 * number of active request_fn invocations such that blk_drain_queue() 307 * can wait until all these request_fn calls have finished. 308 */ 309 q->request_fn_active++; 310 q->request_fn(q); 311 q->request_fn_active--; 312 } 313 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 314 315 /** 316 * __blk_run_queue - run a single device queue 317 * @q: The queue to run 318 * 319 * Description: 320 * See @blk_run_queue. This variant must be called with the queue lock 321 * held and interrupts disabled. 322 */ 323 void __blk_run_queue(struct request_queue *q) 324 { 325 if (unlikely(blk_queue_stopped(q))) 326 return; 327 328 __blk_run_queue_uncond(q); 329 } 330 EXPORT_SYMBOL(__blk_run_queue); 331 332 /** 333 * blk_run_queue_async - run a single device queue in workqueue context 334 * @q: The queue to run 335 * 336 * Description: 337 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 338 * of us. The caller must hold the queue lock. 339 */ 340 void blk_run_queue_async(struct request_queue *q) 341 { 342 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 343 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 344 } 345 EXPORT_SYMBOL(blk_run_queue_async); 346 347 /** 348 * blk_run_queue - run a single device queue 349 * @q: The queue to run 350 * 351 * Description: 352 * Invoke request handling on this queue, if it has pending work to do. 353 * May be used to restart queueing when a request has completed. 354 */ 355 void blk_run_queue(struct request_queue *q) 356 { 357 unsigned long flags; 358 359 spin_lock_irqsave(q->queue_lock, flags); 360 __blk_run_queue(q); 361 spin_unlock_irqrestore(q->queue_lock, flags); 362 } 363 EXPORT_SYMBOL(blk_run_queue); 364 365 void blk_put_queue(struct request_queue *q) 366 { 367 kobject_put(&q->kobj); 368 } 369 EXPORT_SYMBOL(blk_put_queue); 370 371 /** 372 * __blk_drain_queue - drain requests from request_queue 373 * @q: queue to drain 374 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 375 * 376 * Drain requests from @q. If @drain_all is set, all requests are drained. 377 * If not, only ELVPRIV requests are drained. The caller is responsible 378 * for ensuring that no new requests which need to be drained are queued. 379 */ 380 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 381 __releases(q->queue_lock) 382 __acquires(q->queue_lock) 383 { 384 int i; 385 386 lockdep_assert_held(q->queue_lock); 387 388 while (true) { 389 bool drain = false; 390 391 /* 392 * The caller might be trying to drain @q before its 393 * elevator is initialized. 394 */ 395 if (q->elevator) 396 elv_drain_elevator(q); 397 398 blkcg_drain_queue(q); 399 400 /* 401 * This function might be called on a queue which failed 402 * driver init after queue creation or is not yet fully 403 * active yet. Some drivers (e.g. fd and loop) get unhappy 404 * in such cases. Kick queue iff dispatch queue has 405 * something on it and @q has request_fn set. 406 */ 407 if (!list_empty(&q->queue_head) && q->request_fn) 408 __blk_run_queue(q); 409 410 drain |= q->nr_rqs_elvpriv; 411 drain |= q->request_fn_active; 412 413 /* 414 * Unfortunately, requests are queued at and tracked from 415 * multiple places and there's no single counter which can 416 * be drained. Check all the queues and counters. 417 */ 418 if (drain_all) { 419 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 420 drain |= !list_empty(&q->queue_head); 421 for (i = 0; i < 2; i++) { 422 drain |= q->nr_rqs[i]; 423 drain |= q->in_flight[i]; 424 if (fq) 425 drain |= !list_empty(&fq->flush_queue[i]); 426 } 427 } 428 429 if (!drain) 430 break; 431 432 spin_unlock_irq(q->queue_lock); 433 434 msleep(10); 435 436 spin_lock_irq(q->queue_lock); 437 } 438 439 /* 440 * With queue marked dead, any woken up waiter will fail the 441 * allocation path, so the wakeup chaining is lost and we're 442 * left with hung waiters. We need to wake up those waiters. 443 */ 444 if (q->request_fn) { 445 struct request_list *rl; 446 447 blk_queue_for_each_rl(rl, q) 448 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 449 wake_up_all(&rl->wait[i]); 450 } 451 } 452 453 /** 454 * blk_queue_bypass_start - enter queue bypass mode 455 * @q: queue of interest 456 * 457 * In bypass mode, only the dispatch FIFO queue of @q is used. This 458 * function makes @q enter bypass mode and drains all requests which were 459 * throttled or issued before. On return, it's guaranteed that no request 460 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 461 * inside queue or RCU read lock. 462 */ 463 void blk_queue_bypass_start(struct request_queue *q) 464 { 465 spin_lock_irq(q->queue_lock); 466 q->bypass_depth++; 467 queue_flag_set(QUEUE_FLAG_BYPASS, q); 468 spin_unlock_irq(q->queue_lock); 469 470 /* 471 * Queues start drained. Skip actual draining till init is 472 * complete. This avoids lenghty delays during queue init which 473 * can happen many times during boot. 474 */ 475 if (blk_queue_init_done(q)) { 476 spin_lock_irq(q->queue_lock); 477 __blk_drain_queue(q, false); 478 spin_unlock_irq(q->queue_lock); 479 480 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 481 synchronize_rcu(); 482 } 483 } 484 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 485 486 /** 487 * blk_queue_bypass_end - leave queue bypass mode 488 * @q: queue of interest 489 * 490 * Leave bypass mode and restore the normal queueing behavior. 491 */ 492 void blk_queue_bypass_end(struct request_queue *q) 493 { 494 spin_lock_irq(q->queue_lock); 495 if (!--q->bypass_depth) 496 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 497 WARN_ON_ONCE(q->bypass_depth < 0); 498 spin_unlock_irq(q->queue_lock); 499 } 500 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 501 502 void blk_set_queue_dying(struct request_queue *q) 503 { 504 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 505 506 if (q->mq_ops) 507 blk_mq_wake_waiters(q); 508 else { 509 struct request_list *rl; 510 511 blk_queue_for_each_rl(rl, q) { 512 if (rl->rq_pool) { 513 wake_up(&rl->wait[BLK_RW_SYNC]); 514 wake_up(&rl->wait[BLK_RW_ASYNC]); 515 } 516 } 517 } 518 } 519 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 520 521 /** 522 * blk_cleanup_queue - shutdown a request queue 523 * @q: request queue to shutdown 524 * 525 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 526 * put it. All future requests will be failed immediately with -ENODEV. 527 */ 528 void blk_cleanup_queue(struct request_queue *q) 529 { 530 spinlock_t *lock = q->queue_lock; 531 532 /* mark @q DYING, no new request or merges will be allowed afterwards */ 533 mutex_lock(&q->sysfs_lock); 534 blk_set_queue_dying(q); 535 spin_lock_irq(lock); 536 537 /* 538 * A dying queue is permanently in bypass mode till released. Note 539 * that, unlike blk_queue_bypass_start(), we aren't performing 540 * synchronize_rcu() after entering bypass mode to avoid the delay 541 * as some drivers create and destroy a lot of queues while 542 * probing. This is still safe because blk_release_queue() will be 543 * called only after the queue refcnt drops to zero and nothing, 544 * RCU or not, would be traversing the queue by then. 545 */ 546 q->bypass_depth++; 547 queue_flag_set(QUEUE_FLAG_BYPASS, q); 548 549 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 550 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 551 queue_flag_set(QUEUE_FLAG_DYING, q); 552 spin_unlock_irq(lock); 553 mutex_unlock(&q->sysfs_lock); 554 555 /* 556 * Drain all requests queued before DYING marking. Set DEAD flag to 557 * prevent that q->request_fn() gets invoked after draining finished. 558 */ 559 if (q->mq_ops) { 560 blk_mq_freeze_queue(q); 561 spin_lock_irq(lock); 562 } else { 563 spin_lock_irq(lock); 564 __blk_drain_queue(q, true); 565 } 566 queue_flag_set(QUEUE_FLAG_DEAD, q); 567 spin_unlock_irq(lock); 568 569 /* @q won't process any more request, flush async actions */ 570 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 571 blk_sync_queue(q); 572 573 if (q->mq_ops) 574 blk_mq_free_queue(q); 575 576 spin_lock_irq(lock); 577 if (q->queue_lock != &q->__queue_lock) 578 q->queue_lock = &q->__queue_lock; 579 spin_unlock_irq(lock); 580 581 bdi_destroy(&q->backing_dev_info); 582 583 /* @q is and will stay empty, shutdown and put */ 584 blk_put_queue(q); 585 } 586 EXPORT_SYMBOL(blk_cleanup_queue); 587 588 /* Allocate memory local to the request queue */ 589 static void *alloc_request_struct(gfp_t gfp_mask, void *data) 590 { 591 int nid = (int)(long)data; 592 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid); 593 } 594 595 static void free_request_struct(void *element, void *unused) 596 { 597 kmem_cache_free(request_cachep, element); 598 } 599 600 int blk_init_rl(struct request_list *rl, struct request_queue *q, 601 gfp_t gfp_mask) 602 { 603 if (unlikely(rl->rq_pool)) 604 return 0; 605 606 rl->q = q; 607 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 608 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 609 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 610 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 611 612 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct, 613 free_request_struct, 614 (void *)(long)q->node, gfp_mask, 615 q->node); 616 if (!rl->rq_pool) 617 return -ENOMEM; 618 619 return 0; 620 } 621 622 void blk_exit_rl(struct request_list *rl) 623 { 624 if (rl->rq_pool) 625 mempool_destroy(rl->rq_pool); 626 } 627 628 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 629 { 630 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 631 } 632 EXPORT_SYMBOL(blk_alloc_queue); 633 634 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 635 { 636 struct request_queue *q; 637 int err; 638 639 q = kmem_cache_alloc_node(blk_requestq_cachep, 640 gfp_mask | __GFP_ZERO, node_id); 641 if (!q) 642 return NULL; 643 644 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 645 if (q->id < 0) 646 goto fail_q; 647 648 q->backing_dev_info.ra_pages = 649 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 650 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK; 651 q->backing_dev_info.name = "block"; 652 q->node = node_id; 653 654 err = bdi_init(&q->backing_dev_info); 655 if (err) 656 goto fail_id; 657 658 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 659 laptop_mode_timer_fn, (unsigned long) q); 660 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 661 INIT_LIST_HEAD(&q->queue_head); 662 INIT_LIST_HEAD(&q->timeout_list); 663 INIT_LIST_HEAD(&q->icq_list); 664 #ifdef CONFIG_BLK_CGROUP 665 INIT_LIST_HEAD(&q->blkg_list); 666 #endif 667 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 668 669 kobject_init(&q->kobj, &blk_queue_ktype); 670 671 mutex_init(&q->sysfs_lock); 672 spin_lock_init(&q->__queue_lock); 673 674 /* 675 * By default initialize queue_lock to internal lock and driver can 676 * override it later if need be. 677 */ 678 q->queue_lock = &q->__queue_lock; 679 680 /* 681 * A queue starts its life with bypass turned on to avoid 682 * unnecessary bypass on/off overhead and nasty surprises during 683 * init. The initial bypass will be finished when the queue is 684 * registered by blk_register_queue(). 685 */ 686 q->bypass_depth = 1; 687 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 688 689 init_waitqueue_head(&q->mq_freeze_wq); 690 691 if (blkcg_init_queue(q)) 692 goto fail_bdi; 693 694 return q; 695 696 fail_bdi: 697 bdi_destroy(&q->backing_dev_info); 698 fail_id: 699 ida_simple_remove(&blk_queue_ida, q->id); 700 fail_q: 701 kmem_cache_free(blk_requestq_cachep, q); 702 return NULL; 703 } 704 EXPORT_SYMBOL(blk_alloc_queue_node); 705 706 /** 707 * blk_init_queue - prepare a request queue for use with a block device 708 * @rfn: The function to be called to process requests that have been 709 * placed on the queue. 710 * @lock: Request queue spin lock 711 * 712 * Description: 713 * If a block device wishes to use the standard request handling procedures, 714 * which sorts requests and coalesces adjacent requests, then it must 715 * call blk_init_queue(). The function @rfn will be called when there 716 * are requests on the queue that need to be processed. If the device 717 * supports plugging, then @rfn may not be called immediately when requests 718 * are available on the queue, but may be called at some time later instead. 719 * Plugged queues are generally unplugged when a buffer belonging to one 720 * of the requests on the queue is needed, or due to memory pressure. 721 * 722 * @rfn is not required, or even expected, to remove all requests off the 723 * queue, but only as many as it can handle at a time. If it does leave 724 * requests on the queue, it is responsible for arranging that the requests 725 * get dealt with eventually. 726 * 727 * The queue spin lock must be held while manipulating the requests on the 728 * request queue; this lock will be taken also from interrupt context, so irq 729 * disabling is needed for it. 730 * 731 * Function returns a pointer to the initialized request queue, or %NULL if 732 * it didn't succeed. 733 * 734 * Note: 735 * blk_init_queue() must be paired with a blk_cleanup_queue() call 736 * when the block device is deactivated (such as at module unload). 737 **/ 738 739 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 740 { 741 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 742 } 743 EXPORT_SYMBOL(blk_init_queue); 744 745 struct request_queue * 746 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 747 { 748 struct request_queue *uninit_q, *q; 749 750 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 751 if (!uninit_q) 752 return NULL; 753 754 q = blk_init_allocated_queue(uninit_q, rfn, lock); 755 if (!q) 756 blk_cleanup_queue(uninit_q); 757 758 return q; 759 } 760 EXPORT_SYMBOL(blk_init_queue_node); 761 762 static void blk_queue_bio(struct request_queue *q, struct bio *bio); 763 764 struct request_queue * 765 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 766 spinlock_t *lock) 767 { 768 if (!q) 769 return NULL; 770 771 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0); 772 if (!q->fq) 773 return NULL; 774 775 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 776 goto fail; 777 778 q->request_fn = rfn; 779 q->prep_rq_fn = NULL; 780 q->unprep_rq_fn = NULL; 781 q->queue_flags |= QUEUE_FLAG_DEFAULT; 782 783 /* Override internal queue lock with supplied lock pointer */ 784 if (lock) 785 q->queue_lock = lock; 786 787 /* 788 * This also sets hw/phys segments, boundary and size 789 */ 790 blk_queue_make_request(q, blk_queue_bio); 791 792 q->sg_reserved_size = INT_MAX; 793 794 /* Protect q->elevator from elevator_change */ 795 mutex_lock(&q->sysfs_lock); 796 797 /* init elevator */ 798 if (elevator_init(q, NULL)) { 799 mutex_unlock(&q->sysfs_lock); 800 goto fail; 801 } 802 803 mutex_unlock(&q->sysfs_lock); 804 805 return q; 806 807 fail: 808 blk_free_flush_queue(q->fq); 809 return NULL; 810 } 811 EXPORT_SYMBOL(blk_init_allocated_queue); 812 813 bool blk_get_queue(struct request_queue *q) 814 { 815 if (likely(!blk_queue_dying(q))) { 816 __blk_get_queue(q); 817 return true; 818 } 819 820 return false; 821 } 822 EXPORT_SYMBOL(blk_get_queue); 823 824 static inline void blk_free_request(struct request_list *rl, struct request *rq) 825 { 826 if (rq->cmd_flags & REQ_ELVPRIV) { 827 elv_put_request(rl->q, rq); 828 if (rq->elv.icq) 829 put_io_context(rq->elv.icq->ioc); 830 } 831 832 mempool_free(rq, rl->rq_pool); 833 } 834 835 /* 836 * ioc_batching returns true if the ioc is a valid batching request and 837 * should be given priority access to a request. 838 */ 839 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 840 { 841 if (!ioc) 842 return 0; 843 844 /* 845 * Make sure the process is able to allocate at least 1 request 846 * even if the batch times out, otherwise we could theoretically 847 * lose wakeups. 848 */ 849 return ioc->nr_batch_requests == q->nr_batching || 850 (ioc->nr_batch_requests > 0 851 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 852 } 853 854 /* 855 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 856 * will cause the process to be a "batcher" on all queues in the system. This 857 * is the behaviour we want though - once it gets a wakeup it should be given 858 * a nice run. 859 */ 860 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 861 { 862 if (!ioc || ioc_batching(q, ioc)) 863 return; 864 865 ioc->nr_batch_requests = q->nr_batching; 866 ioc->last_waited = jiffies; 867 } 868 869 static void __freed_request(struct request_list *rl, int sync) 870 { 871 struct request_queue *q = rl->q; 872 873 if (rl->count[sync] < queue_congestion_off_threshold(q)) 874 blk_clear_congested(rl, sync); 875 876 if (rl->count[sync] + 1 <= q->nr_requests) { 877 if (waitqueue_active(&rl->wait[sync])) 878 wake_up(&rl->wait[sync]); 879 880 blk_clear_rl_full(rl, sync); 881 } 882 } 883 884 /* 885 * A request has just been released. Account for it, update the full and 886 * congestion status, wake up any waiters. Called under q->queue_lock. 887 */ 888 static void freed_request(struct request_list *rl, unsigned int flags) 889 { 890 struct request_queue *q = rl->q; 891 int sync = rw_is_sync(flags); 892 893 q->nr_rqs[sync]--; 894 rl->count[sync]--; 895 if (flags & REQ_ELVPRIV) 896 q->nr_rqs_elvpriv--; 897 898 __freed_request(rl, sync); 899 900 if (unlikely(rl->starved[sync ^ 1])) 901 __freed_request(rl, sync ^ 1); 902 } 903 904 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 905 { 906 struct request_list *rl; 907 int on_thresh, off_thresh; 908 909 spin_lock_irq(q->queue_lock); 910 q->nr_requests = nr; 911 blk_queue_congestion_threshold(q); 912 on_thresh = queue_congestion_on_threshold(q); 913 off_thresh = queue_congestion_off_threshold(q); 914 915 blk_queue_for_each_rl(rl, q) { 916 if (rl->count[BLK_RW_SYNC] >= on_thresh) 917 blk_set_congested(rl, BLK_RW_SYNC); 918 else if (rl->count[BLK_RW_SYNC] < off_thresh) 919 blk_clear_congested(rl, BLK_RW_SYNC); 920 921 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 922 blk_set_congested(rl, BLK_RW_ASYNC); 923 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 924 blk_clear_congested(rl, BLK_RW_ASYNC); 925 926 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 927 blk_set_rl_full(rl, BLK_RW_SYNC); 928 } else { 929 blk_clear_rl_full(rl, BLK_RW_SYNC); 930 wake_up(&rl->wait[BLK_RW_SYNC]); 931 } 932 933 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 934 blk_set_rl_full(rl, BLK_RW_ASYNC); 935 } else { 936 blk_clear_rl_full(rl, BLK_RW_ASYNC); 937 wake_up(&rl->wait[BLK_RW_ASYNC]); 938 } 939 } 940 941 spin_unlock_irq(q->queue_lock); 942 return 0; 943 } 944 945 /* 946 * Determine if elevator data should be initialized when allocating the 947 * request associated with @bio. 948 */ 949 static bool blk_rq_should_init_elevator(struct bio *bio) 950 { 951 if (!bio) 952 return true; 953 954 /* 955 * Flush requests do not use the elevator so skip initialization. 956 * This allows a request to share the flush and elevator data. 957 */ 958 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 959 return false; 960 961 return true; 962 } 963 964 /** 965 * rq_ioc - determine io_context for request allocation 966 * @bio: request being allocated is for this bio (can be %NULL) 967 * 968 * Determine io_context to use for request allocation for @bio. May return 969 * %NULL if %current->io_context doesn't exist. 970 */ 971 static struct io_context *rq_ioc(struct bio *bio) 972 { 973 #ifdef CONFIG_BLK_CGROUP 974 if (bio && bio->bi_ioc) 975 return bio->bi_ioc; 976 #endif 977 return current->io_context; 978 } 979 980 /** 981 * __get_request - get a free request 982 * @rl: request list to allocate from 983 * @rw_flags: RW and SYNC flags 984 * @bio: bio to allocate request for (can be %NULL) 985 * @gfp_mask: allocation mask 986 * 987 * Get a free request from @q. This function may fail under memory 988 * pressure or if @q is dead. 989 * 990 * Must be called with @q->queue_lock held and, 991 * Returns ERR_PTR on failure, with @q->queue_lock held. 992 * Returns request pointer on success, with @q->queue_lock *not held*. 993 */ 994 static struct request *__get_request(struct request_list *rl, int rw_flags, 995 struct bio *bio, gfp_t gfp_mask) 996 { 997 struct request_queue *q = rl->q; 998 struct request *rq; 999 struct elevator_type *et = q->elevator->type; 1000 struct io_context *ioc = rq_ioc(bio); 1001 struct io_cq *icq = NULL; 1002 const bool is_sync = rw_is_sync(rw_flags) != 0; 1003 int may_queue; 1004 1005 if (unlikely(blk_queue_dying(q))) 1006 return ERR_PTR(-ENODEV); 1007 1008 may_queue = elv_may_queue(q, rw_flags); 1009 if (may_queue == ELV_MQUEUE_NO) 1010 goto rq_starved; 1011 1012 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1013 if (rl->count[is_sync]+1 >= q->nr_requests) { 1014 /* 1015 * The queue will fill after this allocation, so set 1016 * it as full, and mark this process as "batching". 1017 * This process will be allowed to complete a batch of 1018 * requests, others will be blocked. 1019 */ 1020 if (!blk_rl_full(rl, is_sync)) { 1021 ioc_set_batching(q, ioc); 1022 blk_set_rl_full(rl, is_sync); 1023 } else { 1024 if (may_queue != ELV_MQUEUE_MUST 1025 && !ioc_batching(q, ioc)) { 1026 /* 1027 * The queue is full and the allocating 1028 * process is not a "batcher", and not 1029 * exempted by the IO scheduler 1030 */ 1031 return ERR_PTR(-ENOMEM); 1032 } 1033 } 1034 } 1035 blk_set_congested(rl, is_sync); 1036 } 1037 1038 /* 1039 * Only allow batching queuers to allocate up to 50% over the defined 1040 * limit of requests, otherwise we could have thousands of requests 1041 * allocated with any setting of ->nr_requests 1042 */ 1043 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1044 return ERR_PTR(-ENOMEM); 1045 1046 q->nr_rqs[is_sync]++; 1047 rl->count[is_sync]++; 1048 rl->starved[is_sync] = 0; 1049 1050 /* 1051 * Decide whether the new request will be managed by elevator. If 1052 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 1053 * prevent the current elevator from being destroyed until the new 1054 * request is freed. This guarantees icq's won't be destroyed and 1055 * makes creating new ones safe. 1056 * 1057 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1058 * it will be created after releasing queue_lock. 1059 */ 1060 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 1061 rw_flags |= REQ_ELVPRIV; 1062 q->nr_rqs_elvpriv++; 1063 if (et->icq_cache && ioc) 1064 icq = ioc_lookup_icq(ioc, q); 1065 } 1066 1067 if (blk_queue_io_stat(q)) 1068 rw_flags |= REQ_IO_STAT; 1069 spin_unlock_irq(q->queue_lock); 1070 1071 /* allocate and init request */ 1072 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1073 if (!rq) 1074 goto fail_alloc; 1075 1076 blk_rq_init(q, rq); 1077 blk_rq_set_rl(rq, rl); 1078 rq->cmd_flags = rw_flags | REQ_ALLOCED; 1079 1080 /* init elvpriv */ 1081 if (rw_flags & REQ_ELVPRIV) { 1082 if (unlikely(et->icq_cache && !icq)) { 1083 if (ioc) 1084 icq = ioc_create_icq(ioc, q, gfp_mask); 1085 if (!icq) 1086 goto fail_elvpriv; 1087 } 1088 1089 rq->elv.icq = icq; 1090 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1091 goto fail_elvpriv; 1092 1093 /* @rq->elv.icq holds io_context until @rq is freed */ 1094 if (icq) 1095 get_io_context(icq->ioc); 1096 } 1097 out: 1098 /* 1099 * ioc may be NULL here, and ioc_batching will be false. That's 1100 * OK, if the queue is under the request limit then requests need 1101 * not count toward the nr_batch_requests limit. There will always 1102 * be some limit enforced by BLK_BATCH_TIME. 1103 */ 1104 if (ioc_batching(q, ioc)) 1105 ioc->nr_batch_requests--; 1106 1107 trace_block_getrq(q, bio, rw_flags & 1); 1108 return rq; 1109 1110 fail_elvpriv: 1111 /* 1112 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1113 * and may fail indefinitely under memory pressure and thus 1114 * shouldn't stall IO. Treat this request as !elvpriv. This will 1115 * disturb iosched and blkcg but weird is bettern than dead. 1116 */ 1117 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1118 __func__, dev_name(q->backing_dev_info.dev)); 1119 1120 rq->cmd_flags &= ~REQ_ELVPRIV; 1121 rq->elv.icq = NULL; 1122 1123 spin_lock_irq(q->queue_lock); 1124 q->nr_rqs_elvpriv--; 1125 spin_unlock_irq(q->queue_lock); 1126 goto out; 1127 1128 fail_alloc: 1129 /* 1130 * Allocation failed presumably due to memory. Undo anything we 1131 * might have messed up. 1132 * 1133 * Allocating task should really be put onto the front of the wait 1134 * queue, but this is pretty rare. 1135 */ 1136 spin_lock_irq(q->queue_lock); 1137 freed_request(rl, rw_flags); 1138 1139 /* 1140 * in the very unlikely event that allocation failed and no 1141 * requests for this direction was pending, mark us starved so that 1142 * freeing of a request in the other direction will notice 1143 * us. another possible fix would be to split the rq mempool into 1144 * READ and WRITE 1145 */ 1146 rq_starved: 1147 if (unlikely(rl->count[is_sync] == 0)) 1148 rl->starved[is_sync] = 1; 1149 return ERR_PTR(-ENOMEM); 1150 } 1151 1152 /** 1153 * get_request - get a free request 1154 * @q: request_queue to allocate request from 1155 * @rw_flags: RW and SYNC flags 1156 * @bio: bio to allocate request for (can be %NULL) 1157 * @gfp_mask: allocation mask 1158 * 1159 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1160 * function keeps retrying under memory pressure and fails iff @q is dead. 1161 * 1162 * Must be called with @q->queue_lock held and, 1163 * Returns ERR_PTR on failure, with @q->queue_lock held. 1164 * Returns request pointer on success, with @q->queue_lock *not held*. 1165 */ 1166 static struct request *get_request(struct request_queue *q, int rw_flags, 1167 struct bio *bio, gfp_t gfp_mask) 1168 { 1169 const bool is_sync = rw_is_sync(rw_flags) != 0; 1170 DEFINE_WAIT(wait); 1171 struct request_list *rl; 1172 struct request *rq; 1173 1174 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1175 retry: 1176 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1177 if (!IS_ERR(rq)) 1178 return rq; 1179 1180 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1181 blk_put_rl(rl); 1182 return rq; 1183 } 1184 1185 /* wait on @rl and retry */ 1186 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1187 TASK_UNINTERRUPTIBLE); 1188 1189 trace_block_sleeprq(q, bio, rw_flags & 1); 1190 1191 spin_unlock_irq(q->queue_lock); 1192 io_schedule(); 1193 1194 /* 1195 * After sleeping, we become a "batching" process and will be able 1196 * to allocate at least one request, and up to a big batch of them 1197 * for a small period time. See ioc_batching, ioc_set_batching 1198 */ 1199 ioc_set_batching(q, current->io_context); 1200 1201 spin_lock_irq(q->queue_lock); 1202 finish_wait(&rl->wait[is_sync], &wait); 1203 1204 goto retry; 1205 } 1206 1207 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1208 gfp_t gfp_mask) 1209 { 1210 struct request *rq; 1211 1212 BUG_ON(rw != READ && rw != WRITE); 1213 1214 /* create ioc upfront */ 1215 create_io_context(gfp_mask, q->node); 1216 1217 spin_lock_irq(q->queue_lock); 1218 rq = get_request(q, rw, NULL, gfp_mask); 1219 if (IS_ERR(rq)) 1220 spin_unlock_irq(q->queue_lock); 1221 /* q->queue_lock is unlocked at this point */ 1222 1223 return rq; 1224 } 1225 1226 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1227 { 1228 if (q->mq_ops) 1229 return blk_mq_alloc_request(q, rw, gfp_mask, false); 1230 else 1231 return blk_old_get_request(q, rw, gfp_mask); 1232 } 1233 EXPORT_SYMBOL(blk_get_request); 1234 1235 /** 1236 * blk_make_request - given a bio, allocate a corresponding struct request. 1237 * @q: target request queue 1238 * @bio: The bio describing the memory mappings that will be submitted for IO. 1239 * It may be a chained-bio properly constructed by block/bio layer. 1240 * @gfp_mask: gfp flags to be used for memory allocation 1241 * 1242 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1243 * type commands. Where the struct request needs to be farther initialized by 1244 * the caller. It is passed a &struct bio, which describes the memory info of 1245 * the I/O transfer. 1246 * 1247 * The caller of blk_make_request must make sure that bi_io_vec 1248 * are set to describe the memory buffers. That bio_data_dir() will return 1249 * the needed direction of the request. (And all bio's in the passed bio-chain 1250 * are properly set accordingly) 1251 * 1252 * If called under none-sleepable conditions, mapped bio buffers must not 1253 * need bouncing, by calling the appropriate masked or flagged allocator, 1254 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1255 * BUG. 1256 * 1257 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1258 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1259 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1260 * completion of a bio that hasn't been submitted yet, thus resulting in a 1261 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1262 * of bio_alloc(), as that avoids the mempool deadlock. 1263 * If possible a big IO should be split into smaller parts when allocation 1264 * fails. Partial allocation should not be an error, or you risk a live-lock. 1265 */ 1266 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1267 gfp_t gfp_mask) 1268 { 1269 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1270 1271 if (IS_ERR(rq)) 1272 return rq; 1273 1274 blk_rq_set_block_pc(rq); 1275 1276 for_each_bio(bio) { 1277 struct bio *bounce_bio = bio; 1278 int ret; 1279 1280 blk_queue_bounce(q, &bounce_bio); 1281 ret = blk_rq_append_bio(q, rq, bounce_bio); 1282 if (unlikely(ret)) { 1283 blk_put_request(rq); 1284 return ERR_PTR(ret); 1285 } 1286 } 1287 1288 return rq; 1289 } 1290 EXPORT_SYMBOL(blk_make_request); 1291 1292 /** 1293 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC 1294 * @rq: request to be initialized 1295 * 1296 */ 1297 void blk_rq_set_block_pc(struct request *rq) 1298 { 1299 rq->cmd_type = REQ_TYPE_BLOCK_PC; 1300 rq->__data_len = 0; 1301 rq->__sector = (sector_t) -1; 1302 rq->bio = rq->biotail = NULL; 1303 memset(rq->__cmd, 0, sizeof(rq->__cmd)); 1304 } 1305 EXPORT_SYMBOL(blk_rq_set_block_pc); 1306 1307 /** 1308 * blk_requeue_request - put a request back on queue 1309 * @q: request queue where request should be inserted 1310 * @rq: request to be inserted 1311 * 1312 * Description: 1313 * Drivers often keep queueing requests until the hardware cannot accept 1314 * more, when that condition happens we need to put the request back 1315 * on the queue. Must be called with queue lock held. 1316 */ 1317 void blk_requeue_request(struct request_queue *q, struct request *rq) 1318 { 1319 blk_delete_timer(rq); 1320 blk_clear_rq_complete(rq); 1321 trace_block_rq_requeue(q, rq); 1322 1323 if (rq->cmd_flags & REQ_QUEUED) 1324 blk_queue_end_tag(q, rq); 1325 1326 BUG_ON(blk_queued_rq(rq)); 1327 1328 elv_requeue_request(q, rq); 1329 } 1330 EXPORT_SYMBOL(blk_requeue_request); 1331 1332 static void add_acct_request(struct request_queue *q, struct request *rq, 1333 int where) 1334 { 1335 blk_account_io_start(rq, true); 1336 __elv_add_request(q, rq, where); 1337 } 1338 1339 static void part_round_stats_single(int cpu, struct hd_struct *part, 1340 unsigned long now) 1341 { 1342 int inflight; 1343 1344 if (now == part->stamp) 1345 return; 1346 1347 inflight = part_in_flight(part); 1348 if (inflight) { 1349 __part_stat_add(cpu, part, time_in_queue, 1350 inflight * (now - part->stamp)); 1351 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1352 } 1353 part->stamp = now; 1354 } 1355 1356 /** 1357 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1358 * @cpu: cpu number for stats access 1359 * @part: target partition 1360 * 1361 * The average IO queue length and utilisation statistics are maintained 1362 * by observing the current state of the queue length and the amount of 1363 * time it has been in this state for. 1364 * 1365 * Normally, that accounting is done on IO completion, but that can result 1366 * in more than a second's worth of IO being accounted for within any one 1367 * second, leading to >100% utilisation. To deal with that, we call this 1368 * function to do a round-off before returning the results when reading 1369 * /proc/diskstats. This accounts immediately for all queue usage up to 1370 * the current jiffies and restarts the counters again. 1371 */ 1372 void part_round_stats(int cpu, struct hd_struct *part) 1373 { 1374 unsigned long now = jiffies; 1375 1376 if (part->partno) 1377 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1378 part_round_stats_single(cpu, part, now); 1379 } 1380 EXPORT_SYMBOL_GPL(part_round_stats); 1381 1382 #ifdef CONFIG_PM 1383 static void blk_pm_put_request(struct request *rq) 1384 { 1385 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1386 pm_runtime_mark_last_busy(rq->q->dev); 1387 } 1388 #else 1389 static inline void blk_pm_put_request(struct request *rq) {} 1390 #endif 1391 1392 /* 1393 * queue lock must be held 1394 */ 1395 void __blk_put_request(struct request_queue *q, struct request *req) 1396 { 1397 if (unlikely(!q)) 1398 return; 1399 1400 if (q->mq_ops) { 1401 blk_mq_free_request(req); 1402 return; 1403 } 1404 1405 blk_pm_put_request(req); 1406 1407 elv_completed_request(q, req); 1408 1409 /* this is a bio leak */ 1410 WARN_ON(req->bio != NULL); 1411 1412 /* 1413 * Request may not have originated from ll_rw_blk. if not, 1414 * it didn't come out of our reserved rq pools 1415 */ 1416 if (req->cmd_flags & REQ_ALLOCED) { 1417 unsigned int flags = req->cmd_flags; 1418 struct request_list *rl = blk_rq_rl(req); 1419 1420 BUG_ON(!list_empty(&req->queuelist)); 1421 BUG_ON(ELV_ON_HASH(req)); 1422 1423 blk_free_request(rl, req); 1424 freed_request(rl, flags); 1425 blk_put_rl(rl); 1426 } 1427 } 1428 EXPORT_SYMBOL_GPL(__blk_put_request); 1429 1430 void blk_put_request(struct request *req) 1431 { 1432 struct request_queue *q = req->q; 1433 1434 if (q->mq_ops) 1435 blk_mq_free_request(req); 1436 else { 1437 unsigned long flags; 1438 1439 spin_lock_irqsave(q->queue_lock, flags); 1440 __blk_put_request(q, req); 1441 spin_unlock_irqrestore(q->queue_lock, flags); 1442 } 1443 } 1444 EXPORT_SYMBOL(blk_put_request); 1445 1446 /** 1447 * blk_add_request_payload - add a payload to a request 1448 * @rq: request to update 1449 * @page: page backing the payload 1450 * @len: length of the payload. 1451 * 1452 * This allows to later add a payload to an already submitted request by 1453 * a block driver. The driver needs to take care of freeing the payload 1454 * itself. 1455 * 1456 * Note that this is a quite horrible hack and nothing but handling of 1457 * discard requests should ever use it. 1458 */ 1459 void blk_add_request_payload(struct request *rq, struct page *page, 1460 unsigned int len) 1461 { 1462 struct bio *bio = rq->bio; 1463 1464 bio->bi_io_vec->bv_page = page; 1465 bio->bi_io_vec->bv_offset = 0; 1466 bio->bi_io_vec->bv_len = len; 1467 1468 bio->bi_iter.bi_size = len; 1469 bio->bi_vcnt = 1; 1470 bio->bi_phys_segments = 1; 1471 1472 rq->__data_len = rq->resid_len = len; 1473 rq->nr_phys_segments = 1; 1474 } 1475 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1476 1477 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1478 struct bio *bio) 1479 { 1480 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1481 1482 if (!ll_back_merge_fn(q, req, bio)) 1483 return false; 1484 1485 trace_block_bio_backmerge(q, req, bio); 1486 1487 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1488 blk_rq_set_mixed_merge(req); 1489 1490 req->biotail->bi_next = bio; 1491 req->biotail = bio; 1492 req->__data_len += bio->bi_iter.bi_size; 1493 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1494 1495 blk_account_io_start(req, false); 1496 return true; 1497 } 1498 1499 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1500 struct bio *bio) 1501 { 1502 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1503 1504 if (!ll_front_merge_fn(q, req, bio)) 1505 return false; 1506 1507 trace_block_bio_frontmerge(q, req, bio); 1508 1509 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1510 blk_rq_set_mixed_merge(req); 1511 1512 bio->bi_next = req->bio; 1513 req->bio = bio; 1514 1515 req->__sector = bio->bi_iter.bi_sector; 1516 req->__data_len += bio->bi_iter.bi_size; 1517 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1518 1519 blk_account_io_start(req, false); 1520 return true; 1521 } 1522 1523 /** 1524 * blk_attempt_plug_merge - try to merge with %current's plugged list 1525 * @q: request_queue new bio is being queued at 1526 * @bio: new bio being queued 1527 * @request_count: out parameter for number of traversed plugged requests 1528 * 1529 * Determine whether @bio being queued on @q can be merged with a request 1530 * on %current's plugged list. Returns %true if merge was successful, 1531 * otherwise %false. 1532 * 1533 * Plugging coalesces IOs from the same issuer for the same purpose without 1534 * going through @q->queue_lock. As such it's more of an issuing mechanism 1535 * than scheduling, and the request, while may have elvpriv data, is not 1536 * added on the elevator at this point. In addition, we don't have 1537 * reliable access to the elevator outside queue lock. Only check basic 1538 * merging parameters without querying the elevator. 1539 * 1540 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1541 */ 1542 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1543 unsigned int *request_count, 1544 struct request **same_queue_rq) 1545 { 1546 struct blk_plug *plug; 1547 struct request *rq; 1548 bool ret = false; 1549 struct list_head *plug_list; 1550 1551 plug = current->plug; 1552 if (!plug) 1553 goto out; 1554 *request_count = 0; 1555 1556 if (q->mq_ops) 1557 plug_list = &plug->mq_list; 1558 else 1559 plug_list = &plug->list; 1560 1561 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1562 int el_ret; 1563 1564 if (rq->q == q) { 1565 (*request_count)++; 1566 /* 1567 * Only blk-mq multiple hardware queues case checks the 1568 * rq in the same queue, there should be only one such 1569 * rq in a queue 1570 **/ 1571 if (same_queue_rq) 1572 *same_queue_rq = rq; 1573 } 1574 1575 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1576 continue; 1577 1578 el_ret = blk_try_merge(rq, bio); 1579 if (el_ret == ELEVATOR_BACK_MERGE) { 1580 ret = bio_attempt_back_merge(q, rq, bio); 1581 if (ret) 1582 break; 1583 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1584 ret = bio_attempt_front_merge(q, rq, bio); 1585 if (ret) 1586 break; 1587 } 1588 } 1589 out: 1590 return ret; 1591 } 1592 1593 void init_request_from_bio(struct request *req, struct bio *bio) 1594 { 1595 req->cmd_type = REQ_TYPE_FS; 1596 1597 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1598 if (bio->bi_rw & REQ_RAHEAD) 1599 req->cmd_flags |= REQ_FAILFAST_MASK; 1600 1601 req->errors = 0; 1602 req->__sector = bio->bi_iter.bi_sector; 1603 req->ioprio = bio_prio(bio); 1604 blk_rq_bio_prep(req->q, req, bio); 1605 } 1606 1607 static void blk_queue_bio(struct request_queue *q, struct bio *bio) 1608 { 1609 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1610 struct blk_plug *plug; 1611 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1612 struct request *req; 1613 unsigned int request_count = 0; 1614 1615 /* 1616 * low level driver can indicate that it wants pages above a 1617 * certain limit bounced to low memory (ie for highmem, or even 1618 * ISA dma in theory) 1619 */ 1620 blk_queue_bounce(q, &bio); 1621 1622 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1623 bio_endio(bio, -EIO); 1624 return; 1625 } 1626 1627 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1628 spin_lock_irq(q->queue_lock); 1629 where = ELEVATOR_INSERT_FLUSH; 1630 goto get_rq; 1631 } 1632 1633 /* 1634 * Check if we can merge with the plugged list before grabbing 1635 * any locks. 1636 */ 1637 if (!blk_queue_nomerges(q) && 1638 blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1639 return; 1640 1641 spin_lock_irq(q->queue_lock); 1642 1643 el_ret = elv_merge(q, &req, bio); 1644 if (el_ret == ELEVATOR_BACK_MERGE) { 1645 if (bio_attempt_back_merge(q, req, bio)) { 1646 elv_bio_merged(q, req, bio); 1647 if (!attempt_back_merge(q, req)) 1648 elv_merged_request(q, req, el_ret); 1649 goto out_unlock; 1650 } 1651 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1652 if (bio_attempt_front_merge(q, req, bio)) { 1653 elv_bio_merged(q, req, bio); 1654 if (!attempt_front_merge(q, req)) 1655 elv_merged_request(q, req, el_ret); 1656 goto out_unlock; 1657 } 1658 } 1659 1660 get_rq: 1661 /* 1662 * This sync check and mask will be re-done in init_request_from_bio(), 1663 * but we need to set it earlier to expose the sync flag to the 1664 * rq allocator and io schedulers. 1665 */ 1666 rw_flags = bio_data_dir(bio); 1667 if (sync) 1668 rw_flags |= REQ_SYNC; 1669 1670 /* 1671 * Grab a free request. This is might sleep but can not fail. 1672 * Returns with the queue unlocked. 1673 */ 1674 req = get_request(q, rw_flags, bio, GFP_NOIO); 1675 if (IS_ERR(req)) { 1676 bio_endio(bio, PTR_ERR(req)); /* @q is dead */ 1677 goto out_unlock; 1678 } 1679 1680 /* 1681 * After dropping the lock and possibly sleeping here, our request 1682 * may now be mergeable after it had proven unmergeable (above). 1683 * We don't worry about that case for efficiency. It won't happen 1684 * often, and the elevators are able to handle it. 1685 */ 1686 init_request_from_bio(req, bio); 1687 1688 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1689 req->cpu = raw_smp_processor_id(); 1690 1691 plug = current->plug; 1692 if (plug) { 1693 /* 1694 * If this is the first request added after a plug, fire 1695 * of a plug trace. 1696 */ 1697 if (!request_count) 1698 trace_block_plug(q); 1699 else { 1700 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1701 blk_flush_plug_list(plug, false); 1702 trace_block_plug(q); 1703 } 1704 } 1705 list_add_tail(&req->queuelist, &plug->list); 1706 blk_account_io_start(req, true); 1707 } else { 1708 spin_lock_irq(q->queue_lock); 1709 add_acct_request(q, req, where); 1710 __blk_run_queue(q); 1711 out_unlock: 1712 spin_unlock_irq(q->queue_lock); 1713 } 1714 } 1715 1716 /* 1717 * If bio->bi_dev is a partition, remap the location 1718 */ 1719 static inline void blk_partition_remap(struct bio *bio) 1720 { 1721 struct block_device *bdev = bio->bi_bdev; 1722 1723 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1724 struct hd_struct *p = bdev->bd_part; 1725 1726 bio->bi_iter.bi_sector += p->start_sect; 1727 bio->bi_bdev = bdev->bd_contains; 1728 1729 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1730 bdev->bd_dev, 1731 bio->bi_iter.bi_sector - p->start_sect); 1732 } 1733 } 1734 1735 static void handle_bad_sector(struct bio *bio) 1736 { 1737 char b[BDEVNAME_SIZE]; 1738 1739 printk(KERN_INFO "attempt to access beyond end of device\n"); 1740 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1741 bdevname(bio->bi_bdev, b), 1742 bio->bi_rw, 1743 (unsigned long long)bio_end_sector(bio), 1744 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1745 } 1746 1747 #ifdef CONFIG_FAIL_MAKE_REQUEST 1748 1749 static DECLARE_FAULT_ATTR(fail_make_request); 1750 1751 static int __init setup_fail_make_request(char *str) 1752 { 1753 return setup_fault_attr(&fail_make_request, str); 1754 } 1755 __setup("fail_make_request=", setup_fail_make_request); 1756 1757 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1758 { 1759 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1760 } 1761 1762 static int __init fail_make_request_debugfs(void) 1763 { 1764 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1765 NULL, &fail_make_request); 1766 1767 return PTR_ERR_OR_ZERO(dir); 1768 } 1769 1770 late_initcall(fail_make_request_debugfs); 1771 1772 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1773 1774 static inline bool should_fail_request(struct hd_struct *part, 1775 unsigned int bytes) 1776 { 1777 return false; 1778 } 1779 1780 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1781 1782 /* 1783 * Check whether this bio extends beyond the end of the device. 1784 */ 1785 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1786 { 1787 sector_t maxsector; 1788 1789 if (!nr_sectors) 1790 return 0; 1791 1792 /* Test device or partition size, when known. */ 1793 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1794 if (maxsector) { 1795 sector_t sector = bio->bi_iter.bi_sector; 1796 1797 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1798 /* 1799 * This may well happen - the kernel calls bread() 1800 * without checking the size of the device, e.g., when 1801 * mounting a device. 1802 */ 1803 handle_bad_sector(bio); 1804 return 1; 1805 } 1806 } 1807 1808 return 0; 1809 } 1810 1811 static noinline_for_stack bool 1812 generic_make_request_checks(struct bio *bio) 1813 { 1814 struct request_queue *q; 1815 int nr_sectors = bio_sectors(bio); 1816 int err = -EIO; 1817 char b[BDEVNAME_SIZE]; 1818 struct hd_struct *part; 1819 1820 might_sleep(); 1821 1822 if (bio_check_eod(bio, nr_sectors)) 1823 goto end_io; 1824 1825 q = bdev_get_queue(bio->bi_bdev); 1826 if (unlikely(!q)) { 1827 printk(KERN_ERR 1828 "generic_make_request: Trying to access " 1829 "nonexistent block-device %s (%Lu)\n", 1830 bdevname(bio->bi_bdev, b), 1831 (long long) bio->bi_iter.bi_sector); 1832 goto end_io; 1833 } 1834 1835 if (likely(bio_is_rw(bio) && 1836 nr_sectors > queue_max_hw_sectors(q))) { 1837 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1838 bdevname(bio->bi_bdev, b), 1839 bio_sectors(bio), 1840 queue_max_hw_sectors(q)); 1841 goto end_io; 1842 } 1843 1844 part = bio->bi_bdev->bd_part; 1845 if (should_fail_request(part, bio->bi_iter.bi_size) || 1846 should_fail_request(&part_to_disk(part)->part0, 1847 bio->bi_iter.bi_size)) 1848 goto end_io; 1849 1850 /* 1851 * If this device has partitions, remap block n 1852 * of partition p to block n+start(p) of the disk. 1853 */ 1854 blk_partition_remap(bio); 1855 1856 if (bio_check_eod(bio, nr_sectors)) 1857 goto end_io; 1858 1859 /* 1860 * Filter flush bio's early so that make_request based 1861 * drivers without flush support don't have to worry 1862 * about them. 1863 */ 1864 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1865 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1866 if (!nr_sectors) { 1867 err = 0; 1868 goto end_io; 1869 } 1870 } 1871 1872 if ((bio->bi_rw & REQ_DISCARD) && 1873 (!blk_queue_discard(q) || 1874 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1875 err = -EOPNOTSUPP; 1876 goto end_io; 1877 } 1878 1879 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1880 err = -EOPNOTSUPP; 1881 goto end_io; 1882 } 1883 1884 /* 1885 * Various block parts want %current->io_context and lazy ioc 1886 * allocation ends up trading a lot of pain for a small amount of 1887 * memory. Just allocate it upfront. This may fail and block 1888 * layer knows how to live with it. 1889 */ 1890 create_io_context(GFP_ATOMIC, q->node); 1891 1892 if (blk_throtl_bio(q, bio)) 1893 return false; /* throttled, will be resubmitted later */ 1894 1895 trace_block_bio_queue(q, bio); 1896 return true; 1897 1898 end_io: 1899 bio_endio(bio, err); 1900 return false; 1901 } 1902 1903 /** 1904 * generic_make_request - hand a buffer to its device driver for I/O 1905 * @bio: The bio describing the location in memory and on the device. 1906 * 1907 * generic_make_request() is used to make I/O requests of block 1908 * devices. It is passed a &struct bio, which describes the I/O that needs 1909 * to be done. 1910 * 1911 * generic_make_request() does not return any status. The 1912 * success/failure status of the request, along with notification of 1913 * completion, is delivered asynchronously through the bio->bi_end_io 1914 * function described (one day) else where. 1915 * 1916 * The caller of generic_make_request must make sure that bi_io_vec 1917 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1918 * set to describe the device address, and the 1919 * bi_end_io and optionally bi_private are set to describe how 1920 * completion notification should be signaled. 1921 * 1922 * generic_make_request and the drivers it calls may use bi_next if this 1923 * bio happens to be merged with someone else, and may resubmit the bio to 1924 * a lower device by calling into generic_make_request recursively, which 1925 * means the bio should NOT be touched after the call to ->make_request_fn. 1926 */ 1927 void generic_make_request(struct bio *bio) 1928 { 1929 struct bio_list bio_list_on_stack; 1930 1931 if (!generic_make_request_checks(bio)) 1932 return; 1933 1934 /* 1935 * We only want one ->make_request_fn to be active at a time, else 1936 * stack usage with stacked devices could be a problem. So use 1937 * current->bio_list to keep a list of requests submited by a 1938 * make_request_fn function. current->bio_list is also used as a 1939 * flag to say if generic_make_request is currently active in this 1940 * task or not. If it is NULL, then no make_request is active. If 1941 * it is non-NULL, then a make_request is active, and new requests 1942 * should be added at the tail 1943 */ 1944 if (current->bio_list) { 1945 bio_list_add(current->bio_list, bio); 1946 return; 1947 } 1948 1949 /* following loop may be a bit non-obvious, and so deserves some 1950 * explanation. 1951 * Before entering the loop, bio->bi_next is NULL (as all callers 1952 * ensure that) so we have a list with a single bio. 1953 * We pretend that we have just taken it off a longer list, so 1954 * we assign bio_list to a pointer to the bio_list_on_stack, 1955 * thus initialising the bio_list of new bios to be 1956 * added. ->make_request() may indeed add some more bios 1957 * through a recursive call to generic_make_request. If it 1958 * did, we find a non-NULL value in bio_list and re-enter the loop 1959 * from the top. In this case we really did just take the bio 1960 * of the top of the list (no pretending) and so remove it from 1961 * bio_list, and call into ->make_request() again. 1962 */ 1963 BUG_ON(bio->bi_next); 1964 bio_list_init(&bio_list_on_stack); 1965 current->bio_list = &bio_list_on_stack; 1966 do { 1967 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1968 1969 q->make_request_fn(q, bio); 1970 1971 bio = bio_list_pop(current->bio_list); 1972 } while (bio); 1973 current->bio_list = NULL; /* deactivate */ 1974 } 1975 EXPORT_SYMBOL(generic_make_request); 1976 1977 /** 1978 * submit_bio - submit a bio to the block device layer for I/O 1979 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1980 * @bio: The &struct bio which describes the I/O 1981 * 1982 * submit_bio() is very similar in purpose to generic_make_request(), and 1983 * uses that function to do most of the work. Both are fairly rough 1984 * interfaces; @bio must be presetup and ready for I/O. 1985 * 1986 */ 1987 void submit_bio(int rw, struct bio *bio) 1988 { 1989 bio->bi_rw |= rw; 1990 1991 /* 1992 * If it's a regular read/write or a barrier with data attached, 1993 * go through the normal accounting stuff before submission. 1994 */ 1995 if (bio_has_data(bio)) { 1996 unsigned int count; 1997 1998 if (unlikely(rw & REQ_WRITE_SAME)) 1999 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2000 else 2001 count = bio_sectors(bio); 2002 2003 if (rw & WRITE) { 2004 count_vm_events(PGPGOUT, count); 2005 } else { 2006 task_io_account_read(bio->bi_iter.bi_size); 2007 count_vm_events(PGPGIN, count); 2008 } 2009 2010 if (unlikely(block_dump)) { 2011 char b[BDEVNAME_SIZE]; 2012 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2013 current->comm, task_pid_nr(current), 2014 (rw & WRITE) ? "WRITE" : "READ", 2015 (unsigned long long)bio->bi_iter.bi_sector, 2016 bdevname(bio->bi_bdev, b), 2017 count); 2018 } 2019 } 2020 2021 generic_make_request(bio); 2022 } 2023 EXPORT_SYMBOL(submit_bio); 2024 2025 /** 2026 * blk_rq_check_limits - Helper function to check a request for the queue limit 2027 * @q: the queue 2028 * @rq: the request being checked 2029 * 2030 * Description: 2031 * @rq may have been made based on weaker limitations of upper-level queues 2032 * in request stacking drivers, and it may violate the limitation of @q. 2033 * Since the block layer and the underlying device driver trust @rq 2034 * after it is inserted to @q, it should be checked against @q before 2035 * the insertion using this generic function. 2036 * 2037 * This function should also be useful for request stacking drivers 2038 * in some cases below, so export this function. 2039 * Request stacking drivers like request-based dm may change the queue 2040 * limits while requests are in the queue (e.g. dm's table swapping). 2041 * Such request stacking drivers should check those requests against 2042 * the new queue limits again when they dispatch those requests, 2043 * although such checkings are also done against the old queue limits 2044 * when submitting requests. 2045 */ 2046 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 2047 { 2048 if (!rq_mergeable(rq)) 2049 return 0; 2050 2051 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 2052 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2053 return -EIO; 2054 } 2055 2056 /* 2057 * queue's settings related to segment counting like q->bounce_pfn 2058 * may differ from that of other stacking queues. 2059 * Recalculate it to check the request correctly on this queue's 2060 * limitation. 2061 */ 2062 blk_recalc_rq_segments(rq); 2063 if (rq->nr_phys_segments > queue_max_segments(q)) { 2064 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2065 return -EIO; 2066 } 2067 2068 return 0; 2069 } 2070 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 2071 2072 /** 2073 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2074 * @q: the queue to submit the request 2075 * @rq: the request being queued 2076 */ 2077 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2078 { 2079 unsigned long flags; 2080 int where = ELEVATOR_INSERT_BACK; 2081 2082 if (blk_rq_check_limits(q, rq)) 2083 return -EIO; 2084 2085 if (rq->rq_disk && 2086 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2087 return -EIO; 2088 2089 if (q->mq_ops) { 2090 if (blk_queue_io_stat(q)) 2091 blk_account_io_start(rq, true); 2092 blk_mq_insert_request(rq, false, true, true); 2093 return 0; 2094 } 2095 2096 spin_lock_irqsave(q->queue_lock, flags); 2097 if (unlikely(blk_queue_dying(q))) { 2098 spin_unlock_irqrestore(q->queue_lock, flags); 2099 return -ENODEV; 2100 } 2101 2102 /* 2103 * Submitting request must be dequeued before calling this function 2104 * because it will be linked to another request_queue 2105 */ 2106 BUG_ON(blk_queued_rq(rq)); 2107 2108 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 2109 where = ELEVATOR_INSERT_FLUSH; 2110 2111 add_acct_request(q, rq, where); 2112 if (where == ELEVATOR_INSERT_FLUSH) 2113 __blk_run_queue(q); 2114 spin_unlock_irqrestore(q->queue_lock, flags); 2115 2116 return 0; 2117 } 2118 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2119 2120 /** 2121 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2122 * @rq: request to examine 2123 * 2124 * Description: 2125 * A request could be merge of IOs which require different failure 2126 * handling. This function determines the number of bytes which 2127 * can be failed from the beginning of the request without 2128 * crossing into area which need to be retried further. 2129 * 2130 * Return: 2131 * The number of bytes to fail. 2132 * 2133 * Context: 2134 * queue_lock must be held. 2135 */ 2136 unsigned int blk_rq_err_bytes(const struct request *rq) 2137 { 2138 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2139 unsigned int bytes = 0; 2140 struct bio *bio; 2141 2142 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2143 return blk_rq_bytes(rq); 2144 2145 /* 2146 * Currently the only 'mixing' which can happen is between 2147 * different fastfail types. We can safely fail portions 2148 * which have all the failfast bits that the first one has - 2149 * the ones which are at least as eager to fail as the first 2150 * one. 2151 */ 2152 for (bio = rq->bio; bio; bio = bio->bi_next) { 2153 if ((bio->bi_rw & ff) != ff) 2154 break; 2155 bytes += bio->bi_iter.bi_size; 2156 } 2157 2158 /* this could lead to infinite loop */ 2159 BUG_ON(blk_rq_bytes(rq) && !bytes); 2160 return bytes; 2161 } 2162 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2163 2164 void blk_account_io_completion(struct request *req, unsigned int bytes) 2165 { 2166 if (blk_do_io_stat(req)) { 2167 const int rw = rq_data_dir(req); 2168 struct hd_struct *part; 2169 int cpu; 2170 2171 cpu = part_stat_lock(); 2172 part = req->part; 2173 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2174 part_stat_unlock(); 2175 } 2176 } 2177 2178 void blk_account_io_done(struct request *req) 2179 { 2180 /* 2181 * Account IO completion. flush_rq isn't accounted as a 2182 * normal IO on queueing nor completion. Accounting the 2183 * containing request is enough. 2184 */ 2185 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2186 unsigned long duration = jiffies - req->start_time; 2187 const int rw = rq_data_dir(req); 2188 struct hd_struct *part; 2189 int cpu; 2190 2191 cpu = part_stat_lock(); 2192 part = req->part; 2193 2194 part_stat_inc(cpu, part, ios[rw]); 2195 part_stat_add(cpu, part, ticks[rw], duration); 2196 part_round_stats(cpu, part); 2197 part_dec_in_flight(part, rw); 2198 2199 hd_struct_put(part); 2200 part_stat_unlock(); 2201 } 2202 } 2203 2204 #ifdef CONFIG_PM 2205 /* 2206 * Don't process normal requests when queue is suspended 2207 * or in the process of suspending/resuming 2208 */ 2209 static struct request *blk_pm_peek_request(struct request_queue *q, 2210 struct request *rq) 2211 { 2212 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2213 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2214 return NULL; 2215 else 2216 return rq; 2217 } 2218 #else 2219 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2220 struct request *rq) 2221 { 2222 return rq; 2223 } 2224 #endif 2225 2226 void blk_account_io_start(struct request *rq, bool new_io) 2227 { 2228 struct hd_struct *part; 2229 int rw = rq_data_dir(rq); 2230 int cpu; 2231 2232 if (!blk_do_io_stat(rq)) 2233 return; 2234 2235 cpu = part_stat_lock(); 2236 2237 if (!new_io) { 2238 part = rq->part; 2239 part_stat_inc(cpu, part, merges[rw]); 2240 } else { 2241 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2242 if (!hd_struct_try_get(part)) { 2243 /* 2244 * The partition is already being removed, 2245 * the request will be accounted on the disk only 2246 * 2247 * We take a reference on disk->part0 although that 2248 * partition will never be deleted, so we can treat 2249 * it as any other partition. 2250 */ 2251 part = &rq->rq_disk->part0; 2252 hd_struct_get(part); 2253 } 2254 part_round_stats(cpu, part); 2255 part_inc_in_flight(part, rw); 2256 rq->part = part; 2257 } 2258 2259 part_stat_unlock(); 2260 } 2261 2262 /** 2263 * blk_peek_request - peek at the top of a request queue 2264 * @q: request queue to peek at 2265 * 2266 * Description: 2267 * Return the request at the top of @q. The returned request 2268 * should be started using blk_start_request() before LLD starts 2269 * processing it. 2270 * 2271 * Return: 2272 * Pointer to the request at the top of @q if available. Null 2273 * otherwise. 2274 * 2275 * Context: 2276 * queue_lock must be held. 2277 */ 2278 struct request *blk_peek_request(struct request_queue *q) 2279 { 2280 struct request *rq; 2281 int ret; 2282 2283 while ((rq = __elv_next_request(q)) != NULL) { 2284 2285 rq = blk_pm_peek_request(q, rq); 2286 if (!rq) 2287 break; 2288 2289 if (!(rq->cmd_flags & REQ_STARTED)) { 2290 /* 2291 * This is the first time the device driver 2292 * sees this request (possibly after 2293 * requeueing). Notify IO scheduler. 2294 */ 2295 if (rq->cmd_flags & REQ_SORTED) 2296 elv_activate_rq(q, rq); 2297 2298 /* 2299 * just mark as started even if we don't start 2300 * it, a request that has been delayed should 2301 * not be passed by new incoming requests 2302 */ 2303 rq->cmd_flags |= REQ_STARTED; 2304 trace_block_rq_issue(q, rq); 2305 } 2306 2307 if (!q->boundary_rq || q->boundary_rq == rq) { 2308 q->end_sector = rq_end_sector(rq); 2309 q->boundary_rq = NULL; 2310 } 2311 2312 if (rq->cmd_flags & REQ_DONTPREP) 2313 break; 2314 2315 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2316 /* 2317 * make sure space for the drain appears we 2318 * know we can do this because max_hw_segments 2319 * has been adjusted to be one fewer than the 2320 * device can handle 2321 */ 2322 rq->nr_phys_segments++; 2323 } 2324 2325 if (!q->prep_rq_fn) 2326 break; 2327 2328 ret = q->prep_rq_fn(q, rq); 2329 if (ret == BLKPREP_OK) { 2330 break; 2331 } else if (ret == BLKPREP_DEFER) { 2332 /* 2333 * the request may have been (partially) prepped. 2334 * we need to keep this request in the front to 2335 * avoid resource deadlock. REQ_STARTED will 2336 * prevent other fs requests from passing this one. 2337 */ 2338 if (q->dma_drain_size && blk_rq_bytes(rq) && 2339 !(rq->cmd_flags & REQ_DONTPREP)) { 2340 /* 2341 * remove the space for the drain we added 2342 * so that we don't add it again 2343 */ 2344 --rq->nr_phys_segments; 2345 } 2346 2347 rq = NULL; 2348 break; 2349 } else if (ret == BLKPREP_KILL) { 2350 rq->cmd_flags |= REQ_QUIET; 2351 /* 2352 * Mark this request as started so we don't trigger 2353 * any debug logic in the end I/O path. 2354 */ 2355 blk_start_request(rq); 2356 __blk_end_request_all(rq, -EIO); 2357 } else { 2358 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2359 break; 2360 } 2361 } 2362 2363 return rq; 2364 } 2365 EXPORT_SYMBOL(blk_peek_request); 2366 2367 void blk_dequeue_request(struct request *rq) 2368 { 2369 struct request_queue *q = rq->q; 2370 2371 BUG_ON(list_empty(&rq->queuelist)); 2372 BUG_ON(ELV_ON_HASH(rq)); 2373 2374 list_del_init(&rq->queuelist); 2375 2376 /* 2377 * the time frame between a request being removed from the lists 2378 * and to it is freed is accounted as io that is in progress at 2379 * the driver side. 2380 */ 2381 if (blk_account_rq(rq)) { 2382 q->in_flight[rq_is_sync(rq)]++; 2383 set_io_start_time_ns(rq); 2384 } 2385 } 2386 2387 /** 2388 * blk_start_request - start request processing on the driver 2389 * @req: request to dequeue 2390 * 2391 * Description: 2392 * Dequeue @req and start timeout timer on it. This hands off the 2393 * request to the driver. 2394 * 2395 * Block internal functions which don't want to start timer should 2396 * call blk_dequeue_request(). 2397 * 2398 * Context: 2399 * queue_lock must be held. 2400 */ 2401 void blk_start_request(struct request *req) 2402 { 2403 blk_dequeue_request(req); 2404 2405 /* 2406 * We are now handing the request to the hardware, initialize 2407 * resid_len to full count and add the timeout handler. 2408 */ 2409 req->resid_len = blk_rq_bytes(req); 2410 if (unlikely(blk_bidi_rq(req))) 2411 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2412 2413 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2414 blk_add_timer(req); 2415 } 2416 EXPORT_SYMBOL(blk_start_request); 2417 2418 /** 2419 * blk_fetch_request - fetch a request from a request queue 2420 * @q: request queue to fetch a request from 2421 * 2422 * Description: 2423 * Return the request at the top of @q. The request is started on 2424 * return and LLD can start processing it immediately. 2425 * 2426 * Return: 2427 * Pointer to the request at the top of @q if available. Null 2428 * otherwise. 2429 * 2430 * Context: 2431 * queue_lock must be held. 2432 */ 2433 struct request *blk_fetch_request(struct request_queue *q) 2434 { 2435 struct request *rq; 2436 2437 rq = blk_peek_request(q); 2438 if (rq) 2439 blk_start_request(rq); 2440 return rq; 2441 } 2442 EXPORT_SYMBOL(blk_fetch_request); 2443 2444 /** 2445 * blk_update_request - Special helper function for request stacking drivers 2446 * @req: the request being processed 2447 * @error: %0 for success, < %0 for error 2448 * @nr_bytes: number of bytes to complete @req 2449 * 2450 * Description: 2451 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2452 * the request structure even if @req doesn't have leftover. 2453 * If @req has leftover, sets it up for the next range of segments. 2454 * 2455 * This special helper function is only for request stacking drivers 2456 * (e.g. request-based dm) so that they can handle partial completion. 2457 * Actual device drivers should use blk_end_request instead. 2458 * 2459 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2460 * %false return from this function. 2461 * 2462 * Return: 2463 * %false - this request doesn't have any more data 2464 * %true - this request has more data 2465 **/ 2466 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2467 { 2468 int total_bytes; 2469 2470 trace_block_rq_complete(req->q, req, nr_bytes); 2471 2472 if (!req->bio) 2473 return false; 2474 2475 /* 2476 * For fs requests, rq is just carrier of independent bio's 2477 * and each partial completion should be handled separately. 2478 * Reset per-request error on each partial completion. 2479 * 2480 * TODO: tj: This is too subtle. It would be better to let 2481 * low level drivers do what they see fit. 2482 */ 2483 if (req->cmd_type == REQ_TYPE_FS) 2484 req->errors = 0; 2485 2486 if (error && req->cmd_type == REQ_TYPE_FS && 2487 !(req->cmd_flags & REQ_QUIET)) { 2488 char *error_type; 2489 2490 switch (error) { 2491 case -ENOLINK: 2492 error_type = "recoverable transport"; 2493 break; 2494 case -EREMOTEIO: 2495 error_type = "critical target"; 2496 break; 2497 case -EBADE: 2498 error_type = "critical nexus"; 2499 break; 2500 case -ETIMEDOUT: 2501 error_type = "timeout"; 2502 break; 2503 case -ENOSPC: 2504 error_type = "critical space allocation"; 2505 break; 2506 case -ENODATA: 2507 error_type = "critical medium"; 2508 break; 2509 case -EIO: 2510 default: 2511 error_type = "I/O"; 2512 break; 2513 } 2514 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2515 __func__, error_type, req->rq_disk ? 2516 req->rq_disk->disk_name : "?", 2517 (unsigned long long)blk_rq_pos(req)); 2518 2519 } 2520 2521 blk_account_io_completion(req, nr_bytes); 2522 2523 total_bytes = 0; 2524 while (req->bio) { 2525 struct bio *bio = req->bio; 2526 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2527 2528 if (bio_bytes == bio->bi_iter.bi_size) 2529 req->bio = bio->bi_next; 2530 2531 req_bio_endio(req, bio, bio_bytes, error); 2532 2533 total_bytes += bio_bytes; 2534 nr_bytes -= bio_bytes; 2535 2536 if (!nr_bytes) 2537 break; 2538 } 2539 2540 /* 2541 * completely done 2542 */ 2543 if (!req->bio) { 2544 /* 2545 * Reset counters so that the request stacking driver 2546 * can find how many bytes remain in the request 2547 * later. 2548 */ 2549 req->__data_len = 0; 2550 return false; 2551 } 2552 2553 req->__data_len -= total_bytes; 2554 2555 /* update sector only for requests with clear definition of sector */ 2556 if (req->cmd_type == REQ_TYPE_FS) 2557 req->__sector += total_bytes >> 9; 2558 2559 /* mixed attributes always follow the first bio */ 2560 if (req->cmd_flags & REQ_MIXED_MERGE) { 2561 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2562 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2563 } 2564 2565 /* 2566 * If total number of sectors is less than the first segment 2567 * size, something has gone terribly wrong. 2568 */ 2569 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2570 blk_dump_rq_flags(req, "request botched"); 2571 req->__data_len = blk_rq_cur_bytes(req); 2572 } 2573 2574 /* recalculate the number of segments */ 2575 blk_recalc_rq_segments(req); 2576 2577 return true; 2578 } 2579 EXPORT_SYMBOL_GPL(blk_update_request); 2580 2581 static bool blk_update_bidi_request(struct request *rq, int error, 2582 unsigned int nr_bytes, 2583 unsigned int bidi_bytes) 2584 { 2585 if (blk_update_request(rq, error, nr_bytes)) 2586 return true; 2587 2588 /* Bidi request must be completed as a whole */ 2589 if (unlikely(blk_bidi_rq(rq)) && 2590 blk_update_request(rq->next_rq, error, bidi_bytes)) 2591 return true; 2592 2593 if (blk_queue_add_random(rq->q)) 2594 add_disk_randomness(rq->rq_disk); 2595 2596 return false; 2597 } 2598 2599 /** 2600 * blk_unprep_request - unprepare a request 2601 * @req: the request 2602 * 2603 * This function makes a request ready for complete resubmission (or 2604 * completion). It happens only after all error handling is complete, 2605 * so represents the appropriate moment to deallocate any resources 2606 * that were allocated to the request in the prep_rq_fn. The queue 2607 * lock is held when calling this. 2608 */ 2609 void blk_unprep_request(struct request *req) 2610 { 2611 struct request_queue *q = req->q; 2612 2613 req->cmd_flags &= ~REQ_DONTPREP; 2614 if (q->unprep_rq_fn) 2615 q->unprep_rq_fn(q, req); 2616 } 2617 EXPORT_SYMBOL_GPL(blk_unprep_request); 2618 2619 /* 2620 * queue lock must be held 2621 */ 2622 void blk_finish_request(struct request *req, int error) 2623 { 2624 if (req->cmd_flags & REQ_QUEUED) 2625 blk_queue_end_tag(req->q, req); 2626 2627 BUG_ON(blk_queued_rq(req)); 2628 2629 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2630 laptop_io_completion(&req->q->backing_dev_info); 2631 2632 blk_delete_timer(req); 2633 2634 if (req->cmd_flags & REQ_DONTPREP) 2635 blk_unprep_request(req); 2636 2637 blk_account_io_done(req); 2638 2639 if (req->end_io) 2640 req->end_io(req, error); 2641 else { 2642 if (blk_bidi_rq(req)) 2643 __blk_put_request(req->next_rq->q, req->next_rq); 2644 2645 __blk_put_request(req->q, req); 2646 } 2647 } 2648 EXPORT_SYMBOL(blk_finish_request); 2649 2650 /** 2651 * blk_end_bidi_request - Complete a bidi request 2652 * @rq: the request to complete 2653 * @error: %0 for success, < %0 for error 2654 * @nr_bytes: number of bytes to complete @rq 2655 * @bidi_bytes: number of bytes to complete @rq->next_rq 2656 * 2657 * Description: 2658 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2659 * Drivers that supports bidi can safely call this member for any 2660 * type of request, bidi or uni. In the later case @bidi_bytes is 2661 * just ignored. 2662 * 2663 * Return: 2664 * %false - we are done with this request 2665 * %true - still buffers pending for this request 2666 **/ 2667 static bool blk_end_bidi_request(struct request *rq, int error, 2668 unsigned int nr_bytes, unsigned int bidi_bytes) 2669 { 2670 struct request_queue *q = rq->q; 2671 unsigned long flags; 2672 2673 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2674 return true; 2675 2676 spin_lock_irqsave(q->queue_lock, flags); 2677 blk_finish_request(rq, error); 2678 spin_unlock_irqrestore(q->queue_lock, flags); 2679 2680 return false; 2681 } 2682 2683 /** 2684 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2685 * @rq: the request to complete 2686 * @error: %0 for success, < %0 for error 2687 * @nr_bytes: number of bytes to complete @rq 2688 * @bidi_bytes: number of bytes to complete @rq->next_rq 2689 * 2690 * Description: 2691 * Identical to blk_end_bidi_request() except that queue lock is 2692 * assumed to be locked on entry and remains so on return. 2693 * 2694 * Return: 2695 * %false - we are done with this request 2696 * %true - still buffers pending for this request 2697 **/ 2698 bool __blk_end_bidi_request(struct request *rq, int error, 2699 unsigned int nr_bytes, unsigned int bidi_bytes) 2700 { 2701 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2702 return true; 2703 2704 blk_finish_request(rq, error); 2705 2706 return false; 2707 } 2708 2709 /** 2710 * blk_end_request - Helper function for drivers to complete the request. 2711 * @rq: the request being processed 2712 * @error: %0 for success, < %0 for error 2713 * @nr_bytes: number of bytes to complete 2714 * 2715 * Description: 2716 * Ends I/O on a number of bytes attached to @rq. 2717 * If @rq has leftover, sets it up for the next range of segments. 2718 * 2719 * Return: 2720 * %false - we are done with this request 2721 * %true - still buffers pending for this request 2722 **/ 2723 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2724 { 2725 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2726 } 2727 EXPORT_SYMBOL(blk_end_request); 2728 2729 /** 2730 * blk_end_request_all - Helper function for drives to finish the request. 2731 * @rq: the request to finish 2732 * @error: %0 for success, < %0 for error 2733 * 2734 * Description: 2735 * Completely finish @rq. 2736 */ 2737 void blk_end_request_all(struct request *rq, int error) 2738 { 2739 bool pending; 2740 unsigned int bidi_bytes = 0; 2741 2742 if (unlikely(blk_bidi_rq(rq))) 2743 bidi_bytes = blk_rq_bytes(rq->next_rq); 2744 2745 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2746 BUG_ON(pending); 2747 } 2748 EXPORT_SYMBOL(blk_end_request_all); 2749 2750 /** 2751 * blk_end_request_cur - Helper function to finish the current request chunk. 2752 * @rq: the request to finish the current chunk for 2753 * @error: %0 for success, < %0 for error 2754 * 2755 * Description: 2756 * Complete the current consecutively mapped chunk from @rq. 2757 * 2758 * Return: 2759 * %false - we are done with this request 2760 * %true - still buffers pending for this request 2761 */ 2762 bool blk_end_request_cur(struct request *rq, int error) 2763 { 2764 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2765 } 2766 EXPORT_SYMBOL(blk_end_request_cur); 2767 2768 /** 2769 * blk_end_request_err - Finish a request till the next failure boundary. 2770 * @rq: the request to finish till the next failure boundary for 2771 * @error: must be negative errno 2772 * 2773 * Description: 2774 * Complete @rq till the next failure boundary. 2775 * 2776 * Return: 2777 * %false - we are done with this request 2778 * %true - still buffers pending for this request 2779 */ 2780 bool blk_end_request_err(struct request *rq, int error) 2781 { 2782 WARN_ON(error >= 0); 2783 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2784 } 2785 EXPORT_SYMBOL_GPL(blk_end_request_err); 2786 2787 /** 2788 * __blk_end_request - Helper function for drivers to complete the request. 2789 * @rq: the request being processed 2790 * @error: %0 for success, < %0 for error 2791 * @nr_bytes: number of bytes to complete 2792 * 2793 * Description: 2794 * Must be called with queue lock held unlike blk_end_request(). 2795 * 2796 * Return: 2797 * %false - we are done with this request 2798 * %true - still buffers pending for this request 2799 **/ 2800 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2801 { 2802 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2803 } 2804 EXPORT_SYMBOL(__blk_end_request); 2805 2806 /** 2807 * __blk_end_request_all - Helper function for drives to finish the request. 2808 * @rq: the request to finish 2809 * @error: %0 for success, < %0 for error 2810 * 2811 * Description: 2812 * Completely finish @rq. Must be called with queue lock held. 2813 */ 2814 void __blk_end_request_all(struct request *rq, int error) 2815 { 2816 bool pending; 2817 unsigned int bidi_bytes = 0; 2818 2819 if (unlikely(blk_bidi_rq(rq))) 2820 bidi_bytes = blk_rq_bytes(rq->next_rq); 2821 2822 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2823 BUG_ON(pending); 2824 } 2825 EXPORT_SYMBOL(__blk_end_request_all); 2826 2827 /** 2828 * __blk_end_request_cur - Helper function to finish the current request chunk. 2829 * @rq: the request to finish the current chunk for 2830 * @error: %0 for success, < %0 for error 2831 * 2832 * Description: 2833 * Complete the current consecutively mapped chunk from @rq. Must 2834 * be called with queue lock held. 2835 * 2836 * Return: 2837 * %false - we are done with this request 2838 * %true - still buffers pending for this request 2839 */ 2840 bool __blk_end_request_cur(struct request *rq, int error) 2841 { 2842 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2843 } 2844 EXPORT_SYMBOL(__blk_end_request_cur); 2845 2846 /** 2847 * __blk_end_request_err - Finish a request till the next failure boundary. 2848 * @rq: the request to finish till the next failure boundary for 2849 * @error: must be negative errno 2850 * 2851 * Description: 2852 * Complete @rq till the next failure boundary. Must be called 2853 * with queue lock held. 2854 * 2855 * Return: 2856 * %false - we are done with this request 2857 * %true - still buffers pending for this request 2858 */ 2859 bool __blk_end_request_err(struct request *rq, int error) 2860 { 2861 WARN_ON(error >= 0); 2862 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2863 } 2864 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2865 2866 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2867 struct bio *bio) 2868 { 2869 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2870 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2871 2872 if (bio_has_data(bio)) 2873 rq->nr_phys_segments = bio_phys_segments(q, bio); 2874 2875 rq->__data_len = bio->bi_iter.bi_size; 2876 rq->bio = rq->biotail = bio; 2877 2878 if (bio->bi_bdev) 2879 rq->rq_disk = bio->bi_bdev->bd_disk; 2880 } 2881 2882 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2883 /** 2884 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2885 * @rq: the request to be flushed 2886 * 2887 * Description: 2888 * Flush all pages in @rq. 2889 */ 2890 void rq_flush_dcache_pages(struct request *rq) 2891 { 2892 struct req_iterator iter; 2893 struct bio_vec bvec; 2894 2895 rq_for_each_segment(bvec, rq, iter) 2896 flush_dcache_page(bvec.bv_page); 2897 } 2898 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2899 #endif 2900 2901 /** 2902 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2903 * @q : the queue of the device being checked 2904 * 2905 * Description: 2906 * Check if underlying low-level drivers of a device are busy. 2907 * If the drivers want to export their busy state, they must set own 2908 * exporting function using blk_queue_lld_busy() first. 2909 * 2910 * Basically, this function is used only by request stacking drivers 2911 * to stop dispatching requests to underlying devices when underlying 2912 * devices are busy. This behavior helps more I/O merging on the queue 2913 * of the request stacking driver and prevents I/O throughput regression 2914 * on burst I/O load. 2915 * 2916 * Return: 2917 * 0 - Not busy (The request stacking driver should dispatch request) 2918 * 1 - Busy (The request stacking driver should stop dispatching request) 2919 */ 2920 int blk_lld_busy(struct request_queue *q) 2921 { 2922 if (q->lld_busy_fn) 2923 return q->lld_busy_fn(q); 2924 2925 return 0; 2926 } 2927 EXPORT_SYMBOL_GPL(blk_lld_busy); 2928 2929 /** 2930 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2931 * @rq: the clone request to be cleaned up 2932 * 2933 * Description: 2934 * Free all bios in @rq for a cloned request. 2935 */ 2936 void blk_rq_unprep_clone(struct request *rq) 2937 { 2938 struct bio *bio; 2939 2940 while ((bio = rq->bio) != NULL) { 2941 rq->bio = bio->bi_next; 2942 2943 bio_put(bio); 2944 } 2945 } 2946 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2947 2948 /* 2949 * Copy attributes of the original request to the clone request. 2950 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 2951 */ 2952 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2953 { 2954 dst->cpu = src->cpu; 2955 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2956 dst->cmd_type = src->cmd_type; 2957 dst->__sector = blk_rq_pos(src); 2958 dst->__data_len = blk_rq_bytes(src); 2959 dst->nr_phys_segments = src->nr_phys_segments; 2960 dst->ioprio = src->ioprio; 2961 dst->extra_len = src->extra_len; 2962 } 2963 2964 /** 2965 * blk_rq_prep_clone - Helper function to setup clone request 2966 * @rq: the request to be setup 2967 * @rq_src: original request to be cloned 2968 * @bs: bio_set that bios for clone are allocated from 2969 * @gfp_mask: memory allocation mask for bio 2970 * @bio_ctr: setup function to be called for each clone bio. 2971 * Returns %0 for success, non %0 for failure. 2972 * @data: private data to be passed to @bio_ctr 2973 * 2974 * Description: 2975 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2976 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 2977 * are not copied, and copying such parts is the caller's responsibility. 2978 * Also, pages which the original bios are pointing to are not copied 2979 * and the cloned bios just point same pages. 2980 * So cloned bios must be completed before original bios, which means 2981 * the caller must complete @rq before @rq_src. 2982 */ 2983 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2984 struct bio_set *bs, gfp_t gfp_mask, 2985 int (*bio_ctr)(struct bio *, struct bio *, void *), 2986 void *data) 2987 { 2988 struct bio *bio, *bio_src; 2989 2990 if (!bs) 2991 bs = fs_bio_set; 2992 2993 __rq_for_each_bio(bio_src, rq_src) { 2994 bio = bio_clone_fast(bio_src, gfp_mask, bs); 2995 if (!bio) 2996 goto free_and_out; 2997 2998 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2999 goto free_and_out; 3000 3001 if (rq->bio) { 3002 rq->biotail->bi_next = bio; 3003 rq->biotail = bio; 3004 } else 3005 rq->bio = rq->biotail = bio; 3006 } 3007 3008 __blk_rq_prep_clone(rq, rq_src); 3009 3010 return 0; 3011 3012 free_and_out: 3013 if (bio) 3014 bio_put(bio); 3015 blk_rq_unprep_clone(rq); 3016 3017 return -ENOMEM; 3018 } 3019 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3020 3021 int kblockd_schedule_work(struct work_struct *work) 3022 { 3023 return queue_work(kblockd_workqueue, work); 3024 } 3025 EXPORT_SYMBOL(kblockd_schedule_work); 3026 3027 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3028 unsigned long delay) 3029 { 3030 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3031 } 3032 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3033 3034 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3035 unsigned long delay) 3036 { 3037 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3038 } 3039 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3040 3041 /** 3042 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3043 * @plug: The &struct blk_plug that needs to be initialized 3044 * 3045 * Description: 3046 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3047 * pending I/O should the task end up blocking between blk_start_plug() and 3048 * blk_finish_plug(). This is important from a performance perspective, but 3049 * also ensures that we don't deadlock. For instance, if the task is blocking 3050 * for a memory allocation, memory reclaim could end up wanting to free a 3051 * page belonging to that request that is currently residing in our private 3052 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3053 * this kind of deadlock. 3054 */ 3055 void blk_start_plug(struct blk_plug *plug) 3056 { 3057 struct task_struct *tsk = current; 3058 3059 /* 3060 * If this is a nested plug, don't actually assign it. 3061 */ 3062 if (tsk->plug) 3063 return; 3064 3065 INIT_LIST_HEAD(&plug->list); 3066 INIT_LIST_HEAD(&plug->mq_list); 3067 INIT_LIST_HEAD(&plug->cb_list); 3068 /* 3069 * Store ordering should not be needed here, since a potential 3070 * preempt will imply a full memory barrier 3071 */ 3072 tsk->plug = plug; 3073 } 3074 EXPORT_SYMBOL(blk_start_plug); 3075 3076 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3077 { 3078 struct request *rqa = container_of(a, struct request, queuelist); 3079 struct request *rqb = container_of(b, struct request, queuelist); 3080 3081 return !(rqa->q < rqb->q || 3082 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3083 } 3084 3085 /* 3086 * If 'from_schedule' is true, then postpone the dispatch of requests 3087 * until a safe kblockd context. We due this to avoid accidental big 3088 * additional stack usage in driver dispatch, in places where the originally 3089 * plugger did not intend it. 3090 */ 3091 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3092 bool from_schedule) 3093 __releases(q->queue_lock) 3094 { 3095 trace_block_unplug(q, depth, !from_schedule); 3096 3097 if (from_schedule) 3098 blk_run_queue_async(q); 3099 else 3100 __blk_run_queue(q); 3101 spin_unlock(q->queue_lock); 3102 } 3103 3104 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3105 { 3106 LIST_HEAD(callbacks); 3107 3108 while (!list_empty(&plug->cb_list)) { 3109 list_splice_init(&plug->cb_list, &callbacks); 3110 3111 while (!list_empty(&callbacks)) { 3112 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3113 struct blk_plug_cb, 3114 list); 3115 list_del(&cb->list); 3116 cb->callback(cb, from_schedule); 3117 } 3118 } 3119 } 3120 3121 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3122 int size) 3123 { 3124 struct blk_plug *plug = current->plug; 3125 struct blk_plug_cb *cb; 3126 3127 if (!plug) 3128 return NULL; 3129 3130 list_for_each_entry(cb, &plug->cb_list, list) 3131 if (cb->callback == unplug && cb->data == data) 3132 return cb; 3133 3134 /* Not currently on the callback list */ 3135 BUG_ON(size < sizeof(*cb)); 3136 cb = kzalloc(size, GFP_ATOMIC); 3137 if (cb) { 3138 cb->data = data; 3139 cb->callback = unplug; 3140 list_add(&cb->list, &plug->cb_list); 3141 } 3142 return cb; 3143 } 3144 EXPORT_SYMBOL(blk_check_plugged); 3145 3146 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3147 { 3148 struct request_queue *q; 3149 unsigned long flags; 3150 struct request *rq; 3151 LIST_HEAD(list); 3152 unsigned int depth; 3153 3154 flush_plug_callbacks(plug, from_schedule); 3155 3156 if (!list_empty(&plug->mq_list)) 3157 blk_mq_flush_plug_list(plug, from_schedule); 3158 3159 if (list_empty(&plug->list)) 3160 return; 3161 3162 list_splice_init(&plug->list, &list); 3163 3164 list_sort(NULL, &list, plug_rq_cmp); 3165 3166 q = NULL; 3167 depth = 0; 3168 3169 /* 3170 * Save and disable interrupts here, to avoid doing it for every 3171 * queue lock we have to take. 3172 */ 3173 local_irq_save(flags); 3174 while (!list_empty(&list)) { 3175 rq = list_entry_rq(list.next); 3176 list_del_init(&rq->queuelist); 3177 BUG_ON(!rq->q); 3178 if (rq->q != q) { 3179 /* 3180 * This drops the queue lock 3181 */ 3182 if (q) 3183 queue_unplugged(q, depth, from_schedule); 3184 q = rq->q; 3185 depth = 0; 3186 spin_lock(q->queue_lock); 3187 } 3188 3189 /* 3190 * Short-circuit if @q is dead 3191 */ 3192 if (unlikely(blk_queue_dying(q))) { 3193 __blk_end_request_all(rq, -ENODEV); 3194 continue; 3195 } 3196 3197 /* 3198 * rq is already accounted, so use raw insert 3199 */ 3200 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3201 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3202 else 3203 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3204 3205 depth++; 3206 } 3207 3208 /* 3209 * This drops the queue lock 3210 */ 3211 if (q) 3212 queue_unplugged(q, depth, from_schedule); 3213 3214 local_irq_restore(flags); 3215 } 3216 3217 void blk_finish_plug(struct blk_plug *plug) 3218 { 3219 if (plug != current->plug) 3220 return; 3221 blk_flush_plug_list(plug, false); 3222 3223 current->plug = NULL; 3224 } 3225 EXPORT_SYMBOL(blk_finish_plug); 3226 3227 #ifdef CONFIG_PM 3228 /** 3229 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3230 * @q: the queue of the device 3231 * @dev: the device the queue belongs to 3232 * 3233 * Description: 3234 * Initialize runtime-PM-related fields for @q and start auto suspend for 3235 * @dev. Drivers that want to take advantage of request-based runtime PM 3236 * should call this function after @dev has been initialized, and its 3237 * request queue @q has been allocated, and runtime PM for it can not happen 3238 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3239 * cases, driver should call this function before any I/O has taken place. 3240 * 3241 * This function takes care of setting up using auto suspend for the device, 3242 * the autosuspend delay is set to -1 to make runtime suspend impossible 3243 * until an updated value is either set by user or by driver. Drivers do 3244 * not need to touch other autosuspend settings. 3245 * 3246 * The block layer runtime PM is request based, so only works for drivers 3247 * that use request as their IO unit instead of those directly use bio's. 3248 */ 3249 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3250 { 3251 q->dev = dev; 3252 q->rpm_status = RPM_ACTIVE; 3253 pm_runtime_set_autosuspend_delay(q->dev, -1); 3254 pm_runtime_use_autosuspend(q->dev); 3255 } 3256 EXPORT_SYMBOL(blk_pm_runtime_init); 3257 3258 /** 3259 * blk_pre_runtime_suspend - Pre runtime suspend check 3260 * @q: the queue of the device 3261 * 3262 * Description: 3263 * This function will check if runtime suspend is allowed for the device 3264 * by examining if there are any requests pending in the queue. If there 3265 * are requests pending, the device can not be runtime suspended; otherwise, 3266 * the queue's status will be updated to SUSPENDING and the driver can 3267 * proceed to suspend the device. 3268 * 3269 * For the not allowed case, we mark last busy for the device so that 3270 * runtime PM core will try to autosuspend it some time later. 3271 * 3272 * This function should be called near the start of the device's 3273 * runtime_suspend callback. 3274 * 3275 * Return: 3276 * 0 - OK to runtime suspend the device 3277 * -EBUSY - Device should not be runtime suspended 3278 */ 3279 int blk_pre_runtime_suspend(struct request_queue *q) 3280 { 3281 int ret = 0; 3282 3283 spin_lock_irq(q->queue_lock); 3284 if (q->nr_pending) { 3285 ret = -EBUSY; 3286 pm_runtime_mark_last_busy(q->dev); 3287 } else { 3288 q->rpm_status = RPM_SUSPENDING; 3289 } 3290 spin_unlock_irq(q->queue_lock); 3291 return ret; 3292 } 3293 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3294 3295 /** 3296 * blk_post_runtime_suspend - Post runtime suspend processing 3297 * @q: the queue of the device 3298 * @err: return value of the device's runtime_suspend function 3299 * 3300 * Description: 3301 * Update the queue's runtime status according to the return value of the 3302 * device's runtime suspend function and mark last busy for the device so 3303 * that PM core will try to auto suspend the device at a later time. 3304 * 3305 * This function should be called near the end of the device's 3306 * runtime_suspend callback. 3307 */ 3308 void blk_post_runtime_suspend(struct request_queue *q, int err) 3309 { 3310 spin_lock_irq(q->queue_lock); 3311 if (!err) { 3312 q->rpm_status = RPM_SUSPENDED; 3313 } else { 3314 q->rpm_status = RPM_ACTIVE; 3315 pm_runtime_mark_last_busy(q->dev); 3316 } 3317 spin_unlock_irq(q->queue_lock); 3318 } 3319 EXPORT_SYMBOL(blk_post_runtime_suspend); 3320 3321 /** 3322 * blk_pre_runtime_resume - Pre runtime resume processing 3323 * @q: the queue of the device 3324 * 3325 * Description: 3326 * Update the queue's runtime status to RESUMING in preparation for the 3327 * runtime resume of the device. 3328 * 3329 * This function should be called near the start of the device's 3330 * runtime_resume callback. 3331 */ 3332 void blk_pre_runtime_resume(struct request_queue *q) 3333 { 3334 spin_lock_irq(q->queue_lock); 3335 q->rpm_status = RPM_RESUMING; 3336 spin_unlock_irq(q->queue_lock); 3337 } 3338 EXPORT_SYMBOL(blk_pre_runtime_resume); 3339 3340 /** 3341 * blk_post_runtime_resume - Post runtime resume processing 3342 * @q: the queue of the device 3343 * @err: return value of the device's runtime_resume function 3344 * 3345 * Description: 3346 * Update the queue's runtime status according to the return value of the 3347 * device's runtime_resume function. If it is successfully resumed, process 3348 * the requests that are queued into the device's queue when it is resuming 3349 * and then mark last busy and initiate autosuspend for it. 3350 * 3351 * This function should be called near the end of the device's 3352 * runtime_resume callback. 3353 */ 3354 void blk_post_runtime_resume(struct request_queue *q, int err) 3355 { 3356 spin_lock_irq(q->queue_lock); 3357 if (!err) { 3358 q->rpm_status = RPM_ACTIVE; 3359 __blk_run_queue(q); 3360 pm_runtime_mark_last_busy(q->dev); 3361 pm_request_autosuspend(q->dev); 3362 } else { 3363 q->rpm_status = RPM_SUSPENDED; 3364 } 3365 spin_unlock_irq(q->queue_lock); 3366 } 3367 EXPORT_SYMBOL(blk_post_runtime_resume); 3368 #endif 3369 3370 int __init blk_dev_init(void) 3371 { 3372 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3373 FIELD_SIZEOF(struct request, cmd_flags)); 3374 3375 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3376 kblockd_workqueue = alloc_workqueue("kblockd", 3377 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3378 if (!kblockd_workqueue) 3379 panic("Failed to create kblockd\n"); 3380 3381 request_cachep = kmem_cache_create("blkdev_requests", 3382 sizeof(struct request), 0, SLAB_PANIC, NULL); 3383 3384 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3385 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3386 3387 return 0; 3388 } 3389