1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/block.h> 38 39 #include "blk.h" 40 #include "blk-cgroup.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 48 49 DEFINE_IDA(blk_queue_ida); 50 51 /* 52 * For the allocated request tables 53 */ 54 struct kmem_cache *request_cachep = NULL; 55 56 /* 57 * For queue allocation 58 */ 59 struct kmem_cache *blk_requestq_cachep; 60 61 /* 62 * Controlling structure to kblockd 63 */ 64 static struct workqueue_struct *kblockd_workqueue; 65 66 void blk_queue_congestion_threshold(struct request_queue *q) 67 { 68 int nr; 69 70 nr = q->nr_requests - (q->nr_requests / 8) + 1; 71 if (nr > q->nr_requests) 72 nr = q->nr_requests; 73 q->nr_congestion_on = nr; 74 75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 76 if (nr < 1) 77 nr = 1; 78 q->nr_congestion_off = nr; 79 } 80 81 /** 82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 83 * @bdev: device 84 * 85 * Locates the passed device's request queue and returns the address of its 86 * backing_dev_info. This function can only be called if @bdev is opened 87 * and the return value is never NULL. 88 */ 89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 90 { 91 struct request_queue *q = bdev_get_queue(bdev); 92 93 return &q->backing_dev_info; 94 } 95 EXPORT_SYMBOL(blk_get_backing_dev_info); 96 97 void blk_rq_init(struct request_queue *q, struct request *rq) 98 { 99 memset(rq, 0, sizeof(*rq)); 100 101 INIT_LIST_HEAD(&rq->queuelist); 102 INIT_LIST_HEAD(&rq->timeout_list); 103 rq->cpu = -1; 104 rq->q = q; 105 rq->__sector = (sector_t) -1; 106 INIT_HLIST_NODE(&rq->hash); 107 RB_CLEAR_NODE(&rq->rb_node); 108 rq->cmd = rq->__cmd; 109 rq->cmd_len = BLK_MAX_CDB; 110 rq->tag = -1; 111 rq->start_time = jiffies; 112 set_start_time_ns(rq); 113 rq->part = NULL; 114 } 115 EXPORT_SYMBOL(blk_rq_init); 116 117 static void req_bio_endio(struct request *rq, struct bio *bio, 118 unsigned int nbytes, int error) 119 { 120 if (error) 121 clear_bit(BIO_UPTODATE, &bio->bi_flags); 122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 123 error = -EIO; 124 125 if (unlikely(rq->cmd_flags & REQ_QUIET)) 126 set_bit(BIO_QUIET, &bio->bi_flags); 127 128 bio_advance(bio, nbytes); 129 130 /* don't actually finish bio if it's part of flush sequence */ 131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 132 bio_endio(bio, error); 133 } 134 135 void blk_dump_rq_flags(struct request *rq, char *msg) 136 { 137 int bit; 138 139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 141 (unsigned long long) rq->cmd_flags); 142 143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 144 (unsigned long long)blk_rq_pos(rq), 145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 146 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 147 rq->bio, rq->biotail, blk_rq_bytes(rq)); 148 149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 150 printk(KERN_INFO " cdb: "); 151 for (bit = 0; bit < BLK_MAX_CDB; bit++) 152 printk("%02x ", rq->cmd[bit]); 153 printk("\n"); 154 } 155 } 156 EXPORT_SYMBOL(blk_dump_rq_flags); 157 158 static void blk_delay_work(struct work_struct *work) 159 { 160 struct request_queue *q; 161 162 q = container_of(work, struct request_queue, delay_work.work); 163 spin_lock_irq(q->queue_lock); 164 __blk_run_queue(q); 165 spin_unlock_irq(q->queue_lock); 166 } 167 168 /** 169 * blk_delay_queue - restart queueing after defined interval 170 * @q: The &struct request_queue in question 171 * @msecs: Delay in msecs 172 * 173 * Description: 174 * Sometimes queueing needs to be postponed for a little while, to allow 175 * resources to come back. This function will make sure that queueing is 176 * restarted around the specified time. Queue lock must be held. 177 */ 178 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 179 { 180 if (likely(!blk_queue_dead(q))) 181 queue_delayed_work(kblockd_workqueue, &q->delay_work, 182 msecs_to_jiffies(msecs)); 183 } 184 EXPORT_SYMBOL(blk_delay_queue); 185 186 /** 187 * blk_start_queue - restart a previously stopped queue 188 * @q: The &struct request_queue in question 189 * 190 * Description: 191 * blk_start_queue() will clear the stop flag on the queue, and call 192 * the request_fn for the queue if it was in a stopped state when 193 * entered. Also see blk_stop_queue(). Queue lock must be held. 194 **/ 195 void blk_start_queue(struct request_queue *q) 196 { 197 WARN_ON(!irqs_disabled()); 198 199 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 200 __blk_run_queue(q); 201 } 202 EXPORT_SYMBOL(blk_start_queue); 203 204 /** 205 * blk_stop_queue - stop a queue 206 * @q: The &struct request_queue in question 207 * 208 * Description: 209 * The Linux block layer assumes that a block driver will consume all 210 * entries on the request queue when the request_fn strategy is called. 211 * Often this will not happen, because of hardware limitations (queue 212 * depth settings). If a device driver gets a 'queue full' response, 213 * or if it simply chooses not to queue more I/O at one point, it can 214 * call this function to prevent the request_fn from being called until 215 * the driver has signalled it's ready to go again. This happens by calling 216 * blk_start_queue() to restart queue operations. Queue lock must be held. 217 **/ 218 void blk_stop_queue(struct request_queue *q) 219 { 220 cancel_delayed_work(&q->delay_work); 221 queue_flag_set(QUEUE_FLAG_STOPPED, q); 222 } 223 EXPORT_SYMBOL(blk_stop_queue); 224 225 /** 226 * blk_sync_queue - cancel any pending callbacks on a queue 227 * @q: the queue 228 * 229 * Description: 230 * The block layer may perform asynchronous callback activity 231 * on a queue, such as calling the unplug function after a timeout. 232 * A block device may call blk_sync_queue to ensure that any 233 * such activity is cancelled, thus allowing it to release resources 234 * that the callbacks might use. The caller must already have made sure 235 * that its ->make_request_fn will not re-add plugging prior to calling 236 * this function. 237 * 238 * This function does not cancel any asynchronous activity arising 239 * out of elevator or throttling code. That would require elevator_exit() 240 * and blkcg_exit_queue() to be called with queue lock initialized. 241 * 242 */ 243 void blk_sync_queue(struct request_queue *q) 244 { 245 del_timer_sync(&q->timeout); 246 247 if (q->mq_ops) { 248 struct blk_mq_hw_ctx *hctx; 249 int i; 250 251 queue_for_each_hw_ctx(q, hctx, i) { 252 cancel_delayed_work_sync(&hctx->run_work); 253 cancel_delayed_work_sync(&hctx->delay_work); 254 } 255 } else { 256 cancel_delayed_work_sync(&q->delay_work); 257 } 258 } 259 EXPORT_SYMBOL(blk_sync_queue); 260 261 /** 262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 263 * @q: The queue to run 264 * 265 * Description: 266 * Invoke request handling on a queue if there are any pending requests. 267 * May be used to restart request handling after a request has completed. 268 * This variant runs the queue whether or not the queue has been 269 * stopped. Must be called with the queue lock held and interrupts 270 * disabled. See also @blk_run_queue. 271 */ 272 inline void __blk_run_queue_uncond(struct request_queue *q) 273 { 274 if (unlikely(blk_queue_dead(q))) 275 return; 276 277 /* 278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 279 * the queue lock internally. As a result multiple threads may be 280 * running such a request function concurrently. Keep track of the 281 * number of active request_fn invocations such that blk_drain_queue() 282 * can wait until all these request_fn calls have finished. 283 */ 284 q->request_fn_active++; 285 q->request_fn(q); 286 q->request_fn_active--; 287 } 288 289 /** 290 * __blk_run_queue - run a single device queue 291 * @q: The queue to run 292 * 293 * Description: 294 * See @blk_run_queue. This variant must be called with the queue lock 295 * held and interrupts disabled. 296 */ 297 void __blk_run_queue(struct request_queue *q) 298 { 299 if (unlikely(blk_queue_stopped(q))) 300 return; 301 302 __blk_run_queue_uncond(q); 303 } 304 EXPORT_SYMBOL(__blk_run_queue); 305 306 /** 307 * blk_run_queue_async - run a single device queue in workqueue context 308 * @q: The queue to run 309 * 310 * Description: 311 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 312 * of us. The caller must hold the queue lock. 313 */ 314 void blk_run_queue_async(struct request_queue *q) 315 { 316 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 317 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 318 } 319 EXPORT_SYMBOL(blk_run_queue_async); 320 321 /** 322 * blk_run_queue - run a single device queue 323 * @q: The queue to run 324 * 325 * Description: 326 * Invoke request handling on this queue, if it has pending work to do. 327 * May be used to restart queueing when a request has completed. 328 */ 329 void blk_run_queue(struct request_queue *q) 330 { 331 unsigned long flags; 332 333 spin_lock_irqsave(q->queue_lock, flags); 334 __blk_run_queue(q); 335 spin_unlock_irqrestore(q->queue_lock, flags); 336 } 337 EXPORT_SYMBOL(blk_run_queue); 338 339 void blk_put_queue(struct request_queue *q) 340 { 341 kobject_put(&q->kobj); 342 } 343 EXPORT_SYMBOL(blk_put_queue); 344 345 /** 346 * __blk_drain_queue - drain requests from request_queue 347 * @q: queue to drain 348 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 349 * 350 * Drain requests from @q. If @drain_all is set, all requests are drained. 351 * If not, only ELVPRIV requests are drained. The caller is responsible 352 * for ensuring that no new requests which need to be drained are queued. 353 */ 354 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 355 __releases(q->queue_lock) 356 __acquires(q->queue_lock) 357 { 358 int i; 359 360 lockdep_assert_held(q->queue_lock); 361 362 while (true) { 363 bool drain = false; 364 365 /* 366 * The caller might be trying to drain @q before its 367 * elevator is initialized. 368 */ 369 if (q->elevator) 370 elv_drain_elevator(q); 371 372 blkcg_drain_queue(q); 373 374 /* 375 * This function might be called on a queue which failed 376 * driver init after queue creation or is not yet fully 377 * active yet. Some drivers (e.g. fd and loop) get unhappy 378 * in such cases. Kick queue iff dispatch queue has 379 * something on it and @q has request_fn set. 380 */ 381 if (!list_empty(&q->queue_head) && q->request_fn) 382 __blk_run_queue(q); 383 384 drain |= q->nr_rqs_elvpriv; 385 drain |= q->request_fn_active; 386 387 /* 388 * Unfortunately, requests are queued at and tracked from 389 * multiple places and there's no single counter which can 390 * be drained. Check all the queues and counters. 391 */ 392 if (drain_all) { 393 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 394 drain |= !list_empty(&q->queue_head); 395 for (i = 0; i < 2; i++) { 396 drain |= q->nr_rqs[i]; 397 drain |= q->in_flight[i]; 398 if (fq) 399 drain |= !list_empty(&fq->flush_queue[i]); 400 } 401 } 402 403 if (!drain) 404 break; 405 406 spin_unlock_irq(q->queue_lock); 407 408 msleep(10); 409 410 spin_lock_irq(q->queue_lock); 411 } 412 413 /* 414 * With queue marked dead, any woken up waiter will fail the 415 * allocation path, so the wakeup chaining is lost and we're 416 * left with hung waiters. We need to wake up those waiters. 417 */ 418 if (q->request_fn) { 419 struct request_list *rl; 420 421 blk_queue_for_each_rl(rl, q) 422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 423 wake_up_all(&rl->wait[i]); 424 } 425 } 426 427 /** 428 * blk_queue_bypass_start - enter queue bypass mode 429 * @q: queue of interest 430 * 431 * In bypass mode, only the dispatch FIFO queue of @q is used. This 432 * function makes @q enter bypass mode and drains all requests which were 433 * throttled or issued before. On return, it's guaranteed that no request 434 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 435 * inside queue or RCU read lock. 436 */ 437 void blk_queue_bypass_start(struct request_queue *q) 438 { 439 spin_lock_irq(q->queue_lock); 440 q->bypass_depth++; 441 queue_flag_set(QUEUE_FLAG_BYPASS, q); 442 spin_unlock_irq(q->queue_lock); 443 444 /* 445 * Queues start drained. Skip actual draining till init is 446 * complete. This avoids lenghty delays during queue init which 447 * can happen many times during boot. 448 */ 449 if (blk_queue_init_done(q)) { 450 spin_lock_irq(q->queue_lock); 451 __blk_drain_queue(q, false); 452 spin_unlock_irq(q->queue_lock); 453 454 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 455 synchronize_rcu(); 456 } 457 } 458 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 459 460 /** 461 * blk_queue_bypass_end - leave queue bypass mode 462 * @q: queue of interest 463 * 464 * Leave bypass mode and restore the normal queueing behavior. 465 */ 466 void blk_queue_bypass_end(struct request_queue *q) 467 { 468 spin_lock_irq(q->queue_lock); 469 if (!--q->bypass_depth) 470 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 471 WARN_ON_ONCE(q->bypass_depth < 0); 472 spin_unlock_irq(q->queue_lock); 473 } 474 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 475 476 void blk_set_queue_dying(struct request_queue *q) 477 { 478 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 479 480 if (q->mq_ops) 481 blk_mq_wake_waiters(q); 482 else { 483 struct request_list *rl; 484 485 blk_queue_for_each_rl(rl, q) { 486 if (rl->rq_pool) { 487 wake_up(&rl->wait[BLK_RW_SYNC]); 488 wake_up(&rl->wait[BLK_RW_ASYNC]); 489 } 490 } 491 } 492 } 493 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 494 495 /** 496 * blk_cleanup_queue - shutdown a request queue 497 * @q: request queue to shutdown 498 * 499 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 500 * put it. All future requests will be failed immediately with -ENODEV. 501 */ 502 void blk_cleanup_queue(struct request_queue *q) 503 { 504 spinlock_t *lock = q->queue_lock; 505 506 /* mark @q DYING, no new request or merges will be allowed afterwards */ 507 mutex_lock(&q->sysfs_lock); 508 blk_set_queue_dying(q); 509 spin_lock_irq(lock); 510 511 /* 512 * A dying queue is permanently in bypass mode till released. Note 513 * that, unlike blk_queue_bypass_start(), we aren't performing 514 * synchronize_rcu() after entering bypass mode to avoid the delay 515 * as some drivers create and destroy a lot of queues while 516 * probing. This is still safe because blk_release_queue() will be 517 * called only after the queue refcnt drops to zero and nothing, 518 * RCU or not, would be traversing the queue by then. 519 */ 520 q->bypass_depth++; 521 queue_flag_set(QUEUE_FLAG_BYPASS, q); 522 523 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 524 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 525 queue_flag_set(QUEUE_FLAG_DYING, q); 526 spin_unlock_irq(lock); 527 mutex_unlock(&q->sysfs_lock); 528 529 /* 530 * Drain all requests queued before DYING marking. Set DEAD flag to 531 * prevent that q->request_fn() gets invoked after draining finished. 532 */ 533 if (q->mq_ops) { 534 blk_mq_freeze_queue(q); 535 spin_lock_irq(lock); 536 } else { 537 spin_lock_irq(lock); 538 __blk_drain_queue(q, true); 539 } 540 queue_flag_set(QUEUE_FLAG_DEAD, q); 541 spin_unlock_irq(lock); 542 543 /* @q won't process any more request, flush async actions */ 544 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 545 blk_sync_queue(q); 546 547 if (q->mq_ops) 548 blk_mq_free_queue(q); 549 550 spin_lock_irq(lock); 551 if (q->queue_lock != &q->__queue_lock) 552 q->queue_lock = &q->__queue_lock; 553 spin_unlock_irq(lock); 554 555 /* @q is and will stay empty, shutdown and put */ 556 blk_put_queue(q); 557 } 558 EXPORT_SYMBOL(blk_cleanup_queue); 559 560 int blk_init_rl(struct request_list *rl, struct request_queue *q, 561 gfp_t gfp_mask) 562 { 563 if (unlikely(rl->rq_pool)) 564 return 0; 565 566 rl->q = q; 567 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 568 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 569 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 570 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 571 572 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 573 mempool_free_slab, request_cachep, 574 gfp_mask, q->node); 575 if (!rl->rq_pool) 576 return -ENOMEM; 577 578 return 0; 579 } 580 581 void blk_exit_rl(struct request_list *rl) 582 { 583 if (rl->rq_pool) 584 mempool_destroy(rl->rq_pool); 585 } 586 587 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 588 { 589 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 590 } 591 EXPORT_SYMBOL(blk_alloc_queue); 592 593 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 594 { 595 struct request_queue *q; 596 int err; 597 598 q = kmem_cache_alloc_node(blk_requestq_cachep, 599 gfp_mask | __GFP_ZERO, node_id); 600 if (!q) 601 return NULL; 602 603 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 604 if (q->id < 0) 605 goto fail_q; 606 607 q->backing_dev_info.ra_pages = 608 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 609 q->backing_dev_info.state = 0; 610 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 611 q->backing_dev_info.name = "block"; 612 q->node = node_id; 613 614 err = bdi_init(&q->backing_dev_info); 615 if (err) 616 goto fail_id; 617 618 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 619 laptop_mode_timer_fn, (unsigned long) q); 620 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 621 INIT_LIST_HEAD(&q->queue_head); 622 INIT_LIST_HEAD(&q->timeout_list); 623 INIT_LIST_HEAD(&q->icq_list); 624 #ifdef CONFIG_BLK_CGROUP 625 INIT_LIST_HEAD(&q->blkg_list); 626 #endif 627 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 628 629 kobject_init(&q->kobj, &blk_queue_ktype); 630 631 mutex_init(&q->sysfs_lock); 632 spin_lock_init(&q->__queue_lock); 633 634 /* 635 * By default initialize queue_lock to internal lock and driver can 636 * override it later if need be. 637 */ 638 q->queue_lock = &q->__queue_lock; 639 640 /* 641 * A queue starts its life with bypass turned on to avoid 642 * unnecessary bypass on/off overhead and nasty surprises during 643 * init. The initial bypass will be finished when the queue is 644 * registered by blk_register_queue(). 645 */ 646 q->bypass_depth = 1; 647 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 648 649 init_waitqueue_head(&q->mq_freeze_wq); 650 651 if (blkcg_init_queue(q)) 652 goto fail_bdi; 653 654 return q; 655 656 fail_bdi: 657 bdi_destroy(&q->backing_dev_info); 658 fail_id: 659 ida_simple_remove(&blk_queue_ida, q->id); 660 fail_q: 661 kmem_cache_free(blk_requestq_cachep, q); 662 return NULL; 663 } 664 EXPORT_SYMBOL(blk_alloc_queue_node); 665 666 /** 667 * blk_init_queue - prepare a request queue for use with a block device 668 * @rfn: The function to be called to process requests that have been 669 * placed on the queue. 670 * @lock: Request queue spin lock 671 * 672 * Description: 673 * If a block device wishes to use the standard request handling procedures, 674 * which sorts requests and coalesces adjacent requests, then it must 675 * call blk_init_queue(). The function @rfn will be called when there 676 * are requests on the queue that need to be processed. If the device 677 * supports plugging, then @rfn may not be called immediately when requests 678 * are available on the queue, but may be called at some time later instead. 679 * Plugged queues are generally unplugged when a buffer belonging to one 680 * of the requests on the queue is needed, or due to memory pressure. 681 * 682 * @rfn is not required, or even expected, to remove all requests off the 683 * queue, but only as many as it can handle at a time. If it does leave 684 * requests on the queue, it is responsible for arranging that the requests 685 * get dealt with eventually. 686 * 687 * The queue spin lock must be held while manipulating the requests on the 688 * request queue; this lock will be taken also from interrupt context, so irq 689 * disabling is needed for it. 690 * 691 * Function returns a pointer to the initialized request queue, or %NULL if 692 * it didn't succeed. 693 * 694 * Note: 695 * blk_init_queue() must be paired with a blk_cleanup_queue() call 696 * when the block device is deactivated (such as at module unload). 697 **/ 698 699 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 700 { 701 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 702 } 703 EXPORT_SYMBOL(blk_init_queue); 704 705 struct request_queue * 706 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 707 { 708 struct request_queue *uninit_q, *q; 709 710 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 711 if (!uninit_q) 712 return NULL; 713 714 q = blk_init_allocated_queue(uninit_q, rfn, lock); 715 if (!q) 716 blk_cleanup_queue(uninit_q); 717 718 return q; 719 } 720 EXPORT_SYMBOL(blk_init_queue_node); 721 722 struct request_queue * 723 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 724 spinlock_t *lock) 725 { 726 if (!q) 727 return NULL; 728 729 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0); 730 if (!q->fq) 731 return NULL; 732 733 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 734 goto fail; 735 736 q->request_fn = rfn; 737 q->prep_rq_fn = NULL; 738 q->unprep_rq_fn = NULL; 739 q->queue_flags |= QUEUE_FLAG_DEFAULT; 740 741 /* Override internal queue lock with supplied lock pointer */ 742 if (lock) 743 q->queue_lock = lock; 744 745 /* 746 * This also sets hw/phys segments, boundary and size 747 */ 748 blk_queue_make_request(q, blk_queue_bio); 749 750 q->sg_reserved_size = INT_MAX; 751 752 /* Protect q->elevator from elevator_change */ 753 mutex_lock(&q->sysfs_lock); 754 755 /* init elevator */ 756 if (elevator_init(q, NULL)) { 757 mutex_unlock(&q->sysfs_lock); 758 goto fail; 759 } 760 761 mutex_unlock(&q->sysfs_lock); 762 763 return q; 764 765 fail: 766 blk_free_flush_queue(q->fq); 767 return NULL; 768 } 769 EXPORT_SYMBOL(blk_init_allocated_queue); 770 771 bool blk_get_queue(struct request_queue *q) 772 { 773 if (likely(!blk_queue_dying(q))) { 774 __blk_get_queue(q); 775 return true; 776 } 777 778 return false; 779 } 780 EXPORT_SYMBOL(blk_get_queue); 781 782 static inline void blk_free_request(struct request_list *rl, struct request *rq) 783 { 784 if (rq->cmd_flags & REQ_ELVPRIV) { 785 elv_put_request(rl->q, rq); 786 if (rq->elv.icq) 787 put_io_context(rq->elv.icq->ioc); 788 } 789 790 mempool_free(rq, rl->rq_pool); 791 } 792 793 /* 794 * ioc_batching returns true if the ioc is a valid batching request and 795 * should be given priority access to a request. 796 */ 797 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 798 { 799 if (!ioc) 800 return 0; 801 802 /* 803 * Make sure the process is able to allocate at least 1 request 804 * even if the batch times out, otherwise we could theoretically 805 * lose wakeups. 806 */ 807 return ioc->nr_batch_requests == q->nr_batching || 808 (ioc->nr_batch_requests > 0 809 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 810 } 811 812 /* 813 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 814 * will cause the process to be a "batcher" on all queues in the system. This 815 * is the behaviour we want though - once it gets a wakeup it should be given 816 * a nice run. 817 */ 818 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 819 { 820 if (!ioc || ioc_batching(q, ioc)) 821 return; 822 823 ioc->nr_batch_requests = q->nr_batching; 824 ioc->last_waited = jiffies; 825 } 826 827 static void __freed_request(struct request_list *rl, int sync) 828 { 829 struct request_queue *q = rl->q; 830 831 /* 832 * bdi isn't aware of blkcg yet. As all async IOs end up root 833 * blkcg anyway, just use root blkcg state. 834 */ 835 if (rl == &q->root_rl && 836 rl->count[sync] < queue_congestion_off_threshold(q)) 837 blk_clear_queue_congested(q, sync); 838 839 if (rl->count[sync] + 1 <= q->nr_requests) { 840 if (waitqueue_active(&rl->wait[sync])) 841 wake_up(&rl->wait[sync]); 842 843 blk_clear_rl_full(rl, sync); 844 } 845 } 846 847 /* 848 * A request has just been released. Account for it, update the full and 849 * congestion status, wake up any waiters. Called under q->queue_lock. 850 */ 851 static void freed_request(struct request_list *rl, unsigned int flags) 852 { 853 struct request_queue *q = rl->q; 854 int sync = rw_is_sync(flags); 855 856 q->nr_rqs[sync]--; 857 rl->count[sync]--; 858 if (flags & REQ_ELVPRIV) 859 q->nr_rqs_elvpriv--; 860 861 __freed_request(rl, sync); 862 863 if (unlikely(rl->starved[sync ^ 1])) 864 __freed_request(rl, sync ^ 1); 865 } 866 867 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 868 { 869 struct request_list *rl; 870 871 spin_lock_irq(q->queue_lock); 872 q->nr_requests = nr; 873 blk_queue_congestion_threshold(q); 874 875 /* congestion isn't cgroup aware and follows root blkcg for now */ 876 rl = &q->root_rl; 877 878 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q)) 879 blk_set_queue_congested(q, BLK_RW_SYNC); 880 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q)) 881 blk_clear_queue_congested(q, BLK_RW_SYNC); 882 883 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q)) 884 blk_set_queue_congested(q, BLK_RW_ASYNC); 885 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q)) 886 blk_clear_queue_congested(q, BLK_RW_ASYNC); 887 888 blk_queue_for_each_rl(rl, q) { 889 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 890 blk_set_rl_full(rl, BLK_RW_SYNC); 891 } else { 892 blk_clear_rl_full(rl, BLK_RW_SYNC); 893 wake_up(&rl->wait[BLK_RW_SYNC]); 894 } 895 896 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 897 blk_set_rl_full(rl, BLK_RW_ASYNC); 898 } else { 899 blk_clear_rl_full(rl, BLK_RW_ASYNC); 900 wake_up(&rl->wait[BLK_RW_ASYNC]); 901 } 902 } 903 904 spin_unlock_irq(q->queue_lock); 905 return 0; 906 } 907 908 /* 909 * Determine if elevator data should be initialized when allocating the 910 * request associated with @bio. 911 */ 912 static bool blk_rq_should_init_elevator(struct bio *bio) 913 { 914 if (!bio) 915 return true; 916 917 /* 918 * Flush requests do not use the elevator so skip initialization. 919 * This allows a request to share the flush and elevator data. 920 */ 921 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 922 return false; 923 924 return true; 925 } 926 927 /** 928 * rq_ioc - determine io_context for request allocation 929 * @bio: request being allocated is for this bio (can be %NULL) 930 * 931 * Determine io_context to use for request allocation for @bio. May return 932 * %NULL if %current->io_context doesn't exist. 933 */ 934 static struct io_context *rq_ioc(struct bio *bio) 935 { 936 #ifdef CONFIG_BLK_CGROUP 937 if (bio && bio->bi_ioc) 938 return bio->bi_ioc; 939 #endif 940 return current->io_context; 941 } 942 943 /** 944 * __get_request - get a free request 945 * @rl: request list to allocate from 946 * @rw_flags: RW and SYNC flags 947 * @bio: bio to allocate request for (can be %NULL) 948 * @gfp_mask: allocation mask 949 * 950 * Get a free request from @q. This function may fail under memory 951 * pressure or if @q is dead. 952 * 953 * Must be called with @q->queue_lock held and, 954 * Returns ERR_PTR on failure, with @q->queue_lock held. 955 * Returns request pointer on success, with @q->queue_lock *not held*. 956 */ 957 static struct request *__get_request(struct request_list *rl, int rw_flags, 958 struct bio *bio, gfp_t gfp_mask) 959 { 960 struct request_queue *q = rl->q; 961 struct request *rq; 962 struct elevator_type *et = q->elevator->type; 963 struct io_context *ioc = rq_ioc(bio); 964 struct io_cq *icq = NULL; 965 const bool is_sync = rw_is_sync(rw_flags) != 0; 966 int may_queue; 967 968 if (unlikely(blk_queue_dying(q))) 969 return ERR_PTR(-ENODEV); 970 971 may_queue = elv_may_queue(q, rw_flags); 972 if (may_queue == ELV_MQUEUE_NO) 973 goto rq_starved; 974 975 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 976 if (rl->count[is_sync]+1 >= q->nr_requests) { 977 /* 978 * The queue will fill after this allocation, so set 979 * it as full, and mark this process as "batching". 980 * This process will be allowed to complete a batch of 981 * requests, others will be blocked. 982 */ 983 if (!blk_rl_full(rl, is_sync)) { 984 ioc_set_batching(q, ioc); 985 blk_set_rl_full(rl, is_sync); 986 } else { 987 if (may_queue != ELV_MQUEUE_MUST 988 && !ioc_batching(q, ioc)) { 989 /* 990 * The queue is full and the allocating 991 * process is not a "batcher", and not 992 * exempted by the IO scheduler 993 */ 994 return ERR_PTR(-ENOMEM); 995 } 996 } 997 } 998 /* 999 * bdi isn't aware of blkcg yet. As all async IOs end up 1000 * root blkcg anyway, just use root blkcg state. 1001 */ 1002 if (rl == &q->root_rl) 1003 blk_set_queue_congested(q, is_sync); 1004 } 1005 1006 /* 1007 * Only allow batching queuers to allocate up to 50% over the defined 1008 * limit of requests, otherwise we could have thousands of requests 1009 * allocated with any setting of ->nr_requests 1010 */ 1011 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1012 return ERR_PTR(-ENOMEM); 1013 1014 q->nr_rqs[is_sync]++; 1015 rl->count[is_sync]++; 1016 rl->starved[is_sync] = 0; 1017 1018 /* 1019 * Decide whether the new request will be managed by elevator. If 1020 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 1021 * prevent the current elevator from being destroyed until the new 1022 * request is freed. This guarantees icq's won't be destroyed and 1023 * makes creating new ones safe. 1024 * 1025 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1026 * it will be created after releasing queue_lock. 1027 */ 1028 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 1029 rw_flags |= REQ_ELVPRIV; 1030 q->nr_rqs_elvpriv++; 1031 if (et->icq_cache && ioc) 1032 icq = ioc_lookup_icq(ioc, q); 1033 } 1034 1035 if (blk_queue_io_stat(q)) 1036 rw_flags |= REQ_IO_STAT; 1037 spin_unlock_irq(q->queue_lock); 1038 1039 /* allocate and init request */ 1040 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1041 if (!rq) 1042 goto fail_alloc; 1043 1044 blk_rq_init(q, rq); 1045 blk_rq_set_rl(rq, rl); 1046 rq->cmd_flags = rw_flags | REQ_ALLOCED; 1047 1048 /* init elvpriv */ 1049 if (rw_flags & REQ_ELVPRIV) { 1050 if (unlikely(et->icq_cache && !icq)) { 1051 if (ioc) 1052 icq = ioc_create_icq(ioc, q, gfp_mask); 1053 if (!icq) 1054 goto fail_elvpriv; 1055 } 1056 1057 rq->elv.icq = icq; 1058 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1059 goto fail_elvpriv; 1060 1061 /* @rq->elv.icq holds io_context until @rq is freed */ 1062 if (icq) 1063 get_io_context(icq->ioc); 1064 } 1065 out: 1066 /* 1067 * ioc may be NULL here, and ioc_batching will be false. That's 1068 * OK, if the queue is under the request limit then requests need 1069 * not count toward the nr_batch_requests limit. There will always 1070 * be some limit enforced by BLK_BATCH_TIME. 1071 */ 1072 if (ioc_batching(q, ioc)) 1073 ioc->nr_batch_requests--; 1074 1075 trace_block_getrq(q, bio, rw_flags & 1); 1076 return rq; 1077 1078 fail_elvpriv: 1079 /* 1080 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1081 * and may fail indefinitely under memory pressure and thus 1082 * shouldn't stall IO. Treat this request as !elvpriv. This will 1083 * disturb iosched and blkcg but weird is bettern than dead. 1084 */ 1085 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1086 __func__, dev_name(q->backing_dev_info.dev)); 1087 1088 rq->cmd_flags &= ~REQ_ELVPRIV; 1089 rq->elv.icq = NULL; 1090 1091 spin_lock_irq(q->queue_lock); 1092 q->nr_rqs_elvpriv--; 1093 spin_unlock_irq(q->queue_lock); 1094 goto out; 1095 1096 fail_alloc: 1097 /* 1098 * Allocation failed presumably due to memory. Undo anything we 1099 * might have messed up. 1100 * 1101 * Allocating task should really be put onto the front of the wait 1102 * queue, but this is pretty rare. 1103 */ 1104 spin_lock_irq(q->queue_lock); 1105 freed_request(rl, rw_flags); 1106 1107 /* 1108 * in the very unlikely event that allocation failed and no 1109 * requests for this direction was pending, mark us starved so that 1110 * freeing of a request in the other direction will notice 1111 * us. another possible fix would be to split the rq mempool into 1112 * READ and WRITE 1113 */ 1114 rq_starved: 1115 if (unlikely(rl->count[is_sync] == 0)) 1116 rl->starved[is_sync] = 1; 1117 return ERR_PTR(-ENOMEM); 1118 } 1119 1120 /** 1121 * get_request - get a free request 1122 * @q: request_queue to allocate request from 1123 * @rw_flags: RW and SYNC flags 1124 * @bio: bio to allocate request for (can be %NULL) 1125 * @gfp_mask: allocation mask 1126 * 1127 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1128 * function keeps retrying under memory pressure and fails iff @q is dead. 1129 * 1130 * Must be called with @q->queue_lock held and, 1131 * Returns ERR_PTR on failure, with @q->queue_lock held. 1132 * Returns request pointer on success, with @q->queue_lock *not held*. 1133 */ 1134 static struct request *get_request(struct request_queue *q, int rw_flags, 1135 struct bio *bio, gfp_t gfp_mask) 1136 { 1137 const bool is_sync = rw_is_sync(rw_flags) != 0; 1138 DEFINE_WAIT(wait); 1139 struct request_list *rl; 1140 struct request *rq; 1141 1142 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1143 retry: 1144 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1145 if (!IS_ERR(rq)) 1146 return rq; 1147 1148 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1149 blk_put_rl(rl); 1150 return rq; 1151 } 1152 1153 /* wait on @rl and retry */ 1154 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1155 TASK_UNINTERRUPTIBLE); 1156 1157 trace_block_sleeprq(q, bio, rw_flags & 1); 1158 1159 spin_unlock_irq(q->queue_lock); 1160 io_schedule(); 1161 1162 /* 1163 * After sleeping, we become a "batching" process and will be able 1164 * to allocate at least one request, and up to a big batch of them 1165 * for a small period time. See ioc_batching, ioc_set_batching 1166 */ 1167 ioc_set_batching(q, current->io_context); 1168 1169 spin_lock_irq(q->queue_lock); 1170 finish_wait(&rl->wait[is_sync], &wait); 1171 1172 goto retry; 1173 } 1174 1175 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1176 gfp_t gfp_mask) 1177 { 1178 struct request *rq; 1179 1180 BUG_ON(rw != READ && rw != WRITE); 1181 1182 /* create ioc upfront */ 1183 create_io_context(gfp_mask, q->node); 1184 1185 spin_lock_irq(q->queue_lock); 1186 rq = get_request(q, rw, NULL, gfp_mask); 1187 if (IS_ERR(rq)) 1188 spin_unlock_irq(q->queue_lock); 1189 /* q->queue_lock is unlocked at this point */ 1190 1191 return rq; 1192 } 1193 1194 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1195 { 1196 if (q->mq_ops) 1197 return blk_mq_alloc_request(q, rw, gfp_mask, false); 1198 else 1199 return blk_old_get_request(q, rw, gfp_mask); 1200 } 1201 EXPORT_SYMBOL(blk_get_request); 1202 1203 /** 1204 * blk_make_request - given a bio, allocate a corresponding struct request. 1205 * @q: target request queue 1206 * @bio: The bio describing the memory mappings that will be submitted for IO. 1207 * It may be a chained-bio properly constructed by block/bio layer. 1208 * @gfp_mask: gfp flags to be used for memory allocation 1209 * 1210 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1211 * type commands. Where the struct request needs to be farther initialized by 1212 * the caller. It is passed a &struct bio, which describes the memory info of 1213 * the I/O transfer. 1214 * 1215 * The caller of blk_make_request must make sure that bi_io_vec 1216 * are set to describe the memory buffers. That bio_data_dir() will return 1217 * the needed direction of the request. (And all bio's in the passed bio-chain 1218 * are properly set accordingly) 1219 * 1220 * If called under none-sleepable conditions, mapped bio buffers must not 1221 * need bouncing, by calling the appropriate masked or flagged allocator, 1222 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1223 * BUG. 1224 * 1225 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1226 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1227 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1228 * completion of a bio that hasn't been submitted yet, thus resulting in a 1229 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1230 * of bio_alloc(), as that avoids the mempool deadlock. 1231 * If possible a big IO should be split into smaller parts when allocation 1232 * fails. Partial allocation should not be an error, or you risk a live-lock. 1233 */ 1234 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1235 gfp_t gfp_mask) 1236 { 1237 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1238 1239 if (IS_ERR(rq)) 1240 return rq; 1241 1242 blk_rq_set_block_pc(rq); 1243 1244 for_each_bio(bio) { 1245 struct bio *bounce_bio = bio; 1246 int ret; 1247 1248 blk_queue_bounce(q, &bounce_bio); 1249 ret = blk_rq_append_bio(q, rq, bounce_bio); 1250 if (unlikely(ret)) { 1251 blk_put_request(rq); 1252 return ERR_PTR(ret); 1253 } 1254 } 1255 1256 return rq; 1257 } 1258 EXPORT_SYMBOL(blk_make_request); 1259 1260 /** 1261 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC 1262 * @rq: request to be initialized 1263 * 1264 */ 1265 void blk_rq_set_block_pc(struct request *rq) 1266 { 1267 rq->cmd_type = REQ_TYPE_BLOCK_PC; 1268 rq->__data_len = 0; 1269 rq->__sector = (sector_t) -1; 1270 rq->bio = rq->biotail = NULL; 1271 memset(rq->__cmd, 0, sizeof(rq->__cmd)); 1272 } 1273 EXPORT_SYMBOL(blk_rq_set_block_pc); 1274 1275 /** 1276 * blk_requeue_request - put a request back on queue 1277 * @q: request queue where request should be inserted 1278 * @rq: request to be inserted 1279 * 1280 * Description: 1281 * Drivers often keep queueing requests until the hardware cannot accept 1282 * more, when that condition happens we need to put the request back 1283 * on the queue. Must be called with queue lock held. 1284 */ 1285 void blk_requeue_request(struct request_queue *q, struct request *rq) 1286 { 1287 blk_delete_timer(rq); 1288 blk_clear_rq_complete(rq); 1289 trace_block_rq_requeue(q, rq); 1290 1291 if (rq->cmd_flags & REQ_QUEUED) 1292 blk_queue_end_tag(q, rq); 1293 1294 BUG_ON(blk_queued_rq(rq)); 1295 1296 elv_requeue_request(q, rq); 1297 } 1298 EXPORT_SYMBOL(blk_requeue_request); 1299 1300 static void add_acct_request(struct request_queue *q, struct request *rq, 1301 int where) 1302 { 1303 blk_account_io_start(rq, true); 1304 __elv_add_request(q, rq, where); 1305 } 1306 1307 static void part_round_stats_single(int cpu, struct hd_struct *part, 1308 unsigned long now) 1309 { 1310 int inflight; 1311 1312 if (now == part->stamp) 1313 return; 1314 1315 inflight = part_in_flight(part); 1316 if (inflight) { 1317 __part_stat_add(cpu, part, time_in_queue, 1318 inflight * (now - part->stamp)); 1319 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1320 } 1321 part->stamp = now; 1322 } 1323 1324 /** 1325 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1326 * @cpu: cpu number for stats access 1327 * @part: target partition 1328 * 1329 * The average IO queue length and utilisation statistics are maintained 1330 * by observing the current state of the queue length and the amount of 1331 * time it has been in this state for. 1332 * 1333 * Normally, that accounting is done on IO completion, but that can result 1334 * in more than a second's worth of IO being accounted for within any one 1335 * second, leading to >100% utilisation. To deal with that, we call this 1336 * function to do a round-off before returning the results when reading 1337 * /proc/diskstats. This accounts immediately for all queue usage up to 1338 * the current jiffies and restarts the counters again. 1339 */ 1340 void part_round_stats(int cpu, struct hd_struct *part) 1341 { 1342 unsigned long now = jiffies; 1343 1344 if (part->partno) 1345 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1346 part_round_stats_single(cpu, part, now); 1347 } 1348 EXPORT_SYMBOL_GPL(part_round_stats); 1349 1350 #ifdef CONFIG_PM 1351 static void blk_pm_put_request(struct request *rq) 1352 { 1353 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1354 pm_runtime_mark_last_busy(rq->q->dev); 1355 } 1356 #else 1357 static inline void blk_pm_put_request(struct request *rq) {} 1358 #endif 1359 1360 /* 1361 * queue lock must be held 1362 */ 1363 void __blk_put_request(struct request_queue *q, struct request *req) 1364 { 1365 if (unlikely(!q)) 1366 return; 1367 1368 if (q->mq_ops) { 1369 blk_mq_free_request(req); 1370 return; 1371 } 1372 1373 blk_pm_put_request(req); 1374 1375 elv_completed_request(q, req); 1376 1377 /* this is a bio leak */ 1378 WARN_ON(req->bio != NULL); 1379 1380 /* 1381 * Request may not have originated from ll_rw_blk. if not, 1382 * it didn't come out of our reserved rq pools 1383 */ 1384 if (req->cmd_flags & REQ_ALLOCED) { 1385 unsigned int flags = req->cmd_flags; 1386 struct request_list *rl = blk_rq_rl(req); 1387 1388 BUG_ON(!list_empty(&req->queuelist)); 1389 BUG_ON(ELV_ON_HASH(req)); 1390 1391 blk_free_request(rl, req); 1392 freed_request(rl, flags); 1393 blk_put_rl(rl); 1394 } 1395 } 1396 EXPORT_SYMBOL_GPL(__blk_put_request); 1397 1398 void blk_put_request(struct request *req) 1399 { 1400 struct request_queue *q = req->q; 1401 1402 if (q->mq_ops) 1403 blk_mq_free_request(req); 1404 else { 1405 unsigned long flags; 1406 1407 spin_lock_irqsave(q->queue_lock, flags); 1408 __blk_put_request(q, req); 1409 spin_unlock_irqrestore(q->queue_lock, flags); 1410 } 1411 } 1412 EXPORT_SYMBOL(blk_put_request); 1413 1414 /** 1415 * blk_add_request_payload - add a payload to a request 1416 * @rq: request to update 1417 * @page: page backing the payload 1418 * @len: length of the payload. 1419 * 1420 * This allows to later add a payload to an already submitted request by 1421 * a block driver. The driver needs to take care of freeing the payload 1422 * itself. 1423 * 1424 * Note that this is a quite horrible hack and nothing but handling of 1425 * discard requests should ever use it. 1426 */ 1427 void blk_add_request_payload(struct request *rq, struct page *page, 1428 unsigned int len) 1429 { 1430 struct bio *bio = rq->bio; 1431 1432 bio->bi_io_vec->bv_page = page; 1433 bio->bi_io_vec->bv_offset = 0; 1434 bio->bi_io_vec->bv_len = len; 1435 1436 bio->bi_iter.bi_size = len; 1437 bio->bi_vcnt = 1; 1438 bio->bi_phys_segments = 1; 1439 1440 rq->__data_len = rq->resid_len = len; 1441 rq->nr_phys_segments = 1; 1442 } 1443 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1444 1445 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1446 struct bio *bio) 1447 { 1448 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1449 1450 if (!ll_back_merge_fn(q, req, bio)) 1451 return false; 1452 1453 trace_block_bio_backmerge(q, req, bio); 1454 1455 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1456 blk_rq_set_mixed_merge(req); 1457 1458 req->biotail->bi_next = bio; 1459 req->biotail = bio; 1460 req->__data_len += bio->bi_iter.bi_size; 1461 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1462 1463 blk_account_io_start(req, false); 1464 return true; 1465 } 1466 1467 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1468 struct bio *bio) 1469 { 1470 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1471 1472 if (!ll_front_merge_fn(q, req, bio)) 1473 return false; 1474 1475 trace_block_bio_frontmerge(q, req, bio); 1476 1477 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1478 blk_rq_set_mixed_merge(req); 1479 1480 bio->bi_next = req->bio; 1481 req->bio = bio; 1482 1483 req->__sector = bio->bi_iter.bi_sector; 1484 req->__data_len += bio->bi_iter.bi_size; 1485 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1486 1487 blk_account_io_start(req, false); 1488 return true; 1489 } 1490 1491 /** 1492 * blk_attempt_plug_merge - try to merge with %current's plugged list 1493 * @q: request_queue new bio is being queued at 1494 * @bio: new bio being queued 1495 * @request_count: out parameter for number of traversed plugged requests 1496 * 1497 * Determine whether @bio being queued on @q can be merged with a request 1498 * on %current's plugged list. Returns %true if merge was successful, 1499 * otherwise %false. 1500 * 1501 * Plugging coalesces IOs from the same issuer for the same purpose without 1502 * going through @q->queue_lock. As such it's more of an issuing mechanism 1503 * than scheduling, and the request, while may have elvpriv data, is not 1504 * added on the elevator at this point. In addition, we don't have 1505 * reliable access to the elevator outside queue lock. Only check basic 1506 * merging parameters without querying the elevator. 1507 * 1508 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1509 */ 1510 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1511 unsigned int *request_count) 1512 { 1513 struct blk_plug *plug; 1514 struct request *rq; 1515 bool ret = false; 1516 struct list_head *plug_list; 1517 1518 plug = current->plug; 1519 if (!plug) 1520 goto out; 1521 *request_count = 0; 1522 1523 if (q->mq_ops) 1524 plug_list = &plug->mq_list; 1525 else 1526 plug_list = &plug->list; 1527 1528 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1529 int el_ret; 1530 1531 if (rq->q == q) 1532 (*request_count)++; 1533 1534 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1535 continue; 1536 1537 el_ret = blk_try_merge(rq, bio); 1538 if (el_ret == ELEVATOR_BACK_MERGE) { 1539 ret = bio_attempt_back_merge(q, rq, bio); 1540 if (ret) 1541 break; 1542 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1543 ret = bio_attempt_front_merge(q, rq, bio); 1544 if (ret) 1545 break; 1546 } 1547 } 1548 out: 1549 return ret; 1550 } 1551 1552 void init_request_from_bio(struct request *req, struct bio *bio) 1553 { 1554 req->cmd_type = REQ_TYPE_FS; 1555 1556 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1557 if (bio->bi_rw & REQ_RAHEAD) 1558 req->cmd_flags |= REQ_FAILFAST_MASK; 1559 1560 req->errors = 0; 1561 req->__sector = bio->bi_iter.bi_sector; 1562 req->ioprio = bio_prio(bio); 1563 blk_rq_bio_prep(req->q, req, bio); 1564 } 1565 1566 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1567 { 1568 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1569 struct blk_plug *plug; 1570 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1571 struct request *req; 1572 unsigned int request_count = 0; 1573 1574 /* 1575 * low level driver can indicate that it wants pages above a 1576 * certain limit bounced to low memory (ie for highmem, or even 1577 * ISA dma in theory) 1578 */ 1579 blk_queue_bounce(q, &bio); 1580 1581 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1582 bio_endio(bio, -EIO); 1583 return; 1584 } 1585 1586 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1587 spin_lock_irq(q->queue_lock); 1588 where = ELEVATOR_INSERT_FLUSH; 1589 goto get_rq; 1590 } 1591 1592 /* 1593 * Check if we can merge with the plugged list before grabbing 1594 * any locks. 1595 */ 1596 if (!blk_queue_nomerges(q) && 1597 blk_attempt_plug_merge(q, bio, &request_count)) 1598 return; 1599 1600 spin_lock_irq(q->queue_lock); 1601 1602 el_ret = elv_merge(q, &req, bio); 1603 if (el_ret == ELEVATOR_BACK_MERGE) { 1604 if (bio_attempt_back_merge(q, req, bio)) { 1605 elv_bio_merged(q, req, bio); 1606 if (!attempt_back_merge(q, req)) 1607 elv_merged_request(q, req, el_ret); 1608 goto out_unlock; 1609 } 1610 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1611 if (bio_attempt_front_merge(q, req, bio)) { 1612 elv_bio_merged(q, req, bio); 1613 if (!attempt_front_merge(q, req)) 1614 elv_merged_request(q, req, el_ret); 1615 goto out_unlock; 1616 } 1617 } 1618 1619 get_rq: 1620 /* 1621 * This sync check and mask will be re-done in init_request_from_bio(), 1622 * but we need to set it earlier to expose the sync flag to the 1623 * rq allocator and io schedulers. 1624 */ 1625 rw_flags = bio_data_dir(bio); 1626 if (sync) 1627 rw_flags |= REQ_SYNC; 1628 1629 /* 1630 * Grab a free request. This is might sleep but can not fail. 1631 * Returns with the queue unlocked. 1632 */ 1633 req = get_request(q, rw_flags, bio, GFP_NOIO); 1634 if (IS_ERR(req)) { 1635 bio_endio(bio, PTR_ERR(req)); /* @q is dead */ 1636 goto out_unlock; 1637 } 1638 1639 /* 1640 * After dropping the lock and possibly sleeping here, our request 1641 * may now be mergeable after it had proven unmergeable (above). 1642 * We don't worry about that case for efficiency. It won't happen 1643 * often, and the elevators are able to handle it. 1644 */ 1645 init_request_from_bio(req, bio); 1646 1647 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1648 req->cpu = raw_smp_processor_id(); 1649 1650 plug = current->plug; 1651 if (plug) { 1652 /* 1653 * If this is the first request added after a plug, fire 1654 * of a plug trace. 1655 */ 1656 if (!request_count) 1657 trace_block_plug(q); 1658 else { 1659 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1660 blk_flush_plug_list(plug, false); 1661 trace_block_plug(q); 1662 } 1663 } 1664 list_add_tail(&req->queuelist, &plug->list); 1665 blk_account_io_start(req, true); 1666 } else { 1667 spin_lock_irq(q->queue_lock); 1668 add_acct_request(q, req, where); 1669 __blk_run_queue(q); 1670 out_unlock: 1671 spin_unlock_irq(q->queue_lock); 1672 } 1673 } 1674 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1675 1676 /* 1677 * If bio->bi_dev is a partition, remap the location 1678 */ 1679 static inline void blk_partition_remap(struct bio *bio) 1680 { 1681 struct block_device *bdev = bio->bi_bdev; 1682 1683 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1684 struct hd_struct *p = bdev->bd_part; 1685 1686 bio->bi_iter.bi_sector += p->start_sect; 1687 bio->bi_bdev = bdev->bd_contains; 1688 1689 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1690 bdev->bd_dev, 1691 bio->bi_iter.bi_sector - p->start_sect); 1692 } 1693 } 1694 1695 static void handle_bad_sector(struct bio *bio) 1696 { 1697 char b[BDEVNAME_SIZE]; 1698 1699 printk(KERN_INFO "attempt to access beyond end of device\n"); 1700 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1701 bdevname(bio->bi_bdev, b), 1702 bio->bi_rw, 1703 (unsigned long long)bio_end_sector(bio), 1704 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1705 1706 set_bit(BIO_EOF, &bio->bi_flags); 1707 } 1708 1709 #ifdef CONFIG_FAIL_MAKE_REQUEST 1710 1711 static DECLARE_FAULT_ATTR(fail_make_request); 1712 1713 static int __init setup_fail_make_request(char *str) 1714 { 1715 return setup_fault_attr(&fail_make_request, str); 1716 } 1717 __setup("fail_make_request=", setup_fail_make_request); 1718 1719 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1720 { 1721 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1722 } 1723 1724 static int __init fail_make_request_debugfs(void) 1725 { 1726 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1727 NULL, &fail_make_request); 1728 1729 return PTR_ERR_OR_ZERO(dir); 1730 } 1731 1732 late_initcall(fail_make_request_debugfs); 1733 1734 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1735 1736 static inline bool should_fail_request(struct hd_struct *part, 1737 unsigned int bytes) 1738 { 1739 return false; 1740 } 1741 1742 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1743 1744 /* 1745 * Check whether this bio extends beyond the end of the device. 1746 */ 1747 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1748 { 1749 sector_t maxsector; 1750 1751 if (!nr_sectors) 1752 return 0; 1753 1754 /* Test device or partition size, when known. */ 1755 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1756 if (maxsector) { 1757 sector_t sector = bio->bi_iter.bi_sector; 1758 1759 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1760 /* 1761 * This may well happen - the kernel calls bread() 1762 * without checking the size of the device, e.g., when 1763 * mounting a device. 1764 */ 1765 handle_bad_sector(bio); 1766 return 1; 1767 } 1768 } 1769 1770 return 0; 1771 } 1772 1773 static noinline_for_stack bool 1774 generic_make_request_checks(struct bio *bio) 1775 { 1776 struct request_queue *q; 1777 int nr_sectors = bio_sectors(bio); 1778 int err = -EIO; 1779 char b[BDEVNAME_SIZE]; 1780 struct hd_struct *part; 1781 1782 might_sleep(); 1783 1784 if (bio_check_eod(bio, nr_sectors)) 1785 goto end_io; 1786 1787 q = bdev_get_queue(bio->bi_bdev); 1788 if (unlikely(!q)) { 1789 printk(KERN_ERR 1790 "generic_make_request: Trying to access " 1791 "nonexistent block-device %s (%Lu)\n", 1792 bdevname(bio->bi_bdev, b), 1793 (long long) bio->bi_iter.bi_sector); 1794 goto end_io; 1795 } 1796 1797 if (likely(bio_is_rw(bio) && 1798 nr_sectors > queue_max_hw_sectors(q))) { 1799 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1800 bdevname(bio->bi_bdev, b), 1801 bio_sectors(bio), 1802 queue_max_hw_sectors(q)); 1803 goto end_io; 1804 } 1805 1806 part = bio->bi_bdev->bd_part; 1807 if (should_fail_request(part, bio->bi_iter.bi_size) || 1808 should_fail_request(&part_to_disk(part)->part0, 1809 bio->bi_iter.bi_size)) 1810 goto end_io; 1811 1812 /* 1813 * If this device has partitions, remap block n 1814 * of partition p to block n+start(p) of the disk. 1815 */ 1816 blk_partition_remap(bio); 1817 1818 if (bio_check_eod(bio, nr_sectors)) 1819 goto end_io; 1820 1821 /* 1822 * Filter flush bio's early so that make_request based 1823 * drivers without flush support don't have to worry 1824 * about them. 1825 */ 1826 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1827 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1828 if (!nr_sectors) { 1829 err = 0; 1830 goto end_io; 1831 } 1832 } 1833 1834 if ((bio->bi_rw & REQ_DISCARD) && 1835 (!blk_queue_discard(q) || 1836 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1837 err = -EOPNOTSUPP; 1838 goto end_io; 1839 } 1840 1841 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1842 err = -EOPNOTSUPP; 1843 goto end_io; 1844 } 1845 1846 /* 1847 * Various block parts want %current->io_context and lazy ioc 1848 * allocation ends up trading a lot of pain for a small amount of 1849 * memory. Just allocate it upfront. This may fail and block 1850 * layer knows how to live with it. 1851 */ 1852 create_io_context(GFP_ATOMIC, q->node); 1853 1854 if (blk_throtl_bio(q, bio)) 1855 return false; /* throttled, will be resubmitted later */ 1856 1857 trace_block_bio_queue(q, bio); 1858 return true; 1859 1860 end_io: 1861 bio_endio(bio, err); 1862 return false; 1863 } 1864 1865 /** 1866 * generic_make_request - hand a buffer to its device driver for I/O 1867 * @bio: The bio describing the location in memory and on the device. 1868 * 1869 * generic_make_request() is used to make I/O requests of block 1870 * devices. It is passed a &struct bio, which describes the I/O that needs 1871 * to be done. 1872 * 1873 * generic_make_request() does not return any status. The 1874 * success/failure status of the request, along with notification of 1875 * completion, is delivered asynchronously through the bio->bi_end_io 1876 * function described (one day) else where. 1877 * 1878 * The caller of generic_make_request must make sure that bi_io_vec 1879 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1880 * set to describe the device address, and the 1881 * bi_end_io and optionally bi_private are set to describe how 1882 * completion notification should be signaled. 1883 * 1884 * generic_make_request and the drivers it calls may use bi_next if this 1885 * bio happens to be merged with someone else, and may resubmit the bio to 1886 * a lower device by calling into generic_make_request recursively, which 1887 * means the bio should NOT be touched after the call to ->make_request_fn. 1888 */ 1889 void generic_make_request(struct bio *bio) 1890 { 1891 struct bio_list bio_list_on_stack; 1892 1893 if (!generic_make_request_checks(bio)) 1894 return; 1895 1896 /* 1897 * We only want one ->make_request_fn to be active at a time, else 1898 * stack usage with stacked devices could be a problem. So use 1899 * current->bio_list to keep a list of requests submited by a 1900 * make_request_fn function. current->bio_list is also used as a 1901 * flag to say if generic_make_request is currently active in this 1902 * task or not. If it is NULL, then no make_request is active. If 1903 * it is non-NULL, then a make_request is active, and new requests 1904 * should be added at the tail 1905 */ 1906 if (current->bio_list) { 1907 bio_list_add(current->bio_list, bio); 1908 return; 1909 } 1910 1911 /* following loop may be a bit non-obvious, and so deserves some 1912 * explanation. 1913 * Before entering the loop, bio->bi_next is NULL (as all callers 1914 * ensure that) so we have a list with a single bio. 1915 * We pretend that we have just taken it off a longer list, so 1916 * we assign bio_list to a pointer to the bio_list_on_stack, 1917 * thus initialising the bio_list of new bios to be 1918 * added. ->make_request() may indeed add some more bios 1919 * through a recursive call to generic_make_request. If it 1920 * did, we find a non-NULL value in bio_list and re-enter the loop 1921 * from the top. In this case we really did just take the bio 1922 * of the top of the list (no pretending) and so remove it from 1923 * bio_list, and call into ->make_request() again. 1924 */ 1925 BUG_ON(bio->bi_next); 1926 bio_list_init(&bio_list_on_stack); 1927 current->bio_list = &bio_list_on_stack; 1928 do { 1929 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1930 1931 q->make_request_fn(q, bio); 1932 1933 bio = bio_list_pop(current->bio_list); 1934 } while (bio); 1935 current->bio_list = NULL; /* deactivate */ 1936 } 1937 EXPORT_SYMBOL(generic_make_request); 1938 1939 /** 1940 * submit_bio - submit a bio to the block device layer for I/O 1941 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1942 * @bio: The &struct bio which describes the I/O 1943 * 1944 * submit_bio() is very similar in purpose to generic_make_request(), and 1945 * uses that function to do most of the work. Both are fairly rough 1946 * interfaces; @bio must be presetup and ready for I/O. 1947 * 1948 */ 1949 void submit_bio(int rw, struct bio *bio) 1950 { 1951 bio->bi_rw |= rw; 1952 1953 /* 1954 * If it's a regular read/write or a barrier with data attached, 1955 * go through the normal accounting stuff before submission. 1956 */ 1957 if (bio_has_data(bio)) { 1958 unsigned int count; 1959 1960 if (unlikely(rw & REQ_WRITE_SAME)) 1961 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 1962 else 1963 count = bio_sectors(bio); 1964 1965 if (rw & WRITE) { 1966 count_vm_events(PGPGOUT, count); 1967 } else { 1968 task_io_account_read(bio->bi_iter.bi_size); 1969 count_vm_events(PGPGIN, count); 1970 } 1971 1972 if (unlikely(block_dump)) { 1973 char b[BDEVNAME_SIZE]; 1974 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1975 current->comm, task_pid_nr(current), 1976 (rw & WRITE) ? "WRITE" : "READ", 1977 (unsigned long long)bio->bi_iter.bi_sector, 1978 bdevname(bio->bi_bdev, b), 1979 count); 1980 } 1981 } 1982 1983 generic_make_request(bio); 1984 } 1985 EXPORT_SYMBOL(submit_bio); 1986 1987 /** 1988 * blk_rq_check_limits - Helper function to check a request for the queue limit 1989 * @q: the queue 1990 * @rq: the request being checked 1991 * 1992 * Description: 1993 * @rq may have been made based on weaker limitations of upper-level queues 1994 * in request stacking drivers, and it may violate the limitation of @q. 1995 * Since the block layer and the underlying device driver trust @rq 1996 * after it is inserted to @q, it should be checked against @q before 1997 * the insertion using this generic function. 1998 * 1999 * This function should also be useful for request stacking drivers 2000 * in some cases below, so export this function. 2001 * Request stacking drivers like request-based dm may change the queue 2002 * limits while requests are in the queue (e.g. dm's table swapping). 2003 * Such request stacking drivers should check those requests against 2004 * the new queue limits again when they dispatch those requests, 2005 * although such checkings are also done against the old queue limits 2006 * when submitting requests. 2007 */ 2008 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 2009 { 2010 if (!rq_mergeable(rq)) 2011 return 0; 2012 2013 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 2014 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2015 return -EIO; 2016 } 2017 2018 /* 2019 * queue's settings related to segment counting like q->bounce_pfn 2020 * may differ from that of other stacking queues. 2021 * Recalculate it to check the request correctly on this queue's 2022 * limitation. 2023 */ 2024 blk_recalc_rq_segments(rq); 2025 if (rq->nr_phys_segments > queue_max_segments(q)) { 2026 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2027 return -EIO; 2028 } 2029 2030 return 0; 2031 } 2032 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 2033 2034 /** 2035 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2036 * @q: the queue to submit the request 2037 * @rq: the request being queued 2038 */ 2039 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2040 { 2041 unsigned long flags; 2042 int where = ELEVATOR_INSERT_BACK; 2043 2044 if (blk_rq_check_limits(q, rq)) 2045 return -EIO; 2046 2047 if (rq->rq_disk && 2048 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2049 return -EIO; 2050 2051 spin_lock_irqsave(q->queue_lock, flags); 2052 if (unlikely(blk_queue_dying(q))) { 2053 spin_unlock_irqrestore(q->queue_lock, flags); 2054 return -ENODEV; 2055 } 2056 2057 /* 2058 * Submitting request must be dequeued before calling this function 2059 * because it will be linked to another request_queue 2060 */ 2061 BUG_ON(blk_queued_rq(rq)); 2062 2063 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 2064 where = ELEVATOR_INSERT_FLUSH; 2065 2066 add_acct_request(q, rq, where); 2067 if (where == ELEVATOR_INSERT_FLUSH) 2068 __blk_run_queue(q); 2069 spin_unlock_irqrestore(q->queue_lock, flags); 2070 2071 return 0; 2072 } 2073 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2074 2075 /** 2076 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2077 * @rq: request to examine 2078 * 2079 * Description: 2080 * A request could be merge of IOs which require different failure 2081 * handling. This function determines the number of bytes which 2082 * can be failed from the beginning of the request without 2083 * crossing into area which need to be retried further. 2084 * 2085 * Return: 2086 * The number of bytes to fail. 2087 * 2088 * Context: 2089 * queue_lock must be held. 2090 */ 2091 unsigned int blk_rq_err_bytes(const struct request *rq) 2092 { 2093 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2094 unsigned int bytes = 0; 2095 struct bio *bio; 2096 2097 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2098 return blk_rq_bytes(rq); 2099 2100 /* 2101 * Currently the only 'mixing' which can happen is between 2102 * different fastfail types. We can safely fail portions 2103 * which have all the failfast bits that the first one has - 2104 * the ones which are at least as eager to fail as the first 2105 * one. 2106 */ 2107 for (bio = rq->bio; bio; bio = bio->bi_next) { 2108 if ((bio->bi_rw & ff) != ff) 2109 break; 2110 bytes += bio->bi_iter.bi_size; 2111 } 2112 2113 /* this could lead to infinite loop */ 2114 BUG_ON(blk_rq_bytes(rq) && !bytes); 2115 return bytes; 2116 } 2117 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2118 2119 void blk_account_io_completion(struct request *req, unsigned int bytes) 2120 { 2121 if (blk_do_io_stat(req)) { 2122 const int rw = rq_data_dir(req); 2123 struct hd_struct *part; 2124 int cpu; 2125 2126 cpu = part_stat_lock(); 2127 part = req->part; 2128 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2129 part_stat_unlock(); 2130 } 2131 } 2132 2133 void blk_account_io_done(struct request *req) 2134 { 2135 /* 2136 * Account IO completion. flush_rq isn't accounted as a 2137 * normal IO on queueing nor completion. Accounting the 2138 * containing request is enough. 2139 */ 2140 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2141 unsigned long duration = jiffies - req->start_time; 2142 const int rw = rq_data_dir(req); 2143 struct hd_struct *part; 2144 int cpu; 2145 2146 cpu = part_stat_lock(); 2147 part = req->part; 2148 2149 part_stat_inc(cpu, part, ios[rw]); 2150 part_stat_add(cpu, part, ticks[rw], duration); 2151 part_round_stats(cpu, part); 2152 part_dec_in_flight(part, rw); 2153 2154 hd_struct_put(part); 2155 part_stat_unlock(); 2156 } 2157 } 2158 2159 #ifdef CONFIG_PM 2160 /* 2161 * Don't process normal requests when queue is suspended 2162 * or in the process of suspending/resuming 2163 */ 2164 static struct request *blk_pm_peek_request(struct request_queue *q, 2165 struct request *rq) 2166 { 2167 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2168 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2169 return NULL; 2170 else 2171 return rq; 2172 } 2173 #else 2174 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2175 struct request *rq) 2176 { 2177 return rq; 2178 } 2179 #endif 2180 2181 void blk_account_io_start(struct request *rq, bool new_io) 2182 { 2183 struct hd_struct *part; 2184 int rw = rq_data_dir(rq); 2185 int cpu; 2186 2187 if (!blk_do_io_stat(rq)) 2188 return; 2189 2190 cpu = part_stat_lock(); 2191 2192 if (!new_io) { 2193 part = rq->part; 2194 part_stat_inc(cpu, part, merges[rw]); 2195 } else { 2196 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2197 if (!hd_struct_try_get(part)) { 2198 /* 2199 * The partition is already being removed, 2200 * the request will be accounted on the disk only 2201 * 2202 * We take a reference on disk->part0 although that 2203 * partition will never be deleted, so we can treat 2204 * it as any other partition. 2205 */ 2206 part = &rq->rq_disk->part0; 2207 hd_struct_get(part); 2208 } 2209 part_round_stats(cpu, part); 2210 part_inc_in_flight(part, rw); 2211 rq->part = part; 2212 } 2213 2214 part_stat_unlock(); 2215 } 2216 2217 /** 2218 * blk_peek_request - peek at the top of a request queue 2219 * @q: request queue to peek at 2220 * 2221 * Description: 2222 * Return the request at the top of @q. The returned request 2223 * should be started using blk_start_request() before LLD starts 2224 * processing it. 2225 * 2226 * Return: 2227 * Pointer to the request at the top of @q if available. Null 2228 * otherwise. 2229 * 2230 * Context: 2231 * queue_lock must be held. 2232 */ 2233 struct request *blk_peek_request(struct request_queue *q) 2234 { 2235 struct request *rq; 2236 int ret; 2237 2238 while ((rq = __elv_next_request(q)) != NULL) { 2239 2240 rq = blk_pm_peek_request(q, rq); 2241 if (!rq) 2242 break; 2243 2244 if (!(rq->cmd_flags & REQ_STARTED)) { 2245 /* 2246 * This is the first time the device driver 2247 * sees this request (possibly after 2248 * requeueing). Notify IO scheduler. 2249 */ 2250 if (rq->cmd_flags & REQ_SORTED) 2251 elv_activate_rq(q, rq); 2252 2253 /* 2254 * just mark as started even if we don't start 2255 * it, a request that has been delayed should 2256 * not be passed by new incoming requests 2257 */ 2258 rq->cmd_flags |= REQ_STARTED; 2259 trace_block_rq_issue(q, rq); 2260 } 2261 2262 if (!q->boundary_rq || q->boundary_rq == rq) { 2263 q->end_sector = rq_end_sector(rq); 2264 q->boundary_rq = NULL; 2265 } 2266 2267 if (rq->cmd_flags & REQ_DONTPREP) 2268 break; 2269 2270 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2271 /* 2272 * make sure space for the drain appears we 2273 * know we can do this because max_hw_segments 2274 * has been adjusted to be one fewer than the 2275 * device can handle 2276 */ 2277 rq->nr_phys_segments++; 2278 } 2279 2280 if (!q->prep_rq_fn) 2281 break; 2282 2283 ret = q->prep_rq_fn(q, rq); 2284 if (ret == BLKPREP_OK) { 2285 break; 2286 } else if (ret == BLKPREP_DEFER) { 2287 /* 2288 * the request may have been (partially) prepped. 2289 * we need to keep this request in the front to 2290 * avoid resource deadlock. REQ_STARTED will 2291 * prevent other fs requests from passing this one. 2292 */ 2293 if (q->dma_drain_size && blk_rq_bytes(rq) && 2294 !(rq->cmd_flags & REQ_DONTPREP)) { 2295 /* 2296 * remove the space for the drain we added 2297 * so that we don't add it again 2298 */ 2299 --rq->nr_phys_segments; 2300 } 2301 2302 rq = NULL; 2303 break; 2304 } else if (ret == BLKPREP_KILL) { 2305 rq->cmd_flags |= REQ_QUIET; 2306 /* 2307 * Mark this request as started so we don't trigger 2308 * any debug logic in the end I/O path. 2309 */ 2310 blk_start_request(rq); 2311 __blk_end_request_all(rq, -EIO); 2312 } else { 2313 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2314 break; 2315 } 2316 } 2317 2318 return rq; 2319 } 2320 EXPORT_SYMBOL(blk_peek_request); 2321 2322 void blk_dequeue_request(struct request *rq) 2323 { 2324 struct request_queue *q = rq->q; 2325 2326 BUG_ON(list_empty(&rq->queuelist)); 2327 BUG_ON(ELV_ON_HASH(rq)); 2328 2329 list_del_init(&rq->queuelist); 2330 2331 /* 2332 * the time frame between a request being removed from the lists 2333 * and to it is freed is accounted as io that is in progress at 2334 * the driver side. 2335 */ 2336 if (blk_account_rq(rq)) { 2337 q->in_flight[rq_is_sync(rq)]++; 2338 set_io_start_time_ns(rq); 2339 } 2340 } 2341 2342 /** 2343 * blk_start_request - start request processing on the driver 2344 * @req: request to dequeue 2345 * 2346 * Description: 2347 * Dequeue @req and start timeout timer on it. This hands off the 2348 * request to the driver. 2349 * 2350 * Block internal functions which don't want to start timer should 2351 * call blk_dequeue_request(). 2352 * 2353 * Context: 2354 * queue_lock must be held. 2355 */ 2356 void blk_start_request(struct request *req) 2357 { 2358 blk_dequeue_request(req); 2359 2360 /* 2361 * We are now handing the request to the hardware, initialize 2362 * resid_len to full count and add the timeout handler. 2363 */ 2364 req->resid_len = blk_rq_bytes(req); 2365 if (unlikely(blk_bidi_rq(req))) 2366 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2367 2368 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2369 blk_add_timer(req); 2370 } 2371 EXPORT_SYMBOL(blk_start_request); 2372 2373 /** 2374 * blk_fetch_request - fetch a request from a request queue 2375 * @q: request queue to fetch a request from 2376 * 2377 * Description: 2378 * Return the request at the top of @q. The request is started on 2379 * return and LLD can start processing it immediately. 2380 * 2381 * Return: 2382 * Pointer to the request at the top of @q if available. Null 2383 * otherwise. 2384 * 2385 * Context: 2386 * queue_lock must be held. 2387 */ 2388 struct request *blk_fetch_request(struct request_queue *q) 2389 { 2390 struct request *rq; 2391 2392 rq = blk_peek_request(q); 2393 if (rq) 2394 blk_start_request(rq); 2395 return rq; 2396 } 2397 EXPORT_SYMBOL(blk_fetch_request); 2398 2399 /** 2400 * blk_update_request - Special helper function for request stacking drivers 2401 * @req: the request being processed 2402 * @error: %0 for success, < %0 for error 2403 * @nr_bytes: number of bytes to complete @req 2404 * 2405 * Description: 2406 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2407 * the request structure even if @req doesn't have leftover. 2408 * If @req has leftover, sets it up for the next range of segments. 2409 * 2410 * This special helper function is only for request stacking drivers 2411 * (e.g. request-based dm) so that they can handle partial completion. 2412 * Actual device drivers should use blk_end_request instead. 2413 * 2414 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2415 * %false return from this function. 2416 * 2417 * Return: 2418 * %false - this request doesn't have any more data 2419 * %true - this request has more data 2420 **/ 2421 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2422 { 2423 int total_bytes; 2424 2425 trace_block_rq_complete(req->q, req, nr_bytes); 2426 2427 if (!req->bio) 2428 return false; 2429 2430 /* 2431 * For fs requests, rq is just carrier of independent bio's 2432 * and each partial completion should be handled separately. 2433 * Reset per-request error on each partial completion. 2434 * 2435 * TODO: tj: This is too subtle. It would be better to let 2436 * low level drivers do what they see fit. 2437 */ 2438 if (req->cmd_type == REQ_TYPE_FS) 2439 req->errors = 0; 2440 2441 if (error && req->cmd_type == REQ_TYPE_FS && 2442 !(req->cmd_flags & REQ_QUIET)) { 2443 char *error_type; 2444 2445 switch (error) { 2446 case -ENOLINK: 2447 error_type = "recoverable transport"; 2448 break; 2449 case -EREMOTEIO: 2450 error_type = "critical target"; 2451 break; 2452 case -EBADE: 2453 error_type = "critical nexus"; 2454 break; 2455 case -ETIMEDOUT: 2456 error_type = "timeout"; 2457 break; 2458 case -ENOSPC: 2459 error_type = "critical space allocation"; 2460 break; 2461 case -ENODATA: 2462 error_type = "critical medium"; 2463 break; 2464 case -EIO: 2465 default: 2466 error_type = "I/O"; 2467 break; 2468 } 2469 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2470 __func__, error_type, req->rq_disk ? 2471 req->rq_disk->disk_name : "?", 2472 (unsigned long long)blk_rq_pos(req)); 2473 2474 } 2475 2476 blk_account_io_completion(req, nr_bytes); 2477 2478 total_bytes = 0; 2479 while (req->bio) { 2480 struct bio *bio = req->bio; 2481 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2482 2483 if (bio_bytes == bio->bi_iter.bi_size) 2484 req->bio = bio->bi_next; 2485 2486 req_bio_endio(req, bio, bio_bytes, error); 2487 2488 total_bytes += bio_bytes; 2489 nr_bytes -= bio_bytes; 2490 2491 if (!nr_bytes) 2492 break; 2493 } 2494 2495 /* 2496 * completely done 2497 */ 2498 if (!req->bio) { 2499 /* 2500 * Reset counters so that the request stacking driver 2501 * can find how many bytes remain in the request 2502 * later. 2503 */ 2504 req->__data_len = 0; 2505 return false; 2506 } 2507 2508 req->__data_len -= total_bytes; 2509 2510 /* update sector only for requests with clear definition of sector */ 2511 if (req->cmd_type == REQ_TYPE_FS) 2512 req->__sector += total_bytes >> 9; 2513 2514 /* mixed attributes always follow the first bio */ 2515 if (req->cmd_flags & REQ_MIXED_MERGE) { 2516 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2517 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2518 } 2519 2520 /* 2521 * If total number of sectors is less than the first segment 2522 * size, something has gone terribly wrong. 2523 */ 2524 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2525 blk_dump_rq_flags(req, "request botched"); 2526 req->__data_len = blk_rq_cur_bytes(req); 2527 } 2528 2529 /* recalculate the number of segments */ 2530 blk_recalc_rq_segments(req); 2531 2532 return true; 2533 } 2534 EXPORT_SYMBOL_GPL(blk_update_request); 2535 2536 static bool blk_update_bidi_request(struct request *rq, int error, 2537 unsigned int nr_bytes, 2538 unsigned int bidi_bytes) 2539 { 2540 if (blk_update_request(rq, error, nr_bytes)) 2541 return true; 2542 2543 /* Bidi request must be completed as a whole */ 2544 if (unlikely(blk_bidi_rq(rq)) && 2545 blk_update_request(rq->next_rq, error, bidi_bytes)) 2546 return true; 2547 2548 if (blk_queue_add_random(rq->q)) 2549 add_disk_randomness(rq->rq_disk); 2550 2551 return false; 2552 } 2553 2554 /** 2555 * blk_unprep_request - unprepare a request 2556 * @req: the request 2557 * 2558 * This function makes a request ready for complete resubmission (or 2559 * completion). It happens only after all error handling is complete, 2560 * so represents the appropriate moment to deallocate any resources 2561 * that were allocated to the request in the prep_rq_fn. The queue 2562 * lock is held when calling this. 2563 */ 2564 void blk_unprep_request(struct request *req) 2565 { 2566 struct request_queue *q = req->q; 2567 2568 req->cmd_flags &= ~REQ_DONTPREP; 2569 if (q->unprep_rq_fn) 2570 q->unprep_rq_fn(q, req); 2571 } 2572 EXPORT_SYMBOL_GPL(blk_unprep_request); 2573 2574 /* 2575 * queue lock must be held 2576 */ 2577 void blk_finish_request(struct request *req, int error) 2578 { 2579 if (req->cmd_flags & REQ_QUEUED) 2580 blk_queue_end_tag(req->q, req); 2581 2582 BUG_ON(blk_queued_rq(req)); 2583 2584 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2585 laptop_io_completion(&req->q->backing_dev_info); 2586 2587 blk_delete_timer(req); 2588 2589 if (req->cmd_flags & REQ_DONTPREP) 2590 blk_unprep_request(req); 2591 2592 blk_account_io_done(req); 2593 2594 if (req->end_io) 2595 req->end_io(req, error); 2596 else { 2597 if (blk_bidi_rq(req)) 2598 __blk_put_request(req->next_rq->q, req->next_rq); 2599 2600 __blk_put_request(req->q, req); 2601 } 2602 } 2603 EXPORT_SYMBOL(blk_finish_request); 2604 2605 /** 2606 * blk_end_bidi_request - Complete a bidi request 2607 * @rq: the request to complete 2608 * @error: %0 for success, < %0 for error 2609 * @nr_bytes: number of bytes to complete @rq 2610 * @bidi_bytes: number of bytes to complete @rq->next_rq 2611 * 2612 * Description: 2613 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2614 * Drivers that supports bidi can safely call this member for any 2615 * type of request, bidi or uni. In the later case @bidi_bytes is 2616 * just ignored. 2617 * 2618 * Return: 2619 * %false - we are done with this request 2620 * %true - still buffers pending for this request 2621 **/ 2622 static bool blk_end_bidi_request(struct request *rq, int error, 2623 unsigned int nr_bytes, unsigned int bidi_bytes) 2624 { 2625 struct request_queue *q = rq->q; 2626 unsigned long flags; 2627 2628 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2629 return true; 2630 2631 spin_lock_irqsave(q->queue_lock, flags); 2632 blk_finish_request(rq, error); 2633 spin_unlock_irqrestore(q->queue_lock, flags); 2634 2635 return false; 2636 } 2637 2638 /** 2639 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2640 * @rq: the request to complete 2641 * @error: %0 for success, < %0 for error 2642 * @nr_bytes: number of bytes to complete @rq 2643 * @bidi_bytes: number of bytes to complete @rq->next_rq 2644 * 2645 * Description: 2646 * Identical to blk_end_bidi_request() except that queue lock is 2647 * assumed to be locked on entry and remains so on return. 2648 * 2649 * Return: 2650 * %false - we are done with this request 2651 * %true - still buffers pending for this request 2652 **/ 2653 bool __blk_end_bidi_request(struct request *rq, int error, 2654 unsigned int nr_bytes, unsigned int bidi_bytes) 2655 { 2656 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2657 return true; 2658 2659 blk_finish_request(rq, error); 2660 2661 return false; 2662 } 2663 2664 /** 2665 * blk_end_request - Helper function for drivers to complete the request. 2666 * @rq: the request being processed 2667 * @error: %0 for success, < %0 for error 2668 * @nr_bytes: number of bytes to complete 2669 * 2670 * Description: 2671 * Ends I/O on a number of bytes attached to @rq. 2672 * If @rq has leftover, sets it up for the next range of segments. 2673 * 2674 * Return: 2675 * %false - we are done with this request 2676 * %true - still buffers pending for this request 2677 **/ 2678 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2679 { 2680 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2681 } 2682 EXPORT_SYMBOL(blk_end_request); 2683 2684 /** 2685 * blk_end_request_all - Helper function for drives to finish the request. 2686 * @rq: the request to finish 2687 * @error: %0 for success, < %0 for error 2688 * 2689 * Description: 2690 * Completely finish @rq. 2691 */ 2692 void blk_end_request_all(struct request *rq, int error) 2693 { 2694 bool pending; 2695 unsigned int bidi_bytes = 0; 2696 2697 if (unlikely(blk_bidi_rq(rq))) 2698 bidi_bytes = blk_rq_bytes(rq->next_rq); 2699 2700 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2701 BUG_ON(pending); 2702 } 2703 EXPORT_SYMBOL(blk_end_request_all); 2704 2705 /** 2706 * blk_end_request_cur - Helper function to finish the current request chunk. 2707 * @rq: the request to finish the current chunk for 2708 * @error: %0 for success, < %0 for error 2709 * 2710 * Description: 2711 * Complete the current consecutively mapped chunk from @rq. 2712 * 2713 * Return: 2714 * %false - we are done with this request 2715 * %true - still buffers pending for this request 2716 */ 2717 bool blk_end_request_cur(struct request *rq, int error) 2718 { 2719 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2720 } 2721 EXPORT_SYMBOL(blk_end_request_cur); 2722 2723 /** 2724 * blk_end_request_err - Finish a request till the next failure boundary. 2725 * @rq: the request to finish till the next failure boundary for 2726 * @error: must be negative errno 2727 * 2728 * Description: 2729 * Complete @rq till the next failure boundary. 2730 * 2731 * Return: 2732 * %false - we are done with this request 2733 * %true - still buffers pending for this request 2734 */ 2735 bool blk_end_request_err(struct request *rq, int error) 2736 { 2737 WARN_ON(error >= 0); 2738 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2739 } 2740 EXPORT_SYMBOL_GPL(blk_end_request_err); 2741 2742 /** 2743 * __blk_end_request - Helper function for drivers to complete the request. 2744 * @rq: the request being processed 2745 * @error: %0 for success, < %0 for error 2746 * @nr_bytes: number of bytes to complete 2747 * 2748 * Description: 2749 * Must be called with queue lock held unlike blk_end_request(). 2750 * 2751 * Return: 2752 * %false - we are done with this request 2753 * %true - still buffers pending for this request 2754 **/ 2755 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2756 { 2757 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2758 } 2759 EXPORT_SYMBOL(__blk_end_request); 2760 2761 /** 2762 * __blk_end_request_all - Helper function for drives to finish the request. 2763 * @rq: the request to finish 2764 * @error: %0 for success, < %0 for error 2765 * 2766 * Description: 2767 * Completely finish @rq. Must be called with queue lock held. 2768 */ 2769 void __blk_end_request_all(struct request *rq, int error) 2770 { 2771 bool pending; 2772 unsigned int bidi_bytes = 0; 2773 2774 if (unlikely(blk_bidi_rq(rq))) 2775 bidi_bytes = blk_rq_bytes(rq->next_rq); 2776 2777 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2778 BUG_ON(pending); 2779 } 2780 EXPORT_SYMBOL(__blk_end_request_all); 2781 2782 /** 2783 * __blk_end_request_cur - Helper function to finish the current request chunk. 2784 * @rq: the request to finish the current chunk for 2785 * @error: %0 for success, < %0 for error 2786 * 2787 * Description: 2788 * Complete the current consecutively mapped chunk from @rq. Must 2789 * be called with queue lock held. 2790 * 2791 * Return: 2792 * %false - we are done with this request 2793 * %true - still buffers pending for this request 2794 */ 2795 bool __blk_end_request_cur(struct request *rq, int error) 2796 { 2797 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2798 } 2799 EXPORT_SYMBOL(__blk_end_request_cur); 2800 2801 /** 2802 * __blk_end_request_err - Finish a request till the next failure boundary. 2803 * @rq: the request to finish till the next failure boundary for 2804 * @error: must be negative errno 2805 * 2806 * Description: 2807 * Complete @rq till the next failure boundary. Must be called 2808 * with queue lock held. 2809 * 2810 * Return: 2811 * %false - we are done with this request 2812 * %true - still buffers pending for this request 2813 */ 2814 bool __blk_end_request_err(struct request *rq, int error) 2815 { 2816 WARN_ON(error >= 0); 2817 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2818 } 2819 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2820 2821 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2822 struct bio *bio) 2823 { 2824 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2825 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2826 2827 if (bio_has_data(bio)) 2828 rq->nr_phys_segments = bio_phys_segments(q, bio); 2829 2830 rq->__data_len = bio->bi_iter.bi_size; 2831 rq->bio = rq->biotail = bio; 2832 2833 if (bio->bi_bdev) 2834 rq->rq_disk = bio->bi_bdev->bd_disk; 2835 } 2836 2837 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2838 /** 2839 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2840 * @rq: the request to be flushed 2841 * 2842 * Description: 2843 * Flush all pages in @rq. 2844 */ 2845 void rq_flush_dcache_pages(struct request *rq) 2846 { 2847 struct req_iterator iter; 2848 struct bio_vec bvec; 2849 2850 rq_for_each_segment(bvec, rq, iter) 2851 flush_dcache_page(bvec.bv_page); 2852 } 2853 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2854 #endif 2855 2856 /** 2857 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2858 * @q : the queue of the device being checked 2859 * 2860 * Description: 2861 * Check if underlying low-level drivers of a device are busy. 2862 * If the drivers want to export their busy state, they must set own 2863 * exporting function using blk_queue_lld_busy() first. 2864 * 2865 * Basically, this function is used only by request stacking drivers 2866 * to stop dispatching requests to underlying devices when underlying 2867 * devices are busy. This behavior helps more I/O merging on the queue 2868 * of the request stacking driver and prevents I/O throughput regression 2869 * on burst I/O load. 2870 * 2871 * Return: 2872 * 0 - Not busy (The request stacking driver should dispatch request) 2873 * 1 - Busy (The request stacking driver should stop dispatching request) 2874 */ 2875 int blk_lld_busy(struct request_queue *q) 2876 { 2877 if (q->lld_busy_fn) 2878 return q->lld_busy_fn(q); 2879 2880 return 0; 2881 } 2882 EXPORT_SYMBOL_GPL(blk_lld_busy); 2883 2884 /** 2885 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2886 * @rq: the clone request to be cleaned up 2887 * 2888 * Description: 2889 * Free all bios in @rq for a cloned request. 2890 */ 2891 void blk_rq_unprep_clone(struct request *rq) 2892 { 2893 struct bio *bio; 2894 2895 while ((bio = rq->bio) != NULL) { 2896 rq->bio = bio->bi_next; 2897 2898 bio_put(bio); 2899 } 2900 } 2901 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2902 2903 /* 2904 * Copy attributes of the original request to the clone request. 2905 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 2906 */ 2907 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2908 { 2909 dst->cpu = src->cpu; 2910 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2911 dst->cmd_type = src->cmd_type; 2912 dst->__sector = blk_rq_pos(src); 2913 dst->__data_len = blk_rq_bytes(src); 2914 dst->nr_phys_segments = src->nr_phys_segments; 2915 dst->ioprio = src->ioprio; 2916 dst->extra_len = src->extra_len; 2917 } 2918 2919 /** 2920 * blk_rq_prep_clone - Helper function to setup clone request 2921 * @rq: the request to be setup 2922 * @rq_src: original request to be cloned 2923 * @bs: bio_set that bios for clone are allocated from 2924 * @gfp_mask: memory allocation mask for bio 2925 * @bio_ctr: setup function to be called for each clone bio. 2926 * Returns %0 for success, non %0 for failure. 2927 * @data: private data to be passed to @bio_ctr 2928 * 2929 * Description: 2930 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2931 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 2932 * are not copied, and copying such parts is the caller's responsibility. 2933 * Also, pages which the original bios are pointing to are not copied 2934 * and the cloned bios just point same pages. 2935 * So cloned bios must be completed before original bios, which means 2936 * the caller must complete @rq before @rq_src. 2937 */ 2938 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2939 struct bio_set *bs, gfp_t gfp_mask, 2940 int (*bio_ctr)(struct bio *, struct bio *, void *), 2941 void *data) 2942 { 2943 struct bio *bio, *bio_src; 2944 2945 if (!bs) 2946 bs = fs_bio_set; 2947 2948 blk_rq_init(NULL, rq); 2949 2950 __rq_for_each_bio(bio_src, rq_src) { 2951 bio = bio_clone_fast(bio_src, gfp_mask, bs); 2952 if (!bio) 2953 goto free_and_out; 2954 2955 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2956 goto free_and_out; 2957 2958 if (rq->bio) { 2959 rq->biotail->bi_next = bio; 2960 rq->biotail = bio; 2961 } else 2962 rq->bio = rq->biotail = bio; 2963 } 2964 2965 __blk_rq_prep_clone(rq, rq_src); 2966 2967 return 0; 2968 2969 free_and_out: 2970 if (bio) 2971 bio_put(bio); 2972 blk_rq_unprep_clone(rq); 2973 2974 return -ENOMEM; 2975 } 2976 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2977 2978 int kblockd_schedule_work(struct work_struct *work) 2979 { 2980 return queue_work(kblockd_workqueue, work); 2981 } 2982 EXPORT_SYMBOL(kblockd_schedule_work); 2983 2984 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 2985 unsigned long delay) 2986 { 2987 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2988 } 2989 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2990 2991 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 2992 unsigned long delay) 2993 { 2994 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 2995 } 2996 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 2997 2998 /** 2999 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3000 * @plug: The &struct blk_plug that needs to be initialized 3001 * 3002 * Description: 3003 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3004 * pending I/O should the task end up blocking between blk_start_plug() and 3005 * blk_finish_plug(). This is important from a performance perspective, but 3006 * also ensures that we don't deadlock. For instance, if the task is blocking 3007 * for a memory allocation, memory reclaim could end up wanting to free a 3008 * page belonging to that request that is currently residing in our private 3009 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3010 * this kind of deadlock. 3011 */ 3012 void blk_start_plug(struct blk_plug *plug) 3013 { 3014 struct task_struct *tsk = current; 3015 3016 INIT_LIST_HEAD(&plug->list); 3017 INIT_LIST_HEAD(&plug->mq_list); 3018 INIT_LIST_HEAD(&plug->cb_list); 3019 3020 /* 3021 * If this is a nested plug, don't actually assign it. It will be 3022 * flushed on its own. 3023 */ 3024 if (!tsk->plug) { 3025 /* 3026 * Store ordering should not be needed here, since a potential 3027 * preempt will imply a full memory barrier 3028 */ 3029 tsk->plug = plug; 3030 } 3031 } 3032 EXPORT_SYMBOL(blk_start_plug); 3033 3034 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3035 { 3036 struct request *rqa = container_of(a, struct request, queuelist); 3037 struct request *rqb = container_of(b, struct request, queuelist); 3038 3039 return !(rqa->q < rqb->q || 3040 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3041 } 3042 3043 /* 3044 * If 'from_schedule' is true, then postpone the dispatch of requests 3045 * until a safe kblockd context. We due this to avoid accidental big 3046 * additional stack usage in driver dispatch, in places where the originally 3047 * plugger did not intend it. 3048 */ 3049 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3050 bool from_schedule) 3051 __releases(q->queue_lock) 3052 { 3053 trace_block_unplug(q, depth, !from_schedule); 3054 3055 if (from_schedule) 3056 blk_run_queue_async(q); 3057 else 3058 __blk_run_queue(q); 3059 spin_unlock(q->queue_lock); 3060 } 3061 3062 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3063 { 3064 LIST_HEAD(callbacks); 3065 3066 while (!list_empty(&plug->cb_list)) { 3067 list_splice_init(&plug->cb_list, &callbacks); 3068 3069 while (!list_empty(&callbacks)) { 3070 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3071 struct blk_plug_cb, 3072 list); 3073 list_del(&cb->list); 3074 cb->callback(cb, from_schedule); 3075 } 3076 } 3077 } 3078 3079 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3080 int size) 3081 { 3082 struct blk_plug *plug = current->plug; 3083 struct blk_plug_cb *cb; 3084 3085 if (!plug) 3086 return NULL; 3087 3088 list_for_each_entry(cb, &plug->cb_list, list) 3089 if (cb->callback == unplug && cb->data == data) 3090 return cb; 3091 3092 /* Not currently on the callback list */ 3093 BUG_ON(size < sizeof(*cb)); 3094 cb = kzalloc(size, GFP_ATOMIC); 3095 if (cb) { 3096 cb->data = data; 3097 cb->callback = unplug; 3098 list_add(&cb->list, &plug->cb_list); 3099 } 3100 return cb; 3101 } 3102 EXPORT_SYMBOL(blk_check_plugged); 3103 3104 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3105 { 3106 struct request_queue *q; 3107 unsigned long flags; 3108 struct request *rq; 3109 LIST_HEAD(list); 3110 unsigned int depth; 3111 3112 flush_plug_callbacks(plug, from_schedule); 3113 3114 if (!list_empty(&plug->mq_list)) 3115 blk_mq_flush_plug_list(plug, from_schedule); 3116 3117 if (list_empty(&plug->list)) 3118 return; 3119 3120 list_splice_init(&plug->list, &list); 3121 3122 list_sort(NULL, &list, plug_rq_cmp); 3123 3124 q = NULL; 3125 depth = 0; 3126 3127 /* 3128 * Save and disable interrupts here, to avoid doing it for every 3129 * queue lock we have to take. 3130 */ 3131 local_irq_save(flags); 3132 while (!list_empty(&list)) { 3133 rq = list_entry_rq(list.next); 3134 list_del_init(&rq->queuelist); 3135 BUG_ON(!rq->q); 3136 if (rq->q != q) { 3137 /* 3138 * This drops the queue lock 3139 */ 3140 if (q) 3141 queue_unplugged(q, depth, from_schedule); 3142 q = rq->q; 3143 depth = 0; 3144 spin_lock(q->queue_lock); 3145 } 3146 3147 /* 3148 * Short-circuit if @q is dead 3149 */ 3150 if (unlikely(blk_queue_dying(q))) { 3151 __blk_end_request_all(rq, -ENODEV); 3152 continue; 3153 } 3154 3155 /* 3156 * rq is already accounted, so use raw insert 3157 */ 3158 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3159 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3160 else 3161 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3162 3163 depth++; 3164 } 3165 3166 /* 3167 * This drops the queue lock 3168 */ 3169 if (q) 3170 queue_unplugged(q, depth, from_schedule); 3171 3172 local_irq_restore(flags); 3173 } 3174 3175 void blk_finish_plug(struct blk_plug *plug) 3176 { 3177 blk_flush_plug_list(plug, false); 3178 3179 if (plug == current->plug) 3180 current->plug = NULL; 3181 } 3182 EXPORT_SYMBOL(blk_finish_plug); 3183 3184 #ifdef CONFIG_PM 3185 /** 3186 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3187 * @q: the queue of the device 3188 * @dev: the device the queue belongs to 3189 * 3190 * Description: 3191 * Initialize runtime-PM-related fields for @q and start auto suspend for 3192 * @dev. Drivers that want to take advantage of request-based runtime PM 3193 * should call this function after @dev has been initialized, and its 3194 * request queue @q has been allocated, and runtime PM for it can not happen 3195 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3196 * cases, driver should call this function before any I/O has taken place. 3197 * 3198 * This function takes care of setting up using auto suspend for the device, 3199 * the autosuspend delay is set to -1 to make runtime suspend impossible 3200 * until an updated value is either set by user or by driver. Drivers do 3201 * not need to touch other autosuspend settings. 3202 * 3203 * The block layer runtime PM is request based, so only works for drivers 3204 * that use request as their IO unit instead of those directly use bio's. 3205 */ 3206 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3207 { 3208 q->dev = dev; 3209 q->rpm_status = RPM_ACTIVE; 3210 pm_runtime_set_autosuspend_delay(q->dev, -1); 3211 pm_runtime_use_autosuspend(q->dev); 3212 } 3213 EXPORT_SYMBOL(blk_pm_runtime_init); 3214 3215 /** 3216 * blk_pre_runtime_suspend - Pre runtime suspend check 3217 * @q: the queue of the device 3218 * 3219 * Description: 3220 * This function will check if runtime suspend is allowed for the device 3221 * by examining if there are any requests pending in the queue. If there 3222 * are requests pending, the device can not be runtime suspended; otherwise, 3223 * the queue's status will be updated to SUSPENDING and the driver can 3224 * proceed to suspend the device. 3225 * 3226 * For the not allowed case, we mark last busy for the device so that 3227 * runtime PM core will try to autosuspend it some time later. 3228 * 3229 * This function should be called near the start of the device's 3230 * runtime_suspend callback. 3231 * 3232 * Return: 3233 * 0 - OK to runtime suspend the device 3234 * -EBUSY - Device should not be runtime suspended 3235 */ 3236 int blk_pre_runtime_suspend(struct request_queue *q) 3237 { 3238 int ret = 0; 3239 3240 spin_lock_irq(q->queue_lock); 3241 if (q->nr_pending) { 3242 ret = -EBUSY; 3243 pm_runtime_mark_last_busy(q->dev); 3244 } else { 3245 q->rpm_status = RPM_SUSPENDING; 3246 } 3247 spin_unlock_irq(q->queue_lock); 3248 return ret; 3249 } 3250 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3251 3252 /** 3253 * blk_post_runtime_suspend - Post runtime suspend processing 3254 * @q: the queue of the device 3255 * @err: return value of the device's runtime_suspend function 3256 * 3257 * Description: 3258 * Update the queue's runtime status according to the return value of the 3259 * device's runtime suspend function and mark last busy for the device so 3260 * that PM core will try to auto suspend the device at a later time. 3261 * 3262 * This function should be called near the end of the device's 3263 * runtime_suspend callback. 3264 */ 3265 void blk_post_runtime_suspend(struct request_queue *q, int err) 3266 { 3267 spin_lock_irq(q->queue_lock); 3268 if (!err) { 3269 q->rpm_status = RPM_SUSPENDED; 3270 } else { 3271 q->rpm_status = RPM_ACTIVE; 3272 pm_runtime_mark_last_busy(q->dev); 3273 } 3274 spin_unlock_irq(q->queue_lock); 3275 } 3276 EXPORT_SYMBOL(blk_post_runtime_suspend); 3277 3278 /** 3279 * blk_pre_runtime_resume - Pre runtime resume processing 3280 * @q: the queue of the device 3281 * 3282 * Description: 3283 * Update the queue's runtime status to RESUMING in preparation for the 3284 * runtime resume of the device. 3285 * 3286 * This function should be called near the start of the device's 3287 * runtime_resume callback. 3288 */ 3289 void blk_pre_runtime_resume(struct request_queue *q) 3290 { 3291 spin_lock_irq(q->queue_lock); 3292 q->rpm_status = RPM_RESUMING; 3293 spin_unlock_irq(q->queue_lock); 3294 } 3295 EXPORT_SYMBOL(blk_pre_runtime_resume); 3296 3297 /** 3298 * blk_post_runtime_resume - Post runtime resume processing 3299 * @q: the queue of the device 3300 * @err: return value of the device's runtime_resume function 3301 * 3302 * Description: 3303 * Update the queue's runtime status according to the return value of the 3304 * device's runtime_resume function. If it is successfully resumed, process 3305 * the requests that are queued into the device's queue when it is resuming 3306 * and then mark last busy and initiate autosuspend for it. 3307 * 3308 * This function should be called near the end of the device's 3309 * runtime_resume callback. 3310 */ 3311 void blk_post_runtime_resume(struct request_queue *q, int err) 3312 { 3313 spin_lock_irq(q->queue_lock); 3314 if (!err) { 3315 q->rpm_status = RPM_ACTIVE; 3316 __blk_run_queue(q); 3317 pm_runtime_mark_last_busy(q->dev); 3318 pm_request_autosuspend(q->dev); 3319 } else { 3320 q->rpm_status = RPM_SUSPENDED; 3321 } 3322 spin_unlock_irq(q->queue_lock); 3323 } 3324 EXPORT_SYMBOL(blk_post_runtime_resume); 3325 #endif 3326 3327 int __init blk_dev_init(void) 3328 { 3329 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3330 sizeof(((struct request *)0)->cmd_flags)); 3331 3332 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3333 kblockd_workqueue = alloc_workqueue("kblockd", 3334 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3335 if (!kblockd_workqueue) 3336 panic("Failed to create kblockd\n"); 3337 3338 request_cachep = kmem_cache_create("blkdev_requests", 3339 sizeof(struct request), 0, SLAB_PANIC, NULL); 3340 3341 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3342 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3343 3344 return 0; 3345 } 3346