xref: /linux/block/blk-core.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
35 
36 #include "blk.h"
37 
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
41 
42 /*
43  * For the allocated request tables
44  */
45 static struct kmem_cache *request_cachep;
46 
47 /*
48  * For queue allocation
49  */
50 struct kmem_cache *blk_requestq_cachep;
51 
52 /*
53  * Controlling structure to kblockd
54  */
55 static struct workqueue_struct *kblockd_workqueue;
56 
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 	struct hd_struct *part;
60 	int rw = rq_data_dir(rq);
61 	int cpu;
62 
63 	if (!blk_do_io_stat(rq))
64 		return;
65 
66 	cpu = part_stat_lock();
67 
68 	if (!new_io) {
69 		part = rq->part;
70 		part_stat_inc(cpu, part, merges[rw]);
71 	} else {
72 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
73 		if (!hd_struct_try_get(part)) {
74 			/*
75 			 * The partition is already being removed,
76 			 * the request will be accounted on the disk only
77 			 *
78 			 * We take a reference on disk->part0 although that
79 			 * partition will never be deleted, so we can treat
80 			 * it as any other partition.
81 			 */
82 			part = &rq->rq_disk->part0;
83 			hd_struct_get(part);
84 		}
85 		part_round_stats(cpu, part);
86 		part_inc_in_flight(part, rw);
87 		rq->part = part;
88 	}
89 
90 	part_stat_unlock();
91 }
92 
93 void blk_queue_congestion_threshold(struct request_queue *q)
94 {
95 	int nr;
96 
97 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 	if (nr > q->nr_requests)
99 		nr = q->nr_requests;
100 	q->nr_congestion_on = nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 	if (nr < 1)
104 		nr = 1;
105 	q->nr_congestion_off = nr;
106 }
107 
108 /**
109  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110  * @bdev:	device
111  *
112  * Locates the passed device's request queue and returns the address of its
113  * backing_dev_info
114  *
115  * Will return NULL if the request queue cannot be located.
116  */
117 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118 {
119 	struct backing_dev_info *ret = NULL;
120 	struct request_queue *q = bdev_get_queue(bdev);
121 
122 	if (q)
123 		ret = &q->backing_dev_info;
124 	return ret;
125 }
126 EXPORT_SYMBOL(blk_get_backing_dev_info);
127 
128 void blk_rq_init(struct request_queue *q, struct request *rq)
129 {
130 	memset(rq, 0, sizeof(*rq));
131 
132 	INIT_LIST_HEAD(&rq->queuelist);
133 	INIT_LIST_HEAD(&rq->timeout_list);
134 	rq->cpu = -1;
135 	rq->q = q;
136 	rq->__sector = (sector_t) -1;
137 	INIT_HLIST_NODE(&rq->hash);
138 	RB_CLEAR_NODE(&rq->rb_node);
139 	rq->cmd = rq->__cmd;
140 	rq->cmd_len = BLK_MAX_CDB;
141 	rq->tag = -1;
142 	rq->ref_count = 1;
143 	rq->start_time = jiffies;
144 	set_start_time_ns(rq);
145 	rq->part = NULL;
146 }
147 EXPORT_SYMBOL(blk_rq_init);
148 
149 static void req_bio_endio(struct request *rq, struct bio *bio,
150 			  unsigned int nbytes, int error)
151 {
152 	if (error)
153 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 		error = -EIO;
156 
157 	if (unlikely(nbytes > bio->bi_size)) {
158 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 		       __func__, nbytes, bio->bi_size);
160 		nbytes = bio->bi_size;
161 	}
162 
163 	if (unlikely(rq->cmd_flags & REQ_QUIET))
164 		set_bit(BIO_QUIET, &bio->bi_flags);
165 
166 	bio->bi_size -= nbytes;
167 	bio->bi_sector += (nbytes >> 9);
168 
169 	if (bio_integrity(bio))
170 		bio_integrity_advance(bio, nbytes);
171 
172 	/* don't actually finish bio if it's part of flush sequence */
173 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 		bio_endio(bio, error);
175 }
176 
177 void blk_dump_rq_flags(struct request *rq, char *msg)
178 {
179 	int bit;
180 
181 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
182 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 		rq->cmd_flags);
184 
185 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
186 	       (unsigned long long)blk_rq_pos(rq),
187 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
188 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
189 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
190 
191 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
192 		printk(KERN_INFO "  cdb: ");
193 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
194 			printk("%02x ", rq->cmd[bit]);
195 		printk("\n");
196 	}
197 }
198 EXPORT_SYMBOL(blk_dump_rq_flags);
199 
200 static void blk_delay_work(struct work_struct *work)
201 {
202 	struct request_queue *q;
203 
204 	q = container_of(work, struct request_queue, delay_work.work);
205 	spin_lock_irq(q->queue_lock);
206 	__blk_run_queue(q);
207 	spin_unlock_irq(q->queue_lock);
208 }
209 
210 /**
211  * blk_delay_queue - restart queueing after defined interval
212  * @q:		The &struct request_queue in question
213  * @msecs:	Delay in msecs
214  *
215  * Description:
216  *   Sometimes queueing needs to be postponed for a little while, to allow
217  *   resources to come back. This function will make sure that queueing is
218  *   restarted around the specified time.
219  */
220 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
221 {
222 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
223 				msecs_to_jiffies(msecs));
224 }
225 EXPORT_SYMBOL(blk_delay_queue);
226 
227 /**
228  * blk_start_queue - restart a previously stopped queue
229  * @q:    The &struct request_queue in question
230  *
231  * Description:
232  *   blk_start_queue() will clear the stop flag on the queue, and call
233  *   the request_fn for the queue if it was in a stopped state when
234  *   entered. Also see blk_stop_queue(). Queue lock must be held.
235  **/
236 void blk_start_queue(struct request_queue *q)
237 {
238 	WARN_ON(!irqs_disabled());
239 
240 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
241 	__blk_run_queue(q);
242 }
243 EXPORT_SYMBOL(blk_start_queue);
244 
245 /**
246  * blk_stop_queue - stop a queue
247  * @q:    The &struct request_queue in question
248  *
249  * Description:
250  *   The Linux block layer assumes that a block driver will consume all
251  *   entries on the request queue when the request_fn strategy is called.
252  *   Often this will not happen, because of hardware limitations (queue
253  *   depth settings). If a device driver gets a 'queue full' response,
254  *   or if it simply chooses not to queue more I/O at one point, it can
255  *   call this function to prevent the request_fn from being called until
256  *   the driver has signalled it's ready to go again. This happens by calling
257  *   blk_start_queue() to restart queue operations. Queue lock must be held.
258  **/
259 void blk_stop_queue(struct request_queue *q)
260 {
261 	__cancel_delayed_work(&q->delay_work);
262 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
263 }
264 EXPORT_SYMBOL(blk_stop_queue);
265 
266 /**
267  * blk_sync_queue - cancel any pending callbacks on a queue
268  * @q: the queue
269  *
270  * Description:
271  *     The block layer may perform asynchronous callback activity
272  *     on a queue, such as calling the unplug function after a timeout.
273  *     A block device may call blk_sync_queue to ensure that any
274  *     such activity is cancelled, thus allowing it to release resources
275  *     that the callbacks might use. The caller must already have made sure
276  *     that its ->make_request_fn will not re-add plugging prior to calling
277  *     this function.
278  *
279  *     This function does not cancel any asynchronous activity arising
280  *     out of elevator or throttling code. That would require elevaotor_exit()
281  *     and blk_throtl_exit() to be called with queue lock initialized.
282  *
283  */
284 void blk_sync_queue(struct request_queue *q)
285 {
286 	del_timer_sync(&q->timeout);
287 	cancel_delayed_work_sync(&q->delay_work);
288 }
289 EXPORT_SYMBOL(blk_sync_queue);
290 
291 /**
292  * __blk_run_queue - run a single device queue
293  * @q:	The queue to run
294  *
295  * Description:
296  *    See @blk_run_queue. This variant must be called with the queue lock
297  *    held and interrupts disabled.
298  */
299 void __blk_run_queue(struct request_queue *q)
300 {
301 	if (unlikely(blk_queue_stopped(q)))
302 		return;
303 
304 	q->request_fn(q);
305 }
306 EXPORT_SYMBOL(__blk_run_queue);
307 
308 /**
309  * blk_run_queue_async - run a single device queue in workqueue context
310  * @q:	The queue to run
311  *
312  * Description:
313  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314  *    of us.
315  */
316 void blk_run_queue_async(struct request_queue *q)
317 {
318 	if (likely(!blk_queue_stopped(q))) {
319 		__cancel_delayed_work(&q->delay_work);
320 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
321 	}
322 }
323 EXPORT_SYMBOL(blk_run_queue_async);
324 
325 /**
326  * blk_run_queue - run a single device queue
327  * @q: The queue to run
328  *
329  * Description:
330  *    Invoke request handling on this queue, if it has pending work to do.
331  *    May be used to restart queueing when a request has completed.
332  */
333 void blk_run_queue(struct request_queue *q)
334 {
335 	unsigned long flags;
336 
337 	spin_lock_irqsave(q->queue_lock, flags);
338 	__blk_run_queue(q);
339 	spin_unlock_irqrestore(q->queue_lock, flags);
340 }
341 EXPORT_SYMBOL(blk_run_queue);
342 
343 void blk_put_queue(struct request_queue *q)
344 {
345 	kobject_put(&q->kobj);
346 }
347 EXPORT_SYMBOL(blk_put_queue);
348 
349 /**
350  * blk_drain_queue - drain requests from request_queue
351  * @q: queue to drain
352  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
353  *
354  * Drain requests from @q.  If @drain_all is set, all requests are drained.
355  * If not, only ELVPRIV requests are drained.  The caller is responsible
356  * for ensuring that no new requests which need to be drained are queued.
357  */
358 void blk_drain_queue(struct request_queue *q, bool drain_all)
359 {
360 	while (true) {
361 		int nr_rqs;
362 
363 		spin_lock_irq(q->queue_lock);
364 
365 		elv_drain_elevator(q);
366 		if (drain_all)
367 			blk_throtl_drain(q);
368 
369 		/*
370 		 * This function might be called on a queue which failed
371 		 * driver init after queue creation.  Some drivers
372 		 * (e.g. fd) get unhappy in such cases.  Kick queue iff
373 		 * dispatch queue has something on it.
374 		 */
375 		if (!list_empty(&q->queue_head))
376 			__blk_run_queue(q);
377 
378 		if (drain_all)
379 			nr_rqs = q->rq.count[0] + q->rq.count[1];
380 		else
381 			nr_rqs = q->rq.elvpriv;
382 
383 		spin_unlock_irq(q->queue_lock);
384 
385 		if (!nr_rqs)
386 			break;
387 		msleep(10);
388 	}
389 }
390 
391 /**
392  * blk_cleanup_queue - shutdown a request queue
393  * @q: request queue to shutdown
394  *
395  * Mark @q DEAD, drain all pending requests, destroy and put it.  All
396  * future requests will be failed immediately with -ENODEV.
397  */
398 void blk_cleanup_queue(struct request_queue *q)
399 {
400 	spinlock_t *lock = q->queue_lock;
401 
402 	/* mark @q DEAD, no new request or merges will be allowed afterwards */
403 	mutex_lock(&q->sysfs_lock);
404 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
405 
406 	spin_lock_irq(lock);
407 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
408 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
409 	queue_flag_set(QUEUE_FLAG_DEAD, q);
410 
411 	if (q->queue_lock != &q->__queue_lock)
412 		q->queue_lock = &q->__queue_lock;
413 
414 	spin_unlock_irq(lock);
415 	mutex_unlock(&q->sysfs_lock);
416 
417 	/*
418 	 * Drain all requests queued before DEAD marking.  The caller might
419 	 * be trying to tear down @q before its elevator is initialized, in
420 	 * which case we don't want to call into draining.
421 	 */
422 	if (q->elevator)
423 		blk_drain_queue(q, true);
424 
425 	/* @q won't process any more request, flush async actions */
426 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
427 	blk_sync_queue(q);
428 
429 	/* @q is and will stay empty, shutdown and put */
430 	blk_put_queue(q);
431 }
432 EXPORT_SYMBOL(blk_cleanup_queue);
433 
434 static int blk_init_free_list(struct request_queue *q)
435 {
436 	struct request_list *rl = &q->rq;
437 
438 	if (unlikely(rl->rq_pool))
439 		return 0;
440 
441 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
442 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
443 	rl->elvpriv = 0;
444 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
445 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
446 
447 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
448 				mempool_free_slab, request_cachep, q->node);
449 
450 	if (!rl->rq_pool)
451 		return -ENOMEM;
452 
453 	return 0;
454 }
455 
456 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
457 {
458 	return blk_alloc_queue_node(gfp_mask, -1);
459 }
460 EXPORT_SYMBOL(blk_alloc_queue);
461 
462 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
463 {
464 	struct request_queue *q;
465 	int err;
466 
467 	q = kmem_cache_alloc_node(blk_requestq_cachep,
468 				gfp_mask | __GFP_ZERO, node_id);
469 	if (!q)
470 		return NULL;
471 
472 	q->backing_dev_info.ra_pages =
473 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
474 	q->backing_dev_info.state = 0;
475 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
476 	q->backing_dev_info.name = "block";
477 	q->node = node_id;
478 
479 	err = bdi_init(&q->backing_dev_info);
480 	if (err) {
481 		kmem_cache_free(blk_requestq_cachep, q);
482 		return NULL;
483 	}
484 
485 	if (blk_throtl_init(q)) {
486 		kmem_cache_free(blk_requestq_cachep, q);
487 		return NULL;
488 	}
489 
490 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
491 		    laptop_mode_timer_fn, (unsigned long) q);
492 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
493 	INIT_LIST_HEAD(&q->timeout_list);
494 	INIT_LIST_HEAD(&q->flush_queue[0]);
495 	INIT_LIST_HEAD(&q->flush_queue[1]);
496 	INIT_LIST_HEAD(&q->flush_data_in_flight);
497 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
498 
499 	kobject_init(&q->kobj, &blk_queue_ktype);
500 
501 	mutex_init(&q->sysfs_lock);
502 	spin_lock_init(&q->__queue_lock);
503 
504 	/*
505 	 * By default initialize queue_lock to internal lock and driver can
506 	 * override it later if need be.
507 	 */
508 	q->queue_lock = &q->__queue_lock;
509 
510 	return q;
511 }
512 EXPORT_SYMBOL(blk_alloc_queue_node);
513 
514 /**
515  * blk_init_queue  - prepare a request queue for use with a block device
516  * @rfn:  The function to be called to process requests that have been
517  *        placed on the queue.
518  * @lock: Request queue spin lock
519  *
520  * Description:
521  *    If a block device wishes to use the standard request handling procedures,
522  *    which sorts requests and coalesces adjacent requests, then it must
523  *    call blk_init_queue().  The function @rfn will be called when there
524  *    are requests on the queue that need to be processed.  If the device
525  *    supports plugging, then @rfn may not be called immediately when requests
526  *    are available on the queue, but may be called at some time later instead.
527  *    Plugged queues are generally unplugged when a buffer belonging to one
528  *    of the requests on the queue is needed, or due to memory pressure.
529  *
530  *    @rfn is not required, or even expected, to remove all requests off the
531  *    queue, but only as many as it can handle at a time.  If it does leave
532  *    requests on the queue, it is responsible for arranging that the requests
533  *    get dealt with eventually.
534  *
535  *    The queue spin lock must be held while manipulating the requests on the
536  *    request queue; this lock will be taken also from interrupt context, so irq
537  *    disabling is needed for it.
538  *
539  *    Function returns a pointer to the initialized request queue, or %NULL if
540  *    it didn't succeed.
541  *
542  * Note:
543  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
544  *    when the block device is deactivated (such as at module unload).
545  **/
546 
547 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
548 {
549 	return blk_init_queue_node(rfn, lock, -1);
550 }
551 EXPORT_SYMBOL(blk_init_queue);
552 
553 struct request_queue *
554 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
555 {
556 	struct request_queue *uninit_q, *q;
557 
558 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
559 	if (!uninit_q)
560 		return NULL;
561 
562 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
563 	if (!q)
564 		blk_cleanup_queue(uninit_q);
565 
566 	return q;
567 }
568 EXPORT_SYMBOL(blk_init_queue_node);
569 
570 struct request_queue *
571 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
572 			 spinlock_t *lock)
573 {
574 	if (!q)
575 		return NULL;
576 
577 	if (blk_init_free_list(q))
578 		return NULL;
579 
580 	q->request_fn		= rfn;
581 	q->prep_rq_fn		= NULL;
582 	q->unprep_rq_fn		= NULL;
583 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
584 
585 	/* Override internal queue lock with supplied lock pointer */
586 	if (lock)
587 		q->queue_lock		= lock;
588 
589 	/*
590 	 * This also sets hw/phys segments, boundary and size
591 	 */
592 	blk_queue_make_request(q, blk_queue_bio);
593 
594 	q->sg_reserved_size = INT_MAX;
595 
596 	/*
597 	 * all done
598 	 */
599 	if (!elevator_init(q, NULL)) {
600 		blk_queue_congestion_threshold(q);
601 		return q;
602 	}
603 
604 	return NULL;
605 }
606 EXPORT_SYMBOL(blk_init_allocated_queue);
607 
608 int blk_get_queue(struct request_queue *q)
609 {
610 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
611 		kobject_get(&q->kobj);
612 		return 0;
613 	}
614 
615 	return 1;
616 }
617 EXPORT_SYMBOL(blk_get_queue);
618 
619 static inline void blk_free_request(struct request_queue *q, struct request *rq)
620 {
621 	if (rq->cmd_flags & REQ_ELVPRIV)
622 		elv_put_request(q, rq);
623 	mempool_free(rq, q->rq.rq_pool);
624 }
625 
626 static struct request *
627 blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
628 {
629 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
630 
631 	if (!rq)
632 		return NULL;
633 
634 	blk_rq_init(q, rq);
635 
636 	rq->cmd_flags = flags | REQ_ALLOCED;
637 
638 	if ((flags & REQ_ELVPRIV) &&
639 	    unlikely(elv_set_request(q, rq, gfp_mask))) {
640 		mempool_free(rq, q->rq.rq_pool);
641 		return NULL;
642 	}
643 
644 	return rq;
645 }
646 
647 /*
648  * ioc_batching returns true if the ioc is a valid batching request and
649  * should be given priority access to a request.
650  */
651 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
652 {
653 	if (!ioc)
654 		return 0;
655 
656 	/*
657 	 * Make sure the process is able to allocate at least 1 request
658 	 * even if the batch times out, otherwise we could theoretically
659 	 * lose wakeups.
660 	 */
661 	return ioc->nr_batch_requests == q->nr_batching ||
662 		(ioc->nr_batch_requests > 0
663 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
664 }
665 
666 /*
667  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
668  * will cause the process to be a "batcher" on all queues in the system. This
669  * is the behaviour we want though - once it gets a wakeup it should be given
670  * a nice run.
671  */
672 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
673 {
674 	if (!ioc || ioc_batching(q, ioc))
675 		return;
676 
677 	ioc->nr_batch_requests = q->nr_batching;
678 	ioc->last_waited = jiffies;
679 }
680 
681 static void __freed_request(struct request_queue *q, int sync)
682 {
683 	struct request_list *rl = &q->rq;
684 
685 	if (rl->count[sync] < queue_congestion_off_threshold(q))
686 		blk_clear_queue_congested(q, sync);
687 
688 	if (rl->count[sync] + 1 <= q->nr_requests) {
689 		if (waitqueue_active(&rl->wait[sync]))
690 			wake_up(&rl->wait[sync]);
691 
692 		blk_clear_queue_full(q, sync);
693 	}
694 }
695 
696 /*
697  * A request has just been released.  Account for it, update the full and
698  * congestion status, wake up any waiters.   Called under q->queue_lock.
699  */
700 static void freed_request(struct request_queue *q, unsigned int flags)
701 {
702 	struct request_list *rl = &q->rq;
703 	int sync = rw_is_sync(flags);
704 
705 	rl->count[sync]--;
706 	if (flags & REQ_ELVPRIV)
707 		rl->elvpriv--;
708 
709 	__freed_request(q, sync);
710 
711 	if (unlikely(rl->starved[sync ^ 1]))
712 		__freed_request(q, sync ^ 1);
713 }
714 
715 /*
716  * Determine if elevator data should be initialized when allocating the
717  * request associated with @bio.
718  */
719 static bool blk_rq_should_init_elevator(struct bio *bio)
720 {
721 	if (!bio)
722 		return true;
723 
724 	/*
725 	 * Flush requests do not use the elevator so skip initialization.
726 	 * This allows a request to share the flush and elevator data.
727 	 */
728 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
729 		return false;
730 
731 	return true;
732 }
733 
734 /**
735  * get_request - get a free request
736  * @q: request_queue to allocate request from
737  * @rw_flags: RW and SYNC flags
738  * @bio: bio to allocate request for (can be %NULL)
739  * @gfp_mask: allocation mask
740  *
741  * Get a free request from @q.  This function may fail under memory
742  * pressure or if @q is dead.
743  *
744  * Must be callled with @q->queue_lock held and,
745  * Returns %NULL on failure, with @q->queue_lock held.
746  * Returns !%NULL on success, with @q->queue_lock *not held*.
747  */
748 static struct request *get_request(struct request_queue *q, int rw_flags,
749 				   struct bio *bio, gfp_t gfp_mask)
750 {
751 	struct request *rq = NULL;
752 	struct request_list *rl = &q->rq;
753 	struct io_context *ioc = NULL;
754 	const bool is_sync = rw_is_sync(rw_flags) != 0;
755 	int may_queue;
756 
757 	if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
758 		return NULL;
759 
760 	may_queue = elv_may_queue(q, rw_flags);
761 	if (may_queue == ELV_MQUEUE_NO)
762 		goto rq_starved;
763 
764 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
765 		if (rl->count[is_sync]+1 >= q->nr_requests) {
766 			ioc = current_io_context(GFP_ATOMIC, q->node);
767 			/*
768 			 * The queue will fill after this allocation, so set
769 			 * it as full, and mark this process as "batching".
770 			 * This process will be allowed to complete a batch of
771 			 * requests, others will be blocked.
772 			 */
773 			if (!blk_queue_full(q, is_sync)) {
774 				ioc_set_batching(q, ioc);
775 				blk_set_queue_full(q, is_sync);
776 			} else {
777 				if (may_queue != ELV_MQUEUE_MUST
778 						&& !ioc_batching(q, ioc)) {
779 					/*
780 					 * The queue is full and the allocating
781 					 * process is not a "batcher", and not
782 					 * exempted by the IO scheduler
783 					 */
784 					goto out;
785 				}
786 			}
787 		}
788 		blk_set_queue_congested(q, is_sync);
789 	}
790 
791 	/*
792 	 * Only allow batching queuers to allocate up to 50% over the defined
793 	 * limit of requests, otherwise we could have thousands of requests
794 	 * allocated with any setting of ->nr_requests
795 	 */
796 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
797 		goto out;
798 
799 	rl->count[is_sync]++;
800 	rl->starved[is_sync] = 0;
801 
802 	if (blk_rq_should_init_elevator(bio) &&
803 	    !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
804 		rw_flags |= REQ_ELVPRIV;
805 		rl->elvpriv++;
806 	}
807 
808 	if (blk_queue_io_stat(q))
809 		rw_flags |= REQ_IO_STAT;
810 	spin_unlock_irq(q->queue_lock);
811 
812 	rq = blk_alloc_request(q, rw_flags, gfp_mask);
813 	if (unlikely(!rq)) {
814 		/*
815 		 * Allocation failed presumably due to memory. Undo anything
816 		 * we might have messed up.
817 		 *
818 		 * Allocating task should really be put onto the front of the
819 		 * wait queue, but this is pretty rare.
820 		 */
821 		spin_lock_irq(q->queue_lock);
822 		freed_request(q, rw_flags);
823 
824 		/*
825 		 * in the very unlikely event that allocation failed and no
826 		 * requests for this direction was pending, mark us starved
827 		 * so that freeing of a request in the other direction will
828 		 * notice us. another possible fix would be to split the
829 		 * rq mempool into READ and WRITE
830 		 */
831 rq_starved:
832 		if (unlikely(rl->count[is_sync] == 0))
833 			rl->starved[is_sync] = 1;
834 
835 		goto out;
836 	}
837 
838 	/*
839 	 * ioc may be NULL here, and ioc_batching will be false. That's
840 	 * OK, if the queue is under the request limit then requests need
841 	 * not count toward the nr_batch_requests limit. There will always
842 	 * be some limit enforced by BLK_BATCH_TIME.
843 	 */
844 	if (ioc_batching(q, ioc))
845 		ioc->nr_batch_requests--;
846 
847 	trace_block_getrq(q, bio, rw_flags & 1);
848 out:
849 	return rq;
850 }
851 
852 /**
853  * get_request_wait - get a free request with retry
854  * @q: request_queue to allocate request from
855  * @rw_flags: RW and SYNC flags
856  * @bio: bio to allocate request for (can be %NULL)
857  *
858  * Get a free request from @q.  This function keeps retrying under memory
859  * pressure and fails iff @q is dead.
860  *
861  * Must be callled with @q->queue_lock held and,
862  * Returns %NULL on failure, with @q->queue_lock held.
863  * Returns !%NULL on success, with @q->queue_lock *not held*.
864  */
865 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
866 					struct bio *bio)
867 {
868 	const bool is_sync = rw_is_sync(rw_flags) != 0;
869 	struct request *rq;
870 
871 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
872 	while (!rq) {
873 		DEFINE_WAIT(wait);
874 		struct io_context *ioc;
875 		struct request_list *rl = &q->rq;
876 
877 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
878 			return NULL;
879 
880 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
881 				TASK_UNINTERRUPTIBLE);
882 
883 		trace_block_sleeprq(q, bio, rw_flags & 1);
884 
885 		spin_unlock_irq(q->queue_lock);
886 		io_schedule();
887 
888 		/*
889 		 * After sleeping, we become a "batching" process and
890 		 * will be able to allocate at least one request, and
891 		 * up to a big batch of them for a small period time.
892 		 * See ioc_batching, ioc_set_batching
893 		 */
894 		ioc = current_io_context(GFP_NOIO, q->node);
895 		ioc_set_batching(q, ioc);
896 
897 		spin_lock_irq(q->queue_lock);
898 		finish_wait(&rl->wait[is_sync], &wait);
899 
900 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
901 	};
902 
903 	return rq;
904 }
905 
906 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
907 {
908 	struct request *rq;
909 
910 	BUG_ON(rw != READ && rw != WRITE);
911 
912 	spin_lock_irq(q->queue_lock);
913 	if (gfp_mask & __GFP_WAIT)
914 		rq = get_request_wait(q, rw, NULL);
915 	else
916 		rq = get_request(q, rw, NULL, gfp_mask);
917 	if (!rq)
918 		spin_unlock_irq(q->queue_lock);
919 	/* q->queue_lock is unlocked at this point */
920 
921 	return rq;
922 }
923 EXPORT_SYMBOL(blk_get_request);
924 
925 /**
926  * blk_make_request - given a bio, allocate a corresponding struct request.
927  * @q: target request queue
928  * @bio:  The bio describing the memory mappings that will be submitted for IO.
929  *        It may be a chained-bio properly constructed by block/bio layer.
930  * @gfp_mask: gfp flags to be used for memory allocation
931  *
932  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
933  * type commands. Where the struct request needs to be farther initialized by
934  * the caller. It is passed a &struct bio, which describes the memory info of
935  * the I/O transfer.
936  *
937  * The caller of blk_make_request must make sure that bi_io_vec
938  * are set to describe the memory buffers. That bio_data_dir() will return
939  * the needed direction of the request. (And all bio's in the passed bio-chain
940  * are properly set accordingly)
941  *
942  * If called under none-sleepable conditions, mapped bio buffers must not
943  * need bouncing, by calling the appropriate masked or flagged allocator,
944  * suitable for the target device. Otherwise the call to blk_queue_bounce will
945  * BUG.
946  *
947  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
948  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
949  * anything but the first bio in the chain. Otherwise you risk waiting for IO
950  * completion of a bio that hasn't been submitted yet, thus resulting in a
951  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
952  * of bio_alloc(), as that avoids the mempool deadlock.
953  * If possible a big IO should be split into smaller parts when allocation
954  * fails. Partial allocation should not be an error, or you risk a live-lock.
955  */
956 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
957 				 gfp_t gfp_mask)
958 {
959 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
960 
961 	if (unlikely(!rq))
962 		return ERR_PTR(-ENOMEM);
963 
964 	for_each_bio(bio) {
965 		struct bio *bounce_bio = bio;
966 		int ret;
967 
968 		blk_queue_bounce(q, &bounce_bio);
969 		ret = blk_rq_append_bio(q, rq, bounce_bio);
970 		if (unlikely(ret)) {
971 			blk_put_request(rq);
972 			return ERR_PTR(ret);
973 		}
974 	}
975 
976 	return rq;
977 }
978 EXPORT_SYMBOL(blk_make_request);
979 
980 /**
981  * blk_requeue_request - put a request back on queue
982  * @q:		request queue where request should be inserted
983  * @rq:		request to be inserted
984  *
985  * Description:
986  *    Drivers often keep queueing requests until the hardware cannot accept
987  *    more, when that condition happens we need to put the request back
988  *    on the queue. Must be called with queue lock held.
989  */
990 void blk_requeue_request(struct request_queue *q, struct request *rq)
991 {
992 	blk_delete_timer(rq);
993 	blk_clear_rq_complete(rq);
994 	trace_block_rq_requeue(q, rq);
995 
996 	if (blk_rq_tagged(rq))
997 		blk_queue_end_tag(q, rq);
998 
999 	BUG_ON(blk_queued_rq(rq));
1000 
1001 	elv_requeue_request(q, rq);
1002 }
1003 EXPORT_SYMBOL(blk_requeue_request);
1004 
1005 static void add_acct_request(struct request_queue *q, struct request *rq,
1006 			     int where)
1007 {
1008 	drive_stat_acct(rq, 1);
1009 	__elv_add_request(q, rq, where);
1010 }
1011 
1012 /**
1013  * blk_insert_request - insert a special request into a request queue
1014  * @q:		request queue where request should be inserted
1015  * @rq:		request to be inserted
1016  * @at_head:	insert request at head or tail of queue
1017  * @data:	private data
1018  *
1019  * Description:
1020  *    Many block devices need to execute commands asynchronously, so they don't
1021  *    block the whole kernel from preemption during request execution.  This is
1022  *    accomplished normally by inserting aritficial requests tagged as
1023  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1024  *    be scheduled for actual execution by the request queue.
1025  *
1026  *    We have the option of inserting the head or the tail of the queue.
1027  *    Typically we use the tail for new ioctls and so forth.  We use the head
1028  *    of the queue for things like a QUEUE_FULL message from a device, or a
1029  *    host that is unable to accept a particular command.
1030  */
1031 void blk_insert_request(struct request_queue *q, struct request *rq,
1032 			int at_head, void *data)
1033 {
1034 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1035 	unsigned long flags;
1036 
1037 	/*
1038 	 * tell I/O scheduler that this isn't a regular read/write (ie it
1039 	 * must not attempt merges on this) and that it acts as a soft
1040 	 * barrier
1041 	 */
1042 	rq->cmd_type = REQ_TYPE_SPECIAL;
1043 
1044 	rq->special = data;
1045 
1046 	spin_lock_irqsave(q->queue_lock, flags);
1047 
1048 	/*
1049 	 * If command is tagged, release the tag
1050 	 */
1051 	if (blk_rq_tagged(rq))
1052 		blk_queue_end_tag(q, rq);
1053 
1054 	add_acct_request(q, rq, where);
1055 	__blk_run_queue(q);
1056 	spin_unlock_irqrestore(q->queue_lock, flags);
1057 }
1058 EXPORT_SYMBOL(blk_insert_request);
1059 
1060 static void part_round_stats_single(int cpu, struct hd_struct *part,
1061 				    unsigned long now)
1062 {
1063 	if (now == part->stamp)
1064 		return;
1065 
1066 	if (part_in_flight(part)) {
1067 		__part_stat_add(cpu, part, time_in_queue,
1068 				part_in_flight(part) * (now - part->stamp));
1069 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1070 	}
1071 	part->stamp = now;
1072 }
1073 
1074 /**
1075  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1076  * @cpu: cpu number for stats access
1077  * @part: target partition
1078  *
1079  * The average IO queue length and utilisation statistics are maintained
1080  * by observing the current state of the queue length and the amount of
1081  * time it has been in this state for.
1082  *
1083  * Normally, that accounting is done on IO completion, but that can result
1084  * in more than a second's worth of IO being accounted for within any one
1085  * second, leading to >100% utilisation.  To deal with that, we call this
1086  * function to do a round-off before returning the results when reading
1087  * /proc/diskstats.  This accounts immediately for all queue usage up to
1088  * the current jiffies and restarts the counters again.
1089  */
1090 void part_round_stats(int cpu, struct hd_struct *part)
1091 {
1092 	unsigned long now = jiffies;
1093 
1094 	if (part->partno)
1095 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1096 	part_round_stats_single(cpu, part, now);
1097 }
1098 EXPORT_SYMBOL_GPL(part_round_stats);
1099 
1100 /*
1101  * queue lock must be held
1102  */
1103 void __blk_put_request(struct request_queue *q, struct request *req)
1104 {
1105 	if (unlikely(!q))
1106 		return;
1107 	if (unlikely(--req->ref_count))
1108 		return;
1109 
1110 	elv_completed_request(q, req);
1111 
1112 	/* this is a bio leak */
1113 	WARN_ON(req->bio != NULL);
1114 
1115 	/*
1116 	 * Request may not have originated from ll_rw_blk. if not,
1117 	 * it didn't come out of our reserved rq pools
1118 	 */
1119 	if (req->cmd_flags & REQ_ALLOCED) {
1120 		unsigned int flags = req->cmd_flags;
1121 
1122 		BUG_ON(!list_empty(&req->queuelist));
1123 		BUG_ON(!hlist_unhashed(&req->hash));
1124 
1125 		blk_free_request(q, req);
1126 		freed_request(q, flags);
1127 	}
1128 }
1129 EXPORT_SYMBOL_GPL(__blk_put_request);
1130 
1131 void blk_put_request(struct request *req)
1132 {
1133 	unsigned long flags;
1134 	struct request_queue *q = req->q;
1135 
1136 	spin_lock_irqsave(q->queue_lock, flags);
1137 	__blk_put_request(q, req);
1138 	spin_unlock_irqrestore(q->queue_lock, flags);
1139 }
1140 EXPORT_SYMBOL(blk_put_request);
1141 
1142 /**
1143  * blk_add_request_payload - add a payload to a request
1144  * @rq: request to update
1145  * @page: page backing the payload
1146  * @len: length of the payload.
1147  *
1148  * This allows to later add a payload to an already submitted request by
1149  * a block driver.  The driver needs to take care of freeing the payload
1150  * itself.
1151  *
1152  * Note that this is a quite horrible hack and nothing but handling of
1153  * discard requests should ever use it.
1154  */
1155 void blk_add_request_payload(struct request *rq, struct page *page,
1156 		unsigned int len)
1157 {
1158 	struct bio *bio = rq->bio;
1159 
1160 	bio->bi_io_vec->bv_page = page;
1161 	bio->bi_io_vec->bv_offset = 0;
1162 	bio->bi_io_vec->bv_len = len;
1163 
1164 	bio->bi_size = len;
1165 	bio->bi_vcnt = 1;
1166 	bio->bi_phys_segments = 1;
1167 
1168 	rq->__data_len = rq->resid_len = len;
1169 	rq->nr_phys_segments = 1;
1170 	rq->buffer = bio_data(bio);
1171 }
1172 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1173 
1174 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1175 				   struct bio *bio)
1176 {
1177 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1178 
1179 	if (!ll_back_merge_fn(q, req, bio))
1180 		return false;
1181 
1182 	trace_block_bio_backmerge(q, bio);
1183 
1184 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1185 		blk_rq_set_mixed_merge(req);
1186 
1187 	req->biotail->bi_next = bio;
1188 	req->biotail = bio;
1189 	req->__data_len += bio->bi_size;
1190 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1191 
1192 	drive_stat_acct(req, 0);
1193 	elv_bio_merged(q, req, bio);
1194 	return true;
1195 }
1196 
1197 static bool bio_attempt_front_merge(struct request_queue *q,
1198 				    struct request *req, struct bio *bio)
1199 {
1200 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1201 
1202 	if (!ll_front_merge_fn(q, req, bio))
1203 		return false;
1204 
1205 	trace_block_bio_frontmerge(q, bio);
1206 
1207 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1208 		blk_rq_set_mixed_merge(req);
1209 
1210 	bio->bi_next = req->bio;
1211 	req->bio = bio;
1212 
1213 	/*
1214 	 * may not be valid. if the low level driver said
1215 	 * it didn't need a bounce buffer then it better
1216 	 * not touch req->buffer either...
1217 	 */
1218 	req->buffer = bio_data(bio);
1219 	req->__sector = bio->bi_sector;
1220 	req->__data_len += bio->bi_size;
1221 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1222 
1223 	drive_stat_acct(req, 0);
1224 	elv_bio_merged(q, req, bio);
1225 	return true;
1226 }
1227 
1228 /**
1229  * attempt_plug_merge - try to merge with %current's plugged list
1230  * @q: request_queue new bio is being queued at
1231  * @bio: new bio being queued
1232  * @request_count: out parameter for number of traversed plugged requests
1233  *
1234  * Determine whether @bio being queued on @q can be merged with a request
1235  * on %current's plugged list.  Returns %true if merge was successful,
1236  * otherwise %false.
1237  *
1238  * This function is called without @q->queue_lock; however, elevator is
1239  * accessed iff there already are requests on the plugged list which in
1240  * turn guarantees validity of the elevator.
1241  *
1242  * Note that, on successful merge, elevator operation
1243  * elevator_bio_merged_fn() will be called without queue lock.  Elevator
1244  * must be ready for this.
1245  */
1246 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1247 			       unsigned int *request_count)
1248 {
1249 	struct blk_plug *plug;
1250 	struct request *rq;
1251 	bool ret = false;
1252 
1253 	plug = current->plug;
1254 	if (!plug)
1255 		goto out;
1256 	*request_count = 0;
1257 
1258 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1259 		int el_ret;
1260 
1261 		(*request_count)++;
1262 
1263 		if (rq->q != q)
1264 			continue;
1265 
1266 		el_ret = elv_try_merge(rq, bio);
1267 		if (el_ret == ELEVATOR_BACK_MERGE) {
1268 			ret = bio_attempt_back_merge(q, rq, bio);
1269 			if (ret)
1270 				break;
1271 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1272 			ret = bio_attempt_front_merge(q, rq, bio);
1273 			if (ret)
1274 				break;
1275 		}
1276 	}
1277 out:
1278 	return ret;
1279 }
1280 
1281 void init_request_from_bio(struct request *req, struct bio *bio)
1282 {
1283 	req->cmd_type = REQ_TYPE_FS;
1284 
1285 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1286 	if (bio->bi_rw & REQ_RAHEAD)
1287 		req->cmd_flags |= REQ_FAILFAST_MASK;
1288 
1289 	req->errors = 0;
1290 	req->__sector = bio->bi_sector;
1291 	req->ioprio = bio_prio(bio);
1292 	blk_rq_bio_prep(req->q, req, bio);
1293 }
1294 
1295 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1296 {
1297 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1298 	struct blk_plug *plug;
1299 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1300 	struct request *req;
1301 	unsigned int request_count = 0;
1302 
1303 	/*
1304 	 * low level driver can indicate that it wants pages above a
1305 	 * certain limit bounced to low memory (ie for highmem, or even
1306 	 * ISA dma in theory)
1307 	 */
1308 	blk_queue_bounce(q, &bio);
1309 
1310 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1311 		spin_lock_irq(q->queue_lock);
1312 		where = ELEVATOR_INSERT_FLUSH;
1313 		goto get_rq;
1314 	}
1315 
1316 	/*
1317 	 * Check if we can merge with the plugged list before grabbing
1318 	 * any locks.
1319 	 */
1320 	if (attempt_plug_merge(q, bio, &request_count))
1321 		return;
1322 
1323 	spin_lock_irq(q->queue_lock);
1324 
1325 	el_ret = elv_merge(q, &req, bio);
1326 	if (el_ret == ELEVATOR_BACK_MERGE) {
1327 		if (bio_attempt_back_merge(q, req, bio)) {
1328 			if (!attempt_back_merge(q, req))
1329 				elv_merged_request(q, req, el_ret);
1330 			goto out_unlock;
1331 		}
1332 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1333 		if (bio_attempt_front_merge(q, req, bio)) {
1334 			if (!attempt_front_merge(q, req))
1335 				elv_merged_request(q, req, el_ret);
1336 			goto out_unlock;
1337 		}
1338 	}
1339 
1340 get_rq:
1341 	/*
1342 	 * This sync check and mask will be re-done in init_request_from_bio(),
1343 	 * but we need to set it earlier to expose the sync flag to the
1344 	 * rq allocator and io schedulers.
1345 	 */
1346 	rw_flags = bio_data_dir(bio);
1347 	if (sync)
1348 		rw_flags |= REQ_SYNC;
1349 
1350 	/*
1351 	 * Grab a free request. This is might sleep but can not fail.
1352 	 * Returns with the queue unlocked.
1353 	 */
1354 	req = get_request_wait(q, rw_flags, bio);
1355 	if (unlikely(!req)) {
1356 		bio_endio(bio, -ENODEV);	/* @q is dead */
1357 		goto out_unlock;
1358 	}
1359 
1360 	/*
1361 	 * After dropping the lock and possibly sleeping here, our request
1362 	 * may now be mergeable after it had proven unmergeable (above).
1363 	 * We don't worry about that case for efficiency. It won't happen
1364 	 * often, and the elevators are able to handle it.
1365 	 */
1366 	init_request_from_bio(req, bio);
1367 
1368 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1369 		req->cpu = raw_smp_processor_id();
1370 
1371 	plug = current->plug;
1372 	if (plug) {
1373 		/*
1374 		 * If this is the first request added after a plug, fire
1375 		 * of a plug trace. If others have been added before, check
1376 		 * if we have multiple devices in this plug. If so, make a
1377 		 * note to sort the list before dispatch.
1378 		 */
1379 		if (list_empty(&plug->list))
1380 			trace_block_plug(q);
1381 		else {
1382 			if (!plug->should_sort) {
1383 				struct request *__rq;
1384 
1385 				__rq = list_entry_rq(plug->list.prev);
1386 				if (__rq->q != q)
1387 					plug->should_sort = 1;
1388 			}
1389 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1390 				blk_flush_plug_list(plug, false);
1391 				trace_block_plug(q);
1392 			}
1393 		}
1394 		list_add_tail(&req->queuelist, &plug->list);
1395 		drive_stat_acct(req, 1);
1396 	} else {
1397 		spin_lock_irq(q->queue_lock);
1398 		add_acct_request(q, req, where);
1399 		__blk_run_queue(q);
1400 out_unlock:
1401 		spin_unlock_irq(q->queue_lock);
1402 	}
1403 }
1404 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1405 
1406 /*
1407  * If bio->bi_dev is a partition, remap the location
1408  */
1409 static inline void blk_partition_remap(struct bio *bio)
1410 {
1411 	struct block_device *bdev = bio->bi_bdev;
1412 
1413 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1414 		struct hd_struct *p = bdev->bd_part;
1415 
1416 		bio->bi_sector += p->start_sect;
1417 		bio->bi_bdev = bdev->bd_contains;
1418 
1419 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1420 				      bdev->bd_dev,
1421 				      bio->bi_sector - p->start_sect);
1422 	}
1423 }
1424 
1425 static void handle_bad_sector(struct bio *bio)
1426 {
1427 	char b[BDEVNAME_SIZE];
1428 
1429 	printk(KERN_INFO "attempt to access beyond end of device\n");
1430 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1431 			bdevname(bio->bi_bdev, b),
1432 			bio->bi_rw,
1433 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1434 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1435 
1436 	set_bit(BIO_EOF, &bio->bi_flags);
1437 }
1438 
1439 #ifdef CONFIG_FAIL_MAKE_REQUEST
1440 
1441 static DECLARE_FAULT_ATTR(fail_make_request);
1442 
1443 static int __init setup_fail_make_request(char *str)
1444 {
1445 	return setup_fault_attr(&fail_make_request, str);
1446 }
1447 __setup("fail_make_request=", setup_fail_make_request);
1448 
1449 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1450 {
1451 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1452 }
1453 
1454 static int __init fail_make_request_debugfs(void)
1455 {
1456 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1457 						NULL, &fail_make_request);
1458 
1459 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1460 }
1461 
1462 late_initcall(fail_make_request_debugfs);
1463 
1464 #else /* CONFIG_FAIL_MAKE_REQUEST */
1465 
1466 static inline bool should_fail_request(struct hd_struct *part,
1467 					unsigned int bytes)
1468 {
1469 	return false;
1470 }
1471 
1472 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1473 
1474 /*
1475  * Check whether this bio extends beyond the end of the device.
1476  */
1477 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1478 {
1479 	sector_t maxsector;
1480 
1481 	if (!nr_sectors)
1482 		return 0;
1483 
1484 	/* Test device or partition size, when known. */
1485 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1486 	if (maxsector) {
1487 		sector_t sector = bio->bi_sector;
1488 
1489 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1490 			/*
1491 			 * This may well happen - the kernel calls bread()
1492 			 * without checking the size of the device, e.g., when
1493 			 * mounting a device.
1494 			 */
1495 			handle_bad_sector(bio);
1496 			return 1;
1497 		}
1498 	}
1499 
1500 	return 0;
1501 }
1502 
1503 static noinline_for_stack bool
1504 generic_make_request_checks(struct bio *bio)
1505 {
1506 	struct request_queue *q;
1507 	int nr_sectors = bio_sectors(bio);
1508 	int err = -EIO;
1509 	char b[BDEVNAME_SIZE];
1510 	struct hd_struct *part;
1511 
1512 	might_sleep();
1513 
1514 	if (bio_check_eod(bio, nr_sectors))
1515 		goto end_io;
1516 
1517 	q = bdev_get_queue(bio->bi_bdev);
1518 	if (unlikely(!q)) {
1519 		printk(KERN_ERR
1520 		       "generic_make_request: Trying to access "
1521 			"nonexistent block-device %s (%Lu)\n",
1522 			bdevname(bio->bi_bdev, b),
1523 			(long long) bio->bi_sector);
1524 		goto end_io;
1525 	}
1526 
1527 	if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1528 		     nr_sectors > queue_max_hw_sectors(q))) {
1529 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1530 		       bdevname(bio->bi_bdev, b),
1531 		       bio_sectors(bio),
1532 		       queue_max_hw_sectors(q));
1533 		goto end_io;
1534 	}
1535 
1536 	part = bio->bi_bdev->bd_part;
1537 	if (should_fail_request(part, bio->bi_size) ||
1538 	    should_fail_request(&part_to_disk(part)->part0,
1539 				bio->bi_size))
1540 		goto end_io;
1541 
1542 	/*
1543 	 * If this device has partitions, remap block n
1544 	 * of partition p to block n+start(p) of the disk.
1545 	 */
1546 	blk_partition_remap(bio);
1547 
1548 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1549 		goto end_io;
1550 
1551 	if (bio_check_eod(bio, nr_sectors))
1552 		goto end_io;
1553 
1554 	/*
1555 	 * Filter flush bio's early so that make_request based
1556 	 * drivers without flush support don't have to worry
1557 	 * about them.
1558 	 */
1559 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1560 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1561 		if (!nr_sectors) {
1562 			err = 0;
1563 			goto end_io;
1564 		}
1565 	}
1566 
1567 	if ((bio->bi_rw & REQ_DISCARD) &&
1568 	    (!blk_queue_discard(q) ||
1569 	     ((bio->bi_rw & REQ_SECURE) &&
1570 	      !blk_queue_secdiscard(q)))) {
1571 		err = -EOPNOTSUPP;
1572 		goto end_io;
1573 	}
1574 
1575 	if (blk_throtl_bio(q, bio))
1576 		return false;	/* throttled, will be resubmitted later */
1577 
1578 	trace_block_bio_queue(q, bio);
1579 	return true;
1580 
1581 end_io:
1582 	bio_endio(bio, err);
1583 	return false;
1584 }
1585 
1586 /**
1587  * generic_make_request - hand a buffer to its device driver for I/O
1588  * @bio:  The bio describing the location in memory and on the device.
1589  *
1590  * generic_make_request() is used to make I/O requests of block
1591  * devices. It is passed a &struct bio, which describes the I/O that needs
1592  * to be done.
1593  *
1594  * generic_make_request() does not return any status.  The
1595  * success/failure status of the request, along with notification of
1596  * completion, is delivered asynchronously through the bio->bi_end_io
1597  * function described (one day) else where.
1598  *
1599  * The caller of generic_make_request must make sure that bi_io_vec
1600  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1601  * set to describe the device address, and the
1602  * bi_end_io and optionally bi_private are set to describe how
1603  * completion notification should be signaled.
1604  *
1605  * generic_make_request and the drivers it calls may use bi_next if this
1606  * bio happens to be merged with someone else, and may resubmit the bio to
1607  * a lower device by calling into generic_make_request recursively, which
1608  * means the bio should NOT be touched after the call to ->make_request_fn.
1609  */
1610 void generic_make_request(struct bio *bio)
1611 {
1612 	struct bio_list bio_list_on_stack;
1613 
1614 	if (!generic_make_request_checks(bio))
1615 		return;
1616 
1617 	/*
1618 	 * We only want one ->make_request_fn to be active at a time, else
1619 	 * stack usage with stacked devices could be a problem.  So use
1620 	 * current->bio_list to keep a list of requests submited by a
1621 	 * make_request_fn function.  current->bio_list is also used as a
1622 	 * flag to say if generic_make_request is currently active in this
1623 	 * task or not.  If it is NULL, then no make_request is active.  If
1624 	 * it is non-NULL, then a make_request is active, and new requests
1625 	 * should be added at the tail
1626 	 */
1627 	if (current->bio_list) {
1628 		bio_list_add(current->bio_list, bio);
1629 		return;
1630 	}
1631 
1632 	/* following loop may be a bit non-obvious, and so deserves some
1633 	 * explanation.
1634 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1635 	 * ensure that) so we have a list with a single bio.
1636 	 * We pretend that we have just taken it off a longer list, so
1637 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1638 	 * thus initialising the bio_list of new bios to be
1639 	 * added.  ->make_request() may indeed add some more bios
1640 	 * through a recursive call to generic_make_request.  If it
1641 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1642 	 * from the top.  In this case we really did just take the bio
1643 	 * of the top of the list (no pretending) and so remove it from
1644 	 * bio_list, and call into ->make_request() again.
1645 	 */
1646 	BUG_ON(bio->bi_next);
1647 	bio_list_init(&bio_list_on_stack);
1648 	current->bio_list = &bio_list_on_stack;
1649 	do {
1650 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1651 
1652 		q->make_request_fn(q, bio);
1653 
1654 		bio = bio_list_pop(current->bio_list);
1655 	} while (bio);
1656 	current->bio_list = NULL; /* deactivate */
1657 }
1658 EXPORT_SYMBOL(generic_make_request);
1659 
1660 /**
1661  * submit_bio - submit a bio to the block device layer for I/O
1662  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1663  * @bio: The &struct bio which describes the I/O
1664  *
1665  * submit_bio() is very similar in purpose to generic_make_request(), and
1666  * uses that function to do most of the work. Both are fairly rough
1667  * interfaces; @bio must be presetup and ready for I/O.
1668  *
1669  */
1670 void submit_bio(int rw, struct bio *bio)
1671 {
1672 	int count = bio_sectors(bio);
1673 
1674 	bio->bi_rw |= rw;
1675 
1676 	/*
1677 	 * If it's a regular read/write or a barrier with data attached,
1678 	 * go through the normal accounting stuff before submission.
1679 	 */
1680 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1681 		if (rw & WRITE) {
1682 			count_vm_events(PGPGOUT, count);
1683 		} else {
1684 			task_io_account_read(bio->bi_size);
1685 			count_vm_events(PGPGIN, count);
1686 		}
1687 
1688 		if (unlikely(block_dump)) {
1689 			char b[BDEVNAME_SIZE];
1690 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1691 			current->comm, task_pid_nr(current),
1692 				(rw & WRITE) ? "WRITE" : "READ",
1693 				(unsigned long long)bio->bi_sector,
1694 				bdevname(bio->bi_bdev, b),
1695 				count);
1696 		}
1697 	}
1698 
1699 	generic_make_request(bio);
1700 }
1701 EXPORT_SYMBOL(submit_bio);
1702 
1703 /**
1704  * blk_rq_check_limits - Helper function to check a request for the queue limit
1705  * @q:  the queue
1706  * @rq: the request being checked
1707  *
1708  * Description:
1709  *    @rq may have been made based on weaker limitations of upper-level queues
1710  *    in request stacking drivers, and it may violate the limitation of @q.
1711  *    Since the block layer and the underlying device driver trust @rq
1712  *    after it is inserted to @q, it should be checked against @q before
1713  *    the insertion using this generic function.
1714  *
1715  *    This function should also be useful for request stacking drivers
1716  *    in some cases below, so export this function.
1717  *    Request stacking drivers like request-based dm may change the queue
1718  *    limits while requests are in the queue (e.g. dm's table swapping).
1719  *    Such request stacking drivers should check those requests agaist
1720  *    the new queue limits again when they dispatch those requests,
1721  *    although such checkings are also done against the old queue limits
1722  *    when submitting requests.
1723  */
1724 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1725 {
1726 	if (rq->cmd_flags & REQ_DISCARD)
1727 		return 0;
1728 
1729 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1730 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1731 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1732 		return -EIO;
1733 	}
1734 
1735 	/*
1736 	 * queue's settings related to segment counting like q->bounce_pfn
1737 	 * may differ from that of other stacking queues.
1738 	 * Recalculate it to check the request correctly on this queue's
1739 	 * limitation.
1740 	 */
1741 	blk_recalc_rq_segments(rq);
1742 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1743 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1744 		return -EIO;
1745 	}
1746 
1747 	return 0;
1748 }
1749 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1750 
1751 /**
1752  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1753  * @q:  the queue to submit the request
1754  * @rq: the request being queued
1755  */
1756 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1757 {
1758 	unsigned long flags;
1759 	int where = ELEVATOR_INSERT_BACK;
1760 
1761 	if (blk_rq_check_limits(q, rq))
1762 		return -EIO;
1763 
1764 	if (rq->rq_disk &&
1765 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1766 		return -EIO;
1767 
1768 	spin_lock_irqsave(q->queue_lock, flags);
1769 
1770 	/*
1771 	 * Submitting request must be dequeued before calling this function
1772 	 * because it will be linked to another request_queue
1773 	 */
1774 	BUG_ON(blk_queued_rq(rq));
1775 
1776 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1777 		where = ELEVATOR_INSERT_FLUSH;
1778 
1779 	add_acct_request(q, rq, where);
1780 	if (where == ELEVATOR_INSERT_FLUSH)
1781 		__blk_run_queue(q);
1782 	spin_unlock_irqrestore(q->queue_lock, flags);
1783 
1784 	return 0;
1785 }
1786 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1787 
1788 /**
1789  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1790  * @rq: request to examine
1791  *
1792  * Description:
1793  *     A request could be merge of IOs which require different failure
1794  *     handling.  This function determines the number of bytes which
1795  *     can be failed from the beginning of the request without
1796  *     crossing into area which need to be retried further.
1797  *
1798  * Return:
1799  *     The number of bytes to fail.
1800  *
1801  * Context:
1802  *     queue_lock must be held.
1803  */
1804 unsigned int blk_rq_err_bytes(const struct request *rq)
1805 {
1806 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1807 	unsigned int bytes = 0;
1808 	struct bio *bio;
1809 
1810 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1811 		return blk_rq_bytes(rq);
1812 
1813 	/*
1814 	 * Currently the only 'mixing' which can happen is between
1815 	 * different fastfail types.  We can safely fail portions
1816 	 * which have all the failfast bits that the first one has -
1817 	 * the ones which are at least as eager to fail as the first
1818 	 * one.
1819 	 */
1820 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1821 		if ((bio->bi_rw & ff) != ff)
1822 			break;
1823 		bytes += bio->bi_size;
1824 	}
1825 
1826 	/* this could lead to infinite loop */
1827 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1828 	return bytes;
1829 }
1830 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1831 
1832 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1833 {
1834 	if (blk_do_io_stat(req)) {
1835 		const int rw = rq_data_dir(req);
1836 		struct hd_struct *part;
1837 		int cpu;
1838 
1839 		cpu = part_stat_lock();
1840 		part = req->part;
1841 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1842 		part_stat_unlock();
1843 	}
1844 }
1845 
1846 static void blk_account_io_done(struct request *req)
1847 {
1848 	/*
1849 	 * Account IO completion.  flush_rq isn't accounted as a
1850 	 * normal IO on queueing nor completion.  Accounting the
1851 	 * containing request is enough.
1852 	 */
1853 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1854 		unsigned long duration = jiffies - req->start_time;
1855 		const int rw = rq_data_dir(req);
1856 		struct hd_struct *part;
1857 		int cpu;
1858 
1859 		cpu = part_stat_lock();
1860 		part = req->part;
1861 
1862 		part_stat_inc(cpu, part, ios[rw]);
1863 		part_stat_add(cpu, part, ticks[rw], duration);
1864 		part_round_stats(cpu, part);
1865 		part_dec_in_flight(part, rw);
1866 
1867 		hd_struct_put(part);
1868 		part_stat_unlock();
1869 	}
1870 }
1871 
1872 /**
1873  * blk_peek_request - peek at the top of a request queue
1874  * @q: request queue to peek at
1875  *
1876  * Description:
1877  *     Return the request at the top of @q.  The returned request
1878  *     should be started using blk_start_request() before LLD starts
1879  *     processing it.
1880  *
1881  * Return:
1882  *     Pointer to the request at the top of @q if available.  Null
1883  *     otherwise.
1884  *
1885  * Context:
1886  *     queue_lock must be held.
1887  */
1888 struct request *blk_peek_request(struct request_queue *q)
1889 {
1890 	struct request *rq;
1891 	int ret;
1892 
1893 	while ((rq = __elv_next_request(q)) != NULL) {
1894 		if (!(rq->cmd_flags & REQ_STARTED)) {
1895 			/*
1896 			 * This is the first time the device driver
1897 			 * sees this request (possibly after
1898 			 * requeueing).  Notify IO scheduler.
1899 			 */
1900 			if (rq->cmd_flags & REQ_SORTED)
1901 				elv_activate_rq(q, rq);
1902 
1903 			/*
1904 			 * just mark as started even if we don't start
1905 			 * it, a request that has been delayed should
1906 			 * not be passed by new incoming requests
1907 			 */
1908 			rq->cmd_flags |= REQ_STARTED;
1909 			trace_block_rq_issue(q, rq);
1910 		}
1911 
1912 		if (!q->boundary_rq || q->boundary_rq == rq) {
1913 			q->end_sector = rq_end_sector(rq);
1914 			q->boundary_rq = NULL;
1915 		}
1916 
1917 		if (rq->cmd_flags & REQ_DONTPREP)
1918 			break;
1919 
1920 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1921 			/*
1922 			 * make sure space for the drain appears we
1923 			 * know we can do this because max_hw_segments
1924 			 * has been adjusted to be one fewer than the
1925 			 * device can handle
1926 			 */
1927 			rq->nr_phys_segments++;
1928 		}
1929 
1930 		if (!q->prep_rq_fn)
1931 			break;
1932 
1933 		ret = q->prep_rq_fn(q, rq);
1934 		if (ret == BLKPREP_OK) {
1935 			break;
1936 		} else if (ret == BLKPREP_DEFER) {
1937 			/*
1938 			 * the request may have been (partially) prepped.
1939 			 * we need to keep this request in the front to
1940 			 * avoid resource deadlock.  REQ_STARTED will
1941 			 * prevent other fs requests from passing this one.
1942 			 */
1943 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1944 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1945 				/*
1946 				 * remove the space for the drain we added
1947 				 * so that we don't add it again
1948 				 */
1949 				--rq->nr_phys_segments;
1950 			}
1951 
1952 			rq = NULL;
1953 			break;
1954 		} else if (ret == BLKPREP_KILL) {
1955 			rq->cmd_flags |= REQ_QUIET;
1956 			/*
1957 			 * Mark this request as started so we don't trigger
1958 			 * any debug logic in the end I/O path.
1959 			 */
1960 			blk_start_request(rq);
1961 			__blk_end_request_all(rq, -EIO);
1962 		} else {
1963 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1964 			break;
1965 		}
1966 	}
1967 
1968 	return rq;
1969 }
1970 EXPORT_SYMBOL(blk_peek_request);
1971 
1972 void blk_dequeue_request(struct request *rq)
1973 {
1974 	struct request_queue *q = rq->q;
1975 
1976 	BUG_ON(list_empty(&rq->queuelist));
1977 	BUG_ON(ELV_ON_HASH(rq));
1978 
1979 	list_del_init(&rq->queuelist);
1980 
1981 	/*
1982 	 * the time frame between a request being removed from the lists
1983 	 * and to it is freed is accounted as io that is in progress at
1984 	 * the driver side.
1985 	 */
1986 	if (blk_account_rq(rq)) {
1987 		q->in_flight[rq_is_sync(rq)]++;
1988 		set_io_start_time_ns(rq);
1989 	}
1990 }
1991 
1992 /**
1993  * blk_start_request - start request processing on the driver
1994  * @req: request to dequeue
1995  *
1996  * Description:
1997  *     Dequeue @req and start timeout timer on it.  This hands off the
1998  *     request to the driver.
1999  *
2000  *     Block internal functions which don't want to start timer should
2001  *     call blk_dequeue_request().
2002  *
2003  * Context:
2004  *     queue_lock must be held.
2005  */
2006 void blk_start_request(struct request *req)
2007 {
2008 	blk_dequeue_request(req);
2009 
2010 	/*
2011 	 * We are now handing the request to the hardware, initialize
2012 	 * resid_len to full count and add the timeout handler.
2013 	 */
2014 	req->resid_len = blk_rq_bytes(req);
2015 	if (unlikely(blk_bidi_rq(req)))
2016 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2017 
2018 	blk_add_timer(req);
2019 }
2020 EXPORT_SYMBOL(blk_start_request);
2021 
2022 /**
2023  * blk_fetch_request - fetch a request from a request queue
2024  * @q: request queue to fetch a request from
2025  *
2026  * Description:
2027  *     Return the request at the top of @q.  The request is started on
2028  *     return and LLD can start processing it immediately.
2029  *
2030  * Return:
2031  *     Pointer to the request at the top of @q if available.  Null
2032  *     otherwise.
2033  *
2034  * Context:
2035  *     queue_lock must be held.
2036  */
2037 struct request *blk_fetch_request(struct request_queue *q)
2038 {
2039 	struct request *rq;
2040 
2041 	rq = blk_peek_request(q);
2042 	if (rq)
2043 		blk_start_request(rq);
2044 	return rq;
2045 }
2046 EXPORT_SYMBOL(blk_fetch_request);
2047 
2048 /**
2049  * blk_update_request - Special helper function for request stacking drivers
2050  * @req:      the request being processed
2051  * @error:    %0 for success, < %0 for error
2052  * @nr_bytes: number of bytes to complete @req
2053  *
2054  * Description:
2055  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2056  *     the request structure even if @req doesn't have leftover.
2057  *     If @req has leftover, sets it up for the next range of segments.
2058  *
2059  *     This special helper function is only for request stacking drivers
2060  *     (e.g. request-based dm) so that they can handle partial completion.
2061  *     Actual device drivers should use blk_end_request instead.
2062  *
2063  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2064  *     %false return from this function.
2065  *
2066  * Return:
2067  *     %false - this request doesn't have any more data
2068  *     %true  - this request has more data
2069  **/
2070 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2071 {
2072 	int total_bytes, bio_nbytes, next_idx = 0;
2073 	struct bio *bio;
2074 
2075 	if (!req->bio)
2076 		return false;
2077 
2078 	trace_block_rq_complete(req->q, req);
2079 
2080 	/*
2081 	 * For fs requests, rq is just carrier of independent bio's
2082 	 * and each partial completion should be handled separately.
2083 	 * Reset per-request error on each partial completion.
2084 	 *
2085 	 * TODO: tj: This is too subtle.  It would be better to let
2086 	 * low level drivers do what they see fit.
2087 	 */
2088 	if (req->cmd_type == REQ_TYPE_FS)
2089 		req->errors = 0;
2090 
2091 	if (error && req->cmd_type == REQ_TYPE_FS &&
2092 	    !(req->cmd_flags & REQ_QUIET)) {
2093 		char *error_type;
2094 
2095 		switch (error) {
2096 		case -ENOLINK:
2097 			error_type = "recoverable transport";
2098 			break;
2099 		case -EREMOTEIO:
2100 			error_type = "critical target";
2101 			break;
2102 		case -EBADE:
2103 			error_type = "critical nexus";
2104 			break;
2105 		case -EIO:
2106 		default:
2107 			error_type = "I/O";
2108 			break;
2109 		}
2110 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2111 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2112 		       (unsigned long long)blk_rq_pos(req));
2113 	}
2114 
2115 	blk_account_io_completion(req, nr_bytes);
2116 
2117 	total_bytes = bio_nbytes = 0;
2118 	while ((bio = req->bio) != NULL) {
2119 		int nbytes;
2120 
2121 		if (nr_bytes >= bio->bi_size) {
2122 			req->bio = bio->bi_next;
2123 			nbytes = bio->bi_size;
2124 			req_bio_endio(req, bio, nbytes, error);
2125 			next_idx = 0;
2126 			bio_nbytes = 0;
2127 		} else {
2128 			int idx = bio->bi_idx + next_idx;
2129 
2130 			if (unlikely(idx >= bio->bi_vcnt)) {
2131 				blk_dump_rq_flags(req, "__end_that");
2132 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2133 				       __func__, idx, bio->bi_vcnt);
2134 				break;
2135 			}
2136 
2137 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2138 			BIO_BUG_ON(nbytes > bio->bi_size);
2139 
2140 			/*
2141 			 * not a complete bvec done
2142 			 */
2143 			if (unlikely(nbytes > nr_bytes)) {
2144 				bio_nbytes += nr_bytes;
2145 				total_bytes += nr_bytes;
2146 				break;
2147 			}
2148 
2149 			/*
2150 			 * advance to the next vector
2151 			 */
2152 			next_idx++;
2153 			bio_nbytes += nbytes;
2154 		}
2155 
2156 		total_bytes += nbytes;
2157 		nr_bytes -= nbytes;
2158 
2159 		bio = req->bio;
2160 		if (bio) {
2161 			/*
2162 			 * end more in this run, or just return 'not-done'
2163 			 */
2164 			if (unlikely(nr_bytes <= 0))
2165 				break;
2166 		}
2167 	}
2168 
2169 	/*
2170 	 * completely done
2171 	 */
2172 	if (!req->bio) {
2173 		/*
2174 		 * Reset counters so that the request stacking driver
2175 		 * can find how many bytes remain in the request
2176 		 * later.
2177 		 */
2178 		req->__data_len = 0;
2179 		return false;
2180 	}
2181 
2182 	/*
2183 	 * if the request wasn't completed, update state
2184 	 */
2185 	if (bio_nbytes) {
2186 		req_bio_endio(req, bio, bio_nbytes, error);
2187 		bio->bi_idx += next_idx;
2188 		bio_iovec(bio)->bv_offset += nr_bytes;
2189 		bio_iovec(bio)->bv_len -= nr_bytes;
2190 	}
2191 
2192 	req->__data_len -= total_bytes;
2193 	req->buffer = bio_data(req->bio);
2194 
2195 	/* update sector only for requests with clear definition of sector */
2196 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2197 		req->__sector += total_bytes >> 9;
2198 
2199 	/* mixed attributes always follow the first bio */
2200 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2201 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2202 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2203 	}
2204 
2205 	/*
2206 	 * If total number of sectors is less than the first segment
2207 	 * size, something has gone terribly wrong.
2208 	 */
2209 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2210 		blk_dump_rq_flags(req, "request botched");
2211 		req->__data_len = blk_rq_cur_bytes(req);
2212 	}
2213 
2214 	/* recalculate the number of segments */
2215 	blk_recalc_rq_segments(req);
2216 
2217 	return true;
2218 }
2219 EXPORT_SYMBOL_GPL(blk_update_request);
2220 
2221 static bool blk_update_bidi_request(struct request *rq, int error,
2222 				    unsigned int nr_bytes,
2223 				    unsigned int bidi_bytes)
2224 {
2225 	if (blk_update_request(rq, error, nr_bytes))
2226 		return true;
2227 
2228 	/* Bidi request must be completed as a whole */
2229 	if (unlikely(blk_bidi_rq(rq)) &&
2230 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2231 		return true;
2232 
2233 	if (blk_queue_add_random(rq->q))
2234 		add_disk_randomness(rq->rq_disk);
2235 
2236 	return false;
2237 }
2238 
2239 /**
2240  * blk_unprep_request - unprepare a request
2241  * @req:	the request
2242  *
2243  * This function makes a request ready for complete resubmission (or
2244  * completion).  It happens only after all error handling is complete,
2245  * so represents the appropriate moment to deallocate any resources
2246  * that were allocated to the request in the prep_rq_fn.  The queue
2247  * lock is held when calling this.
2248  */
2249 void blk_unprep_request(struct request *req)
2250 {
2251 	struct request_queue *q = req->q;
2252 
2253 	req->cmd_flags &= ~REQ_DONTPREP;
2254 	if (q->unprep_rq_fn)
2255 		q->unprep_rq_fn(q, req);
2256 }
2257 EXPORT_SYMBOL_GPL(blk_unprep_request);
2258 
2259 /*
2260  * queue lock must be held
2261  */
2262 static void blk_finish_request(struct request *req, int error)
2263 {
2264 	if (blk_rq_tagged(req))
2265 		blk_queue_end_tag(req->q, req);
2266 
2267 	BUG_ON(blk_queued_rq(req));
2268 
2269 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2270 		laptop_io_completion(&req->q->backing_dev_info);
2271 
2272 	blk_delete_timer(req);
2273 
2274 	if (req->cmd_flags & REQ_DONTPREP)
2275 		blk_unprep_request(req);
2276 
2277 
2278 	blk_account_io_done(req);
2279 
2280 	if (req->end_io)
2281 		req->end_io(req, error);
2282 	else {
2283 		if (blk_bidi_rq(req))
2284 			__blk_put_request(req->next_rq->q, req->next_rq);
2285 
2286 		__blk_put_request(req->q, req);
2287 	}
2288 }
2289 
2290 /**
2291  * blk_end_bidi_request - Complete a bidi request
2292  * @rq:         the request to complete
2293  * @error:      %0 for success, < %0 for error
2294  * @nr_bytes:   number of bytes to complete @rq
2295  * @bidi_bytes: number of bytes to complete @rq->next_rq
2296  *
2297  * Description:
2298  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2299  *     Drivers that supports bidi can safely call this member for any
2300  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2301  *     just ignored.
2302  *
2303  * Return:
2304  *     %false - we are done with this request
2305  *     %true  - still buffers pending for this request
2306  **/
2307 static bool blk_end_bidi_request(struct request *rq, int error,
2308 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2309 {
2310 	struct request_queue *q = rq->q;
2311 	unsigned long flags;
2312 
2313 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2314 		return true;
2315 
2316 	spin_lock_irqsave(q->queue_lock, flags);
2317 	blk_finish_request(rq, error);
2318 	spin_unlock_irqrestore(q->queue_lock, flags);
2319 
2320 	return false;
2321 }
2322 
2323 /**
2324  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2325  * @rq:         the request to complete
2326  * @error:      %0 for success, < %0 for error
2327  * @nr_bytes:   number of bytes to complete @rq
2328  * @bidi_bytes: number of bytes to complete @rq->next_rq
2329  *
2330  * Description:
2331  *     Identical to blk_end_bidi_request() except that queue lock is
2332  *     assumed to be locked on entry and remains so on return.
2333  *
2334  * Return:
2335  *     %false - we are done with this request
2336  *     %true  - still buffers pending for this request
2337  **/
2338 bool __blk_end_bidi_request(struct request *rq, int error,
2339 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2340 {
2341 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2342 		return true;
2343 
2344 	blk_finish_request(rq, error);
2345 
2346 	return false;
2347 }
2348 
2349 /**
2350  * blk_end_request - Helper function for drivers to complete the request.
2351  * @rq:       the request being processed
2352  * @error:    %0 for success, < %0 for error
2353  * @nr_bytes: number of bytes to complete
2354  *
2355  * Description:
2356  *     Ends I/O on a number of bytes attached to @rq.
2357  *     If @rq has leftover, sets it up for the next range of segments.
2358  *
2359  * Return:
2360  *     %false - we are done with this request
2361  *     %true  - still buffers pending for this request
2362  **/
2363 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2364 {
2365 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2366 }
2367 EXPORT_SYMBOL(blk_end_request);
2368 
2369 /**
2370  * blk_end_request_all - Helper function for drives to finish the request.
2371  * @rq: the request to finish
2372  * @error: %0 for success, < %0 for error
2373  *
2374  * Description:
2375  *     Completely finish @rq.
2376  */
2377 void blk_end_request_all(struct request *rq, int error)
2378 {
2379 	bool pending;
2380 	unsigned int bidi_bytes = 0;
2381 
2382 	if (unlikely(blk_bidi_rq(rq)))
2383 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2384 
2385 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2386 	BUG_ON(pending);
2387 }
2388 EXPORT_SYMBOL(blk_end_request_all);
2389 
2390 /**
2391  * blk_end_request_cur - Helper function to finish the current request chunk.
2392  * @rq: the request to finish the current chunk for
2393  * @error: %0 for success, < %0 for error
2394  *
2395  * Description:
2396  *     Complete the current consecutively mapped chunk from @rq.
2397  *
2398  * Return:
2399  *     %false - we are done with this request
2400  *     %true  - still buffers pending for this request
2401  */
2402 bool blk_end_request_cur(struct request *rq, int error)
2403 {
2404 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2405 }
2406 EXPORT_SYMBOL(blk_end_request_cur);
2407 
2408 /**
2409  * blk_end_request_err - Finish a request till the next failure boundary.
2410  * @rq: the request to finish till the next failure boundary for
2411  * @error: must be negative errno
2412  *
2413  * Description:
2414  *     Complete @rq till the next failure boundary.
2415  *
2416  * Return:
2417  *     %false - we are done with this request
2418  *     %true  - still buffers pending for this request
2419  */
2420 bool blk_end_request_err(struct request *rq, int error)
2421 {
2422 	WARN_ON(error >= 0);
2423 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2424 }
2425 EXPORT_SYMBOL_GPL(blk_end_request_err);
2426 
2427 /**
2428  * __blk_end_request - Helper function for drivers to complete the request.
2429  * @rq:       the request being processed
2430  * @error:    %0 for success, < %0 for error
2431  * @nr_bytes: number of bytes to complete
2432  *
2433  * Description:
2434  *     Must be called with queue lock held unlike blk_end_request().
2435  *
2436  * Return:
2437  *     %false - we are done with this request
2438  *     %true  - still buffers pending for this request
2439  **/
2440 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2441 {
2442 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2443 }
2444 EXPORT_SYMBOL(__blk_end_request);
2445 
2446 /**
2447  * __blk_end_request_all - Helper function for drives to finish the request.
2448  * @rq: the request to finish
2449  * @error: %0 for success, < %0 for error
2450  *
2451  * Description:
2452  *     Completely finish @rq.  Must be called with queue lock held.
2453  */
2454 void __blk_end_request_all(struct request *rq, int error)
2455 {
2456 	bool pending;
2457 	unsigned int bidi_bytes = 0;
2458 
2459 	if (unlikely(blk_bidi_rq(rq)))
2460 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2461 
2462 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2463 	BUG_ON(pending);
2464 }
2465 EXPORT_SYMBOL(__blk_end_request_all);
2466 
2467 /**
2468  * __blk_end_request_cur - Helper function to finish the current request chunk.
2469  * @rq: the request to finish the current chunk for
2470  * @error: %0 for success, < %0 for error
2471  *
2472  * Description:
2473  *     Complete the current consecutively mapped chunk from @rq.  Must
2474  *     be called with queue lock held.
2475  *
2476  * Return:
2477  *     %false - we are done with this request
2478  *     %true  - still buffers pending for this request
2479  */
2480 bool __blk_end_request_cur(struct request *rq, int error)
2481 {
2482 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2483 }
2484 EXPORT_SYMBOL(__blk_end_request_cur);
2485 
2486 /**
2487  * __blk_end_request_err - Finish a request till the next failure boundary.
2488  * @rq: the request to finish till the next failure boundary for
2489  * @error: must be negative errno
2490  *
2491  * Description:
2492  *     Complete @rq till the next failure boundary.  Must be called
2493  *     with queue lock held.
2494  *
2495  * Return:
2496  *     %false - we are done with this request
2497  *     %true  - still buffers pending for this request
2498  */
2499 bool __blk_end_request_err(struct request *rq, int error)
2500 {
2501 	WARN_ON(error >= 0);
2502 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2503 }
2504 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2505 
2506 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2507 		     struct bio *bio)
2508 {
2509 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2510 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2511 
2512 	if (bio_has_data(bio)) {
2513 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2514 		rq->buffer = bio_data(bio);
2515 	}
2516 	rq->__data_len = bio->bi_size;
2517 	rq->bio = rq->biotail = bio;
2518 
2519 	if (bio->bi_bdev)
2520 		rq->rq_disk = bio->bi_bdev->bd_disk;
2521 }
2522 
2523 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2524 /**
2525  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2526  * @rq: the request to be flushed
2527  *
2528  * Description:
2529  *     Flush all pages in @rq.
2530  */
2531 void rq_flush_dcache_pages(struct request *rq)
2532 {
2533 	struct req_iterator iter;
2534 	struct bio_vec *bvec;
2535 
2536 	rq_for_each_segment(bvec, rq, iter)
2537 		flush_dcache_page(bvec->bv_page);
2538 }
2539 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2540 #endif
2541 
2542 /**
2543  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2544  * @q : the queue of the device being checked
2545  *
2546  * Description:
2547  *    Check if underlying low-level drivers of a device are busy.
2548  *    If the drivers want to export their busy state, they must set own
2549  *    exporting function using blk_queue_lld_busy() first.
2550  *
2551  *    Basically, this function is used only by request stacking drivers
2552  *    to stop dispatching requests to underlying devices when underlying
2553  *    devices are busy.  This behavior helps more I/O merging on the queue
2554  *    of the request stacking driver and prevents I/O throughput regression
2555  *    on burst I/O load.
2556  *
2557  * Return:
2558  *    0 - Not busy (The request stacking driver should dispatch request)
2559  *    1 - Busy (The request stacking driver should stop dispatching request)
2560  */
2561 int blk_lld_busy(struct request_queue *q)
2562 {
2563 	if (q->lld_busy_fn)
2564 		return q->lld_busy_fn(q);
2565 
2566 	return 0;
2567 }
2568 EXPORT_SYMBOL_GPL(blk_lld_busy);
2569 
2570 /**
2571  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2572  * @rq: the clone request to be cleaned up
2573  *
2574  * Description:
2575  *     Free all bios in @rq for a cloned request.
2576  */
2577 void blk_rq_unprep_clone(struct request *rq)
2578 {
2579 	struct bio *bio;
2580 
2581 	while ((bio = rq->bio) != NULL) {
2582 		rq->bio = bio->bi_next;
2583 
2584 		bio_put(bio);
2585 	}
2586 }
2587 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2588 
2589 /*
2590  * Copy attributes of the original request to the clone request.
2591  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2592  */
2593 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2594 {
2595 	dst->cpu = src->cpu;
2596 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2597 	dst->cmd_type = src->cmd_type;
2598 	dst->__sector = blk_rq_pos(src);
2599 	dst->__data_len = blk_rq_bytes(src);
2600 	dst->nr_phys_segments = src->nr_phys_segments;
2601 	dst->ioprio = src->ioprio;
2602 	dst->extra_len = src->extra_len;
2603 }
2604 
2605 /**
2606  * blk_rq_prep_clone - Helper function to setup clone request
2607  * @rq: the request to be setup
2608  * @rq_src: original request to be cloned
2609  * @bs: bio_set that bios for clone are allocated from
2610  * @gfp_mask: memory allocation mask for bio
2611  * @bio_ctr: setup function to be called for each clone bio.
2612  *           Returns %0 for success, non %0 for failure.
2613  * @data: private data to be passed to @bio_ctr
2614  *
2615  * Description:
2616  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2617  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2618  *     are not copied, and copying such parts is the caller's responsibility.
2619  *     Also, pages which the original bios are pointing to are not copied
2620  *     and the cloned bios just point same pages.
2621  *     So cloned bios must be completed before original bios, which means
2622  *     the caller must complete @rq before @rq_src.
2623  */
2624 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2625 		      struct bio_set *bs, gfp_t gfp_mask,
2626 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2627 		      void *data)
2628 {
2629 	struct bio *bio, *bio_src;
2630 
2631 	if (!bs)
2632 		bs = fs_bio_set;
2633 
2634 	blk_rq_init(NULL, rq);
2635 
2636 	__rq_for_each_bio(bio_src, rq_src) {
2637 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2638 		if (!bio)
2639 			goto free_and_out;
2640 
2641 		__bio_clone(bio, bio_src);
2642 
2643 		if (bio_integrity(bio_src) &&
2644 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2645 			goto free_and_out;
2646 
2647 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2648 			goto free_and_out;
2649 
2650 		if (rq->bio) {
2651 			rq->biotail->bi_next = bio;
2652 			rq->biotail = bio;
2653 		} else
2654 			rq->bio = rq->biotail = bio;
2655 	}
2656 
2657 	__blk_rq_prep_clone(rq, rq_src);
2658 
2659 	return 0;
2660 
2661 free_and_out:
2662 	if (bio)
2663 		bio_free(bio, bs);
2664 	blk_rq_unprep_clone(rq);
2665 
2666 	return -ENOMEM;
2667 }
2668 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2669 
2670 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2671 {
2672 	return queue_work(kblockd_workqueue, work);
2673 }
2674 EXPORT_SYMBOL(kblockd_schedule_work);
2675 
2676 int kblockd_schedule_delayed_work(struct request_queue *q,
2677 			struct delayed_work *dwork, unsigned long delay)
2678 {
2679 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2680 }
2681 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2682 
2683 #define PLUG_MAGIC	0x91827364
2684 
2685 /**
2686  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2687  * @plug:	The &struct blk_plug that needs to be initialized
2688  *
2689  * Description:
2690  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2691  *   pending I/O should the task end up blocking between blk_start_plug() and
2692  *   blk_finish_plug(). This is important from a performance perspective, but
2693  *   also ensures that we don't deadlock. For instance, if the task is blocking
2694  *   for a memory allocation, memory reclaim could end up wanting to free a
2695  *   page belonging to that request that is currently residing in our private
2696  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2697  *   this kind of deadlock.
2698  */
2699 void blk_start_plug(struct blk_plug *plug)
2700 {
2701 	struct task_struct *tsk = current;
2702 
2703 	plug->magic = PLUG_MAGIC;
2704 	INIT_LIST_HEAD(&plug->list);
2705 	INIT_LIST_HEAD(&plug->cb_list);
2706 	plug->should_sort = 0;
2707 
2708 	/*
2709 	 * If this is a nested plug, don't actually assign it. It will be
2710 	 * flushed on its own.
2711 	 */
2712 	if (!tsk->plug) {
2713 		/*
2714 		 * Store ordering should not be needed here, since a potential
2715 		 * preempt will imply a full memory barrier
2716 		 */
2717 		tsk->plug = plug;
2718 	}
2719 }
2720 EXPORT_SYMBOL(blk_start_plug);
2721 
2722 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2723 {
2724 	struct request *rqa = container_of(a, struct request, queuelist);
2725 	struct request *rqb = container_of(b, struct request, queuelist);
2726 
2727 	return !(rqa->q <= rqb->q);
2728 }
2729 
2730 /*
2731  * If 'from_schedule' is true, then postpone the dispatch of requests
2732  * until a safe kblockd context. We due this to avoid accidental big
2733  * additional stack usage in driver dispatch, in places where the originally
2734  * plugger did not intend it.
2735  */
2736 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2737 			    bool from_schedule)
2738 	__releases(q->queue_lock)
2739 {
2740 	trace_block_unplug(q, depth, !from_schedule);
2741 
2742 	/*
2743 	 * If we are punting this to kblockd, then we can safely drop
2744 	 * the queue_lock before waking kblockd (which needs to take
2745 	 * this lock).
2746 	 */
2747 	if (from_schedule) {
2748 		spin_unlock(q->queue_lock);
2749 		blk_run_queue_async(q);
2750 	} else {
2751 		__blk_run_queue(q);
2752 		spin_unlock(q->queue_lock);
2753 	}
2754 
2755 }
2756 
2757 static void flush_plug_callbacks(struct blk_plug *plug)
2758 {
2759 	LIST_HEAD(callbacks);
2760 
2761 	if (list_empty(&plug->cb_list))
2762 		return;
2763 
2764 	list_splice_init(&plug->cb_list, &callbacks);
2765 
2766 	while (!list_empty(&callbacks)) {
2767 		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2768 							  struct blk_plug_cb,
2769 							  list);
2770 		list_del(&cb->list);
2771 		cb->callback(cb);
2772 	}
2773 }
2774 
2775 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2776 {
2777 	struct request_queue *q;
2778 	unsigned long flags;
2779 	struct request *rq;
2780 	LIST_HEAD(list);
2781 	unsigned int depth;
2782 
2783 	BUG_ON(plug->magic != PLUG_MAGIC);
2784 
2785 	flush_plug_callbacks(plug);
2786 	if (list_empty(&plug->list))
2787 		return;
2788 
2789 	list_splice_init(&plug->list, &list);
2790 
2791 	if (plug->should_sort) {
2792 		list_sort(NULL, &list, plug_rq_cmp);
2793 		plug->should_sort = 0;
2794 	}
2795 
2796 	q = NULL;
2797 	depth = 0;
2798 
2799 	/*
2800 	 * Save and disable interrupts here, to avoid doing it for every
2801 	 * queue lock we have to take.
2802 	 */
2803 	local_irq_save(flags);
2804 	while (!list_empty(&list)) {
2805 		rq = list_entry_rq(list.next);
2806 		list_del_init(&rq->queuelist);
2807 		BUG_ON(!rq->q);
2808 		if (rq->q != q) {
2809 			/*
2810 			 * This drops the queue lock
2811 			 */
2812 			if (q)
2813 				queue_unplugged(q, depth, from_schedule);
2814 			q = rq->q;
2815 			depth = 0;
2816 			spin_lock(q->queue_lock);
2817 		}
2818 		/*
2819 		 * rq is already accounted, so use raw insert
2820 		 */
2821 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2822 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2823 		else
2824 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2825 
2826 		depth++;
2827 	}
2828 
2829 	/*
2830 	 * This drops the queue lock
2831 	 */
2832 	if (q)
2833 		queue_unplugged(q, depth, from_schedule);
2834 
2835 	local_irq_restore(flags);
2836 }
2837 
2838 void blk_finish_plug(struct blk_plug *plug)
2839 {
2840 	blk_flush_plug_list(plug, false);
2841 
2842 	if (plug == current->plug)
2843 		current->plug = NULL;
2844 }
2845 EXPORT_SYMBOL(blk_finish_plug);
2846 
2847 int __init blk_dev_init(void)
2848 {
2849 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2850 			sizeof(((struct request *)0)->cmd_flags));
2851 
2852 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2853 	kblockd_workqueue = alloc_workqueue("kblockd",
2854 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2855 	if (!kblockd_workqueue)
2856 		panic("Failed to create kblockd\n");
2857 
2858 	request_cachep = kmem_cache_create("blkdev_requests",
2859 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2860 
2861 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2862 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2863 
2864 	return 0;
2865 }
2866