xref: /linux/block/blk-core.c (revision 8ec3b8432e4fe8d452f88f1ed9a3450e715bb797)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
33 
34 #include "blk.h"
35 
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
39 
40 static int __make_request(struct request_queue *q, struct bio *bio);
41 
42 /*
43  * For the allocated request tables
44  */
45 static struct kmem_cache *request_cachep;
46 
47 /*
48  * For queue allocation
49  */
50 struct kmem_cache *blk_requestq_cachep;
51 
52 /*
53  * Controlling structure to kblockd
54  */
55 static struct workqueue_struct *kblockd_workqueue;
56 
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 	struct hd_struct *part;
60 	int rw = rq_data_dir(rq);
61 	int cpu;
62 
63 	if (!blk_do_io_stat(rq))
64 		return;
65 
66 	cpu = part_stat_lock();
67 
68 	if (!new_io) {
69 		part = rq->part;
70 		part_stat_inc(cpu, part, merges[rw]);
71 	} else {
72 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
73 		if (!hd_struct_try_get(part)) {
74 			/*
75 			 * The partition is already being removed,
76 			 * the request will be accounted on the disk only
77 			 *
78 			 * We take a reference on disk->part0 although that
79 			 * partition will never be deleted, so we can treat
80 			 * it as any other partition.
81 			 */
82 			part = &rq->rq_disk->part0;
83 			hd_struct_get(part);
84 		}
85 		part_round_stats(cpu, part);
86 		part_inc_in_flight(part, rw);
87 		rq->part = part;
88 	}
89 
90 	part_stat_unlock();
91 }
92 
93 void blk_queue_congestion_threshold(struct request_queue *q)
94 {
95 	int nr;
96 
97 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 	if (nr > q->nr_requests)
99 		nr = q->nr_requests;
100 	q->nr_congestion_on = nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 	if (nr < 1)
104 		nr = 1;
105 	q->nr_congestion_off = nr;
106 }
107 
108 /**
109  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110  * @bdev:	device
111  *
112  * Locates the passed device's request queue and returns the address of its
113  * backing_dev_info
114  *
115  * Will return NULL if the request queue cannot be located.
116  */
117 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118 {
119 	struct backing_dev_info *ret = NULL;
120 	struct request_queue *q = bdev_get_queue(bdev);
121 
122 	if (q)
123 		ret = &q->backing_dev_info;
124 	return ret;
125 }
126 EXPORT_SYMBOL(blk_get_backing_dev_info);
127 
128 void blk_rq_init(struct request_queue *q, struct request *rq)
129 {
130 	memset(rq, 0, sizeof(*rq));
131 
132 	INIT_LIST_HEAD(&rq->queuelist);
133 	INIT_LIST_HEAD(&rq->timeout_list);
134 	rq->cpu = -1;
135 	rq->q = q;
136 	rq->__sector = (sector_t) -1;
137 	INIT_HLIST_NODE(&rq->hash);
138 	RB_CLEAR_NODE(&rq->rb_node);
139 	rq->cmd = rq->__cmd;
140 	rq->cmd_len = BLK_MAX_CDB;
141 	rq->tag = -1;
142 	rq->ref_count = 1;
143 	rq->start_time = jiffies;
144 	set_start_time_ns(rq);
145 	rq->part = NULL;
146 }
147 EXPORT_SYMBOL(blk_rq_init);
148 
149 static void req_bio_endio(struct request *rq, struct bio *bio,
150 			  unsigned int nbytes, int error)
151 {
152 	struct request_queue *q = rq->q;
153 
154 	if (&q->flush_rq != rq) {
155 		if (error)
156 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
157 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
158 			error = -EIO;
159 
160 		if (unlikely(nbytes > bio->bi_size)) {
161 			printk(KERN_ERR "%s: want %u bytes done, %u left\n",
162 			       __func__, nbytes, bio->bi_size);
163 			nbytes = bio->bi_size;
164 		}
165 
166 		if (unlikely(rq->cmd_flags & REQ_QUIET))
167 			set_bit(BIO_QUIET, &bio->bi_flags);
168 
169 		bio->bi_size -= nbytes;
170 		bio->bi_sector += (nbytes >> 9);
171 
172 		if (bio_integrity(bio))
173 			bio_integrity_advance(bio, nbytes);
174 
175 		if (bio->bi_size == 0)
176 			bio_endio(bio, error);
177 	} else {
178 		/*
179 		 * Okay, this is the sequenced flush request in
180 		 * progress, just record the error;
181 		 */
182 		if (error && !q->flush_err)
183 			q->flush_err = error;
184 	}
185 }
186 
187 void blk_dump_rq_flags(struct request *rq, char *msg)
188 {
189 	int bit;
190 
191 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
192 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
193 		rq->cmd_flags);
194 
195 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
196 	       (unsigned long long)blk_rq_pos(rq),
197 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
198 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
199 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
200 
201 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
202 		printk(KERN_INFO "  cdb: ");
203 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
204 			printk("%02x ", rq->cmd[bit]);
205 		printk("\n");
206 	}
207 }
208 EXPORT_SYMBOL(blk_dump_rq_flags);
209 
210 /*
211  * "plug" the device if there are no outstanding requests: this will
212  * force the transfer to start only after we have put all the requests
213  * on the list.
214  *
215  * This is called with interrupts off and no requests on the queue and
216  * with the queue lock held.
217  */
218 void blk_plug_device(struct request_queue *q)
219 {
220 	WARN_ON(!irqs_disabled());
221 
222 	/*
223 	 * don't plug a stopped queue, it must be paired with blk_start_queue()
224 	 * which will restart the queueing
225 	 */
226 	if (blk_queue_stopped(q))
227 		return;
228 
229 	if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
230 		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
231 		trace_block_plug(q);
232 	}
233 }
234 EXPORT_SYMBOL(blk_plug_device);
235 
236 /**
237  * blk_plug_device_unlocked - plug a device without queue lock held
238  * @q:    The &struct request_queue to plug
239  *
240  * Description:
241  *   Like @blk_plug_device(), but grabs the queue lock and disables
242  *   interrupts.
243  **/
244 void blk_plug_device_unlocked(struct request_queue *q)
245 {
246 	unsigned long flags;
247 
248 	spin_lock_irqsave(q->queue_lock, flags);
249 	blk_plug_device(q);
250 	spin_unlock_irqrestore(q->queue_lock, flags);
251 }
252 EXPORT_SYMBOL(blk_plug_device_unlocked);
253 
254 /*
255  * remove the queue from the plugged list, if present. called with
256  * queue lock held and interrupts disabled.
257  */
258 int blk_remove_plug(struct request_queue *q)
259 {
260 	WARN_ON(!irqs_disabled());
261 
262 	if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
263 		return 0;
264 
265 	del_timer(&q->unplug_timer);
266 	return 1;
267 }
268 EXPORT_SYMBOL(blk_remove_plug);
269 
270 /*
271  * remove the plug and let it rip..
272  */
273 void __generic_unplug_device(struct request_queue *q)
274 {
275 	if (unlikely(blk_queue_stopped(q)))
276 		return;
277 	if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
278 		return;
279 
280 	q->request_fn(q);
281 }
282 
283 /**
284  * generic_unplug_device - fire a request queue
285  * @q:    The &struct request_queue in question
286  *
287  * Description:
288  *   Linux uses plugging to build bigger requests queues before letting
289  *   the device have at them. If a queue is plugged, the I/O scheduler
290  *   is still adding and merging requests on the queue. Once the queue
291  *   gets unplugged, the request_fn defined for the queue is invoked and
292  *   transfers started.
293  **/
294 void generic_unplug_device(struct request_queue *q)
295 {
296 	if (blk_queue_plugged(q)) {
297 		spin_lock_irq(q->queue_lock);
298 		__generic_unplug_device(q);
299 		spin_unlock_irq(q->queue_lock);
300 	}
301 }
302 EXPORT_SYMBOL(generic_unplug_device);
303 
304 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
305 				   struct page *page)
306 {
307 	struct request_queue *q = bdi->unplug_io_data;
308 
309 	blk_unplug(q);
310 }
311 
312 void blk_unplug_work(struct work_struct *work)
313 {
314 	struct request_queue *q =
315 		container_of(work, struct request_queue, unplug_work);
316 
317 	trace_block_unplug_io(q);
318 	q->unplug_fn(q);
319 }
320 
321 void blk_unplug_timeout(unsigned long data)
322 {
323 	struct request_queue *q = (struct request_queue *)data;
324 
325 	trace_block_unplug_timer(q);
326 	kblockd_schedule_work(q, &q->unplug_work);
327 }
328 
329 void blk_unplug(struct request_queue *q)
330 {
331 	/*
332 	 * devices don't necessarily have an ->unplug_fn defined
333 	 */
334 	if (q->unplug_fn) {
335 		trace_block_unplug_io(q);
336 		q->unplug_fn(q);
337 	}
338 }
339 EXPORT_SYMBOL(blk_unplug);
340 
341 /**
342  * blk_start_queue - restart a previously stopped queue
343  * @q:    The &struct request_queue in question
344  *
345  * Description:
346  *   blk_start_queue() will clear the stop flag on the queue, and call
347  *   the request_fn for the queue if it was in a stopped state when
348  *   entered. Also see blk_stop_queue(). Queue lock must be held.
349  **/
350 void blk_start_queue(struct request_queue *q)
351 {
352 	WARN_ON(!irqs_disabled());
353 
354 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
355 	__blk_run_queue(q, false);
356 }
357 EXPORT_SYMBOL(blk_start_queue);
358 
359 /**
360  * blk_stop_queue - stop a queue
361  * @q:    The &struct request_queue in question
362  *
363  * Description:
364  *   The Linux block layer assumes that a block driver will consume all
365  *   entries on the request queue when the request_fn strategy is called.
366  *   Often this will not happen, because of hardware limitations (queue
367  *   depth settings). If a device driver gets a 'queue full' response,
368  *   or if it simply chooses not to queue more I/O at one point, it can
369  *   call this function to prevent the request_fn from being called until
370  *   the driver has signalled it's ready to go again. This happens by calling
371  *   blk_start_queue() to restart queue operations. Queue lock must be held.
372  **/
373 void blk_stop_queue(struct request_queue *q)
374 {
375 	blk_remove_plug(q);
376 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
377 }
378 EXPORT_SYMBOL(blk_stop_queue);
379 
380 /**
381  * blk_sync_queue - cancel any pending callbacks on a queue
382  * @q: the queue
383  *
384  * Description:
385  *     The block layer may perform asynchronous callback activity
386  *     on a queue, such as calling the unplug function after a timeout.
387  *     A block device may call blk_sync_queue to ensure that any
388  *     such activity is cancelled, thus allowing it to release resources
389  *     that the callbacks might use. The caller must already have made sure
390  *     that its ->make_request_fn will not re-add plugging prior to calling
391  *     this function.
392  *
393  */
394 void blk_sync_queue(struct request_queue *q)
395 {
396 	del_timer_sync(&q->unplug_timer);
397 	del_timer_sync(&q->timeout);
398 	cancel_work_sync(&q->unplug_work);
399 	throtl_shutdown_timer_wq(q);
400 }
401 EXPORT_SYMBOL(blk_sync_queue);
402 
403 /**
404  * __blk_run_queue - run a single device queue
405  * @q:	The queue to run
406  * @force_kblockd: Don't run @q->request_fn directly.  Use kblockd.
407  *
408  * Description:
409  *    See @blk_run_queue. This variant must be called with the queue lock
410  *    held and interrupts disabled.
411  *
412  */
413 void __blk_run_queue(struct request_queue *q, bool force_kblockd)
414 {
415 	blk_remove_plug(q);
416 
417 	if (unlikely(blk_queue_stopped(q)))
418 		return;
419 
420 	if (elv_queue_empty(q))
421 		return;
422 
423 	/*
424 	 * Only recurse once to avoid overrunning the stack, let the unplug
425 	 * handling reinvoke the handler shortly if we already got there.
426 	 */
427 	if (!force_kblockd && !queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
428 		q->request_fn(q);
429 		queue_flag_clear(QUEUE_FLAG_REENTER, q);
430 	} else {
431 		queue_flag_set(QUEUE_FLAG_PLUGGED, q);
432 		kblockd_schedule_work(q, &q->unplug_work);
433 	}
434 }
435 EXPORT_SYMBOL(__blk_run_queue);
436 
437 /**
438  * blk_run_queue - run a single device queue
439  * @q: The queue to run
440  *
441  * Description:
442  *    Invoke request handling on this queue, if it has pending work to do.
443  *    May be used to restart queueing when a request has completed.
444  */
445 void blk_run_queue(struct request_queue *q)
446 {
447 	unsigned long flags;
448 
449 	spin_lock_irqsave(q->queue_lock, flags);
450 	__blk_run_queue(q, false);
451 	spin_unlock_irqrestore(q->queue_lock, flags);
452 }
453 EXPORT_SYMBOL(blk_run_queue);
454 
455 void blk_put_queue(struct request_queue *q)
456 {
457 	kobject_put(&q->kobj);
458 }
459 
460 void blk_cleanup_queue(struct request_queue *q)
461 {
462 	/*
463 	 * We know we have process context here, so we can be a little
464 	 * cautious and ensure that pending block actions on this device
465 	 * are done before moving on. Going into this function, we should
466 	 * not have processes doing IO to this device.
467 	 */
468 	blk_sync_queue(q);
469 
470 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
471 	mutex_lock(&q->sysfs_lock);
472 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
473 	mutex_unlock(&q->sysfs_lock);
474 
475 	if (q->elevator)
476 		elevator_exit(q->elevator);
477 
478 	blk_put_queue(q);
479 }
480 EXPORT_SYMBOL(blk_cleanup_queue);
481 
482 static int blk_init_free_list(struct request_queue *q)
483 {
484 	struct request_list *rl = &q->rq;
485 
486 	if (unlikely(rl->rq_pool))
487 		return 0;
488 
489 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
490 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
491 	rl->elvpriv = 0;
492 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
493 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
494 
495 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
496 				mempool_free_slab, request_cachep, q->node);
497 
498 	if (!rl->rq_pool)
499 		return -ENOMEM;
500 
501 	return 0;
502 }
503 
504 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
505 {
506 	return blk_alloc_queue_node(gfp_mask, -1);
507 }
508 EXPORT_SYMBOL(blk_alloc_queue);
509 
510 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
511 {
512 	struct request_queue *q;
513 	int err;
514 
515 	q = kmem_cache_alloc_node(blk_requestq_cachep,
516 				gfp_mask | __GFP_ZERO, node_id);
517 	if (!q)
518 		return NULL;
519 
520 	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
521 	q->backing_dev_info.unplug_io_data = q;
522 	q->backing_dev_info.ra_pages =
523 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
524 	q->backing_dev_info.state = 0;
525 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
526 	q->backing_dev_info.name = "block";
527 
528 	err = bdi_init(&q->backing_dev_info);
529 	if (err) {
530 		kmem_cache_free(blk_requestq_cachep, q);
531 		return NULL;
532 	}
533 
534 	if (blk_throtl_init(q)) {
535 		kmem_cache_free(blk_requestq_cachep, q);
536 		return NULL;
537 	}
538 
539 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
540 		    laptop_mode_timer_fn, (unsigned long) q);
541 	init_timer(&q->unplug_timer);
542 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
543 	INIT_LIST_HEAD(&q->timeout_list);
544 	INIT_LIST_HEAD(&q->pending_flushes);
545 	INIT_WORK(&q->unplug_work, blk_unplug_work);
546 
547 	kobject_init(&q->kobj, &blk_queue_ktype);
548 
549 	mutex_init(&q->sysfs_lock);
550 	spin_lock_init(&q->__queue_lock);
551 
552 	return q;
553 }
554 EXPORT_SYMBOL(blk_alloc_queue_node);
555 
556 /**
557  * blk_init_queue  - prepare a request queue for use with a block device
558  * @rfn:  The function to be called to process requests that have been
559  *        placed on the queue.
560  * @lock: Request queue spin lock
561  *
562  * Description:
563  *    If a block device wishes to use the standard request handling procedures,
564  *    which sorts requests and coalesces adjacent requests, then it must
565  *    call blk_init_queue().  The function @rfn will be called when there
566  *    are requests on the queue that need to be processed.  If the device
567  *    supports plugging, then @rfn may not be called immediately when requests
568  *    are available on the queue, but may be called at some time later instead.
569  *    Plugged queues are generally unplugged when a buffer belonging to one
570  *    of the requests on the queue is needed, or due to memory pressure.
571  *
572  *    @rfn is not required, or even expected, to remove all requests off the
573  *    queue, but only as many as it can handle at a time.  If it does leave
574  *    requests on the queue, it is responsible for arranging that the requests
575  *    get dealt with eventually.
576  *
577  *    The queue spin lock must be held while manipulating the requests on the
578  *    request queue; this lock will be taken also from interrupt context, so irq
579  *    disabling is needed for it.
580  *
581  *    Function returns a pointer to the initialized request queue, or %NULL if
582  *    it didn't succeed.
583  *
584  * Note:
585  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
586  *    when the block device is deactivated (such as at module unload).
587  **/
588 
589 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
590 {
591 	return blk_init_queue_node(rfn, lock, -1);
592 }
593 EXPORT_SYMBOL(blk_init_queue);
594 
595 struct request_queue *
596 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
597 {
598 	struct request_queue *uninit_q, *q;
599 
600 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
601 	if (!uninit_q)
602 		return NULL;
603 
604 	q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
605 	if (!q)
606 		blk_cleanup_queue(uninit_q);
607 
608 	return q;
609 }
610 EXPORT_SYMBOL(blk_init_queue_node);
611 
612 struct request_queue *
613 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
614 			 spinlock_t *lock)
615 {
616 	return blk_init_allocated_queue_node(q, rfn, lock, -1);
617 }
618 EXPORT_SYMBOL(blk_init_allocated_queue);
619 
620 struct request_queue *
621 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
622 			      spinlock_t *lock, int node_id)
623 {
624 	if (!q)
625 		return NULL;
626 
627 	q->node = node_id;
628 	if (blk_init_free_list(q))
629 		return NULL;
630 
631 	q->request_fn		= rfn;
632 	q->prep_rq_fn		= NULL;
633 	q->unprep_rq_fn		= NULL;
634 	q->unplug_fn		= generic_unplug_device;
635 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
636 	q->queue_lock		= lock;
637 
638 	/*
639 	 * This also sets hw/phys segments, boundary and size
640 	 */
641 	blk_queue_make_request(q, __make_request);
642 
643 	q->sg_reserved_size = INT_MAX;
644 
645 	/*
646 	 * all done
647 	 */
648 	if (!elevator_init(q, NULL)) {
649 		blk_queue_congestion_threshold(q);
650 		return q;
651 	}
652 
653 	return NULL;
654 }
655 EXPORT_SYMBOL(blk_init_allocated_queue_node);
656 
657 int blk_get_queue(struct request_queue *q)
658 {
659 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
660 		kobject_get(&q->kobj);
661 		return 0;
662 	}
663 
664 	return 1;
665 }
666 
667 static inline void blk_free_request(struct request_queue *q, struct request *rq)
668 {
669 	if (rq->cmd_flags & REQ_ELVPRIV)
670 		elv_put_request(q, rq);
671 	mempool_free(rq, q->rq.rq_pool);
672 }
673 
674 static struct request *
675 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
676 {
677 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
678 
679 	if (!rq)
680 		return NULL;
681 
682 	blk_rq_init(q, rq);
683 
684 	rq->cmd_flags = flags | REQ_ALLOCED;
685 
686 	if (priv) {
687 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
688 			mempool_free(rq, q->rq.rq_pool);
689 			return NULL;
690 		}
691 		rq->cmd_flags |= REQ_ELVPRIV;
692 	}
693 
694 	return rq;
695 }
696 
697 /*
698  * ioc_batching returns true if the ioc is a valid batching request and
699  * should be given priority access to a request.
700  */
701 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
702 {
703 	if (!ioc)
704 		return 0;
705 
706 	/*
707 	 * Make sure the process is able to allocate at least 1 request
708 	 * even if the batch times out, otherwise we could theoretically
709 	 * lose wakeups.
710 	 */
711 	return ioc->nr_batch_requests == q->nr_batching ||
712 		(ioc->nr_batch_requests > 0
713 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
714 }
715 
716 /*
717  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
718  * will cause the process to be a "batcher" on all queues in the system. This
719  * is the behaviour we want though - once it gets a wakeup it should be given
720  * a nice run.
721  */
722 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
723 {
724 	if (!ioc || ioc_batching(q, ioc))
725 		return;
726 
727 	ioc->nr_batch_requests = q->nr_batching;
728 	ioc->last_waited = jiffies;
729 }
730 
731 static void __freed_request(struct request_queue *q, int sync)
732 {
733 	struct request_list *rl = &q->rq;
734 
735 	if (rl->count[sync] < queue_congestion_off_threshold(q))
736 		blk_clear_queue_congested(q, sync);
737 
738 	if (rl->count[sync] + 1 <= q->nr_requests) {
739 		if (waitqueue_active(&rl->wait[sync]))
740 			wake_up(&rl->wait[sync]);
741 
742 		blk_clear_queue_full(q, sync);
743 	}
744 }
745 
746 /*
747  * A request has just been released.  Account for it, update the full and
748  * congestion status, wake up any waiters.   Called under q->queue_lock.
749  */
750 static void freed_request(struct request_queue *q, int sync, int priv)
751 {
752 	struct request_list *rl = &q->rq;
753 
754 	rl->count[sync]--;
755 	if (priv)
756 		rl->elvpriv--;
757 
758 	__freed_request(q, sync);
759 
760 	if (unlikely(rl->starved[sync ^ 1]))
761 		__freed_request(q, sync ^ 1);
762 }
763 
764 /*
765  * Get a free request, queue_lock must be held.
766  * Returns NULL on failure, with queue_lock held.
767  * Returns !NULL on success, with queue_lock *not held*.
768  */
769 static struct request *get_request(struct request_queue *q, int rw_flags,
770 				   struct bio *bio, gfp_t gfp_mask)
771 {
772 	struct request *rq = NULL;
773 	struct request_list *rl = &q->rq;
774 	struct io_context *ioc = NULL;
775 	const bool is_sync = rw_is_sync(rw_flags) != 0;
776 	int may_queue, priv;
777 
778 	may_queue = elv_may_queue(q, rw_flags);
779 	if (may_queue == ELV_MQUEUE_NO)
780 		goto rq_starved;
781 
782 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
783 		if (rl->count[is_sync]+1 >= q->nr_requests) {
784 			ioc = current_io_context(GFP_ATOMIC, q->node);
785 			/*
786 			 * The queue will fill after this allocation, so set
787 			 * it as full, and mark this process as "batching".
788 			 * This process will be allowed to complete a batch of
789 			 * requests, others will be blocked.
790 			 */
791 			if (!blk_queue_full(q, is_sync)) {
792 				ioc_set_batching(q, ioc);
793 				blk_set_queue_full(q, is_sync);
794 			} else {
795 				if (may_queue != ELV_MQUEUE_MUST
796 						&& !ioc_batching(q, ioc)) {
797 					/*
798 					 * The queue is full and the allocating
799 					 * process is not a "batcher", and not
800 					 * exempted by the IO scheduler
801 					 */
802 					goto out;
803 				}
804 			}
805 		}
806 		blk_set_queue_congested(q, is_sync);
807 	}
808 
809 	/*
810 	 * Only allow batching queuers to allocate up to 50% over the defined
811 	 * limit of requests, otherwise we could have thousands of requests
812 	 * allocated with any setting of ->nr_requests
813 	 */
814 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
815 		goto out;
816 
817 	rl->count[is_sync]++;
818 	rl->starved[is_sync] = 0;
819 
820 	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
821 	if (priv)
822 		rl->elvpriv++;
823 
824 	if (blk_queue_io_stat(q))
825 		rw_flags |= REQ_IO_STAT;
826 	spin_unlock_irq(q->queue_lock);
827 
828 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
829 	if (unlikely(!rq)) {
830 		/*
831 		 * Allocation failed presumably due to memory. Undo anything
832 		 * we might have messed up.
833 		 *
834 		 * Allocating task should really be put onto the front of the
835 		 * wait queue, but this is pretty rare.
836 		 */
837 		spin_lock_irq(q->queue_lock);
838 		freed_request(q, is_sync, priv);
839 
840 		/*
841 		 * in the very unlikely event that allocation failed and no
842 		 * requests for this direction was pending, mark us starved
843 		 * so that freeing of a request in the other direction will
844 		 * notice us. another possible fix would be to split the
845 		 * rq mempool into READ and WRITE
846 		 */
847 rq_starved:
848 		if (unlikely(rl->count[is_sync] == 0))
849 			rl->starved[is_sync] = 1;
850 
851 		goto out;
852 	}
853 
854 	/*
855 	 * ioc may be NULL here, and ioc_batching will be false. That's
856 	 * OK, if the queue is under the request limit then requests need
857 	 * not count toward the nr_batch_requests limit. There will always
858 	 * be some limit enforced by BLK_BATCH_TIME.
859 	 */
860 	if (ioc_batching(q, ioc))
861 		ioc->nr_batch_requests--;
862 
863 	trace_block_getrq(q, bio, rw_flags & 1);
864 out:
865 	return rq;
866 }
867 
868 /*
869  * No available requests for this queue, unplug the device and wait for some
870  * requests to become available.
871  *
872  * Called with q->queue_lock held, and returns with it unlocked.
873  */
874 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
875 					struct bio *bio)
876 {
877 	const bool is_sync = rw_is_sync(rw_flags) != 0;
878 	struct request *rq;
879 
880 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
881 	while (!rq) {
882 		DEFINE_WAIT(wait);
883 		struct io_context *ioc;
884 		struct request_list *rl = &q->rq;
885 
886 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
887 				TASK_UNINTERRUPTIBLE);
888 
889 		trace_block_sleeprq(q, bio, rw_flags & 1);
890 
891 		__generic_unplug_device(q);
892 		spin_unlock_irq(q->queue_lock);
893 		io_schedule();
894 
895 		/*
896 		 * After sleeping, we become a "batching" process and
897 		 * will be able to allocate at least one request, and
898 		 * up to a big batch of them for a small period time.
899 		 * See ioc_batching, ioc_set_batching
900 		 */
901 		ioc = current_io_context(GFP_NOIO, q->node);
902 		ioc_set_batching(q, ioc);
903 
904 		spin_lock_irq(q->queue_lock);
905 		finish_wait(&rl->wait[is_sync], &wait);
906 
907 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
908 	};
909 
910 	return rq;
911 }
912 
913 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
914 {
915 	struct request *rq;
916 
917 	BUG_ON(rw != READ && rw != WRITE);
918 
919 	spin_lock_irq(q->queue_lock);
920 	if (gfp_mask & __GFP_WAIT) {
921 		rq = get_request_wait(q, rw, NULL);
922 	} else {
923 		rq = get_request(q, rw, NULL, gfp_mask);
924 		if (!rq)
925 			spin_unlock_irq(q->queue_lock);
926 	}
927 	/* q->queue_lock is unlocked at this point */
928 
929 	return rq;
930 }
931 EXPORT_SYMBOL(blk_get_request);
932 
933 /**
934  * blk_make_request - given a bio, allocate a corresponding struct request.
935  * @q: target request queue
936  * @bio:  The bio describing the memory mappings that will be submitted for IO.
937  *        It may be a chained-bio properly constructed by block/bio layer.
938  * @gfp_mask: gfp flags to be used for memory allocation
939  *
940  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
941  * type commands. Where the struct request needs to be farther initialized by
942  * the caller. It is passed a &struct bio, which describes the memory info of
943  * the I/O transfer.
944  *
945  * The caller of blk_make_request must make sure that bi_io_vec
946  * are set to describe the memory buffers. That bio_data_dir() will return
947  * the needed direction of the request. (And all bio's in the passed bio-chain
948  * are properly set accordingly)
949  *
950  * If called under none-sleepable conditions, mapped bio buffers must not
951  * need bouncing, by calling the appropriate masked or flagged allocator,
952  * suitable for the target device. Otherwise the call to blk_queue_bounce will
953  * BUG.
954  *
955  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
956  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
957  * anything but the first bio in the chain. Otherwise you risk waiting for IO
958  * completion of a bio that hasn't been submitted yet, thus resulting in a
959  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
960  * of bio_alloc(), as that avoids the mempool deadlock.
961  * If possible a big IO should be split into smaller parts when allocation
962  * fails. Partial allocation should not be an error, or you risk a live-lock.
963  */
964 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
965 				 gfp_t gfp_mask)
966 {
967 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
968 
969 	if (unlikely(!rq))
970 		return ERR_PTR(-ENOMEM);
971 
972 	for_each_bio(bio) {
973 		struct bio *bounce_bio = bio;
974 		int ret;
975 
976 		blk_queue_bounce(q, &bounce_bio);
977 		ret = blk_rq_append_bio(q, rq, bounce_bio);
978 		if (unlikely(ret)) {
979 			blk_put_request(rq);
980 			return ERR_PTR(ret);
981 		}
982 	}
983 
984 	return rq;
985 }
986 EXPORT_SYMBOL(blk_make_request);
987 
988 /**
989  * blk_requeue_request - put a request back on queue
990  * @q:		request queue where request should be inserted
991  * @rq:		request to be inserted
992  *
993  * Description:
994  *    Drivers often keep queueing requests until the hardware cannot accept
995  *    more, when that condition happens we need to put the request back
996  *    on the queue. Must be called with queue lock held.
997  */
998 void blk_requeue_request(struct request_queue *q, struct request *rq)
999 {
1000 	blk_delete_timer(rq);
1001 	blk_clear_rq_complete(rq);
1002 	trace_block_rq_requeue(q, rq);
1003 
1004 	if (blk_rq_tagged(rq))
1005 		blk_queue_end_tag(q, rq);
1006 
1007 	BUG_ON(blk_queued_rq(rq));
1008 
1009 	elv_requeue_request(q, rq);
1010 }
1011 EXPORT_SYMBOL(blk_requeue_request);
1012 
1013 /**
1014  * blk_insert_request - insert a special request into a request queue
1015  * @q:		request queue where request should be inserted
1016  * @rq:		request to be inserted
1017  * @at_head:	insert request at head or tail of queue
1018  * @data:	private data
1019  *
1020  * Description:
1021  *    Many block devices need to execute commands asynchronously, so they don't
1022  *    block the whole kernel from preemption during request execution.  This is
1023  *    accomplished normally by inserting aritficial requests tagged as
1024  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1025  *    be scheduled for actual execution by the request queue.
1026  *
1027  *    We have the option of inserting the head or the tail of the queue.
1028  *    Typically we use the tail for new ioctls and so forth.  We use the head
1029  *    of the queue for things like a QUEUE_FULL message from a device, or a
1030  *    host that is unable to accept a particular command.
1031  */
1032 void blk_insert_request(struct request_queue *q, struct request *rq,
1033 			int at_head, void *data)
1034 {
1035 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1036 	unsigned long flags;
1037 
1038 	/*
1039 	 * tell I/O scheduler that this isn't a regular read/write (ie it
1040 	 * must not attempt merges on this) and that it acts as a soft
1041 	 * barrier
1042 	 */
1043 	rq->cmd_type = REQ_TYPE_SPECIAL;
1044 
1045 	rq->special = data;
1046 
1047 	spin_lock_irqsave(q->queue_lock, flags);
1048 
1049 	/*
1050 	 * If command is tagged, release the tag
1051 	 */
1052 	if (blk_rq_tagged(rq))
1053 		blk_queue_end_tag(q, rq);
1054 
1055 	drive_stat_acct(rq, 1);
1056 	__elv_add_request(q, rq, where, 0);
1057 	__blk_run_queue(q, false);
1058 	spin_unlock_irqrestore(q->queue_lock, flags);
1059 }
1060 EXPORT_SYMBOL(blk_insert_request);
1061 
1062 static void part_round_stats_single(int cpu, struct hd_struct *part,
1063 				    unsigned long now)
1064 {
1065 	if (now == part->stamp)
1066 		return;
1067 
1068 	if (part_in_flight(part)) {
1069 		__part_stat_add(cpu, part, time_in_queue,
1070 				part_in_flight(part) * (now - part->stamp));
1071 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1072 	}
1073 	part->stamp = now;
1074 }
1075 
1076 /**
1077  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1078  * @cpu: cpu number for stats access
1079  * @part: target partition
1080  *
1081  * The average IO queue length and utilisation statistics are maintained
1082  * by observing the current state of the queue length and the amount of
1083  * time it has been in this state for.
1084  *
1085  * Normally, that accounting is done on IO completion, but that can result
1086  * in more than a second's worth of IO being accounted for within any one
1087  * second, leading to >100% utilisation.  To deal with that, we call this
1088  * function to do a round-off before returning the results when reading
1089  * /proc/diskstats.  This accounts immediately for all queue usage up to
1090  * the current jiffies and restarts the counters again.
1091  */
1092 void part_round_stats(int cpu, struct hd_struct *part)
1093 {
1094 	unsigned long now = jiffies;
1095 
1096 	if (part->partno)
1097 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1098 	part_round_stats_single(cpu, part, now);
1099 }
1100 EXPORT_SYMBOL_GPL(part_round_stats);
1101 
1102 /*
1103  * queue lock must be held
1104  */
1105 void __blk_put_request(struct request_queue *q, struct request *req)
1106 {
1107 	if (unlikely(!q))
1108 		return;
1109 	if (unlikely(--req->ref_count))
1110 		return;
1111 
1112 	elv_completed_request(q, req);
1113 
1114 	/* this is a bio leak */
1115 	WARN_ON(req->bio != NULL);
1116 
1117 	/*
1118 	 * Request may not have originated from ll_rw_blk. if not,
1119 	 * it didn't come out of our reserved rq pools
1120 	 */
1121 	if (req->cmd_flags & REQ_ALLOCED) {
1122 		int is_sync = rq_is_sync(req) != 0;
1123 		int priv = req->cmd_flags & REQ_ELVPRIV;
1124 
1125 		BUG_ON(!list_empty(&req->queuelist));
1126 		BUG_ON(!hlist_unhashed(&req->hash));
1127 
1128 		blk_free_request(q, req);
1129 		freed_request(q, is_sync, priv);
1130 	}
1131 }
1132 EXPORT_SYMBOL_GPL(__blk_put_request);
1133 
1134 void blk_put_request(struct request *req)
1135 {
1136 	unsigned long flags;
1137 	struct request_queue *q = req->q;
1138 
1139 	spin_lock_irqsave(q->queue_lock, flags);
1140 	__blk_put_request(q, req);
1141 	spin_unlock_irqrestore(q->queue_lock, flags);
1142 }
1143 EXPORT_SYMBOL(blk_put_request);
1144 
1145 /**
1146  * blk_add_request_payload - add a payload to a request
1147  * @rq: request to update
1148  * @page: page backing the payload
1149  * @len: length of the payload.
1150  *
1151  * This allows to later add a payload to an already submitted request by
1152  * a block driver.  The driver needs to take care of freeing the payload
1153  * itself.
1154  *
1155  * Note that this is a quite horrible hack and nothing but handling of
1156  * discard requests should ever use it.
1157  */
1158 void blk_add_request_payload(struct request *rq, struct page *page,
1159 		unsigned int len)
1160 {
1161 	struct bio *bio = rq->bio;
1162 
1163 	bio->bi_io_vec->bv_page = page;
1164 	bio->bi_io_vec->bv_offset = 0;
1165 	bio->bi_io_vec->bv_len = len;
1166 
1167 	bio->bi_size = len;
1168 	bio->bi_vcnt = 1;
1169 	bio->bi_phys_segments = 1;
1170 
1171 	rq->__data_len = rq->resid_len = len;
1172 	rq->nr_phys_segments = 1;
1173 	rq->buffer = bio_data(bio);
1174 }
1175 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1176 
1177 void init_request_from_bio(struct request *req, struct bio *bio)
1178 {
1179 	req->cpu = bio->bi_comp_cpu;
1180 	req->cmd_type = REQ_TYPE_FS;
1181 
1182 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1183 	if (bio->bi_rw & REQ_RAHEAD)
1184 		req->cmd_flags |= REQ_FAILFAST_MASK;
1185 
1186 	req->errors = 0;
1187 	req->__sector = bio->bi_sector;
1188 	req->ioprio = bio_prio(bio);
1189 	blk_rq_bio_prep(req->q, req, bio);
1190 }
1191 
1192 /*
1193  * Only disabling plugging for non-rotational devices if it does tagging
1194  * as well, otherwise we do need the proper merging
1195  */
1196 static inline bool queue_should_plug(struct request_queue *q)
1197 {
1198 	return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1199 }
1200 
1201 static int __make_request(struct request_queue *q, struct bio *bio)
1202 {
1203 	struct request *req;
1204 	int el_ret;
1205 	unsigned int bytes = bio->bi_size;
1206 	const unsigned short prio = bio_prio(bio);
1207 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1208 	const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1209 	const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
1210 	int where = ELEVATOR_INSERT_SORT;
1211 	int rw_flags;
1212 
1213 	/*
1214 	 * low level driver can indicate that it wants pages above a
1215 	 * certain limit bounced to low memory (ie for highmem, or even
1216 	 * ISA dma in theory)
1217 	 */
1218 	blk_queue_bounce(q, &bio);
1219 
1220 	spin_lock_irq(q->queue_lock);
1221 
1222 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1223 		where = ELEVATOR_INSERT_FRONT;
1224 		goto get_rq;
1225 	}
1226 
1227 	if (elv_queue_empty(q))
1228 		goto get_rq;
1229 
1230 	el_ret = elv_merge(q, &req, bio);
1231 	switch (el_ret) {
1232 	case ELEVATOR_BACK_MERGE:
1233 		BUG_ON(!rq_mergeable(req));
1234 
1235 		if (!ll_back_merge_fn(q, req, bio))
1236 			break;
1237 
1238 		trace_block_bio_backmerge(q, bio);
1239 
1240 		if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1241 			blk_rq_set_mixed_merge(req);
1242 
1243 		req->biotail->bi_next = bio;
1244 		req->biotail = bio;
1245 		req->__data_len += bytes;
1246 		req->ioprio = ioprio_best(req->ioprio, prio);
1247 		if (!blk_rq_cpu_valid(req))
1248 			req->cpu = bio->bi_comp_cpu;
1249 		drive_stat_acct(req, 0);
1250 		elv_bio_merged(q, req, bio);
1251 		if (!attempt_back_merge(q, req))
1252 			elv_merged_request(q, req, el_ret);
1253 		goto out;
1254 
1255 	case ELEVATOR_FRONT_MERGE:
1256 		BUG_ON(!rq_mergeable(req));
1257 
1258 		if (!ll_front_merge_fn(q, req, bio))
1259 			break;
1260 
1261 		trace_block_bio_frontmerge(q, bio);
1262 
1263 		if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1264 			blk_rq_set_mixed_merge(req);
1265 			req->cmd_flags &= ~REQ_FAILFAST_MASK;
1266 			req->cmd_flags |= ff;
1267 		}
1268 
1269 		bio->bi_next = req->bio;
1270 		req->bio = bio;
1271 
1272 		/*
1273 		 * may not be valid. if the low level driver said
1274 		 * it didn't need a bounce buffer then it better
1275 		 * not touch req->buffer either...
1276 		 */
1277 		req->buffer = bio_data(bio);
1278 		req->__sector = bio->bi_sector;
1279 		req->__data_len += bytes;
1280 		req->ioprio = ioprio_best(req->ioprio, prio);
1281 		if (!blk_rq_cpu_valid(req))
1282 			req->cpu = bio->bi_comp_cpu;
1283 		drive_stat_acct(req, 0);
1284 		elv_bio_merged(q, req, bio);
1285 		if (!attempt_front_merge(q, req))
1286 			elv_merged_request(q, req, el_ret);
1287 		goto out;
1288 
1289 	/* ELV_NO_MERGE: elevator says don't/can't merge. */
1290 	default:
1291 		;
1292 	}
1293 
1294 get_rq:
1295 	/*
1296 	 * This sync check and mask will be re-done in init_request_from_bio(),
1297 	 * but we need to set it earlier to expose the sync flag to the
1298 	 * rq allocator and io schedulers.
1299 	 */
1300 	rw_flags = bio_data_dir(bio);
1301 	if (sync)
1302 		rw_flags |= REQ_SYNC;
1303 
1304 	/*
1305 	 * Grab a free request. This is might sleep but can not fail.
1306 	 * Returns with the queue unlocked.
1307 	 */
1308 	req = get_request_wait(q, rw_flags, bio);
1309 
1310 	/*
1311 	 * After dropping the lock and possibly sleeping here, our request
1312 	 * may now be mergeable after it had proven unmergeable (above).
1313 	 * We don't worry about that case for efficiency. It won't happen
1314 	 * often, and the elevators are able to handle it.
1315 	 */
1316 	init_request_from_bio(req, bio);
1317 
1318 	spin_lock_irq(q->queue_lock);
1319 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1320 	    bio_flagged(bio, BIO_CPU_AFFINE))
1321 		req->cpu = blk_cpu_to_group(smp_processor_id());
1322 	if (queue_should_plug(q) && elv_queue_empty(q))
1323 		blk_plug_device(q);
1324 
1325 	/* insert the request into the elevator */
1326 	drive_stat_acct(req, 1);
1327 	__elv_add_request(q, req, where, 0);
1328 out:
1329 	if (unplug || !queue_should_plug(q))
1330 		__generic_unplug_device(q);
1331 	spin_unlock_irq(q->queue_lock);
1332 	return 0;
1333 }
1334 
1335 /*
1336  * If bio->bi_dev is a partition, remap the location
1337  */
1338 static inline void blk_partition_remap(struct bio *bio)
1339 {
1340 	struct block_device *bdev = bio->bi_bdev;
1341 
1342 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1343 		struct hd_struct *p = bdev->bd_part;
1344 
1345 		bio->bi_sector += p->start_sect;
1346 		bio->bi_bdev = bdev->bd_contains;
1347 
1348 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1349 				      bdev->bd_dev,
1350 				      bio->bi_sector - p->start_sect);
1351 	}
1352 }
1353 
1354 static void handle_bad_sector(struct bio *bio)
1355 {
1356 	char b[BDEVNAME_SIZE];
1357 
1358 	printk(KERN_INFO "attempt to access beyond end of device\n");
1359 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1360 			bdevname(bio->bi_bdev, b),
1361 			bio->bi_rw,
1362 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1363 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1364 
1365 	set_bit(BIO_EOF, &bio->bi_flags);
1366 }
1367 
1368 #ifdef CONFIG_FAIL_MAKE_REQUEST
1369 
1370 static DECLARE_FAULT_ATTR(fail_make_request);
1371 
1372 static int __init setup_fail_make_request(char *str)
1373 {
1374 	return setup_fault_attr(&fail_make_request, str);
1375 }
1376 __setup("fail_make_request=", setup_fail_make_request);
1377 
1378 static int should_fail_request(struct bio *bio)
1379 {
1380 	struct hd_struct *part = bio->bi_bdev->bd_part;
1381 
1382 	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1383 		return should_fail(&fail_make_request, bio->bi_size);
1384 
1385 	return 0;
1386 }
1387 
1388 static int __init fail_make_request_debugfs(void)
1389 {
1390 	return init_fault_attr_dentries(&fail_make_request,
1391 					"fail_make_request");
1392 }
1393 
1394 late_initcall(fail_make_request_debugfs);
1395 
1396 #else /* CONFIG_FAIL_MAKE_REQUEST */
1397 
1398 static inline int should_fail_request(struct bio *bio)
1399 {
1400 	return 0;
1401 }
1402 
1403 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1404 
1405 /*
1406  * Check whether this bio extends beyond the end of the device.
1407  */
1408 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1409 {
1410 	sector_t maxsector;
1411 
1412 	if (!nr_sectors)
1413 		return 0;
1414 
1415 	/* Test device or partition size, when known. */
1416 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1417 	if (maxsector) {
1418 		sector_t sector = bio->bi_sector;
1419 
1420 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1421 			/*
1422 			 * This may well happen - the kernel calls bread()
1423 			 * without checking the size of the device, e.g., when
1424 			 * mounting a device.
1425 			 */
1426 			handle_bad_sector(bio);
1427 			return 1;
1428 		}
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 /**
1435  * generic_make_request - hand a buffer to its device driver for I/O
1436  * @bio:  The bio describing the location in memory and on the device.
1437  *
1438  * generic_make_request() is used to make I/O requests of block
1439  * devices. It is passed a &struct bio, which describes the I/O that needs
1440  * to be done.
1441  *
1442  * generic_make_request() does not return any status.  The
1443  * success/failure status of the request, along with notification of
1444  * completion, is delivered asynchronously through the bio->bi_end_io
1445  * function described (one day) else where.
1446  *
1447  * The caller of generic_make_request must make sure that bi_io_vec
1448  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1449  * set to describe the device address, and the
1450  * bi_end_io and optionally bi_private are set to describe how
1451  * completion notification should be signaled.
1452  *
1453  * generic_make_request and the drivers it calls may use bi_next if this
1454  * bio happens to be merged with someone else, and may change bi_dev and
1455  * bi_sector for remaps as it sees fit.  So the values of these fields
1456  * should NOT be depended on after the call to generic_make_request.
1457  */
1458 static inline void __generic_make_request(struct bio *bio)
1459 {
1460 	struct request_queue *q;
1461 	sector_t old_sector;
1462 	int ret, nr_sectors = bio_sectors(bio);
1463 	dev_t old_dev;
1464 	int err = -EIO;
1465 
1466 	might_sleep();
1467 
1468 	if (bio_check_eod(bio, nr_sectors))
1469 		goto end_io;
1470 
1471 	/*
1472 	 * Resolve the mapping until finished. (drivers are
1473 	 * still free to implement/resolve their own stacking
1474 	 * by explicitly returning 0)
1475 	 *
1476 	 * NOTE: we don't repeat the blk_size check for each new device.
1477 	 * Stacking drivers are expected to know what they are doing.
1478 	 */
1479 	old_sector = -1;
1480 	old_dev = 0;
1481 	do {
1482 		char b[BDEVNAME_SIZE];
1483 
1484 		q = bdev_get_queue(bio->bi_bdev);
1485 		if (unlikely(!q)) {
1486 			printk(KERN_ERR
1487 			       "generic_make_request: Trying to access "
1488 				"nonexistent block-device %s (%Lu)\n",
1489 				bdevname(bio->bi_bdev, b),
1490 				(long long) bio->bi_sector);
1491 			goto end_io;
1492 		}
1493 
1494 		if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1495 			     nr_sectors > queue_max_hw_sectors(q))) {
1496 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1497 			       bdevname(bio->bi_bdev, b),
1498 			       bio_sectors(bio),
1499 			       queue_max_hw_sectors(q));
1500 			goto end_io;
1501 		}
1502 
1503 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1504 			goto end_io;
1505 
1506 		if (should_fail_request(bio))
1507 			goto end_io;
1508 
1509 		/*
1510 		 * If this device has partitions, remap block n
1511 		 * of partition p to block n+start(p) of the disk.
1512 		 */
1513 		blk_partition_remap(bio);
1514 
1515 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1516 			goto end_io;
1517 
1518 		if (old_sector != -1)
1519 			trace_block_bio_remap(q, bio, old_dev, old_sector);
1520 
1521 		old_sector = bio->bi_sector;
1522 		old_dev = bio->bi_bdev->bd_dev;
1523 
1524 		if (bio_check_eod(bio, nr_sectors))
1525 			goto end_io;
1526 
1527 		/*
1528 		 * Filter flush bio's early so that make_request based
1529 		 * drivers without flush support don't have to worry
1530 		 * about them.
1531 		 */
1532 		if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1533 			bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1534 			if (!nr_sectors) {
1535 				err = 0;
1536 				goto end_io;
1537 			}
1538 		}
1539 
1540 		if ((bio->bi_rw & REQ_DISCARD) &&
1541 		    (!blk_queue_discard(q) ||
1542 		     ((bio->bi_rw & REQ_SECURE) &&
1543 		      !blk_queue_secdiscard(q)))) {
1544 			err = -EOPNOTSUPP;
1545 			goto end_io;
1546 		}
1547 
1548 		blk_throtl_bio(q, &bio);
1549 
1550 		/*
1551 		 * If bio = NULL, bio has been throttled and will be submitted
1552 		 * later.
1553 		 */
1554 		if (!bio)
1555 			break;
1556 
1557 		trace_block_bio_queue(q, bio);
1558 
1559 		ret = q->make_request_fn(q, bio);
1560 	} while (ret);
1561 
1562 	return;
1563 
1564 end_io:
1565 	bio_endio(bio, err);
1566 }
1567 
1568 /*
1569  * We only want one ->make_request_fn to be active at a time,
1570  * else stack usage with stacked devices could be a problem.
1571  * So use current->bio_list to keep a list of requests
1572  * submited by a make_request_fn function.
1573  * current->bio_list is also used as a flag to say if
1574  * generic_make_request is currently active in this task or not.
1575  * If it is NULL, then no make_request is active.  If it is non-NULL,
1576  * then a make_request is active, and new requests should be added
1577  * at the tail
1578  */
1579 void generic_make_request(struct bio *bio)
1580 {
1581 	struct bio_list bio_list_on_stack;
1582 
1583 	if (current->bio_list) {
1584 		/* make_request is active */
1585 		bio_list_add(current->bio_list, bio);
1586 		return;
1587 	}
1588 	/* following loop may be a bit non-obvious, and so deserves some
1589 	 * explanation.
1590 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1591 	 * ensure that) so we have a list with a single bio.
1592 	 * We pretend that we have just taken it off a longer list, so
1593 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1594 	 * thus initialising the bio_list of new bios to be
1595 	 * added.  __generic_make_request may indeed add some more bios
1596 	 * through a recursive call to generic_make_request.  If it
1597 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1598 	 * from the top.  In this case we really did just take the bio
1599 	 * of the top of the list (no pretending) and so remove it from
1600 	 * bio_list, and call into __generic_make_request again.
1601 	 *
1602 	 * The loop was structured like this to make only one call to
1603 	 * __generic_make_request (which is important as it is large and
1604 	 * inlined) and to keep the structure simple.
1605 	 */
1606 	BUG_ON(bio->bi_next);
1607 	bio_list_init(&bio_list_on_stack);
1608 	current->bio_list = &bio_list_on_stack;
1609 	do {
1610 		__generic_make_request(bio);
1611 		bio = bio_list_pop(current->bio_list);
1612 	} while (bio);
1613 	current->bio_list = NULL; /* deactivate */
1614 }
1615 EXPORT_SYMBOL(generic_make_request);
1616 
1617 /**
1618  * submit_bio - submit a bio to the block device layer for I/O
1619  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1620  * @bio: The &struct bio which describes the I/O
1621  *
1622  * submit_bio() is very similar in purpose to generic_make_request(), and
1623  * uses that function to do most of the work. Both are fairly rough
1624  * interfaces; @bio must be presetup and ready for I/O.
1625  *
1626  */
1627 void submit_bio(int rw, struct bio *bio)
1628 {
1629 	int count = bio_sectors(bio);
1630 
1631 	bio->bi_rw |= rw;
1632 
1633 	/*
1634 	 * If it's a regular read/write or a barrier with data attached,
1635 	 * go through the normal accounting stuff before submission.
1636 	 */
1637 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1638 		if (rw & WRITE) {
1639 			count_vm_events(PGPGOUT, count);
1640 		} else {
1641 			task_io_account_read(bio->bi_size);
1642 			count_vm_events(PGPGIN, count);
1643 		}
1644 
1645 		if (unlikely(block_dump)) {
1646 			char b[BDEVNAME_SIZE];
1647 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1648 			current->comm, task_pid_nr(current),
1649 				(rw & WRITE) ? "WRITE" : "READ",
1650 				(unsigned long long)bio->bi_sector,
1651 				bdevname(bio->bi_bdev, b),
1652 				count);
1653 		}
1654 	}
1655 
1656 	generic_make_request(bio);
1657 }
1658 EXPORT_SYMBOL(submit_bio);
1659 
1660 /**
1661  * blk_rq_check_limits - Helper function to check a request for the queue limit
1662  * @q:  the queue
1663  * @rq: the request being checked
1664  *
1665  * Description:
1666  *    @rq may have been made based on weaker limitations of upper-level queues
1667  *    in request stacking drivers, and it may violate the limitation of @q.
1668  *    Since the block layer and the underlying device driver trust @rq
1669  *    after it is inserted to @q, it should be checked against @q before
1670  *    the insertion using this generic function.
1671  *
1672  *    This function should also be useful for request stacking drivers
1673  *    in some cases below, so export this function.
1674  *    Request stacking drivers like request-based dm may change the queue
1675  *    limits while requests are in the queue (e.g. dm's table swapping).
1676  *    Such request stacking drivers should check those requests agaist
1677  *    the new queue limits again when they dispatch those requests,
1678  *    although such checkings are also done against the old queue limits
1679  *    when submitting requests.
1680  */
1681 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1682 {
1683 	if (rq->cmd_flags & REQ_DISCARD)
1684 		return 0;
1685 
1686 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1687 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1688 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1689 		return -EIO;
1690 	}
1691 
1692 	/*
1693 	 * queue's settings related to segment counting like q->bounce_pfn
1694 	 * may differ from that of other stacking queues.
1695 	 * Recalculate it to check the request correctly on this queue's
1696 	 * limitation.
1697 	 */
1698 	blk_recalc_rq_segments(rq);
1699 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1700 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1701 		return -EIO;
1702 	}
1703 
1704 	return 0;
1705 }
1706 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1707 
1708 /**
1709  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1710  * @q:  the queue to submit the request
1711  * @rq: the request being queued
1712  */
1713 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1714 {
1715 	unsigned long flags;
1716 
1717 	if (blk_rq_check_limits(q, rq))
1718 		return -EIO;
1719 
1720 #ifdef CONFIG_FAIL_MAKE_REQUEST
1721 	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1722 	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
1723 		return -EIO;
1724 #endif
1725 
1726 	spin_lock_irqsave(q->queue_lock, flags);
1727 
1728 	/*
1729 	 * Submitting request must be dequeued before calling this function
1730 	 * because it will be linked to another request_queue
1731 	 */
1732 	BUG_ON(blk_queued_rq(rq));
1733 
1734 	drive_stat_acct(rq, 1);
1735 	__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1736 
1737 	spin_unlock_irqrestore(q->queue_lock, flags);
1738 
1739 	return 0;
1740 }
1741 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1742 
1743 /**
1744  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1745  * @rq: request to examine
1746  *
1747  * Description:
1748  *     A request could be merge of IOs which require different failure
1749  *     handling.  This function determines the number of bytes which
1750  *     can be failed from the beginning of the request without
1751  *     crossing into area which need to be retried further.
1752  *
1753  * Return:
1754  *     The number of bytes to fail.
1755  *
1756  * Context:
1757  *     queue_lock must be held.
1758  */
1759 unsigned int blk_rq_err_bytes(const struct request *rq)
1760 {
1761 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1762 	unsigned int bytes = 0;
1763 	struct bio *bio;
1764 
1765 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1766 		return blk_rq_bytes(rq);
1767 
1768 	/*
1769 	 * Currently the only 'mixing' which can happen is between
1770 	 * different fastfail types.  We can safely fail portions
1771 	 * which have all the failfast bits that the first one has -
1772 	 * the ones which are at least as eager to fail as the first
1773 	 * one.
1774 	 */
1775 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1776 		if ((bio->bi_rw & ff) != ff)
1777 			break;
1778 		bytes += bio->bi_size;
1779 	}
1780 
1781 	/* this could lead to infinite loop */
1782 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1783 	return bytes;
1784 }
1785 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1786 
1787 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1788 {
1789 	if (blk_do_io_stat(req)) {
1790 		const int rw = rq_data_dir(req);
1791 		struct hd_struct *part;
1792 		int cpu;
1793 
1794 		cpu = part_stat_lock();
1795 		part = req->part;
1796 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1797 		part_stat_unlock();
1798 	}
1799 }
1800 
1801 static void blk_account_io_done(struct request *req)
1802 {
1803 	/*
1804 	 * Account IO completion.  flush_rq isn't accounted as a
1805 	 * normal IO on queueing nor completion.  Accounting the
1806 	 * containing request is enough.
1807 	 */
1808 	if (blk_do_io_stat(req) && req != &req->q->flush_rq) {
1809 		unsigned long duration = jiffies - req->start_time;
1810 		const int rw = rq_data_dir(req);
1811 		struct hd_struct *part;
1812 		int cpu;
1813 
1814 		cpu = part_stat_lock();
1815 		part = req->part;
1816 
1817 		part_stat_inc(cpu, part, ios[rw]);
1818 		part_stat_add(cpu, part, ticks[rw], duration);
1819 		part_round_stats(cpu, part);
1820 		part_dec_in_flight(part, rw);
1821 
1822 		hd_struct_put(part);
1823 		part_stat_unlock();
1824 	}
1825 }
1826 
1827 /**
1828  * blk_peek_request - peek at the top of a request queue
1829  * @q: request queue to peek at
1830  *
1831  * Description:
1832  *     Return the request at the top of @q.  The returned request
1833  *     should be started using blk_start_request() before LLD starts
1834  *     processing it.
1835  *
1836  * Return:
1837  *     Pointer to the request at the top of @q if available.  Null
1838  *     otherwise.
1839  *
1840  * Context:
1841  *     queue_lock must be held.
1842  */
1843 struct request *blk_peek_request(struct request_queue *q)
1844 {
1845 	struct request *rq;
1846 	int ret;
1847 
1848 	while ((rq = __elv_next_request(q)) != NULL) {
1849 		if (!(rq->cmd_flags & REQ_STARTED)) {
1850 			/*
1851 			 * This is the first time the device driver
1852 			 * sees this request (possibly after
1853 			 * requeueing).  Notify IO scheduler.
1854 			 */
1855 			if (rq->cmd_flags & REQ_SORTED)
1856 				elv_activate_rq(q, rq);
1857 
1858 			/*
1859 			 * just mark as started even if we don't start
1860 			 * it, a request that has been delayed should
1861 			 * not be passed by new incoming requests
1862 			 */
1863 			rq->cmd_flags |= REQ_STARTED;
1864 			trace_block_rq_issue(q, rq);
1865 		}
1866 
1867 		if (!q->boundary_rq || q->boundary_rq == rq) {
1868 			q->end_sector = rq_end_sector(rq);
1869 			q->boundary_rq = NULL;
1870 		}
1871 
1872 		if (rq->cmd_flags & REQ_DONTPREP)
1873 			break;
1874 
1875 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1876 			/*
1877 			 * make sure space for the drain appears we
1878 			 * know we can do this because max_hw_segments
1879 			 * has been adjusted to be one fewer than the
1880 			 * device can handle
1881 			 */
1882 			rq->nr_phys_segments++;
1883 		}
1884 
1885 		if (!q->prep_rq_fn)
1886 			break;
1887 
1888 		ret = q->prep_rq_fn(q, rq);
1889 		if (ret == BLKPREP_OK) {
1890 			break;
1891 		} else if (ret == BLKPREP_DEFER) {
1892 			/*
1893 			 * the request may have been (partially) prepped.
1894 			 * we need to keep this request in the front to
1895 			 * avoid resource deadlock.  REQ_STARTED will
1896 			 * prevent other fs requests from passing this one.
1897 			 */
1898 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1899 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1900 				/*
1901 				 * remove the space for the drain we added
1902 				 * so that we don't add it again
1903 				 */
1904 				--rq->nr_phys_segments;
1905 			}
1906 
1907 			rq = NULL;
1908 			break;
1909 		} else if (ret == BLKPREP_KILL) {
1910 			rq->cmd_flags |= REQ_QUIET;
1911 			/*
1912 			 * Mark this request as started so we don't trigger
1913 			 * any debug logic in the end I/O path.
1914 			 */
1915 			blk_start_request(rq);
1916 			__blk_end_request_all(rq, -EIO);
1917 		} else {
1918 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1919 			break;
1920 		}
1921 	}
1922 
1923 	return rq;
1924 }
1925 EXPORT_SYMBOL(blk_peek_request);
1926 
1927 void blk_dequeue_request(struct request *rq)
1928 {
1929 	struct request_queue *q = rq->q;
1930 
1931 	BUG_ON(list_empty(&rq->queuelist));
1932 	BUG_ON(ELV_ON_HASH(rq));
1933 
1934 	list_del_init(&rq->queuelist);
1935 
1936 	/*
1937 	 * the time frame between a request being removed from the lists
1938 	 * and to it is freed is accounted as io that is in progress at
1939 	 * the driver side.
1940 	 */
1941 	if (blk_account_rq(rq)) {
1942 		q->in_flight[rq_is_sync(rq)]++;
1943 		set_io_start_time_ns(rq);
1944 	}
1945 }
1946 
1947 /**
1948  * blk_start_request - start request processing on the driver
1949  * @req: request to dequeue
1950  *
1951  * Description:
1952  *     Dequeue @req and start timeout timer on it.  This hands off the
1953  *     request to the driver.
1954  *
1955  *     Block internal functions which don't want to start timer should
1956  *     call blk_dequeue_request().
1957  *
1958  * Context:
1959  *     queue_lock must be held.
1960  */
1961 void blk_start_request(struct request *req)
1962 {
1963 	blk_dequeue_request(req);
1964 
1965 	/*
1966 	 * We are now handing the request to the hardware, initialize
1967 	 * resid_len to full count and add the timeout handler.
1968 	 */
1969 	req->resid_len = blk_rq_bytes(req);
1970 	if (unlikely(blk_bidi_rq(req)))
1971 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1972 
1973 	blk_add_timer(req);
1974 }
1975 EXPORT_SYMBOL(blk_start_request);
1976 
1977 /**
1978  * blk_fetch_request - fetch a request from a request queue
1979  * @q: request queue to fetch a request from
1980  *
1981  * Description:
1982  *     Return the request at the top of @q.  The request is started on
1983  *     return and LLD can start processing it immediately.
1984  *
1985  * Return:
1986  *     Pointer to the request at the top of @q if available.  Null
1987  *     otherwise.
1988  *
1989  * Context:
1990  *     queue_lock must be held.
1991  */
1992 struct request *blk_fetch_request(struct request_queue *q)
1993 {
1994 	struct request *rq;
1995 
1996 	rq = blk_peek_request(q);
1997 	if (rq)
1998 		blk_start_request(rq);
1999 	return rq;
2000 }
2001 EXPORT_SYMBOL(blk_fetch_request);
2002 
2003 /**
2004  * blk_update_request - Special helper function for request stacking drivers
2005  * @req:      the request being processed
2006  * @error:    %0 for success, < %0 for error
2007  * @nr_bytes: number of bytes to complete @req
2008  *
2009  * Description:
2010  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2011  *     the request structure even if @req doesn't have leftover.
2012  *     If @req has leftover, sets it up for the next range of segments.
2013  *
2014  *     This special helper function is only for request stacking drivers
2015  *     (e.g. request-based dm) so that they can handle partial completion.
2016  *     Actual device drivers should use blk_end_request instead.
2017  *
2018  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2019  *     %false return from this function.
2020  *
2021  * Return:
2022  *     %false - this request doesn't have any more data
2023  *     %true  - this request has more data
2024  **/
2025 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2026 {
2027 	int total_bytes, bio_nbytes, next_idx = 0;
2028 	struct bio *bio;
2029 
2030 	if (!req->bio)
2031 		return false;
2032 
2033 	trace_block_rq_complete(req->q, req);
2034 
2035 	/*
2036 	 * For fs requests, rq is just carrier of independent bio's
2037 	 * and each partial completion should be handled separately.
2038 	 * Reset per-request error on each partial completion.
2039 	 *
2040 	 * TODO: tj: This is too subtle.  It would be better to let
2041 	 * low level drivers do what they see fit.
2042 	 */
2043 	if (req->cmd_type == REQ_TYPE_FS)
2044 		req->errors = 0;
2045 
2046 	if (error && req->cmd_type == REQ_TYPE_FS &&
2047 	    !(req->cmd_flags & REQ_QUIET)) {
2048 		printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
2049 				req->rq_disk ? req->rq_disk->disk_name : "?",
2050 				(unsigned long long)blk_rq_pos(req));
2051 	}
2052 
2053 	blk_account_io_completion(req, nr_bytes);
2054 
2055 	total_bytes = bio_nbytes = 0;
2056 	while ((bio = req->bio) != NULL) {
2057 		int nbytes;
2058 
2059 		if (nr_bytes >= bio->bi_size) {
2060 			req->bio = bio->bi_next;
2061 			nbytes = bio->bi_size;
2062 			req_bio_endio(req, bio, nbytes, error);
2063 			next_idx = 0;
2064 			bio_nbytes = 0;
2065 		} else {
2066 			int idx = bio->bi_idx + next_idx;
2067 
2068 			if (unlikely(idx >= bio->bi_vcnt)) {
2069 				blk_dump_rq_flags(req, "__end_that");
2070 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2071 				       __func__, idx, bio->bi_vcnt);
2072 				break;
2073 			}
2074 
2075 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2076 			BIO_BUG_ON(nbytes > bio->bi_size);
2077 
2078 			/*
2079 			 * not a complete bvec done
2080 			 */
2081 			if (unlikely(nbytes > nr_bytes)) {
2082 				bio_nbytes += nr_bytes;
2083 				total_bytes += nr_bytes;
2084 				break;
2085 			}
2086 
2087 			/*
2088 			 * advance to the next vector
2089 			 */
2090 			next_idx++;
2091 			bio_nbytes += nbytes;
2092 		}
2093 
2094 		total_bytes += nbytes;
2095 		nr_bytes -= nbytes;
2096 
2097 		bio = req->bio;
2098 		if (bio) {
2099 			/*
2100 			 * end more in this run, or just return 'not-done'
2101 			 */
2102 			if (unlikely(nr_bytes <= 0))
2103 				break;
2104 		}
2105 	}
2106 
2107 	/*
2108 	 * completely done
2109 	 */
2110 	if (!req->bio) {
2111 		/*
2112 		 * Reset counters so that the request stacking driver
2113 		 * can find how many bytes remain in the request
2114 		 * later.
2115 		 */
2116 		req->__data_len = 0;
2117 		return false;
2118 	}
2119 
2120 	/*
2121 	 * if the request wasn't completed, update state
2122 	 */
2123 	if (bio_nbytes) {
2124 		req_bio_endio(req, bio, bio_nbytes, error);
2125 		bio->bi_idx += next_idx;
2126 		bio_iovec(bio)->bv_offset += nr_bytes;
2127 		bio_iovec(bio)->bv_len -= nr_bytes;
2128 	}
2129 
2130 	req->__data_len -= total_bytes;
2131 	req->buffer = bio_data(req->bio);
2132 
2133 	/* update sector only for requests with clear definition of sector */
2134 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2135 		req->__sector += total_bytes >> 9;
2136 
2137 	/* mixed attributes always follow the first bio */
2138 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2139 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2140 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2141 	}
2142 
2143 	/*
2144 	 * If total number of sectors is less than the first segment
2145 	 * size, something has gone terribly wrong.
2146 	 */
2147 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2148 		printk(KERN_ERR "blk: request botched\n");
2149 		req->__data_len = blk_rq_cur_bytes(req);
2150 	}
2151 
2152 	/* recalculate the number of segments */
2153 	blk_recalc_rq_segments(req);
2154 
2155 	return true;
2156 }
2157 EXPORT_SYMBOL_GPL(blk_update_request);
2158 
2159 static bool blk_update_bidi_request(struct request *rq, int error,
2160 				    unsigned int nr_bytes,
2161 				    unsigned int bidi_bytes)
2162 {
2163 	if (blk_update_request(rq, error, nr_bytes))
2164 		return true;
2165 
2166 	/* Bidi request must be completed as a whole */
2167 	if (unlikely(blk_bidi_rq(rq)) &&
2168 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2169 		return true;
2170 
2171 	if (blk_queue_add_random(rq->q))
2172 		add_disk_randomness(rq->rq_disk);
2173 
2174 	return false;
2175 }
2176 
2177 /**
2178  * blk_unprep_request - unprepare a request
2179  * @req:	the request
2180  *
2181  * This function makes a request ready for complete resubmission (or
2182  * completion).  It happens only after all error handling is complete,
2183  * so represents the appropriate moment to deallocate any resources
2184  * that were allocated to the request in the prep_rq_fn.  The queue
2185  * lock is held when calling this.
2186  */
2187 void blk_unprep_request(struct request *req)
2188 {
2189 	struct request_queue *q = req->q;
2190 
2191 	req->cmd_flags &= ~REQ_DONTPREP;
2192 	if (q->unprep_rq_fn)
2193 		q->unprep_rq_fn(q, req);
2194 }
2195 EXPORT_SYMBOL_GPL(blk_unprep_request);
2196 
2197 /*
2198  * queue lock must be held
2199  */
2200 static void blk_finish_request(struct request *req, int error)
2201 {
2202 	if (blk_rq_tagged(req))
2203 		blk_queue_end_tag(req->q, req);
2204 
2205 	BUG_ON(blk_queued_rq(req));
2206 
2207 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2208 		laptop_io_completion(&req->q->backing_dev_info);
2209 
2210 	blk_delete_timer(req);
2211 
2212 	if (req->cmd_flags & REQ_DONTPREP)
2213 		blk_unprep_request(req);
2214 
2215 
2216 	blk_account_io_done(req);
2217 
2218 	if (req->end_io)
2219 		req->end_io(req, error);
2220 	else {
2221 		if (blk_bidi_rq(req))
2222 			__blk_put_request(req->next_rq->q, req->next_rq);
2223 
2224 		__blk_put_request(req->q, req);
2225 	}
2226 }
2227 
2228 /**
2229  * blk_end_bidi_request - Complete a bidi request
2230  * @rq:         the request to complete
2231  * @error:      %0 for success, < %0 for error
2232  * @nr_bytes:   number of bytes to complete @rq
2233  * @bidi_bytes: number of bytes to complete @rq->next_rq
2234  *
2235  * Description:
2236  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2237  *     Drivers that supports bidi can safely call this member for any
2238  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2239  *     just ignored.
2240  *
2241  * Return:
2242  *     %false - we are done with this request
2243  *     %true  - still buffers pending for this request
2244  **/
2245 static bool blk_end_bidi_request(struct request *rq, int error,
2246 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2247 {
2248 	struct request_queue *q = rq->q;
2249 	unsigned long flags;
2250 
2251 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2252 		return true;
2253 
2254 	spin_lock_irqsave(q->queue_lock, flags);
2255 	blk_finish_request(rq, error);
2256 	spin_unlock_irqrestore(q->queue_lock, flags);
2257 
2258 	return false;
2259 }
2260 
2261 /**
2262  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2263  * @rq:         the request to complete
2264  * @error:      %0 for success, < %0 for error
2265  * @nr_bytes:   number of bytes to complete @rq
2266  * @bidi_bytes: number of bytes to complete @rq->next_rq
2267  *
2268  * Description:
2269  *     Identical to blk_end_bidi_request() except that queue lock is
2270  *     assumed to be locked on entry and remains so on return.
2271  *
2272  * Return:
2273  *     %false - we are done with this request
2274  *     %true  - still buffers pending for this request
2275  **/
2276 static bool __blk_end_bidi_request(struct request *rq, int error,
2277 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2278 {
2279 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2280 		return true;
2281 
2282 	blk_finish_request(rq, error);
2283 
2284 	return false;
2285 }
2286 
2287 /**
2288  * blk_end_request - Helper function for drivers to complete the request.
2289  * @rq:       the request being processed
2290  * @error:    %0 for success, < %0 for error
2291  * @nr_bytes: number of bytes to complete
2292  *
2293  * Description:
2294  *     Ends I/O on a number of bytes attached to @rq.
2295  *     If @rq has leftover, sets it up for the next range of segments.
2296  *
2297  * Return:
2298  *     %false - we are done with this request
2299  *     %true  - still buffers pending for this request
2300  **/
2301 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2302 {
2303 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2304 }
2305 EXPORT_SYMBOL(blk_end_request);
2306 
2307 /**
2308  * blk_end_request_all - Helper function for drives to finish the request.
2309  * @rq: the request to finish
2310  * @error: %0 for success, < %0 for error
2311  *
2312  * Description:
2313  *     Completely finish @rq.
2314  */
2315 void blk_end_request_all(struct request *rq, int error)
2316 {
2317 	bool pending;
2318 	unsigned int bidi_bytes = 0;
2319 
2320 	if (unlikely(blk_bidi_rq(rq)))
2321 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2322 
2323 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2324 	BUG_ON(pending);
2325 }
2326 EXPORT_SYMBOL(blk_end_request_all);
2327 
2328 /**
2329  * blk_end_request_cur - Helper function to finish the current request chunk.
2330  * @rq: the request to finish the current chunk for
2331  * @error: %0 for success, < %0 for error
2332  *
2333  * Description:
2334  *     Complete the current consecutively mapped chunk from @rq.
2335  *
2336  * Return:
2337  *     %false - we are done with this request
2338  *     %true  - still buffers pending for this request
2339  */
2340 bool blk_end_request_cur(struct request *rq, int error)
2341 {
2342 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2343 }
2344 EXPORT_SYMBOL(blk_end_request_cur);
2345 
2346 /**
2347  * blk_end_request_err - Finish a request till the next failure boundary.
2348  * @rq: the request to finish till the next failure boundary for
2349  * @error: must be negative errno
2350  *
2351  * Description:
2352  *     Complete @rq till the next failure boundary.
2353  *
2354  * Return:
2355  *     %false - we are done with this request
2356  *     %true  - still buffers pending for this request
2357  */
2358 bool blk_end_request_err(struct request *rq, int error)
2359 {
2360 	WARN_ON(error >= 0);
2361 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2362 }
2363 EXPORT_SYMBOL_GPL(blk_end_request_err);
2364 
2365 /**
2366  * __blk_end_request - Helper function for drivers to complete the request.
2367  * @rq:       the request being processed
2368  * @error:    %0 for success, < %0 for error
2369  * @nr_bytes: number of bytes to complete
2370  *
2371  * Description:
2372  *     Must be called with queue lock held unlike blk_end_request().
2373  *
2374  * Return:
2375  *     %false - we are done with this request
2376  *     %true  - still buffers pending for this request
2377  **/
2378 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2379 {
2380 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2381 }
2382 EXPORT_SYMBOL(__blk_end_request);
2383 
2384 /**
2385  * __blk_end_request_all - Helper function for drives to finish the request.
2386  * @rq: the request to finish
2387  * @error: %0 for success, < %0 for error
2388  *
2389  * Description:
2390  *     Completely finish @rq.  Must be called with queue lock held.
2391  */
2392 void __blk_end_request_all(struct request *rq, int error)
2393 {
2394 	bool pending;
2395 	unsigned int bidi_bytes = 0;
2396 
2397 	if (unlikely(blk_bidi_rq(rq)))
2398 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2399 
2400 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2401 	BUG_ON(pending);
2402 }
2403 EXPORT_SYMBOL(__blk_end_request_all);
2404 
2405 /**
2406  * __blk_end_request_cur - Helper function to finish the current request chunk.
2407  * @rq: the request to finish the current chunk for
2408  * @error: %0 for success, < %0 for error
2409  *
2410  * Description:
2411  *     Complete the current consecutively mapped chunk from @rq.  Must
2412  *     be called with queue lock held.
2413  *
2414  * Return:
2415  *     %false - we are done with this request
2416  *     %true  - still buffers pending for this request
2417  */
2418 bool __blk_end_request_cur(struct request *rq, int error)
2419 {
2420 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2421 }
2422 EXPORT_SYMBOL(__blk_end_request_cur);
2423 
2424 /**
2425  * __blk_end_request_err - Finish a request till the next failure boundary.
2426  * @rq: the request to finish till the next failure boundary for
2427  * @error: must be negative errno
2428  *
2429  * Description:
2430  *     Complete @rq till the next failure boundary.  Must be called
2431  *     with queue lock held.
2432  *
2433  * Return:
2434  *     %false - we are done with this request
2435  *     %true  - still buffers pending for this request
2436  */
2437 bool __blk_end_request_err(struct request *rq, int error)
2438 {
2439 	WARN_ON(error >= 0);
2440 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2441 }
2442 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2443 
2444 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2445 		     struct bio *bio)
2446 {
2447 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2448 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2449 
2450 	if (bio_has_data(bio)) {
2451 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2452 		rq->buffer = bio_data(bio);
2453 	}
2454 	rq->__data_len = bio->bi_size;
2455 	rq->bio = rq->biotail = bio;
2456 
2457 	if (bio->bi_bdev)
2458 		rq->rq_disk = bio->bi_bdev->bd_disk;
2459 }
2460 
2461 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2462 /**
2463  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2464  * @rq: the request to be flushed
2465  *
2466  * Description:
2467  *     Flush all pages in @rq.
2468  */
2469 void rq_flush_dcache_pages(struct request *rq)
2470 {
2471 	struct req_iterator iter;
2472 	struct bio_vec *bvec;
2473 
2474 	rq_for_each_segment(bvec, rq, iter)
2475 		flush_dcache_page(bvec->bv_page);
2476 }
2477 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2478 #endif
2479 
2480 /**
2481  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2482  * @q : the queue of the device being checked
2483  *
2484  * Description:
2485  *    Check if underlying low-level drivers of a device are busy.
2486  *    If the drivers want to export their busy state, they must set own
2487  *    exporting function using blk_queue_lld_busy() first.
2488  *
2489  *    Basically, this function is used only by request stacking drivers
2490  *    to stop dispatching requests to underlying devices when underlying
2491  *    devices are busy.  This behavior helps more I/O merging on the queue
2492  *    of the request stacking driver and prevents I/O throughput regression
2493  *    on burst I/O load.
2494  *
2495  * Return:
2496  *    0 - Not busy (The request stacking driver should dispatch request)
2497  *    1 - Busy (The request stacking driver should stop dispatching request)
2498  */
2499 int blk_lld_busy(struct request_queue *q)
2500 {
2501 	if (q->lld_busy_fn)
2502 		return q->lld_busy_fn(q);
2503 
2504 	return 0;
2505 }
2506 EXPORT_SYMBOL_GPL(blk_lld_busy);
2507 
2508 /**
2509  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2510  * @rq: the clone request to be cleaned up
2511  *
2512  * Description:
2513  *     Free all bios in @rq for a cloned request.
2514  */
2515 void blk_rq_unprep_clone(struct request *rq)
2516 {
2517 	struct bio *bio;
2518 
2519 	while ((bio = rq->bio) != NULL) {
2520 		rq->bio = bio->bi_next;
2521 
2522 		bio_put(bio);
2523 	}
2524 }
2525 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2526 
2527 /*
2528  * Copy attributes of the original request to the clone request.
2529  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2530  */
2531 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2532 {
2533 	dst->cpu = src->cpu;
2534 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2535 	dst->cmd_type = src->cmd_type;
2536 	dst->__sector = blk_rq_pos(src);
2537 	dst->__data_len = blk_rq_bytes(src);
2538 	dst->nr_phys_segments = src->nr_phys_segments;
2539 	dst->ioprio = src->ioprio;
2540 	dst->extra_len = src->extra_len;
2541 }
2542 
2543 /**
2544  * blk_rq_prep_clone - Helper function to setup clone request
2545  * @rq: the request to be setup
2546  * @rq_src: original request to be cloned
2547  * @bs: bio_set that bios for clone are allocated from
2548  * @gfp_mask: memory allocation mask for bio
2549  * @bio_ctr: setup function to be called for each clone bio.
2550  *           Returns %0 for success, non %0 for failure.
2551  * @data: private data to be passed to @bio_ctr
2552  *
2553  * Description:
2554  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2555  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2556  *     are not copied, and copying such parts is the caller's responsibility.
2557  *     Also, pages which the original bios are pointing to are not copied
2558  *     and the cloned bios just point same pages.
2559  *     So cloned bios must be completed before original bios, which means
2560  *     the caller must complete @rq before @rq_src.
2561  */
2562 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2563 		      struct bio_set *bs, gfp_t gfp_mask,
2564 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2565 		      void *data)
2566 {
2567 	struct bio *bio, *bio_src;
2568 
2569 	if (!bs)
2570 		bs = fs_bio_set;
2571 
2572 	blk_rq_init(NULL, rq);
2573 
2574 	__rq_for_each_bio(bio_src, rq_src) {
2575 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2576 		if (!bio)
2577 			goto free_and_out;
2578 
2579 		__bio_clone(bio, bio_src);
2580 
2581 		if (bio_integrity(bio_src) &&
2582 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2583 			goto free_and_out;
2584 
2585 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2586 			goto free_and_out;
2587 
2588 		if (rq->bio) {
2589 			rq->biotail->bi_next = bio;
2590 			rq->biotail = bio;
2591 		} else
2592 			rq->bio = rq->biotail = bio;
2593 	}
2594 
2595 	__blk_rq_prep_clone(rq, rq_src);
2596 
2597 	return 0;
2598 
2599 free_and_out:
2600 	if (bio)
2601 		bio_free(bio, bs);
2602 	blk_rq_unprep_clone(rq);
2603 
2604 	return -ENOMEM;
2605 }
2606 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2607 
2608 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2609 {
2610 	return queue_work(kblockd_workqueue, work);
2611 }
2612 EXPORT_SYMBOL(kblockd_schedule_work);
2613 
2614 int __init blk_dev_init(void)
2615 {
2616 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2617 			sizeof(((struct request *)0)->cmd_flags));
2618 
2619 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2620 	kblockd_workqueue = alloc_workqueue("kblockd",
2621 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2622 	if (!kblockd_workqueue)
2623 		panic("Failed to create kblockd\n");
2624 
2625 	request_cachep = kmem_cache_create("blkdev_requests",
2626 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2627 
2628 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2629 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2630 
2631 	return 0;
2632 }
2633