1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/block.h> 33 34 #include "blk.h" 35 36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 39 40 static int __make_request(struct request_queue *q, struct bio *bio); 41 42 /* 43 * For the allocated request tables 44 */ 45 static struct kmem_cache *request_cachep; 46 47 /* 48 * For queue allocation 49 */ 50 struct kmem_cache *blk_requestq_cachep; 51 52 /* 53 * Controlling structure to kblockd 54 */ 55 static struct workqueue_struct *kblockd_workqueue; 56 57 static void drive_stat_acct(struct request *rq, int new_io) 58 { 59 struct hd_struct *part; 60 int rw = rq_data_dir(rq); 61 int cpu; 62 63 if (!blk_do_io_stat(rq)) 64 return; 65 66 cpu = part_stat_lock(); 67 68 if (!new_io) { 69 part = rq->part; 70 part_stat_inc(cpu, part, merges[rw]); 71 } else { 72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 73 if (!hd_struct_try_get(part)) { 74 /* 75 * The partition is already being removed, 76 * the request will be accounted on the disk only 77 * 78 * We take a reference on disk->part0 although that 79 * partition will never be deleted, so we can treat 80 * it as any other partition. 81 */ 82 part = &rq->rq_disk->part0; 83 hd_struct_get(part); 84 } 85 part_round_stats(cpu, part); 86 part_inc_in_flight(part, rw); 87 rq->part = part; 88 } 89 90 part_stat_unlock(); 91 } 92 93 void blk_queue_congestion_threshold(struct request_queue *q) 94 { 95 int nr; 96 97 nr = q->nr_requests - (q->nr_requests / 8) + 1; 98 if (nr > q->nr_requests) 99 nr = q->nr_requests; 100 q->nr_congestion_on = nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 103 if (nr < 1) 104 nr = 1; 105 q->nr_congestion_off = nr; 106 } 107 108 /** 109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 110 * @bdev: device 111 * 112 * Locates the passed device's request queue and returns the address of its 113 * backing_dev_info 114 * 115 * Will return NULL if the request queue cannot be located. 116 */ 117 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 118 { 119 struct backing_dev_info *ret = NULL; 120 struct request_queue *q = bdev_get_queue(bdev); 121 122 if (q) 123 ret = &q->backing_dev_info; 124 return ret; 125 } 126 EXPORT_SYMBOL(blk_get_backing_dev_info); 127 128 void blk_rq_init(struct request_queue *q, struct request *rq) 129 { 130 memset(rq, 0, sizeof(*rq)); 131 132 INIT_LIST_HEAD(&rq->queuelist); 133 INIT_LIST_HEAD(&rq->timeout_list); 134 rq->cpu = -1; 135 rq->q = q; 136 rq->__sector = (sector_t) -1; 137 INIT_HLIST_NODE(&rq->hash); 138 RB_CLEAR_NODE(&rq->rb_node); 139 rq->cmd = rq->__cmd; 140 rq->cmd_len = BLK_MAX_CDB; 141 rq->tag = -1; 142 rq->ref_count = 1; 143 rq->start_time = jiffies; 144 set_start_time_ns(rq); 145 rq->part = NULL; 146 } 147 EXPORT_SYMBOL(blk_rq_init); 148 149 static void req_bio_endio(struct request *rq, struct bio *bio, 150 unsigned int nbytes, int error) 151 { 152 struct request_queue *q = rq->q; 153 154 if (&q->flush_rq != rq) { 155 if (error) 156 clear_bit(BIO_UPTODATE, &bio->bi_flags); 157 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 158 error = -EIO; 159 160 if (unlikely(nbytes > bio->bi_size)) { 161 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 162 __func__, nbytes, bio->bi_size); 163 nbytes = bio->bi_size; 164 } 165 166 if (unlikely(rq->cmd_flags & REQ_QUIET)) 167 set_bit(BIO_QUIET, &bio->bi_flags); 168 169 bio->bi_size -= nbytes; 170 bio->bi_sector += (nbytes >> 9); 171 172 if (bio_integrity(bio)) 173 bio_integrity_advance(bio, nbytes); 174 175 if (bio->bi_size == 0) 176 bio_endio(bio, error); 177 } else { 178 /* 179 * Okay, this is the sequenced flush request in 180 * progress, just record the error; 181 */ 182 if (error && !q->flush_err) 183 q->flush_err = error; 184 } 185 } 186 187 void blk_dump_rq_flags(struct request *rq, char *msg) 188 { 189 int bit; 190 191 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 192 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 193 rq->cmd_flags); 194 195 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 196 (unsigned long long)blk_rq_pos(rq), 197 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 198 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 199 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 200 201 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 202 printk(KERN_INFO " cdb: "); 203 for (bit = 0; bit < BLK_MAX_CDB; bit++) 204 printk("%02x ", rq->cmd[bit]); 205 printk("\n"); 206 } 207 } 208 EXPORT_SYMBOL(blk_dump_rq_flags); 209 210 /* 211 * "plug" the device if there are no outstanding requests: this will 212 * force the transfer to start only after we have put all the requests 213 * on the list. 214 * 215 * This is called with interrupts off and no requests on the queue and 216 * with the queue lock held. 217 */ 218 void blk_plug_device(struct request_queue *q) 219 { 220 WARN_ON(!irqs_disabled()); 221 222 /* 223 * don't plug a stopped queue, it must be paired with blk_start_queue() 224 * which will restart the queueing 225 */ 226 if (blk_queue_stopped(q)) 227 return; 228 229 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 230 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 231 trace_block_plug(q); 232 } 233 } 234 EXPORT_SYMBOL(blk_plug_device); 235 236 /** 237 * blk_plug_device_unlocked - plug a device without queue lock held 238 * @q: The &struct request_queue to plug 239 * 240 * Description: 241 * Like @blk_plug_device(), but grabs the queue lock and disables 242 * interrupts. 243 **/ 244 void blk_plug_device_unlocked(struct request_queue *q) 245 { 246 unsigned long flags; 247 248 spin_lock_irqsave(q->queue_lock, flags); 249 blk_plug_device(q); 250 spin_unlock_irqrestore(q->queue_lock, flags); 251 } 252 EXPORT_SYMBOL(blk_plug_device_unlocked); 253 254 /* 255 * remove the queue from the plugged list, if present. called with 256 * queue lock held and interrupts disabled. 257 */ 258 int blk_remove_plug(struct request_queue *q) 259 { 260 WARN_ON(!irqs_disabled()); 261 262 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 263 return 0; 264 265 del_timer(&q->unplug_timer); 266 return 1; 267 } 268 EXPORT_SYMBOL(blk_remove_plug); 269 270 /* 271 * remove the plug and let it rip.. 272 */ 273 void __generic_unplug_device(struct request_queue *q) 274 { 275 if (unlikely(blk_queue_stopped(q))) 276 return; 277 if (!blk_remove_plug(q) && !blk_queue_nonrot(q)) 278 return; 279 280 q->request_fn(q); 281 } 282 283 /** 284 * generic_unplug_device - fire a request queue 285 * @q: The &struct request_queue in question 286 * 287 * Description: 288 * Linux uses plugging to build bigger requests queues before letting 289 * the device have at them. If a queue is plugged, the I/O scheduler 290 * is still adding and merging requests on the queue. Once the queue 291 * gets unplugged, the request_fn defined for the queue is invoked and 292 * transfers started. 293 **/ 294 void generic_unplug_device(struct request_queue *q) 295 { 296 if (blk_queue_plugged(q)) { 297 spin_lock_irq(q->queue_lock); 298 __generic_unplug_device(q); 299 spin_unlock_irq(q->queue_lock); 300 } 301 } 302 EXPORT_SYMBOL(generic_unplug_device); 303 304 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 305 struct page *page) 306 { 307 struct request_queue *q = bdi->unplug_io_data; 308 309 blk_unplug(q); 310 } 311 312 void blk_unplug_work(struct work_struct *work) 313 { 314 struct request_queue *q = 315 container_of(work, struct request_queue, unplug_work); 316 317 trace_block_unplug_io(q); 318 q->unplug_fn(q); 319 } 320 321 void blk_unplug_timeout(unsigned long data) 322 { 323 struct request_queue *q = (struct request_queue *)data; 324 325 trace_block_unplug_timer(q); 326 kblockd_schedule_work(q, &q->unplug_work); 327 } 328 329 void blk_unplug(struct request_queue *q) 330 { 331 /* 332 * devices don't necessarily have an ->unplug_fn defined 333 */ 334 if (q->unplug_fn) { 335 trace_block_unplug_io(q); 336 q->unplug_fn(q); 337 } 338 } 339 EXPORT_SYMBOL(blk_unplug); 340 341 /** 342 * blk_start_queue - restart a previously stopped queue 343 * @q: The &struct request_queue in question 344 * 345 * Description: 346 * blk_start_queue() will clear the stop flag on the queue, and call 347 * the request_fn for the queue if it was in a stopped state when 348 * entered. Also see blk_stop_queue(). Queue lock must be held. 349 **/ 350 void blk_start_queue(struct request_queue *q) 351 { 352 WARN_ON(!irqs_disabled()); 353 354 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 355 __blk_run_queue(q, false); 356 } 357 EXPORT_SYMBOL(blk_start_queue); 358 359 /** 360 * blk_stop_queue - stop a queue 361 * @q: The &struct request_queue in question 362 * 363 * Description: 364 * The Linux block layer assumes that a block driver will consume all 365 * entries on the request queue when the request_fn strategy is called. 366 * Often this will not happen, because of hardware limitations (queue 367 * depth settings). If a device driver gets a 'queue full' response, 368 * or if it simply chooses not to queue more I/O at one point, it can 369 * call this function to prevent the request_fn from being called until 370 * the driver has signalled it's ready to go again. This happens by calling 371 * blk_start_queue() to restart queue operations. Queue lock must be held. 372 **/ 373 void blk_stop_queue(struct request_queue *q) 374 { 375 blk_remove_plug(q); 376 queue_flag_set(QUEUE_FLAG_STOPPED, q); 377 } 378 EXPORT_SYMBOL(blk_stop_queue); 379 380 /** 381 * blk_sync_queue - cancel any pending callbacks on a queue 382 * @q: the queue 383 * 384 * Description: 385 * The block layer may perform asynchronous callback activity 386 * on a queue, such as calling the unplug function after a timeout. 387 * A block device may call blk_sync_queue to ensure that any 388 * such activity is cancelled, thus allowing it to release resources 389 * that the callbacks might use. The caller must already have made sure 390 * that its ->make_request_fn will not re-add plugging prior to calling 391 * this function. 392 * 393 */ 394 void blk_sync_queue(struct request_queue *q) 395 { 396 del_timer_sync(&q->unplug_timer); 397 del_timer_sync(&q->timeout); 398 cancel_work_sync(&q->unplug_work); 399 throtl_shutdown_timer_wq(q); 400 } 401 EXPORT_SYMBOL(blk_sync_queue); 402 403 /** 404 * __blk_run_queue - run a single device queue 405 * @q: The queue to run 406 * @force_kblockd: Don't run @q->request_fn directly. Use kblockd. 407 * 408 * Description: 409 * See @blk_run_queue. This variant must be called with the queue lock 410 * held and interrupts disabled. 411 * 412 */ 413 void __blk_run_queue(struct request_queue *q, bool force_kblockd) 414 { 415 blk_remove_plug(q); 416 417 if (unlikely(blk_queue_stopped(q))) 418 return; 419 420 if (elv_queue_empty(q)) 421 return; 422 423 /* 424 * Only recurse once to avoid overrunning the stack, let the unplug 425 * handling reinvoke the handler shortly if we already got there. 426 */ 427 if (!force_kblockd && !queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 428 q->request_fn(q); 429 queue_flag_clear(QUEUE_FLAG_REENTER, q); 430 } else { 431 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 432 kblockd_schedule_work(q, &q->unplug_work); 433 } 434 } 435 EXPORT_SYMBOL(__blk_run_queue); 436 437 /** 438 * blk_run_queue - run a single device queue 439 * @q: The queue to run 440 * 441 * Description: 442 * Invoke request handling on this queue, if it has pending work to do. 443 * May be used to restart queueing when a request has completed. 444 */ 445 void blk_run_queue(struct request_queue *q) 446 { 447 unsigned long flags; 448 449 spin_lock_irqsave(q->queue_lock, flags); 450 __blk_run_queue(q, false); 451 spin_unlock_irqrestore(q->queue_lock, flags); 452 } 453 EXPORT_SYMBOL(blk_run_queue); 454 455 void blk_put_queue(struct request_queue *q) 456 { 457 kobject_put(&q->kobj); 458 } 459 460 void blk_cleanup_queue(struct request_queue *q) 461 { 462 /* 463 * We know we have process context here, so we can be a little 464 * cautious and ensure that pending block actions on this device 465 * are done before moving on. Going into this function, we should 466 * not have processes doing IO to this device. 467 */ 468 blk_sync_queue(q); 469 470 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 471 mutex_lock(&q->sysfs_lock); 472 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 473 mutex_unlock(&q->sysfs_lock); 474 475 if (q->elevator) 476 elevator_exit(q->elevator); 477 478 blk_put_queue(q); 479 } 480 EXPORT_SYMBOL(blk_cleanup_queue); 481 482 static int blk_init_free_list(struct request_queue *q) 483 { 484 struct request_list *rl = &q->rq; 485 486 if (unlikely(rl->rq_pool)) 487 return 0; 488 489 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 490 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 491 rl->elvpriv = 0; 492 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 493 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 494 495 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 496 mempool_free_slab, request_cachep, q->node); 497 498 if (!rl->rq_pool) 499 return -ENOMEM; 500 501 return 0; 502 } 503 504 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 505 { 506 return blk_alloc_queue_node(gfp_mask, -1); 507 } 508 EXPORT_SYMBOL(blk_alloc_queue); 509 510 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 511 { 512 struct request_queue *q; 513 int err; 514 515 q = kmem_cache_alloc_node(blk_requestq_cachep, 516 gfp_mask | __GFP_ZERO, node_id); 517 if (!q) 518 return NULL; 519 520 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 521 q->backing_dev_info.unplug_io_data = q; 522 q->backing_dev_info.ra_pages = 523 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 524 q->backing_dev_info.state = 0; 525 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 526 q->backing_dev_info.name = "block"; 527 528 err = bdi_init(&q->backing_dev_info); 529 if (err) { 530 kmem_cache_free(blk_requestq_cachep, q); 531 return NULL; 532 } 533 534 if (blk_throtl_init(q)) { 535 kmem_cache_free(blk_requestq_cachep, q); 536 return NULL; 537 } 538 539 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 540 laptop_mode_timer_fn, (unsigned long) q); 541 init_timer(&q->unplug_timer); 542 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 543 INIT_LIST_HEAD(&q->timeout_list); 544 INIT_LIST_HEAD(&q->pending_flushes); 545 INIT_WORK(&q->unplug_work, blk_unplug_work); 546 547 kobject_init(&q->kobj, &blk_queue_ktype); 548 549 mutex_init(&q->sysfs_lock); 550 spin_lock_init(&q->__queue_lock); 551 552 return q; 553 } 554 EXPORT_SYMBOL(blk_alloc_queue_node); 555 556 /** 557 * blk_init_queue - prepare a request queue for use with a block device 558 * @rfn: The function to be called to process requests that have been 559 * placed on the queue. 560 * @lock: Request queue spin lock 561 * 562 * Description: 563 * If a block device wishes to use the standard request handling procedures, 564 * which sorts requests and coalesces adjacent requests, then it must 565 * call blk_init_queue(). The function @rfn will be called when there 566 * are requests on the queue that need to be processed. If the device 567 * supports plugging, then @rfn may not be called immediately when requests 568 * are available on the queue, but may be called at some time later instead. 569 * Plugged queues are generally unplugged when a buffer belonging to one 570 * of the requests on the queue is needed, or due to memory pressure. 571 * 572 * @rfn is not required, or even expected, to remove all requests off the 573 * queue, but only as many as it can handle at a time. If it does leave 574 * requests on the queue, it is responsible for arranging that the requests 575 * get dealt with eventually. 576 * 577 * The queue spin lock must be held while manipulating the requests on the 578 * request queue; this lock will be taken also from interrupt context, so irq 579 * disabling is needed for it. 580 * 581 * Function returns a pointer to the initialized request queue, or %NULL if 582 * it didn't succeed. 583 * 584 * Note: 585 * blk_init_queue() must be paired with a blk_cleanup_queue() call 586 * when the block device is deactivated (such as at module unload). 587 **/ 588 589 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 590 { 591 return blk_init_queue_node(rfn, lock, -1); 592 } 593 EXPORT_SYMBOL(blk_init_queue); 594 595 struct request_queue * 596 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 597 { 598 struct request_queue *uninit_q, *q; 599 600 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 601 if (!uninit_q) 602 return NULL; 603 604 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id); 605 if (!q) 606 blk_cleanup_queue(uninit_q); 607 608 return q; 609 } 610 EXPORT_SYMBOL(blk_init_queue_node); 611 612 struct request_queue * 613 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 614 spinlock_t *lock) 615 { 616 return blk_init_allocated_queue_node(q, rfn, lock, -1); 617 } 618 EXPORT_SYMBOL(blk_init_allocated_queue); 619 620 struct request_queue * 621 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn, 622 spinlock_t *lock, int node_id) 623 { 624 if (!q) 625 return NULL; 626 627 q->node = node_id; 628 if (blk_init_free_list(q)) 629 return NULL; 630 631 q->request_fn = rfn; 632 q->prep_rq_fn = NULL; 633 q->unprep_rq_fn = NULL; 634 q->unplug_fn = generic_unplug_device; 635 q->queue_flags = QUEUE_FLAG_DEFAULT; 636 q->queue_lock = lock; 637 638 /* 639 * This also sets hw/phys segments, boundary and size 640 */ 641 blk_queue_make_request(q, __make_request); 642 643 q->sg_reserved_size = INT_MAX; 644 645 /* 646 * all done 647 */ 648 if (!elevator_init(q, NULL)) { 649 blk_queue_congestion_threshold(q); 650 return q; 651 } 652 653 return NULL; 654 } 655 EXPORT_SYMBOL(blk_init_allocated_queue_node); 656 657 int blk_get_queue(struct request_queue *q) 658 { 659 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 660 kobject_get(&q->kobj); 661 return 0; 662 } 663 664 return 1; 665 } 666 667 static inline void blk_free_request(struct request_queue *q, struct request *rq) 668 { 669 if (rq->cmd_flags & REQ_ELVPRIV) 670 elv_put_request(q, rq); 671 mempool_free(rq, q->rq.rq_pool); 672 } 673 674 static struct request * 675 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 676 { 677 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 678 679 if (!rq) 680 return NULL; 681 682 blk_rq_init(q, rq); 683 684 rq->cmd_flags = flags | REQ_ALLOCED; 685 686 if (priv) { 687 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 688 mempool_free(rq, q->rq.rq_pool); 689 return NULL; 690 } 691 rq->cmd_flags |= REQ_ELVPRIV; 692 } 693 694 return rq; 695 } 696 697 /* 698 * ioc_batching returns true if the ioc is a valid batching request and 699 * should be given priority access to a request. 700 */ 701 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 702 { 703 if (!ioc) 704 return 0; 705 706 /* 707 * Make sure the process is able to allocate at least 1 request 708 * even if the batch times out, otherwise we could theoretically 709 * lose wakeups. 710 */ 711 return ioc->nr_batch_requests == q->nr_batching || 712 (ioc->nr_batch_requests > 0 713 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 714 } 715 716 /* 717 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 718 * will cause the process to be a "batcher" on all queues in the system. This 719 * is the behaviour we want though - once it gets a wakeup it should be given 720 * a nice run. 721 */ 722 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 723 { 724 if (!ioc || ioc_batching(q, ioc)) 725 return; 726 727 ioc->nr_batch_requests = q->nr_batching; 728 ioc->last_waited = jiffies; 729 } 730 731 static void __freed_request(struct request_queue *q, int sync) 732 { 733 struct request_list *rl = &q->rq; 734 735 if (rl->count[sync] < queue_congestion_off_threshold(q)) 736 blk_clear_queue_congested(q, sync); 737 738 if (rl->count[sync] + 1 <= q->nr_requests) { 739 if (waitqueue_active(&rl->wait[sync])) 740 wake_up(&rl->wait[sync]); 741 742 blk_clear_queue_full(q, sync); 743 } 744 } 745 746 /* 747 * A request has just been released. Account for it, update the full and 748 * congestion status, wake up any waiters. Called under q->queue_lock. 749 */ 750 static void freed_request(struct request_queue *q, int sync, int priv) 751 { 752 struct request_list *rl = &q->rq; 753 754 rl->count[sync]--; 755 if (priv) 756 rl->elvpriv--; 757 758 __freed_request(q, sync); 759 760 if (unlikely(rl->starved[sync ^ 1])) 761 __freed_request(q, sync ^ 1); 762 } 763 764 /* 765 * Get a free request, queue_lock must be held. 766 * Returns NULL on failure, with queue_lock held. 767 * Returns !NULL on success, with queue_lock *not held*. 768 */ 769 static struct request *get_request(struct request_queue *q, int rw_flags, 770 struct bio *bio, gfp_t gfp_mask) 771 { 772 struct request *rq = NULL; 773 struct request_list *rl = &q->rq; 774 struct io_context *ioc = NULL; 775 const bool is_sync = rw_is_sync(rw_flags) != 0; 776 int may_queue, priv; 777 778 may_queue = elv_may_queue(q, rw_flags); 779 if (may_queue == ELV_MQUEUE_NO) 780 goto rq_starved; 781 782 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 783 if (rl->count[is_sync]+1 >= q->nr_requests) { 784 ioc = current_io_context(GFP_ATOMIC, q->node); 785 /* 786 * The queue will fill after this allocation, so set 787 * it as full, and mark this process as "batching". 788 * This process will be allowed to complete a batch of 789 * requests, others will be blocked. 790 */ 791 if (!blk_queue_full(q, is_sync)) { 792 ioc_set_batching(q, ioc); 793 blk_set_queue_full(q, is_sync); 794 } else { 795 if (may_queue != ELV_MQUEUE_MUST 796 && !ioc_batching(q, ioc)) { 797 /* 798 * The queue is full and the allocating 799 * process is not a "batcher", and not 800 * exempted by the IO scheduler 801 */ 802 goto out; 803 } 804 } 805 } 806 blk_set_queue_congested(q, is_sync); 807 } 808 809 /* 810 * Only allow batching queuers to allocate up to 50% over the defined 811 * limit of requests, otherwise we could have thousands of requests 812 * allocated with any setting of ->nr_requests 813 */ 814 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 815 goto out; 816 817 rl->count[is_sync]++; 818 rl->starved[is_sync] = 0; 819 820 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 821 if (priv) 822 rl->elvpriv++; 823 824 if (blk_queue_io_stat(q)) 825 rw_flags |= REQ_IO_STAT; 826 spin_unlock_irq(q->queue_lock); 827 828 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 829 if (unlikely(!rq)) { 830 /* 831 * Allocation failed presumably due to memory. Undo anything 832 * we might have messed up. 833 * 834 * Allocating task should really be put onto the front of the 835 * wait queue, but this is pretty rare. 836 */ 837 spin_lock_irq(q->queue_lock); 838 freed_request(q, is_sync, priv); 839 840 /* 841 * in the very unlikely event that allocation failed and no 842 * requests for this direction was pending, mark us starved 843 * so that freeing of a request in the other direction will 844 * notice us. another possible fix would be to split the 845 * rq mempool into READ and WRITE 846 */ 847 rq_starved: 848 if (unlikely(rl->count[is_sync] == 0)) 849 rl->starved[is_sync] = 1; 850 851 goto out; 852 } 853 854 /* 855 * ioc may be NULL here, and ioc_batching will be false. That's 856 * OK, if the queue is under the request limit then requests need 857 * not count toward the nr_batch_requests limit. There will always 858 * be some limit enforced by BLK_BATCH_TIME. 859 */ 860 if (ioc_batching(q, ioc)) 861 ioc->nr_batch_requests--; 862 863 trace_block_getrq(q, bio, rw_flags & 1); 864 out: 865 return rq; 866 } 867 868 /* 869 * No available requests for this queue, unplug the device and wait for some 870 * requests to become available. 871 * 872 * Called with q->queue_lock held, and returns with it unlocked. 873 */ 874 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 875 struct bio *bio) 876 { 877 const bool is_sync = rw_is_sync(rw_flags) != 0; 878 struct request *rq; 879 880 rq = get_request(q, rw_flags, bio, GFP_NOIO); 881 while (!rq) { 882 DEFINE_WAIT(wait); 883 struct io_context *ioc; 884 struct request_list *rl = &q->rq; 885 886 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 887 TASK_UNINTERRUPTIBLE); 888 889 trace_block_sleeprq(q, bio, rw_flags & 1); 890 891 __generic_unplug_device(q); 892 spin_unlock_irq(q->queue_lock); 893 io_schedule(); 894 895 /* 896 * After sleeping, we become a "batching" process and 897 * will be able to allocate at least one request, and 898 * up to a big batch of them for a small period time. 899 * See ioc_batching, ioc_set_batching 900 */ 901 ioc = current_io_context(GFP_NOIO, q->node); 902 ioc_set_batching(q, ioc); 903 904 spin_lock_irq(q->queue_lock); 905 finish_wait(&rl->wait[is_sync], &wait); 906 907 rq = get_request(q, rw_flags, bio, GFP_NOIO); 908 }; 909 910 return rq; 911 } 912 913 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 914 { 915 struct request *rq; 916 917 BUG_ON(rw != READ && rw != WRITE); 918 919 spin_lock_irq(q->queue_lock); 920 if (gfp_mask & __GFP_WAIT) { 921 rq = get_request_wait(q, rw, NULL); 922 } else { 923 rq = get_request(q, rw, NULL, gfp_mask); 924 if (!rq) 925 spin_unlock_irq(q->queue_lock); 926 } 927 /* q->queue_lock is unlocked at this point */ 928 929 return rq; 930 } 931 EXPORT_SYMBOL(blk_get_request); 932 933 /** 934 * blk_make_request - given a bio, allocate a corresponding struct request. 935 * @q: target request queue 936 * @bio: The bio describing the memory mappings that will be submitted for IO. 937 * It may be a chained-bio properly constructed by block/bio layer. 938 * @gfp_mask: gfp flags to be used for memory allocation 939 * 940 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 941 * type commands. Where the struct request needs to be farther initialized by 942 * the caller. It is passed a &struct bio, which describes the memory info of 943 * the I/O transfer. 944 * 945 * The caller of blk_make_request must make sure that bi_io_vec 946 * are set to describe the memory buffers. That bio_data_dir() will return 947 * the needed direction of the request. (And all bio's in the passed bio-chain 948 * are properly set accordingly) 949 * 950 * If called under none-sleepable conditions, mapped bio buffers must not 951 * need bouncing, by calling the appropriate masked or flagged allocator, 952 * suitable for the target device. Otherwise the call to blk_queue_bounce will 953 * BUG. 954 * 955 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 956 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 957 * anything but the first bio in the chain. Otherwise you risk waiting for IO 958 * completion of a bio that hasn't been submitted yet, thus resulting in a 959 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 960 * of bio_alloc(), as that avoids the mempool deadlock. 961 * If possible a big IO should be split into smaller parts when allocation 962 * fails. Partial allocation should not be an error, or you risk a live-lock. 963 */ 964 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 965 gfp_t gfp_mask) 966 { 967 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 968 969 if (unlikely(!rq)) 970 return ERR_PTR(-ENOMEM); 971 972 for_each_bio(bio) { 973 struct bio *bounce_bio = bio; 974 int ret; 975 976 blk_queue_bounce(q, &bounce_bio); 977 ret = blk_rq_append_bio(q, rq, bounce_bio); 978 if (unlikely(ret)) { 979 blk_put_request(rq); 980 return ERR_PTR(ret); 981 } 982 } 983 984 return rq; 985 } 986 EXPORT_SYMBOL(blk_make_request); 987 988 /** 989 * blk_requeue_request - put a request back on queue 990 * @q: request queue where request should be inserted 991 * @rq: request to be inserted 992 * 993 * Description: 994 * Drivers often keep queueing requests until the hardware cannot accept 995 * more, when that condition happens we need to put the request back 996 * on the queue. Must be called with queue lock held. 997 */ 998 void blk_requeue_request(struct request_queue *q, struct request *rq) 999 { 1000 blk_delete_timer(rq); 1001 blk_clear_rq_complete(rq); 1002 trace_block_rq_requeue(q, rq); 1003 1004 if (blk_rq_tagged(rq)) 1005 blk_queue_end_tag(q, rq); 1006 1007 BUG_ON(blk_queued_rq(rq)); 1008 1009 elv_requeue_request(q, rq); 1010 } 1011 EXPORT_SYMBOL(blk_requeue_request); 1012 1013 /** 1014 * blk_insert_request - insert a special request into a request queue 1015 * @q: request queue where request should be inserted 1016 * @rq: request to be inserted 1017 * @at_head: insert request at head or tail of queue 1018 * @data: private data 1019 * 1020 * Description: 1021 * Many block devices need to execute commands asynchronously, so they don't 1022 * block the whole kernel from preemption during request execution. This is 1023 * accomplished normally by inserting aritficial requests tagged as 1024 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 1025 * be scheduled for actual execution by the request queue. 1026 * 1027 * We have the option of inserting the head or the tail of the queue. 1028 * Typically we use the tail for new ioctls and so forth. We use the head 1029 * of the queue for things like a QUEUE_FULL message from a device, or a 1030 * host that is unable to accept a particular command. 1031 */ 1032 void blk_insert_request(struct request_queue *q, struct request *rq, 1033 int at_head, void *data) 1034 { 1035 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 1036 unsigned long flags; 1037 1038 /* 1039 * tell I/O scheduler that this isn't a regular read/write (ie it 1040 * must not attempt merges on this) and that it acts as a soft 1041 * barrier 1042 */ 1043 rq->cmd_type = REQ_TYPE_SPECIAL; 1044 1045 rq->special = data; 1046 1047 spin_lock_irqsave(q->queue_lock, flags); 1048 1049 /* 1050 * If command is tagged, release the tag 1051 */ 1052 if (blk_rq_tagged(rq)) 1053 blk_queue_end_tag(q, rq); 1054 1055 drive_stat_acct(rq, 1); 1056 __elv_add_request(q, rq, where, 0); 1057 __blk_run_queue(q, false); 1058 spin_unlock_irqrestore(q->queue_lock, flags); 1059 } 1060 EXPORT_SYMBOL(blk_insert_request); 1061 1062 static void part_round_stats_single(int cpu, struct hd_struct *part, 1063 unsigned long now) 1064 { 1065 if (now == part->stamp) 1066 return; 1067 1068 if (part_in_flight(part)) { 1069 __part_stat_add(cpu, part, time_in_queue, 1070 part_in_flight(part) * (now - part->stamp)); 1071 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1072 } 1073 part->stamp = now; 1074 } 1075 1076 /** 1077 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1078 * @cpu: cpu number for stats access 1079 * @part: target partition 1080 * 1081 * The average IO queue length and utilisation statistics are maintained 1082 * by observing the current state of the queue length and the amount of 1083 * time it has been in this state for. 1084 * 1085 * Normally, that accounting is done on IO completion, but that can result 1086 * in more than a second's worth of IO being accounted for within any one 1087 * second, leading to >100% utilisation. To deal with that, we call this 1088 * function to do a round-off before returning the results when reading 1089 * /proc/diskstats. This accounts immediately for all queue usage up to 1090 * the current jiffies and restarts the counters again. 1091 */ 1092 void part_round_stats(int cpu, struct hd_struct *part) 1093 { 1094 unsigned long now = jiffies; 1095 1096 if (part->partno) 1097 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1098 part_round_stats_single(cpu, part, now); 1099 } 1100 EXPORT_SYMBOL_GPL(part_round_stats); 1101 1102 /* 1103 * queue lock must be held 1104 */ 1105 void __blk_put_request(struct request_queue *q, struct request *req) 1106 { 1107 if (unlikely(!q)) 1108 return; 1109 if (unlikely(--req->ref_count)) 1110 return; 1111 1112 elv_completed_request(q, req); 1113 1114 /* this is a bio leak */ 1115 WARN_ON(req->bio != NULL); 1116 1117 /* 1118 * Request may not have originated from ll_rw_blk. if not, 1119 * it didn't come out of our reserved rq pools 1120 */ 1121 if (req->cmd_flags & REQ_ALLOCED) { 1122 int is_sync = rq_is_sync(req) != 0; 1123 int priv = req->cmd_flags & REQ_ELVPRIV; 1124 1125 BUG_ON(!list_empty(&req->queuelist)); 1126 BUG_ON(!hlist_unhashed(&req->hash)); 1127 1128 blk_free_request(q, req); 1129 freed_request(q, is_sync, priv); 1130 } 1131 } 1132 EXPORT_SYMBOL_GPL(__blk_put_request); 1133 1134 void blk_put_request(struct request *req) 1135 { 1136 unsigned long flags; 1137 struct request_queue *q = req->q; 1138 1139 spin_lock_irqsave(q->queue_lock, flags); 1140 __blk_put_request(q, req); 1141 spin_unlock_irqrestore(q->queue_lock, flags); 1142 } 1143 EXPORT_SYMBOL(blk_put_request); 1144 1145 /** 1146 * blk_add_request_payload - add a payload to a request 1147 * @rq: request to update 1148 * @page: page backing the payload 1149 * @len: length of the payload. 1150 * 1151 * This allows to later add a payload to an already submitted request by 1152 * a block driver. The driver needs to take care of freeing the payload 1153 * itself. 1154 * 1155 * Note that this is a quite horrible hack and nothing but handling of 1156 * discard requests should ever use it. 1157 */ 1158 void blk_add_request_payload(struct request *rq, struct page *page, 1159 unsigned int len) 1160 { 1161 struct bio *bio = rq->bio; 1162 1163 bio->bi_io_vec->bv_page = page; 1164 bio->bi_io_vec->bv_offset = 0; 1165 bio->bi_io_vec->bv_len = len; 1166 1167 bio->bi_size = len; 1168 bio->bi_vcnt = 1; 1169 bio->bi_phys_segments = 1; 1170 1171 rq->__data_len = rq->resid_len = len; 1172 rq->nr_phys_segments = 1; 1173 rq->buffer = bio_data(bio); 1174 } 1175 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1176 1177 void init_request_from_bio(struct request *req, struct bio *bio) 1178 { 1179 req->cpu = bio->bi_comp_cpu; 1180 req->cmd_type = REQ_TYPE_FS; 1181 1182 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1183 if (bio->bi_rw & REQ_RAHEAD) 1184 req->cmd_flags |= REQ_FAILFAST_MASK; 1185 1186 req->errors = 0; 1187 req->__sector = bio->bi_sector; 1188 req->ioprio = bio_prio(bio); 1189 blk_rq_bio_prep(req->q, req, bio); 1190 } 1191 1192 /* 1193 * Only disabling plugging for non-rotational devices if it does tagging 1194 * as well, otherwise we do need the proper merging 1195 */ 1196 static inline bool queue_should_plug(struct request_queue *q) 1197 { 1198 return !(blk_queue_nonrot(q) && blk_queue_tagged(q)); 1199 } 1200 1201 static int __make_request(struct request_queue *q, struct bio *bio) 1202 { 1203 struct request *req; 1204 int el_ret; 1205 unsigned int bytes = bio->bi_size; 1206 const unsigned short prio = bio_prio(bio); 1207 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1208 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG); 1209 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK; 1210 int where = ELEVATOR_INSERT_SORT; 1211 int rw_flags; 1212 1213 /* 1214 * low level driver can indicate that it wants pages above a 1215 * certain limit bounced to low memory (ie for highmem, or even 1216 * ISA dma in theory) 1217 */ 1218 blk_queue_bounce(q, &bio); 1219 1220 spin_lock_irq(q->queue_lock); 1221 1222 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1223 where = ELEVATOR_INSERT_FRONT; 1224 goto get_rq; 1225 } 1226 1227 if (elv_queue_empty(q)) 1228 goto get_rq; 1229 1230 el_ret = elv_merge(q, &req, bio); 1231 switch (el_ret) { 1232 case ELEVATOR_BACK_MERGE: 1233 BUG_ON(!rq_mergeable(req)); 1234 1235 if (!ll_back_merge_fn(q, req, bio)) 1236 break; 1237 1238 trace_block_bio_backmerge(q, bio); 1239 1240 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1241 blk_rq_set_mixed_merge(req); 1242 1243 req->biotail->bi_next = bio; 1244 req->biotail = bio; 1245 req->__data_len += bytes; 1246 req->ioprio = ioprio_best(req->ioprio, prio); 1247 if (!blk_rq_cpu_valid(req)) 1248 req->cpu = bio->bi_comp_cpu; 1249 drive_stat_acct(req, 0); 1250 elv_bio_merged(q, req, bio); 1251 if (!attempt_back_merge(q, req)) 1252 elv_merged_request(q, req, el_ret); 1253 goto out; 1254 1255 case ELEVATOR_FRONT_MERGE: 1256 BUG_ON(!rq_mergeable(req)); 1257 1258 if (!ll_front_merge_fn(q, req, bio)) 1259 break; 1260 1261 trace_block_bio_frontmerge(q, bio); 1262 1263 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) { 1264 blk_rq_set_mixed_merge(req); 1265 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1266 req->cmd_flags |= ff; 1267 } 1268 1269 bio->bi_next = req->bio; 1270 req->bio = bio; 1271 1272 /* 1273 * may not be valid. if the low level driver said 1274 * it didn't need a bounce buffer then it better 1275 * not touch req->buffer either... 1276 */ 1277 req->buffer = bio_data(bio); 1278 req->__sector = bio->bi_sector; 1279 req->__data_len += bytes; 1280 req->ioprio = ioprio_best(req->ioprio, prio); 1281 if (!blk_rq_cpu_valid(req)) 1282 req->cpu = bio->bi_comp_cpu; 1283 drive_stat_acct(req, 0); 1284 elv_bio_merged(q, req, bio); 1285 if (!attempt_front_merge(q, req)) 1286 elv_merged_request(q, req, el_ret); 1287 goto out; 1288 1289 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1290 default: 1291 ; 1292 } 1293 1294 get_rq: 1295 /* 1296 * This sync check and mask will be re-done in init_request_from_bio(), 1297 * but we need to set it earlier to expose the sync flag to the 1298 * rq allocator and io schedulers. 1299 */ 1300 rw_flags = bio_data_dir(bio); 1301 if (sync) 1302 rw_flags |= REQ_SYNC; 1303 1304 /* 1305 * Grab a free request. This is might sleep but can not fail. 1306 * Returns with the queue unlocked. 1307 */ 1308 req = get_request_wait(q, rw_flags, bio); 1309 1310 /* 1311 * After dropping the lock and possibly sleeping here, our request 1312 * may now be mergeable after it had proven unmergeable (above). 1313 * We don't worry about that case for efficiency. It won't happen 1314 * often, and the elevators are able to handle it. 1315 */ 1316 init_request_from_bio(req, bio); 1317 1318 spin_lock_irq(q->queue_lock); 1319 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1320 bio_flagged(bio, BIO_CPU_AFFINE)) 1321 req->cpu = blk_cpu_to_group(smp_processor_id()); 1322 if (queue_should_plug(q) && elv_queue_empty(q)) 1323 blk_plug_device(q); 1324 1325 /* insert the request into the elevator */ 1326 drive_stat_acct(req, 1); 1327 __elv_add_request(q, req, where, 0); 1328 out: 1329 if (unplug || !queue_should_plug(q)) 1330 __generic_unplug_device(q); 1331 spin_unlock_irq(q->queue_lock); 1332 return 0; 1333 } 1334 1335 /* 1336 * If bio->bi_dev is a partition, remap the location 1337 */ 1338 static inline void blk_partition_remap(struct bio *bio) 1339 { 1340 struct block_device *bdev = bio->bi_bdev; 1341 1342 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1343 struct hd_struct *p = bdev->bd_part; 1344 1345 bio->bi_sector += p->start_sect; 1346 bio->bi_bdev = bdev->bd_contains; 1347 1348 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1349 bdev->bd_dev, 1350 bio->bi_sector - p->start_sect); 1351 } 1352 } 1353 1354 static void handle_bad_sector(struct bio *bio) 1355 { 1356 char b[BDEVNAME_SIZE]; 1357 1358 printk(KERN_INFO "attempt to access beyond end of device\n"); 1359 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1360 bdevname(bio->bi_bdev, b), 1361 bio->bi_rw, 1362 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1363 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1364 1365 set_bit(BIO_EOF, &bio->bi_flags); 1366 } 1367 1368 #ifdef CONFIG_FAIL_MAKE_REQUEST 1369 1370 static DECLARE_FAULT_ATTR(fail_make_request); 1371 1372 static int __init setup_fail_make_request(char *str) 1373 { 1374 return setup_fault_attr(&fail_make_request, str); 1375 } 1376 __setup("fail_make_request=", setup_fail_make_request); 1377 1378 static int should_fail_request(struct bio *bio) 1379 { 1380 struct hd_struct *part = bio->bi_bdev->bd_part; 1381 1382 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1383 return should_fail(&fail_make_request, bio->bi_size); 1384 1385 return 0; 1386 } 1387 1388 static int __init fail_make_request_debugfs(void) 1389 { 1390 return init_fault_attr_dentries(&fail_make_request, 1391 "fail_make_request"); 1392 } 1393 1394 late_initcall(fail_make_request_debugfs); 1395 1396 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1397 1398 static inline int should_fail_request(struct bio *bio) 1399 { 1400 return 0; 1401 } 1402 1403 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1404 1405 /* 1406 * Check whether this bio extends beyond the end of the device. 1407 */ 1408 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1409 { 1410 sector_t maxsector; 1411 1412 if (!nr_sectors) 1413 return 0; 1414 1415 /* Test device or partition size, when known. */ 1416 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1417 if (maxsector) { 1418 sector_t sector = bio->bi_sector; 1419 1420 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1421 /* 1422 * This may well happen - the kernel calls bread() 1423 * without checking the size of the device, e.g., when 1424 * mounting a device. 1425 */ 1426 handle_bad_sector(bio); 1427 return 1; 1428 } 1429 } 1430 1431 return 0; 1432 } 1433 1434 /** 1435 * generic_make_request - hand a buffer to its device driver for I/O 1436 * @bio: The bio describing the location in memory and on the device. 1437 * 1438 * generic_make_request() is used to make I/O requests of block 1439 * devices. It is passed a &struct bio, which describes the I/O that needs 1440 * to be done. 1441 * 1442 * generic_make_request() does not return any status. The 1443 * success/failure status of the request, along with notification of 1444 * completion, is delivered asynchronously through the bio->bi_end_io 1445 * function described (one day) else where. 1446 * 1447 * The caller of generic_make_request must make sure that bi_io_vec 1448 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1449 * set to describe the device address, and the 1450 * bi_end_io and optionally bi_private are set to describe how 1451 * completion notification should be signaled. 1452 * 1453 * generic_make_request and the drivers it calls may use bi_next if this 1454 * bio happens to be merged with someone else, and may change bi_dev and 1455 * bi_sector for remaps as it sees fit. So the values of these fields 1456 * should NOT be depended on after the call to generic_make_request. 1457 */ 1458 static inline void __generic_make_request(struct bio *bio) 1459 { 1460 struct request_queue *q; 1461 sector_t old_sector; 1462 int ret, nr_sectors = bio_sectors(bio); 1463 dev_t old_dev; 1464 int err = -EIO; 1465 1466 might_sleep(); 1467 1468 if (bio_check_eod(bio, nr_sectors)) 1469 goto end_io; 1470 1471 /* 1472 * Resolve the mapping until finished. (drivers are 1473 * still free to implement/resolve their own stacking 1474 * by explicitly returning 0) 1475 * 1476 * NOTE: we don't repeat the blk_size check for each new device. 1477 * Stacking drivers are expected to know what they are doing. 1478 */ 1479 old_sector = -1; 1480 old_dev = 0; 1481 do { 1482 char b[BDEVNAME_SIZE]; 1483 1484 q = bdev_get_queue(bio->bi_bdev); 1485 if (unlikely(!q)) { 1486 printk(KERN_ERR 1487 "generic_make_request: Trying to access " 1488 "nonexistent block-device %s (%Lu)\n", 1489 bdevname(bio->bi_bdev, b), 1490 (long long) bio->bi_sector); 1491 goto end_io; 1492 } 1493 1494 if (unlikely(!(bio->bi_rw & REQ_DISCARD) && 1495 nr_sectors > queue_max_hw_sectors(q))) { 1496 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1497 bdevname(bio->bi_bdev, b), 1498 bio_sectors(bio), 1499 queue_max_hw_sectors(q)); 1500 goto end_io; 1501 } 1502 1503 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1504 goto end_io; 1505 1506 if (should_fail_request(bio)) 1507 goto end_io; 1508 1509 /* 1510 * If this device has partitions, remap block n 1511 * of partition p to block n+start(p) of the disk. 1512 */ 1513 blk_partition_remap(bio); 1514 1515 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1516 goto end_io; 1517 1518 if (old_sector != -1) 1519 trace_block_bio_remap(q, bio, old_dev, old_sector); 1520 1521 old_sector = bio->bi_sector; 1522 old_dev = bio->bi_bdev->bd_dev; 1523 1524 if (bio_check_eod(bio, nr_sectors)) 1525 goto end_io; 1526 1527 /* 1528 * Filter flush bio's early so that make_request based 1529 * drivers without flush support don't have to worry 1530 * about them. 1531 */ 1532 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1533 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1534 if (!nr_sectors) { 1535 err = 0; 1536 goto end_io; 1537 } 1538 } 1539 1540 if ((bio->bi_rw & REQ_DISCARD) && 1541 (!blk_queue_discard(q) || 1542 ((bio->bi_rw & REQ_SECURE) && 1543 !blk_queue_secdiscard(q)))) { 1544 err = -EOPNOTSUPP; 1545 goto end_io; 1546 } 1547 1548 blk_throtl_bio(q, &bio); 1549 1550 /* 1551 * If bio = NULL, bio has been throttled and will be submitted 1552 * later. 1553 */ 1554 if (!bio) 1555 break; 1556 1557 trace_block_bio_queue(q, bio); 1558 1559 ret = q->make_request_fn(q, bio); 1560 } while (ret); 1561 1562 return; 1563 1564 end_io: 1565 bio_endio(bio, err); 1566 } 1567 1568 /* 1569 * We only want one ->make_request_fn to be active at a time, 1570 * else stack usage with stacked devices could be a problem. 1571 * So use current->bio_list to keep a list of requests 1572 * submited by a make_request_fn function. 1573 * current->bio_list is also used as a flag to say if 1574 * generic_make_request is currently active in this task or not. 1575 * If it is NULL, then no make_request is active. If it is non-NULL, 1576 * then a make_request is active, and new requests should be added 1577 * at the tail 1578 */ 1579 void generic_make_request(struct bio *bio) 1580 { 1581 struct bio_list bio_list_on_stack; 1582 1583 if (current->bio_list) { 1584 /* make_request is active */ 1585 bio_list_add(current->bio_list, bio); 1586 return; 1587 } 1588 /* following loop may be a bit non-obvious, and so deserves some 1589 * explanation. 1590 * Before entering the loop, bio->bi_next is NULL (as all callers 1591 * ensure that) so we have a list with a single bio. 1592 * We pretend that we have just taken it off a longer list, so 1593 * we assign bio_list to a pointer to the bio_list_on_stack, 1594 * thus initialising the bio_list of new bios to be 1595 * added. __generic_make_request may indeed add some more bios 1596 * through a recursive call to generic_make_request. If it 1597 * did, we find a non-NULL value in bio_list and re-enter the loop 1598 * from the top. In this case we really did just take the bio 1599 * of the top of the list (no pretending) and so remove it from 1600 * bio_list, and call into __generic_make_request again. 1601 * 1602 * The loop was structured like this to make only one call to 1603 * __generic_make_request (which is important as it is large and 1604 * inlined) and to keep the structure simple. 1605 */ 1606 BUG_ON(bio->bi_next); 1607 bio_list_init(&bio_list_on_stack); 1608 current->bio_list = &bio_list_on_stack; 1609 do { 1610 __generic_make_request(bio); 1611 bio = bio_list_pop(current->bio_list); 1612 } while (bio); 1613 current->bio_list = NULL; /* deactivate */ 1614 } 1615 EXPORT_SYMBOL(generic_make_request); 1616 1617 /** 1618 * submit_bio - submit a bio to the block device layer for I/O 1619 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1620 * @bio: The &struct bio which describes the I/O 1621 * 1622 * submit_bio() is very similar in purpose to generic_make_request(), and 1623 * uses that function to do most of the work. Both are fairly rough 1624 * interfaces; @bio must be presetup and ready for I/O. 1625 * 1626 */ 1627 void submit_bio(int rw, struct bio *bio) 1628 { 1629 int count = bio_sectors(bio); 1630 1631 bio->bi_rw |= rw; 1632 1633 /* 1634 * If it's a regular read/write or a barrier with data attached, 1635 * go through the normal accounting stuff before submission. 1636 */ 1637 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) { 1638 if (rw & WRITE) { 1639 count_vm_events(PGPGOUT, count); 1640 } else { 1641 task_io_account_read(bio->bi_size); 1642 count_vm_events(PGPGIN, count); 1643 } 1644 1645 if (unlikely(block_dump)) { 1646 char b[BDEVNAME_SIZE]; 1647 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1648 current->comm, task_pid_nr(current), 1649 (rw & WRITE) ? "WRITE" : "READ", 1650 (unsigned long long)bio->bi_sector, 1651 bdevname(bio->bi_bdev, b), 1652 count); 1653 } 1654 } 1655 1656 generic_make_request(bio); 1657 } 1658 EXPORT_SYMBOL(submit_bio); 1659 1660 /** 1661 * blk_rq_check_limits - Helper function to check a request for the queue limit 1662 * @q: the queue 1663 * @rq: the request being checked 1664 * 1665 * Description: 1666 * @rq may have been made based on weaker limitations of upper-level queues 1667 * in request stacking drivers, and it may violate the limitation of @q. 1668 * Since the block layer and the underlying device driver trust @rq 1669 * after it is inserted to @q, it should be checked against @q before 1670 * the insertion using this generic function. 1671 * 1672 * This function should also be useful for request stacking drivers 1673 * in some cases below, so export this function. 1674 * Request stacking drivers like request-based dm may change the queue 1675 * limits while requests are in the queue (e.g. dm's table swapping). 1676 * Such request stacking drivers should check those requests agaist 1677 * the new queue limits again when they dispatch those requests, 1678 * although such checkings are also done against the old queue limits 1679 * when submitting requests. 1680 */ 1681 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1682 { 1683 if (rq->cmd_flags & REQ_DISCARD) 1684 return 0; 1685 1686 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1687 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1688 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1689 return -EIO; 1690 } 1691 1692 /* 1693 * queue's settings related to segment counting like q->bounce_pfn 1694 * may differ from that of other stacking queues. 1695 * Recalculate it to check the request correctly on this queue's 1696 * limitation. 1697 */ 1698 blk_recalc_rq_segments(rq); 1699 if (rq->nr_phys_segments > queue_max_segments(q)) { 1700 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1701 return -EIO; 1702 } 1703 1704 return 0; 1705 } 1706 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1707 1708 /** 1709 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1710 * @q: the queue to submit the request 1711 * @rq: the request being queued 1712 */ 1713 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1714 { 1715 unsigned long flags; 1716 1717 if (blk_rq_check_limits(q, rq)) 1718 return -EIO; 1719 1720 #ifdef CONFIG_FAIL_MAKE_REQUEST 1721 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1722 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1723 return -EIO; 1724 #endif 1725 1726 spin_lock_irqsave(q->queue_lock, flags); 1727 1728 /* 1729 * Submitting request must be dequeued before calling this function 1730 * because it will be linked to another request_queue 1731 */ 1732 BUG_ON(blk_queued_rq(rq)); 1733 1734 drive_stat_acct(rq, 1); 1735 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1736 1737 spin_unlock_irqrestore(q->queue_lock, flags); 1738 1739 return 0; 1740 } 1741 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1742 1743 /** 1744 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1745 * @rq: request to examine 1746 * 1747 * Description: 1748 * A request could be merge of IOs which require different failure 1749 * handling. This function determines the number of bytes which 1750 * can be failed from the beginning of the request without 1751 * crossing into area which need to be retried further. 1752 * 1753 * Return: 1754 * The number of bytes to fail. 1755 * 1756 * Context: 1757 * queue_lock must be held. 1758 */ 1759 unsigned int blk_rq_err_bytes(const struct request *rq) 1760 { 1761 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1762 unsigned int bytes = 0; 1763 struct bio *bio; 1764 1765 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1766 return blk_rq_bytes(rq); 1767 1768 /* 1769 * Currently the only 'mixing' which can happen is between 1770 * different fastfail types. We can safely fail portions 1771 * which have all the failfast bits that the first one has - 1772 * the ones which are at least as eager to fail as the first 1773 * one. 1774 */ 1775 for (bio = rq->bio; bio; bio = bio->bi_next) { 1776 if ((bio->bi_rw & ff) != ff) 1777 break; 1778 bytes += bio->bi_size; 1779 } 1780 1781 /* this could lead to infinite loop */ 1782 BUG_ON(blk_rq_bytes(rq) && !bytes); 1783 return bytes; 1784 } 1785 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1786 1787 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1788 { 1789 if (blk_do_io_stat(req)) { 1790 const int rw = rq_data_dir(req); 1791 struct hd_struct *part; 1792 int cpu; 1793 1794 cpu = part_stat_lock(); 1795 part = req->part; 1796 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1797 part_stat_unlock(); 1798 } 1799 } 1800 1801 static void blk_account_io_done(struct request *req) 1802 { 1803 /* 1804 * Account IO completion. flush_rq isn't accounted as a 1805 * normal IO on queueing nor completion. Accounting the 1806 * containing request is enough. 1807 */ 1808 if (blk_do_io_stat(req) && req != &req->q->flush_rq) { 1809 unsigned long duration = jiffies - req->start_time; 1810 const int rw = rq_data_dir(req); 1811 struct hd_struct *part; 1812 int cpu; 1813 1814 cpu = part_stat_lock(); 1815 part = req->part; 1816 1817 part_stat_inc(cpu, part, ios[rw]); 1818 part_stat_add(cpu, part, ticks[rw], duration); 1819 part_round_stats(cpu, part); 1820 part_dec_in_flight(part, rw); 1821 1822 hd_struct_put(part); 1823 part_stat_unlock(); 1824 } 1825 } 1826 1827 /** 1828 * blk_peek_request - peek at the top of a request queue 1829 * @q: request queue to peek at 1830 * 1831 * Description: 1832 * Return the request at the top of @q. The returned request 1833 * should be started using blk_start_request() before LLD starts 1834 * processing it. 1835 * 1836 * Return: 1837 * Pointer to the request at the top of @q if available. Null 1838 * otherwise. 1839 * 1840 * Context: 1841 * queue_lock must be held. 1842 */ 1843 struct request *blk_peek_request(struct request_queue *q) 1844 { 1845 struct request *rq; 1846 int ret; 1847 1848 while ((rq = __elv_next_request(q)) != NULL) { 1849 if (!(rq->cmd_flags & REQ_STARTED)) { 1850 /* 1851 * This is the first time the device driver 1852 * sees this request (possibly after 1853 * requeueing). Notify IO scheduler. 1854 */ 1855 if (rq->cmd_flags & REQ_SORTED) 1856 elv_activate_rq(q, rq); 1857 1858 /* 1859 * just mark as started even if we don't start 1860 * it, a request that has been delayed should 1861 * not be passed by new incoming requests 1862 */ 1863 rq->cmd_flags |= REQ_STARTED; 1864 trace_block_rq_issue(q, rq); 1865 } 1866 1867 if (!q->boundary_rq || q->boundary_rq == rq) { 1868 q->end_sector = rq_end_sector(rq); 1869 q->boundary_rq = NULL; 1870 } 1871 1872 if (rq->cmd_flags & REQ_DONTPREP) 1873 break; 1874 1875 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1876 /* 1877 * make sure space for the drain appears we 1878 * know we can do this because max_hw_segments 1879 * has been adjusted to be one fewer than the 1880 * device can handle 1881 */ 1882 rq->nr_phys_segments++; 1883 } 1884 1885 if (!q->prep_rq_fn) 1886 break; 1887 1888 ret = q->prep_rq_fn(q, rq); 1889 if (ret == BLKPREP_OK) { 1890 break; 1891 } else if (ret == BLKPREP_DEFER) { 1892 /* 1893 * the request may have been (partially) prepped. 1894 * we need to keep this request in the front to 1895 * avoid resource deadlock. REQ_STARTED will 1896 * prevent other fs requests from passing this one. 1897 */ 1898 if (q->dma_drain_size && blk_rq_bytes(rq) && 1899 !(rq->cmd_flags & REQ_DONTPREP)) { 1900 /* 1901 * remove the space for the drain we added 1902 * so that we don't add it again 1903 */ 1904 --rq->nr_phys_segments; 1905 } 1906 1907 rq = NULL; 1908 break; 1909 } else if (ret == BLKPREP_KILL) { 1910 rq->cmd_flags |= REQ_QUIET; 1911 /* 1912 * Mark this request as started so we don't trigger 1913 * any debug logic in the end I/O path. 1914 */ 1915 blk_start_request(rq); 1916 __blk_end_request_all(rq, -EIO); 1917 } else { 1918 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1919 break; 1920 } 1921 } 1922 1923 return rq; 1924 } 1925 EXPORT_SYMBOL(blk_peek_request); 1926 1927 void blk_dequeue_request(struct request *rq) 1928 { 1929 struct request_queue *q = rq->q; 1930 1931 BUG_ON(list_empty(&rq->queuelist)); 1932 BUG_ON(ELV_ON_HASH(rq)); 1933 1934 list_del_init(&rq->queuelist); 1935 1936 /* 1937 * the time frame between a request being removed from the lists 1938 * and to it is freed is accounted as io that is in progress at 1939 * the driver side. 1940 */ 1941 if (blk_account_rq(rq)) { 1942 q->in_flight[rq_is_sync(rq)]++; 1943 set_io_start_time_ns(rq); 1944 } 1945 } 1946 1947 /** 1948 * blk_start_request - start request processing on the driver 1949 * @req: request to dequeue 1950 * 1951 * Description: 1952 * Dequeue @req and start timeout timer on it. This hands off the 1953 * request to the driver. 1954 * 1955 * Block internal functions which don't want to start timer should 1956 * call blk_dequeue_request(). 1957 * 1958 * Context: 1959 * queue_lock must be held. 1960 */ 1961 void blk_start_request(struct request *req) 1962 { 1963 blk_dequeue_request(req); 1964 1965 /* 1966 * We are now handing the request to the hardware, initialize 1967 * resid_len to full count and add the timeout handler. 1968 */ 1969 req->resid_len = blk_rq_bytes(req); 1970 if (unlikely(blk_bidi_rq(req))) 1971 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1972 1973 blk_add_timer(req); 1974 } 1975 EXPORT_SYMBOL(blk_start_request); 1976 1977 /** 1978 * blk_fetch_request - fetch a request from a request queue 1979 * @q: request queue to fetch a request from 1980 * 1981 * Description: 1982 * Return the request at the top of @q. The request is started on 1983 * return and LLD can start processing it immediately. 1984 * 1985 * Return: 1986 * Pointer to the request at the top of @q if available. Null 1987 * otherwise. 1988 * 1989 * Context: 1990 * queue_lock must be held. 1991 */ 1992 struct request *blk_fetch_request(struct request_queue *q) 1993 { 1994 struct request *rq; 1995 1996 rq = blk_peek_request(q); 1997 if (rq) 1998 blk_start_request(rq); 1999 return rq; 2000 } 2001 EXPORT_SYMBOL(blk_fetch_request); 2002 2003 /** 2004 * blk_update_request - Special helper function for request stacking drivers 2005 * @req: the request being processed 2006 * @error: %0 for success, < %0 for error 2007 * @nr_bytes: number of bytes to complete @req 2008 * 2009 * Description: 2010 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2011 * the request structure even if @req doesn't have leftover. 2012 * If @req has leftover, sets it up for the next range of segments. 2013 * 2014 * This special helper function is only for request stacking drivers 2015 * (e.g. request-based dm) so that they can handle partial completion. 2016 * Actual device drivers should use blk_end_request instead. 2017 * 2018 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2019 * %false return from this function. 2020 * 2021 * Return: 2022 * %false - this request doesn't have any more data 2023 * %true - this request has more data 2024 **/ 2025 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2026 { 2027 int total_bytes, bio_nbytes, next_idx = 0; 2028 struct bio *bio; 2029 2030 if (!req->bio) 2031 return false; 2032 2033 trace_block_rq_complete(req->q, req); 2034 2035 /* 2036 * For fs requests, rq is just carrier of independent bio's 2037 * and each partial completion should be handled separately. 2038 * Reset per-request error on each partial completion. 2039 * 2040 * TODO: tj: This is too subtle. It would be better to let 2041 * low level drivers do what they see fit. 2042 */ 2043 if (req->cmd_type == REQ_TYPE_FS) 2044 req->errors = 0; 2045 2046 if (error && req->cmd_type == REQ_TYPE_FS && 2047 !(req->cmd_flags & REQ_QUIET)) { 2048 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 2049 req->rq_disk ? req->rq_disk->disk_name : "?", 2050 (unsigned long long)blk_rq_pos(req)); 2051 } 2052 2053 blk_account_io_completion(req, nr_bytes); 2054 2055 total_bytes = bio_nbytes = 0; 2056 while ((bio = req->bio) != NULL) { 2057 int nbytes; 2058 2059 if (nr_bytes >= bio->bi_size) { 2060 req->bio = bio->bi_next; 2061 nbytes = bio->bi_size; 2062 req_bio_endio(req, bio, nbytes, error); 2063 next_idx = 0; 2064 bio_nbytes = 0; 2065 } else { 2066 int idx = bio->bi_idx + next_idx; 2067 2068 if (unlikely(idx >= bio->bi_vcnt)) { 2069 blk_dump_rq_flags(req, "__end_that"); 2070 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2071 __func__, idx, bio->bi_vcnt); 2072 break; 2073 } 2074 2075 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2076 BIO_BUG_ON(nbytes > bio->bi_size); 2077 2078 /* 2079 * not a complete bvec done 2080 */ 2081 if (unlikely(nbytes > nr_bytes)) { 2082 bio_nbytes += nr_bytes; 2083 total_bytes += nr_bytes; 2084 break; 2085 } 2086 2087 /* 2088 * advance to the next vector 2089 */ 2090 next_idx++; 2091 bio_nbytes += nbytes; 2092 } 2093 2094 total_bytes += nbytes; 2095 nr_bytes -= nbytes; 2096 2097 bio = req->bio; 2098 if (bio) { 2099 /* 2100 * end more in this run, or just return 'not-done' 2101 */ 2102 if (unlikely(nr_bytes <= 0)) 2103 break; 2104 } 2105 } 2106 2107 /* 2108 * completely done 2109 */ 2110 if (!req->bio) { 2111 /* 2112 * Reset counters so that the request stacking driver 2113 * can find how many bytes remain in the request 2114 * later. 2115 */ 2116 req->__data_len = 0; 2117 return false; 2118 } 2119 2120 /* 2121 * if the request wasn't completed, update state 2122 */ 2123 if (bio_nbytes) { 2124 req_bio_endio(req, bio, bio_nbytes, error); 2125 bio->bi_idx += next_idx; 2126 bio_iovec(bio)->bv_offset += nr_bytes; 2127 bio_iovec(bio)->bv_len -= nr_bytes; 2128 } 2129 2130 req->__data_len -= total_bytes; 2131 req->buffer = bio_data(req->bio); 2132 2133 /* update sector only for requests with clear definition of sector */ 2134 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD)) 2135 req->__sector += total_bytes >> 9; 2136 2137 /* mixed attributes always follow the first bio */ 2138 if (req->cmd_flags & REQ_MIXED_MERGE) { 2139 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2140 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2141 } 2142 2143 /* 2144 * If total number of sectors is less than the first segment 2145 * size, something has gone terribly wrong. 2146 */ 2147 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2148 printk(KERN_ERR "blk: request botched\n"); 2149 req->__data_len = blk_rq_cur_bytes(req); 2150 } 2151 2152 /* recalculate the number of segments */ 2153 blk_recalc_rq_segments(req); 2154 2155 return true; 2156 } 2157 EXPORT_SYMBOL_GPL(blk_update_request); 2158 2159 static bool blk_update_bidi_request(struct request *rq, int error, 2160 unsigned int nr_bytes, 2161 unsigned int bidi_bytes) 2162 { 2163 if (blk_update_request(rq, error, nr_bytes)) 2164 return true; 2165 2166 /* Bidi request must be completed as a whole */ 2167 if (unlikely(blk_bidi_rq(rq)) && 2168 blk_update_request(rq->next_rq, error, bidi_bytes)) 2169 return true; 2170 2171 if (blk_queue_add_random(rq->q)) 2172 add_disk_randomness(rq->rq_disk); 2173 2174 return false; 2175 } 2176 2177 /** 2178 * blk_unprep_request - unprepare a request 2179 * @req: the request 2180 * 2181 * This function makes a request ready for complete resubmission (or 2182 * completion). It happens only after all error handling is complete, 2183 * so represents the appropriate moment to deallocate any resources 2184 * that were allocated to the request in the prep_rq_fn. The queue 2185 * lock is held when calling this. 2186 */ 2187 void blk_unprep_request(struct request *req) 2188 { 2189 struct request_queue *q = req->q; 2190 2191 req->cmd_flags &= ~REQ_DONTPREP; 2192 if (q->unprep_rq_fn) 2193 q->unprep_rq_fn(q, req); 2194 } 2195 EXPORT_SYMBOL_GPL(blk_unprep_request); 2196 2197 /* 2198 * queue lock must be held 2199 */ 2200 static void blk_finish_request(struct request *req, int error) 2201 { 2202 if (blk_rq_tagged(req)) 2203 blk_queue_end_tag(req->q, req); 2204 2205 BUG_ON(blk_queued_rq(req)); 2206 2207 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2208 laptop_io_completion(&req->q->backing_dev_info); 2209 2210 blk_delete_timer(req); 2211 2212 if (req->cmd_flags & REQ_DONTPREP) 2213 blk_unprep_request(req); 2214 2215 2216 blk_account_io_done(req); 2217 2218 if (req->end_io) 2219 req->end_io(req, error); 2220 else { 2221 if (blk_bidi_rq(req)) 2222 __blk_put_request(req->next_rq->q, req->next_rq); 2223 2224 __blk_put_request(req->q, req); 2225 } 2226 } 2227 2228 /** 2229 * blk_end_bidi_request - Complete a bidi request 2230 * @rq: the request to complete 2231 * @error: %0 for success, < %0 for error 2232 * @nr_bytes: number of bytes to complete @rq 2233 * @bidi_bytes: number of bytes to complete @rq->next_rq 2234 * 2235 * Description: 2236 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2237 * Drivers that supports bidi can safely call this member for any 2238 * type of request, bidi or uni. In the later case @bidi_bytes is 2239 * just ignored. 2240 * 2241 * Return: 2242 * %false - we are done with this request 2243 * %true - still buffers pending for this request 2244 **/ 2245 static bool blk_end_bidi_request(struct request *rq, int error, 2246 unsigned int nr_bytes, unsigned int bidi_bytes) 2247 { 2248 struct request_queue *q = rq->q; 2249 unsigned long flags; 2250 2251 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2252 return true; 2253 2254 spin_lock_irqsave(q->queue_lock, flags); 2255 blk_finish_request(rq, error); 2256 spin_unlock_irqrestore(q->queue_lock, flags); 2257 2258 return false; 2259 } 2260 2261 /** 2262 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2263 * @rq: the request to complete 2264 * @error: %0 for success, < %0 for error 2265 * @nr_bytes: number of bytes to complete @rq 2266 * @bidi_bytes: number of bytes to complete @rq->next_rq 2267 * 2268 * Description: 2269 * Identical to blk_end_bidi_request() except that queue lock is 2270 * assumed to be locked on entry and remains so on return. 2271 * 2272 * Return: 2273 * %false - we are done with this request 2274 * %true - still buffers pending for this request 2275 **/ 2276 static bool __blk_end_bidi_request(struct request *rq, int error, 2277 unsigned int nr_bytes, unsigned int bidi_bytes) 2278 { 2279 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2280 return true; 2281 2282 blk_finish_request(rq, error); 2283 2284 return false; 2285 } 2286 2287 /** 2288 * blk_end_request - Helper function for drivers to complete the request. 2289 * @rq: the request being processed 2290 * @error: %0 for success, < %0 for error 2291 * @nr_bytes: number of bytes to complete 2292 * 2293 * Description: 2294 * Ends I/O on a number of bytes attached to @rq. 2295 * If @rq has leftover, sets it up for the next range of segments. 2296 * 2297 * Return: 2298 * %false - we are done with this request 2299 * %true - still buffers pending for this request 2300 **/ 2301 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2302 { 2303 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2304 } 2305 EXPORT_SYMBOL(blk_end_request); 2306 2307 /** 2308 * blk_end_request_all - Helper function for drives to finish the request. 2309 * @rq: the request to finish 2310 * @error: %0 for success, < %0 for error 2311 * 2312 * Description: 2313 * Completely finish @rq. 2314 */ 2315 void blk_end_request_all(struct request *rq, int error) 2316 { 2317 bool pending; 2318 unsigned int bidi_bytes = 0; 2319 2320 if (unlikely(blk_bidi_rq(rq))) 2321 bidi_bytes = blk_rq_bytes(rq->next_rq); 2322 2323 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2324 BUG_ON(pending); 2325 } 2326 EXPORT_SYMBOL(blk_end_request_all); 2327 2328 /** 2329 * blk_end_request_cur - Helper function to finish the current request chunk. 2330 * @rq: the request to finish the current chunk for 2331 * @error: %0 for success, < %0 for error 2332 * 2333 * Description: 2334 * Complete the current consecutively mapped chunk from @rq. 2335 * 2336 * Return: 2337 * %false - we are done with this request 2338 * %true - still buffers pending for this request 2339 */ 2340 bool blk_end_request_cur(struct request *rq, int error) 2341 { 2342 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2343 } 2344 EXPORT_SYMBOL(blk_end_request_cur); 2345 2346 /** 2347 * blk_end_request_err - Finish a request till the next failure boundary. 2348 * @rq: the request to finish till the next failure boundary for 2349 * @error: must be negative errno 2350 * 2351 * Description: 2352 * Complete @rq till the next failure boundary. 2353 * 2354 * Return: 2355 * %false - we are done with this request 2356 * %true - still buffers pending for this request 2357 */ 2358 bool blk_end_request_err(struct request *rq, int error) 2359 { 2360 WARN_ON(error >= 0); 2361 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2362 } 2363 EXPORT_SYMBOL_GPL(blk_end_request_err); 2364 2365 /** 2366 * __blk_end_request - Helper function for drivers to complete the request. 2367 * @rq: the request being processed 2368 * @error: %0 for success, < %0 for error 2369 * @nr_bytes: number of bytes to complete 2370 * 2371 * Description: 2372 * Must be called with queue lock held unlike blk_end_request(). 2373 * 2374 * Return: 2375 * %false - we are done with this request 2376 * %true - still buffers pending for this request 2377 **/ 2378 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2379 { 2380 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2381 } 2382 EXPORT_SYMBOL(__blk_end_request); 2383 2384 /** 2385 * __blk_end_request_all - Helper function for drives to finish the request. 2386 * @rq: the request to finish 2387 * @error: %0 for success, < %0 for error 2388 * 2389 * Description: 2390 * Completely finish @rq. Must be called with queue lock held. 2391 */ 2392 void __blk_end_request_all(struct request *rq, int error) 2393 { 2394 bool pending; 2395 unsigned int bidi_bytes = 0; 2396 2397 if (unlikely(blk_bidi_rq(rq))) 2398 bidi_bytes = blk_rq_bytes(rq->next_rq); 2399 2400 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2401 BUG_ON(pending); 2402 } 2403 EXPORT_SYMBOL(__blk_end_request_all); 2404 2405 /** 2406 * __blk_end_request_cur - Helper function to finish the current request chunk. 2407 * @rq: the request to finish the current chunk for 2408 * @error: %0 for success, < %0 for error 2409 * 2410 * Description: 2411 * Complete the current consecutively mapped chunk from @rq. Must 2412 * be called with queue lock held. 2413 * 2414 * Return: 2415 * %false - we are done with this request 2416 * %true - still buffers pending for this request 2417 */ 2418 bool __blk_end_request_cur(struct request *rq, int error) 2419 { 2420 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2421 } 2422 EXPORT_SYMBOL(__blk_end_request_cur); 2423 2424 /** 2425 * __blk_end_request_err - Finish a request till the next failure boundary. 2426 * @rq: the request to finish till the next failure boundary for 2427 * @error: must be negative errno 2428 * 2429 * Description: 2430 * Complete @rq till the next failure boundary. Must be called 2431 * with queue lock held. 2432 * 2433 * Return: 2434 * %false - we are done with this request 2435 * %true - still buffers pending for this request 2436 */ 2437 bool __blk_end_request_err(struct request *rq, int error) 2438 { 2439 WARN_ON(error >= 0); 2440 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2441 } 2442 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2443 2444 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2445 struct bio *bio) 2446 { 2447 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2448 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2449 2450 if (bio_has_data(bio)) { 2451 rq->nr_phys_segments = bio_phys_segments(q, bio); 2452 rq->buffer = bio_data(bio); 2453 } 2454 rq->__data_len = bio->bi_size; 2455 rq->bio = rq->biotail = bio; 2456 2457 if (bio->bi_bdev) 2458 rq->rq_disk = bio->bi_bdev->bd_disk; 2459 } 2460 2461 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2462 /** 2463 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2464 * @rq: the request to be flushed 2465 * 2466 * Description: 2467 * Flush all pages in @rq. 2468 */ 2469 void rq_flush_dcache_pages(struct request *rq) 2470 { 2471 struct req_iterator iter; 2472 struct bio_vec *bvec; 2473 2474 rq_for_each_segment(bvec, rq, iter) 2475 flush_dcache_page(bvec->bv_page); 2476 } 2477 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2478 #endif 2479 2480 /** 2481 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2482 * @q : the queue of the device being checked 2483 * 2484 * Description: 2485 * Check if underlying low-level drivers of a device are busy. 2486 * If the drivers want to export their busy state, they must set own 2487 * exporting function using blk_queue_lld_busy() first. 2488 * 2489 * Basically, this function is used only by request stacking drivers 2490 * to stop dispatching requests to underlying devices when underlying 2491 * devices are busy. This behavior helps more I/O merging on the queue 2492 * of the request stacking driver and prevents I/O throughput regression 2493 * on burst I/O load. 2494 * 2495 * Return: 2496 * 0 - Not busy (The request stacking driver should dispatch request) 2497 * 1 - Busy (The request stacking driver should stop dispatching request) 2498 */ 2499 int blk_lld_busy(struct request_queue *q) 2500 { 2501 if (q->lld_busy_fn) 2502 return q->lld_busy_fn(q); 2503 2504 return 0; 2505 } 2506 EXPORT_SYMBOL_GPL(blk_lld_busy); 2507 2508 /** 2509 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2510 * @rq: the clone request to be cleaned up 2511 * 2512 * Description: 2513 * Free all bios in @rq for a cloned request. 2514 */ 2515 void blk_rq_unprep_clone(struct request *rq) 2516 { 2517 struct bio *bio; 2518 2519 while ((bio = rq->bio) != NULL) { 2520 rq->bio = bio->bi_next; 2521 2522 bio_put(bio); 2523 } 2524 } 2525 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2526 2527 /* 2528 * Copy attributes of the original request to the clone request. 2529 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2530 */ 2531 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2532 { 2533 dst->cpu = src->cpu; 2534 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2535 dst->cmd_type = src->cmd_type; 2536 dst->__sector = blk_rq_pos(src); 2537 dst->__data_len = blk_rq_bytes(src); 2538 dst->nr_phys_segments = src->nr_phys_segments; 2539 dst->ioprio = src->ioprio; 2540 dst->extra_len = src->extra_len; 2541 } 2542 2543 /** 2544 * blk_rq_prep_clone - Helper function to setup clone request 2545 * @rq: the request to be setup 2546 * @rq_src: original request to be cloned 2547 * @bs: bio_set that bios for clone are allocated from 2548 * @gfp_mask: memory allocation mask for bio 2549 * @bio_ctr: setup function to be called for each clone bio. 2550 * Returns %0 for success, non %0 for failure. 2551 * @data: private data to be passed to @bio_ctr 2552 * 2553 * Description: 2554 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2555 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2556 * are not copied, and copying such parts is the caller's responsibility. 2557 * Also, pages which the original bios are pointing to are not copied 2558 * and the cloned bios just point same pages. 2559 * So cloned bios must be completed before original bios, which means 2560 * the caller must complete @rq before @rq_src. 2561 */ 2562 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2563 struct bio_set *bs, gfp_t gfp_mask, 2564 int (*bio_ctr)(struct bio *, struct bio *, void *), 2565 void *data) 2566 { 2567 struct bio *bio, *bio_src; 2568 2569 if (!bs) 2570 bs = fs_bio_set; 2571 2572 blk_rq_init(NULL, rq); 2573 2574 __rq_for_each_bio(bio_src, rq_src) { 2575 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2576 if (!bio) 2577 goto free_and_out; 2578 2579 __bio_clone(bio, bio_src); 2580 2581 if (bio_integrity(bio_src) && 2582 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2583 goto free_and_out; 2584 2585 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2586 goto free_and_out; 2587 2588 if (rq->bio) { 2589 rq->biotail->bi_next = bio; 2590 rq->biotail = bio; 2591 } else 2592 rq->bio = rq->biotail = bio; 2593 } 2594 2595 __blk_rq_prep_clone(rq, rq_src); 2596 2597 return 0; 2598 2599 free_and_out: 2600 if (bio) 2601 bio_free(bio, bs); 2602 blk_rq_unprep_clone(rq); 2603 2604 return -ENOMEM; 2605 } 2606 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2607 2608 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2609 { 2610 return queue_work(kblockd_workqueue, work); 2611 } 2612 EXPORT_SYMBOL(kblockd_schedule_work); 2613 2614 int __init blk_dev_init(void) 2615 { 2616 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2617 sizeof(((struct request *)0)->cmd_flags)); 2618 2619 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 2620 kblockd_workqueue = alloc_workqueue("kblockd", 2621 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2622 if (!kblockd_workqueue) 2623 panic("Failed to create kblockd\n"); 2624 2625 request_cachep = kmem_cache_create("blkdev_requests", 2626 sizeof(struct request), 0, SLAB_PANIC, NULL); 2627 2628 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2629 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2630 2631 return 0; 2632 } 2633