xref: /linux/block/blk-core.c (revision 834f0c353ae430c1a6ce023c9b77bbd3ff9241a7)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
34 
35 #include "blk.h"
36 
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
40 
41 static int __make_request(struct request_queue *q, struct bio *bio);
42 
43 /*
44  * For the allocated request tables
45  */
46 static struct kmem_cache *request_cachep;
47 
48 /*
49  * For queue allocation
50  */
51 struct kmem_cache *blk_requestq_cachep;
52 
53 /*
54  * Controlling structure to kblockd
55  */
56 static struct workqueue_struct *kblockd_workqueue;
57 
58 static void drive_stat_acct(struct request *rq, int new_io)
59 {
60 	struct hd_struct *part;
61 	int rw = rq_data_dir(rq);
62 	int cpu;
63 
64 	if (!blk_do_io_stat(rq))
65 		return;
66 
67 	cpu = part_stat_lock();
68 
69 	if (!new_io) {
70 		part = rq->part;
71 		part_stat_inc(cpu, part, merges[rw]);
72 	} else {
73 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
74 		if (!hd_struct_try_get(part)) {
75 			/*
76 			 * The partition is already being removed,
77 			 * the request will be accounted on the disk only
78 			 *
79 			 * We take a reference on disk->part0 although that
80 			 * partition will never be deleted, so we can treat
81 			 * it as any other partition.
82 			 */
83 			part = &rq->rq_disk->part0;
84 			hd_struct_get(part);
85 		}
86 		part_round_stats(cpu, part);
87 		part_inc_in_flight(part, rw);
88 		rq->part = part;
89 	}
90 
91 	part_stat_unlock();
92 }
93 
94 void blk_queue_congestion_threshold(struct request_queue *q)
95 {
96 	int nr;
97 
98 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
99 	if (nr > q->nr_requests)
100 		nr = q->nr_requests;
101 	q->nr_congestion_on = nr;
102 
103 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
104 	if (nr < 1)
105 		nr = 1;
106 	q->nr_congestion_off = nr;
107 }
108 
109 /**
110  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
111  * @bdev:	device
112  *
113  * Locates the passed device's request queue and returns the address of its
114  * backing_dev_info
115  *
116  * Will return NULL if the request queue cannot be located.
117  */
118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
119 {
120 	struct backing_dev_info *ret = NULL;
121 	struct request_queue *q = bdev_get_queue(bdev);
122 
123 	if (q)
124 		ret = &q->backing_dev_info;
125 	return ret;
126 }
127 EXPORT_SYMBOL(blk_get_backing_dev_info);
128 
129 void blk_rq_init(struct request_queue *q, struct request *rq)
130 {
131 	memset(rq, 0, sizeof(*rq));
132 
133 	INIT_LIST_HEAD(&rq->queuelist);
134 	INIT_LIST_HEAD(&rq->timeout_list);
135 	rq->cpu = -1;
136 	rq->q = q;
137 	rq->__sector = (sector_t) -1;
138 	INIT_HLIST_NODE(&rq->hash);
139 	RB_CLEAR_NODE(&rq->rb_node);
140 	rq->cmd = rq->__cmd;
141 	rq->cmd_len = BLK_MAX_CDB;
142 	rq->tag = -1;
143 	rq->ref_count = 1;
144 	rq->start_time = jiffies;
145 	set_start_time_ns(rq);
146 	rq->part = NULL;
147 }
148 EXPORT_SYMBOL(blk_rq_init);
149 
150 static void req_bio_endio(struct request *rq, struct bio *bio,
151 			  unsigned int nbytes, int error)
152 {
153 	if (error)
154 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
155 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
156 		error = -EIO;
157 
158 	if (unlikely(nbytes > bio->bi_size)) {
159 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
160 		       __func__, nbytes, bio->bi_size);
161 		nbytes = bio->bi_size;
162 	}
163 
164 	if (unlikely(rq->cmd_flags & REQ_QUIET))
165 		set_bit(BIO_QUIET, &bio->bi_flags);
166 
167 	bio->bi_size -= nbytes;
168 	bio->bi_sector += (nbytes >> 9);
169 
170 	if (bio_integrity(bio))
171 		bio_integrity_advance(bio, nbytes);
172 
173 	/* don't actually finish bio if it's part of flush sequence */
174 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
175 		bio_endio(bio, error);
176 }
177 
178 void blk_dump_rq_flags(struct request *rq, char *msg)
179 {
180 	int bit;
181 
182 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
183 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 		rq->cmd_flags);
185 
186 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
187 	       (unsigned long long)blk_rq_pos(rq),
188 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
189 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
190 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
191 
192 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
193 		printk(KERN_INFO "  cdb: ");
194 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
195 			printk("%02x ", rq->cmd[bit]);
196 		printk("\n");
197 	}
198 }
199 EXPORT_SYMBOL(blk_dump_rq_flags);
200 
201 static void blk_delay_work(struct work_struct *work)
202 {
203 	struct request_queue *q;
204 
205 	q = container_of(work, struct request_queue, delay_work.work);
206 	spin_lock_irq(q->queue_lock);
207 	__blk_run_queue(q);
208 	spin_unlock_irq(q->queue_lock);
209 }
210 
211 /**
212  * blk_delay_queue - restart queueing after defined interval
213  * @q:		The &struct request_queue in question
214  * @msecs:	Delay in msecs
215  *
216  * Description:
217  *   Sometimes queueing needs to be postponed for a little while, to allow
218  *   resources to come back. This function will make sure that queueing is
219  *   restarted around the specified time.
220  */
221 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
222 {
223 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
224 				msecs_to_jiffies(msecs));
225 }
226 EXPORT_SYMBOL(blk_delay_queue);
227 
228 /**
229  * blk_start_queue - restart a previously stopped queue
230  * @q:    The &struct request_queue in question
231  *
232  * Description:
233  *   blk_start_queue() will clear the stop flag on the queue, and call
234  *   the request_fn for the queue if it was in a stopped state when
235  *   entered. Also see blk_stop_queue(). Queue lock must be held.
236  **/
237 void blk_start_queue(struct request_queue *q)
238 {
239 	WARN_ON(!irqs_disabled());
240 
241 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
242 	__blk_run_queue(q);
243 }
244 EXPORT_SYMBOL(blk_start_queue);
245 
246 /**
247  * blk_stop_queue - stop a queue
248  * @q:    The &struct request_queue in question
249  *
250  * Description:
251  *   The Linux block layer assumes that a block driver will consume all
252  *   entries on the request queue when the request_fn strategy is called.
253  *   Often this will not happen, because of hardware limitations (queue
254  *   depth settings). If a device driver gets a 'queue full' response,
255  *   or if it simply chooses not to queue more I/O at one point, it can
256  *   call this function to prevent the request_fn from being called until
257  *   the driver has signalled it's ready to go again. This happens by calling
258  *   blk_start_queue() to restart queue operations. Queue lock must be held.
259  **/
260 void blk_stop_queue(struct request_queue *q)
261 {
262 	__cancel_delayed_work(&q->delay_work);
263 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
264 }
265 EXPORT_SYMBOL(blk_stop_queue);
266 
267 /**
268  * blk_sync_queue - cancel any pending callbacks on a queue
269  * @q: the queue
270  *
271  * Description:
272  *     The block layer may perform asynchronous callback activity
273  *     on a queue, such as calling the unplug function after a timeout.
274  *     A block device may call blk_sync_queue to ensure that any
275  *     such activity is cancelled, thus allowing it to release resources
276  *     that the callbacks might use. The caller must already have made sure
277  *     that its ->make_request_fn will not re-add plugging prior to calling
278  *     this function.
279  *
280  *     This function does not cancel any asynchronous activity arising
281  *     out of elevator or throttling code. That would require elevaotor_exit()
282  *     and blk_throtl_exit() to be called with queue lock initialized.
283  *
284  */
285 void blk_sync_queue(struct request_queue *q)
286 {
287 	del_timer_sync(&q->timeout);
288 	cancel_delayed_work_sync(&q->delay_work);
289 }
290 EXPORT_SYMBOL(blk_sync_queue);
291 
292 /**
293  * __blk_run_queue - run a single device queue
294  * @q:	The queue to run
295  *
296  * Description:
297  *    See @blk_run_queue. This variant must be called with the queue lock
298  *    held and interrupts disabled.
299  */
300 void __blk_run_queue(struct request_queue *q)
301 {
302 	if (unlikely(blk_queue_stopped(q)))
303 		return;
304 
305 	q->request_fn(q);
306 }
307 EXPORT_SYMBOL(__blk_run_queue);
308 
309 /**
310  * blk_run_queue_async - run a single device queue in workqueue context
311  * @q:	The queue to run
312  *
313  * Description:
314  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
315  *    of us.
316  */
317 void blk_run_queue_async(struct request_queue *q)
318 {
319 	if (likely(!blk_queue_stopped(q)))
320 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
321 }
322 EXPORT_SYMBOL(blk_run_queue_async);
323 
324 /**
325  * blk_run_queue - run a single device queue
326  * @q: The queue to run
327  *
328  * Description:
329  *    Invoke request handling on this queue, if it has pending work to do.
330  *    May be used to restart queueing when a request has completed.
331  */
332 void blk_run_queue(struct request_queue *q)
333 {
334 	unsigned long flags;
335 
336 	spin_lock_irqsave(q->queue_lock, flags);
337 	__blk_run_queue(q);
338 	spin_unlock_irqrestore(q->queue_lock, flags);
339 }
340 EXPORT_SYMBOL(blk_run_queue);
341 
342 void blk_put_queue(struct request_queue *q)
343 {
344 	kobject_put(&q->kobj);
345 }
346 
347 /*
348  * Note: If a driver supplied the queue lock, it should not zap that lock
349  * unexpectedly as some queue cleanup components like elevator_exit() and
350  * blk_throtl_exit() need queue lock.
351  */
352 void blk_cleanup_queue(struct request_queue *q)
353 {
354 	/*
355 	 * We know we have process context here, so we can be a little
356 	 * cautious and ensure that pending block actions on this device
357 	 * are done before moving on. Going into this function, we should
358 	 * not have processes doing IO to this device.
359 	 */
360 	blk_sync_queue(q);
361 
362 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
363 	mutex_lock(&q->sysfs_lock);
364 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
365 	mutex_unlock(&q->sysfs_lock);
366 
367 	if (q->elevator)
368 		elevator_exit(q->elevator);
369 
370 	blk_throtl_exit(q);
371 
372 	blk_put_queue(q);
373 }
374 EXPORT_SYMBOL(blk_cleanup_queue);
375 
376 static int blk_init_free_list(struct request_queue *q)
377 {
378 	struct request_list *rl = &q->rq;
379 
380 	if (unlikely(rl->rq_pool))
381 		return 0;
382 
383 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
384 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
385 	rl->elvpriv = 0;
386 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
387 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
388 
389 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
390 				mempool_free_slab, request_cachep, q->node);
391 
392 	if (!rl->rq_pool)
393 		return -ENOMEM;
394 
395 	return 0;
396 }
397 
398 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
399 {
400 	return blk_alloc_queue_node(gfp_mask, -1);
401 }
402 EXPORT_SYMBOL(blk_alloc_queue);
403 
404 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
405 {
406 	struct request_queue *q;
407 	int err;
408 
409 	q = kmem_cache_alloc_node(blk_requestq_cachep,
410 				gfp_mask | __GFP_ZERO, node_id);
411 	if (!q)
412 		return NULL;
413 
414 	q->backing_dev_info.ra_pages =
415 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
416 	q->backing_dev_info.state = 0;
417 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
418 	q->backing_dev_info.name = "block";
419 
420 	err = bdi_init(&q->backing_dev_info);
421 	if (err) {
422 		kmem_cache_free(blk_requestq_cachep, q);
423 		return NULL;
424 	}
425 
426 	if (blk_throtl_init(q)) {
427 		kmem_cache_free(blk_requestq_cachep, q);
428 		return NULL;
429 	}
430 
431 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
432 		    laptop_mode_timer_fn, (unsigned long) q);
433 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
434 	INIT_LIST_HEAD(&q->timeout_list);
435 	INIT_LIST_HEAD(&q->flush_queue[0]);
436 	INIT_LIST_HEAD(&q->flush_queue[1]);
437 	INIT_LIST_HEAD(&q->flush_data_in_flight);
438 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
439 
440 	kobject_init(&q->kobj, &blk_queue_ktype);
441 
442 	mutex_init(&q->sysfs_lock);
443 	spin_lock_init(&q->__queue_lock);
444 
445 	/*
446 	 * By default initialize queue_lock to internal lock and driver can
447 	 * override it later if need be.
448 	 */
449 	q->queue_lock = &q->__queue_lock;
450 
451 	return q;
452 }
453 EXPORT_SYMBOL(blk_alloc_queue_node);
454 
455 /**
456  * blk_init_queue  - prepare a request queue for use with a block device
457  * @rfn:  The function to be called to process requests that have been
458  *        placed on the queue.
459  * @lock: Request queue spin lock
460  *
461  * Description:
462  *    If a block device wishes to use the standard request handling procedures,
463  *    which sorts requests and coalesces adjacent requests, then it must
464  *    call blk_init_queue().  The function @rfn will be called when there
465  *    are requests on the queue that need to be processed.  If the device
466  *    supports plugging, then @rfn may not be called immediately when requests
467  *    are available on the queue, but may be called at some time later instead.
468  *    Plugged queues are generally unplugged when a buffer belonging to one
469  *    of the requests on the queue is needed, or due to memory pressure.
470  *
471  *    @rfn is not required, or even expected, to remove all requests off the
472  *    queue, but only as many as it can handle at a time.  If it does leave
473  *    requests on the queue, it is responsible for arranging that the requests
474  *    get dealt with eventually.
475  *
476  *    The queue spin lock must be held while manipulating the requests on the
477  *    request queue; this lock will be taken also from interrupt context, so irq
478  *    disabling is needed for it.
479  *
480  *    Function returns a pointer to the initialized request queue, or %NULL if
481  *    it didn't succeed.
482  *
483  * Note:
484  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
485  *    when the block device is deactivated (such as at module unload).
486  **/
487 
488 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
489 {
490 	return blk_init_queue_node(rfn, lock, -1);
491 }
492 EXPORT_SYMBOL(blk_init_queue);
493 
494 struct request_queue *
495 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
496 {
497 	struct request_queue *uninit_q, *q;
498 
499 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
500 	if (!uninit_q)
501 		return NULL;
502 
503 	q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
504 	if (!q)
505 		blk_cleanup_queue(uninit_q);
506 
507 	return q;
508 }
509 EXPORT_SYMBOL(blk_init_queue_node);
510 
511 struct request_queue *
512 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
513 			 spinlock_t *lock)
514 {
515 	return blk_init_allocated_queue_node(q, rfn, lock, -1);
516 }
517 EXPORT_SYMBOL(blk_init_allocated_queue);
518 
519 struct request_queue *
520 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
521 			      spinlock_t *lock, int node_id)
522 {
523 	if (!q)
524 		return NULL;
525 
526 	q->node = node_id;
527 	if (blk_init_free_list(q))
528 		return NULL;
529 
530 	q->request_fn		= rfn;
531 	q->prep_rq_fn		= NULL;
532 	q->unprep_rq_fn		= NULL;
533 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
534 
535 	/* Override internal queue lock with supplied lock pointer */
536 	if (lock)
537 		q->queue_lock		= lock;
538 
539 	/*
540 	 * This also sets hw/phys segments, boundary and size
541 	 */
542 	blk_queue_make_request(q, __make_request);
543 
544 	q->sg_reserved_size = INT_MAX;
545 
546 	/*
547 	 * all done
548 	 */
549 	if (!elevator_init(q, NULL)) {
550 		blk_queue_congestion_threshold(q);
551 		return q;
552 	}
553 
554 	return NULL;
555 }
556 EXPORT_SYMBOL(blk_init_allocated_queue_node);
557 
558 int blk_get_queue(struct request_queue *q)
559 {
560 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
561 		kobject_get(&q->kobj);
562 		return 0;
563 	}
564 
565 	return 1;
566 }
567 
568 static inline void blk_free_request(struct request_queue *q, struct request *rq)
569 {
570 	BUG_ON(rq->cmd_flags & REQ_ON_PLUG);
571 
572 	if (rq->cmd_flags & REQ_ELVPRIV)
573 		elv_put_request(q, rq);
574 	mempool_free(rq, q->rq.rq_pool);
575 }
576 
577 static struct request *
578 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
579 {
580 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
581 
582 	if (!rq)
583 		return NULL;
584 
585 	blk_rq_init(q, rq);
586 
587 	rq->cmd_flags = flags | REQ_ALLOCED;
588 
589 	if (priv) {
590 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
591 			mempool_free(rq, q->rq.rq_pool);
592 			return NULL;
593 		}
594 		rq->cmd_flags |= REQ_ELVPRIV;
595 	}
596 
597 	return rq;
598 }
599 
600 /*
601  * ioc_batching returns true if the ioc is a valid batching request and
602  * should be given priority access to a request.
603  */
604 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
605 {
606 	if (!ioc)
607 		return 0;
608 
609 	/*
610 	 * Make sure the process is able to allocate at least 1 request
611 	 * even if the batch times out, otherwise we could theoretically
612 	 * lose wakeups.
613 	 */
614 	return ioc->nr_batch_requests == q->nr_batching ||
615 		(ioc->nr_batch_requests > 0
616 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
617 }
618 
619 /*
620  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
621  * will cause the process to be a "batcher" on all queues in the system. This
622  * is the behaviour we want though - once it gets a wakeup it should be given
623  * a nice run.
624  */
625 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
626 {
627 	if (!ioc || ioc_batching(q, ioc))
628 		return;
629 
630 	ioc->nr_batch_requests = q->nr_batching;
631 	ioc->last_waited = jiffies;
632 }
633 
634 static void __freed_request(struct request_queue *q, int sync)
635 {
636 	struct request_list *rl = &q->rq;
637 
638 	if (rl->count[sync] < queue_congestion_off_threshold(q))
639 		blk_clear_queue_congested(q, sync);
640 
641 	if (rl->count[sync] + 1 <= q->nr_requests) {
642 		if (waitqueue_active(&rl->wait[sync]))
643 			wake_up(&rl->wait[sync]);
644 
645 		blk_clear_queue_full(q, sync);
646 	}
647 }
648 
649 /*
650  * A request has just been released.  Account for it, update the full and
651  * congestion status, wake up any waiters.   Called under q->queue_lock.
652  */
653 static void freed_request(struct request_queue *q, int sync, int priv)
654 {
655 	struct request_list *rl = &q->rq;
656 
657 	rl->count[sync]--;
658 	if (priv)
659 		rl->elvpriv--;
660 
661 	__freed_request(q, sync);
662 
663 	if (unlikely(rl->starved[sync ^ 1]))
664 		__freed_request(q, sync ^ 1);
665 }
666 
667 /*
668  * Determine if elevator data should be initialized when allocating the
669  * request associated with @bio.
670  */
671 static bool blk_rq_should_init_elevator(struct bio *bio)
672 {
673 	if (!bio)
674 		return true;
675 
676 	/*
677 	 * Flush requests do not use the elevator so skip initialization.
678 	 * This allows a request to share the flush and elevator data.
679 	 */
680 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
681 		return false;
682 
683 	return true;
684 }
685 
686 /*
687  * Get a free request, queue_lock must be held.
688  * Returns NULL on failure, with queue_lock held.
689  * Returns !NULL on success, with queue_lock *not held*.
690  */
691 static struct request *get_request(struct request_queue *q, int rw_flags,
692 				   struct bio *bio, gfp_t gfp_mask)
693 {
694 	struct request *rq = NULL;
695 	struct request_list *rl = &q->rq;
696 	struct io_context *ioc = NULL;
697 	const bool is_sync = rw_is_sync(rw_flags) != 0;
698 	int may_queue, priv = 0;
699 
700 	may_queue = elv_may_queue(q, rw_flags);
701 	if (may_queue == ELV_MQUEUE_NO)
702 		goto rq_starved;
703 
704 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
705 		if (rl->count[is_sync]+1 >= q->nr_requests) {
706 			ioc = current_io_context(GFP_ATOMIC, q->node);
707 			/*
708 			 * The queue will fill after this allocation, so set
709 			 * it as full, and mark this process as "batching".
710 			 * This process will be allowed to complete a batch of
711 			 * requests, others will be blocked.
712 			 */
713 			if (!blk_queue_full(q, is_sync)) {
714 				ioc_set_batching(q, ioc);
715 				blk_set_queue_full(q, is_sync);
716 			} else {
717 				if (may_queue != ELV_MQUEUE_MUST
718 						&& !ioc_batching(q, ioc)) {
719 					/*
720 					 * The queue is full and the allocating
721 					 * process is not a "batcher", and not
722 					 * exempted by the IO scheduler
723 					 */
724 					goto out;
725 				}
726 			}
727 		}
728 		blk_set_queue_congested(q, is_sync);
729 	}
730 
731 	/*
732 	 * Only allow batching queuers to allocate up to 50% over the defined
733 	 * limit of requests, otherwise we could have thousands of requests
734 	 * allocated with any setting of ->nr_requests
735 	 */
736 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
737 		goto out;
738 
739 	rl->count[is_sync]++;
740 	rl->starved[is_sync] = 0;
741 
742 	if (blk_rq_should_init_elevator(bio)) {
743 		priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
744 		if (priv)
745 			rl->elvpriv++;
746 	}
747 
748 	if (blk_queue_io_stat(q))
749 		rw_flags |= REQ_IO_STAT;
750 	spin_unlock_irq(q->queue_lock);
751 
752 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
753 	if (unlikely(!rq)) {
754 		/*
755 		 * Allocation failed presumably due to memory. Undo anything
756 		 * we might have messed up.
757 		 *
758 		 * Allocating task should really be put onto the front of the
759 		 * wait queue, but this is pretty rare.
760 		 */
761 		spin_lock_irq(q->queue_lock);
762 		freed_request(q, is_sync, priv);
763 
764 		/*
765 		 * in the very unlikely event that allocation failed and no
766 		 * requests for this direction was pending, mark us starved
767 		 * so that freeing of a request in the other direction will
768 		 * notice us. another possible fix would be to split the
769 		 * rq mempool into READ and WRITE
770 		 */
771 rq_starved:
772 		if (unlikely(rl->count[is_sync] == 0))
773 			rl->starved[is_sync] = 1;
774 
775 		goto out;
776 	}
777 
778 	/*
779 	 * ioc may be NULL here, and ioc_batching will be false. That's
780 	 * OK, if the queue is under the request limit then requests need
781 	 * not count toward the nr_batch_requests limit. There will always
782 	 * be some limit enforced by BLK_BATCH_TIME.
783 	 */
784 	if (ioc_batching(q, ioc))
785 		ioc->nr_batch_requests--;
786 
787 	trace_block_getrq(q, bio, rw_flags & 1);
788 out:
789 	return rq;
790 }
791 
792 /*
793  * No available requests for this queue, wait for some requests to become
794  * available.
795  *
796  * Called with q->queue_lock held, and returns with it unlocked.
797  */
798 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
799 					struct bio *bio)
800 {
801 	const bool is_sync = rw_is_sync(rw_flags) != 0;
802 	struct request *rq;
803 
804 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
805 	while (!rq) {
806 		DEFINE_WAIT(wait);
807 		struct io_context *ioc;
808 		struct request_list *rl = &q->rq;
809 
810 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
811 				TASK_UNINTERRUPTIBLE);
812 
813 		trace_block_sleeprq(q, bio, rw_flags & 1);
814 
815 		spin_unlock_irq(q->queue_lock);
816 		io_schedule();
817 
818 		/*
819 		 * After sleeping, we become a "batching" process and
820 		 * will be able to allocate at least one request, and
821 		 * up to a big batch of them for a small period time.
822 		 * See ioc_batching, ioc_set_batching
823 		 */
824 		ioc = current_io_context(GFP_NOIO, q->node);
825 		ioc_set_batching(q, ioc);
826 
827 		spin_lock_irq(q->queue_lock);
828 		finish_wait(&rl->wait[is_sync], &wait);
829 
830 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
831 	};
832 
833 	return rq;
834 }
835 
836 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
837 {
838 	struct request *rq;
839 
840 	BUG_ON(rw != READ && rw != WRITE);
841 
842 	spin_lock_irq(q->queue_lock);
843 	if (gfp_mask & __GFP_WAIT) {
844 		rq = get_request_wait(q, rw, NULL);
845 	} else {
846 		rq = get_request(q, rw, NULL, gfp_mask);
847 		if (!rq)
848 			spin_unlock_irq(q->queue_lock);
849 	}
850 	/* q->queue_lock is unlocked at this point */
851 
852 	return rq;
853 }
854 EXPORT_SYMBOL(blk_get_request);
855 
856 /**
857  * blk_make_request - given a bio, allocate a corresponding struct request.
858  * @q: target request queue
859  * @bio:  The bio describing the memory mappings that will be submitted for IO.
860  *        It may be a chained-bio properly constructed by block/bio layer.
861  * @gfp_mask: gfp flags to be used for memory allocation
862  *
863  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
864  * type commands. Where the struct request needs to be farther initialized by
865  * the caller. It is passed a &struct bio, which describes the memory info of
866  * the I/O transfer.
867  *
868  * The caller of blk_make_request must make sure that bi_io_vec
869  * are set to describe the memory buffers. That bio_data_dir() will return
870  * the needed direction of the request. (And all bio's in the passed bio-chain
871  * are properly set accordingly)
872  *
873  * If called under none-sleepable conditions, mapped bio buffers must not
874  * need bouncing, by calling the appropriate masked or flagged allocator,
875  * suitable for the target device. Otherwise the call to blk_queue_bounce will
876  * BUG.
877  *
878  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
879  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
880  * anything but the first bio in the chain. Otherwise you risk waiting for IO
881  * completion of a bio that hasn't been submitted yet, thus resulting in a
882  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
883  * of bio_alloc(), as that avoids the mempool deadlock.
884  * If possible a big IO should be split into smaller parts when allocation
885  * fails. Partial allocation should not be an error, or you risk a live-lock.
886  */
887 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
888 				 gfp_t gfp_mask)
889 {
890 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
891 
892 	if (unlikely(!rq))
893 		return ERR_PTR(-ENOMEM);
894 
895 	for_each_bio(bio) {
896 		struct bio *bounce_bio = bio;
897 		int ret;
898 
899 		blk_queue_bounce(q, &bounce_bio);
900 		ret = blk_rq_append_bio(q, rq, bounce_bio);
901 		if (unlikely(ret)) {
902 			blk_put_request(rq);
903 			return ERR_PTR(ret);
904 		}
905 	}
906 
907 	return rq;
908 }
909 EXPORT_SYMBOL(blk_make_request);
910 
911 /**
912  * blk_requeue_request - put a request back on queue
913  * @q:		request queue where request should be inserted
914  * @rq:		request to be inserted
915  *
916  * Description:
917  *    Drivers often keep queueing requests until the hardware cannot accept
918  *    more, when that condition happens we need to put the request back
919  *    on the queue. Must be called with queue lock held.
920  */
921 void blk_requeue_request(struct request_queue *q, struct request *rq)
922 {
923 	blk_delete_timer(rq);
924 	blk_clear_rq_complete(rq);
925 	trace_block_rq_requeue(q, rq);
926 
927 	if (blk_rq_tagged(rq))
928 		blk_queue_end_tag(q, rq);
929 
930 	BUG_ON(blk_queued_rq(rq));
931 
932 	elv_requeue_request(q, rq);
933 }
934 EXPORT_SYMBOL(blk_requeue_request);
935 
936 static void add_acct_request(struct request_queue *q, struct request *rq,
937 			     int where)
938 {
939 	drive_stat_acct(rq, 1);
940 	__elv_add_request(q, rq, where);
941 }
942 
943 /**
944  * blk_insert_request - insert a special request into a request queue
945  * @q:		request queue where request should be inserted
946  * @rq:		request to be inserted
947  * @at_head:	insert request at head or tail of queue
948  * @data:	private data
949  *
950  * Description:
951  *    Many block devices need to execute commands asynchronously, so they don't
952  *    block the whole kernel from preemption during request execution.  This is
953  *    accomplished normally by inserting aritficial requests tagged as
954  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
955  *    be scheduled for actual execution by the request queue.
956  *
957  *    We have the option of inserting the head or the tail of the queue.
958  *    Typically we use the tail for new ioctls and so forth.  We use the head
959  *    of the queue for things like a QUEUE_FULL message from a device, or a
960  *    host that is unable to accept a particular command.
961  */
962 void blk_insert_request(struct request_queue *q, struct request *rq,
963 			int at_head, void *data)
964 {
965 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
966 	unsigned long flags;
967 
968 	/*
969 	 * tell I/O scheduler that this isn't a regular read/write (ie it
970 	 * must not attempt merges on this) and that it acts as a soft
971 	 * barrier
972 	 */
973 	rq->cmd_type = REQ_TYPE_SPECIAL;
974 
975 	rq->special = data;
976 
977 	spin_lock_irqsave(q->queue_lock, flags);
978 
979 	/*
980 	 * If command is tagged, release the tag
981 	 */
982 	if (blk_rq_tagged(rq))
983 		blk_queue_end_tag(q, rq);
984 
985 	add_acct_request(q, rq, where);
986 	__blk_run_queue(q);
987 	spin_unlock_irqrestore(q->queue_lock, flags);
988 }
989 EXPORT_SYMBOL(blk_insert_request);
990 
991 static void part_round_stats_single(int cpu, struct hd_struct *part,
992 				    unsigned long now)
993 {
994 	if (now == part->stamp)
995 		return;
996 
997 	if (part_in_flight(part)) {
998 		__part_stat_add(cpu, part, time_in_queue,
999 				part_in_flight(part) * (now - part->stamp));
1000 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1001 	}
1002 	part->stamp = now;
1003 }
1004 
1005 /**
1006  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1007  * @cpu: cpu number for stats access
1008  * @part: target partition
1009  *
1010  * The average IO queue length and utilisation statistics are maintained
1011  * by observing the current state of the queue length and the amount of
1012  * time it has been in this state for.
1013  *
1014  * Normally, that accounting is done on IO completion, but that can result
1015  * in more than a second's worth of IO being accounted for within any one
1016  * second, leading to >100% utilisation.  To deal with that, we call this
1017  * function to do a round-off before returning the results when reading
1018  * /proc/diskstats.  This accounts immediately for all queue usage up to
1019  * the current jiffies and restarts the counters again.
1020  */
1021 void part_round_stats(int cpu, struct hd_struct *part)
1022 {
1023 	unsigned long now = jiffies;
1024 
1025 	if (part->partno)
1026 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1027 	part_round_stats_single(cpu, part, now);
1028 }
1029 EXPORT_SYMBOL_GPL(part_round_stats);
1030 
1031 /*
1032  * queue lock must be held
1033  */
1034 void __blk_put_request(struct request_queue *q, struct request *req)
1035 {
1036 	if (unlikely(!q))
1037 		return;
1038 	if (unlikely(--req->ref_count))
1039 		return;
1040 
1041 	elv_completed_request(q, req);
1042 
1043 	/* this is a bio leak */
1044 	WARN_ON(req->bio != NULL);
1045 
1046 	/*
1047 	 * Request may not have originated from ll_rw_blk. if not,
1048 	 * it didn't come out of our reserved rq pools
1049 	 */
1050 	if (req->cmd_flags & REQ_ALLOCED) {
1051 		int is_sync = rq_is_sync(req) != 0;
1052 		int priv = req->cmd_flags & REQ_ELVPRIV;
1053 
1054 		BUG_ON(!list_empty(&req->queuelist));
1055 		BUG_ON(!hlist_unhashed(&req->hash));
1056 
1057 		blk_free_request(q, req);
1058 		freed_request(q, is_sync, priv);
1059 	}
1060 }
1061 EXPORT_SYMBOL_GPL(__blk_put_request);
1062 
1063 void blk_put_request(struct request *req)
1064 {
1065 	unsigned long flags;
1066 	struct request_queue *q = req->q;
1067 
1068 	spin_lock_irqsave(q->queue_lock, flags);
1069 	__blk_put_request(q, req);
1070 	spin_unlock_irqrestore(q->queue_lock, flags);
1071 }
1072 EXPORT_SYMBOL(blk_put_request);
1073 
1074 /**
1075  * blk_add_request_payload - add a payload to a request
1076  * @rq: request to update
1077  * @page: page backing the payload
1078  * @len: length of the payload.
1079  *
1080  * This allows to later add a payload to an already submitted request by
1081  * a block driver.  The driver needs to take care of freeing the payload
1082  * itself.
1083  *
1084  * Note that this is a quite horrible hack and nothing but handling of
1085  * discard requests should ever use it.
1086  */
1087 void blk_add_request_payload(struct request *rq, struct page *page,
1088 		unsigned int len)
1089 {
1090 	struct bio *bio = rq->bio;
1091 
1092 	bio->bi_io_vec->bv_page = page;
1093 	bio->bi_io_vec->bv_offset = 0;
1094 	bio->bi_io_vec->bv_len = len;
1095 
1096 	bio->bi_size = len;
1097 	bio->bi_vcnt = 1;
1098 	bio->bi_phys_segments = 1;
1099 
1100 	rq->__data_len = rq->resid_len = len;
1101 	rq->nr_phys_segments = 1;
1102 	rq->buffer = bio_data(bio);
1103 }
1104 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1105 
1106 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1107 				   struct bio *bio)
1108 {
1109 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1110 
1111 	/*
1112 	 * Debug stuff, kill later
1113 	 */
1114 	if (!rq_mergeable(req)) {
1115 		blk_dump_rq_flags(req, "back");
1116 		return false;
1117 	}
1118 
1119 	if (!ll_back_merge_fn(q, req, bio))
1120 		return false;
1121 
1122 	trace_block_bio_backmerge(q, bio);
1123 
1124 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1125 		blk_rq_set_mixed_merge(req);
1126 
1127 	req->biotail->bi_next = bio;
1128 	req->biotail = bio;
1129 	req->__data_len += bio->bi_size;
1130 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1131 
1132 	drive_stat_acct(req, 0);
1133 	return true;
1134 }
1135 
1136 static bool bio_attempt_front_merge(struct request_queue *q,
1137 				    struct request *req, struct bio *bio)
1138 {
1139 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1140 	sector_t sector;
1141 
1142 	/*
1143 	 * Debug stuff, kill later
1144 	 */
1145 	if (!rq_mergeable(req)) {
1146 		blk_dump_rq_flags(req, "front");
1147 		return false;
1148 	}
1149 
1150 	if (!ll_front_merge_fn(q, req, bio))
1151 		return false;
1152 
1153 	trace_block_bio_frontmerge(q, bio);
1154 
1155 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1156 		blk_rq_set_mixed_merge(req);
1157 
1158 	sector = bio->bi_sector;
1159 
1160 	bio->bi_next = req->bio;
1161 	req->bio = bio;
1162 
1163 	/*
1164 	 * may not be valid. if the low level driver said
1165 	 * it didn't need a bounce buffer then it better
1166 	 * not touch req->buffer either...
1167 	 */
1168 	req->buffer = bio_data(bio);
1169 	req->__sector = bio->bi_sector;
1170 	req->__data_len += bio->bi_size;
1171 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1172 
1173 	drive_stat_acct(req, 0);
1174 	return true;
1175 }
1176 
1177 /*
1178  * Attempts to merge with the plugged list in the current process. Returns
1179  * true if merge was successful, otherwise false.
1180  */
1181 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q,
1182 			       struct bio *bio)
1183 {
1184 	struct blk_plug *plug;
1185 	struct request *rq;
1186 	bool ret = false;
1187 
1188 	plug = tsk->plug;
1189 	if (!plug)
1190 		goto out;
1191 
1192 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1193 		int el_ret;
1194 
1195 		if (rq->q != q)
1196 			continue;
1197 
1198 		el_ret = elv_try_merge(rq, bio);
1199 		if (el_ret == ELEVATOR_BACK_MERGE) {
1200 			ret = bio_attempt_back_merge(q, rq, bio);
1201 			if (ret)
1202 				break;
1203 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1204 			ret = bio_attempt_front_merge(q, rq, bio);
1205 			if (ret)
1206 				break;
1207 		}
1208 	}
1209 out:
1210 	return ret;
1211 }
1212 
1213 void init_request_from_bio(struct request *req, struct bio *bio)
1214 {
1215 	req->cpu = bio->bi_comp_cpu;
1216 	req->cmd_type = REQ_TYPE_FS;
1217 
1218 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1219 	if (bio->bi_rw & REQ_RAHEAD)
1220 		req->cmd_flags |= REQ_FAILFAST_MASK;
1221 
1222 	req->errors = 0;
1223 	req->__sector = bio->bi_sector;
1224 	req->ioprio = bio_prio(bio);
1225 	blk_rq_bio_prep(req->q, req, bio);
1226 }
1227 
1228 static int __make_request(struct request_queue *q, struct bio *bio)
1229 {
1230 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1231 	struct blk_plug *plug;
1232 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1233 	struct request *req;
1234 
1235 	/*
1236 	 * low level driver can indicate that it wants pages above a
1237 	 * certain limit bounced to low memory (ie for highmem, or even
1238 	 * ISA dma in theory)
1239 	 */
1240 	blk_queue_bounce(q, &bio);
1241 
1242 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1243 		spin_lock_irq(q->queue_lock);
1244 		where = ELEVATOR_INSERT_FLUSH;
1245 		goto get_rq;
1246 	}
1247 
1248 	/*
1249 	 * Check if we can merge with the plugged list before grabbing
1250 	 * any locks.
1251 	 */
1252 	if (attempt_plug_merge(current, q, bio))
1253 		goto out;
1254 
1255 	spin_lock_irq(q->queue_lock);
1256 
1257 	el_ret = elv_merge(q, &req, bio);
1258 	if (el_ret == ELEVATOR_BACK_MERGE) {
1259 		BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1260 		if (bio_attempt_back_merge(q, req, bio)) {
1261 			if (!attempt_back_merge(q, req))
1262 				elv_merged_request(q, req, el_ret);
1263 			goto out_unlock;
1264 		}
1265 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1266 		BUG_ON(req->cmd_flags & REQ_ON_PLUG);
1267 		if (bio_attempt_front_merge(q, req, bio)) {
1268 			if (!attempt_front_merge(q, req))
1269 				elv_merged_request(q, req, el_ret);
1270 			goto out_unlock;
1271 		}
1272 	}
1273 
1274 get_rq:
1275 	/*
1276 	 * This sync check and mask will be re-done in init_request_from_bio(),
1277 	 * but we need to set it earlier to expose the sync flag to the
1278 	 * rq allocator and io schedulers.
1279 	 */
1280 	rw_flags = bio_data_dir(bio);
1281 	if (sync)
1282 		rw_flags |= REQ_SYNC;
1283 
1284 	/*
1285 	 * Grab a free request. This is might sleep but can not fail.
1286 	 * Returns with the queue unlocked.
1287 	 */
1288 	req = get_request_wait(q, rw_flags, bio);
1289 
1290 	/*
1291 	 * After dropping the lock and possibly sleeping here, our request
1292 	 * may now be mergeable after it had proven unmergeable (above).
1293 	 * We don't worry about that case for efficiency. It won't happen
1294 	 * often, and the elevators are able to handle it.
1295 	 */
1296 	init_request_from_bio(req, bio);
1297 
1298 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1299 	    bio_flagged(bio, BIO_CPU_AFFINE)) {
1300 		req->cpu = blk_cpu_to_group(get_cpu());
1301 		put_cpu();
1302 	}
1303 
1304 	plug = current->plug;
1305 	if (plug) {
1306 		/*
1307 		 * If this is the first request added after a plug, fire
1308 		 * of a plug trace. If others have been added before, check
1309 		 * if we have multiple devices in this plug. If so, make a
1310 		 * note to sort the list before dispatch.
1311 		 */
1312 		if (list_empty(&plug->list))
1313 			trace_block_plug(q);
1314 		else if (!plug->should_sort) {
1315 			struct request *__rq;
1316 
1317 			__rq = list_entry_rq(plug->list.prev);
1318 			if (__rq->q != q)
1319 				plug->should_sort = 1;
1320 		}
1321 		/*
1322 		 * Debug flag, kill later
1323 		 */
1324 		req->cmd_flags |= REQ_ON_PLUG;
1325 		list_add_tail(&req->queuelist, &plug->list);
1326 		drive_stat_acct(req, 1);
1327 	} else {
1328 		spin_lock_irq(q->queue_lock);
1329 		add_acct_request(q, req, where);
1330 		__blk_run_queue(q);
1331 out_unlock:
1332 		spin_unlock_irq(q->queue_lock);
1333 	}
1334 out:
1335 	return 0;
1336 }
1337 
1338 /*
1339  * If bio->bi_dev is a partition, remap the location
1340  */
1341 static inline void blk_partition_remap(struct bio *bio)
1342 {
1343 	struct block_device *bdev = bio->bi_bdev;
1344 
1345 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1346 		struct hd_struct *p = bdev->bd_part;
1347 
1348 		bio->bi_sector += p->start_sect;
1349 		bio->bi_bdev = bdev->bd_contains;
1350 
1351 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1352 				      bdev->bd_dev,
1353 				      bio->bi_sector - p->start_sect);
1354 	}
1355 }
1356 
1357 static void handle_bad_sector(struct bio *bio)
1358 {
1359 	char b[BDEVNAME_SIZE];
1360 
1361 	printk(KERN_INFO "attempt to access beyond end of device\n");
1362 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1363 			bdevname(bio->bi_bdev, b),
1364 			bio->bi_rw,
1365 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1366 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1367 
1368 	set_bit(BIO_EOF, &bio->bi_flags);
1369 }
1370 
1371 #ifdef CONFIG_FAIL_MAKE_REQUEST
1372 
1373 static DECLARE_FAULT_ATTR(fail_make_request);
1374 
1375 static int __init setup_fail_make_request(char *str)
1376 {
1377 	return setup_fault_attr(&fail_make_request, str);
1378 }
1379 __setup("fail_make_request=", setup_fail_make_request);
1380 
1381 static int should_fail_request(struct bio *bio)
1382 {
1383 	struct hd_struct *part = bio->bi_bdev->bd_part;
1384 
1385 	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1386 		return should_fail(&fail_make_request, bio->bi_size);
1387 
1388 	return 0;
1389 }
1390 
1391 static int __init fail_make_request_debugfs(void)
1392 {
1393 	return init_fault_attr_dentries(&fail_make_request,
1394 					"fail_make_request");
1395 }
1396 
1397 late_initcall(fail_make_request_debugfs);
1398 
1399 #else /* CONFIG_FAIL_MAKE_REQUEST */
1400 
1401 static inline int should_fail_request(struct bio *bio)
1402 {
1403 	return 0;
1404 }
1405 
1406 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1407 
1408 /*
1409  * Check whether this bio extends beyond the end of the device.
1410  */
1411 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1412 {
1413 	sector_t maxsector;
1414 
1415 	if (!nr_sectors)
1416 		return 0;
1417 
1418 	/* Test device or partition size, when known. */
1419 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1420 	if (maxsector) {
1421 		sector_t sector = bio->bi_sector;
1422 
1423 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1424 			/*
1425 			 * This may well happen - the kernel calls bread()
1426 			 * without checking the size of the device, e.g., when
1427 			 * mounting a device.
1428 			 */
1429 			handle_bad_sector(bio);
1430 			return 1;
1431 		}
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 /**
1438  * generic_make_request - hand a buffer to its device driver for I/O
1439  * @bio:  The bio describing the location in memory and on the device.
1440  *
1441  * generic_make_request() is used to make I/O requests of block
1442  * devices. It is passed a &struct bio, which describes the I/O that needs
1443  * to be done.
1444  *
1445  * generic_make_request() does not return any status.  The
1446  * success/failure status of the request, along with notification of
1447  * completion, is delivered asynchronously through the bio->bi_end_io
1448  * function described (one day) else where.
1449  *
1450  * The caller of generic_make_request must make sure that bi_io_vec
1451  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1452  * set to describe the device address, and the
1453  * bi_end_io and optionally bi_private are set to describe how
1454  * completion notification should be signaled.
1455  *
1456  * generic_make_request and the drivers it calls may use bi_next if this
1457  * bio happens to be merged with someone else, and may change bi_dev and
1458  * bi_sector for remaps as it sees fit.  So the values of these fields
1459  * should NOT be depended on after the call to generic_make_request.
1460  */
1461 static inline void __generic_make_request(struct bio *bio)
1462 {
1463 	struct request_queue *q;
1464 	sector_t old_sector;
1465 	int ret, nr_sectors = bio_sectors(bio);
1466 	dev_t old_dev;
1467 	int err = -EIO;
1468 
1469 	might_sleep();
1470 
1471 	if (bio_check_eod(bio, nr_sectors))
1472 		goto end_io;
1473 
1474 	/*
1475 	 * Resolve the mapping until finished. (drivers are
1476 	 * still free to implement/resolve their own stacking
1477 	 * by explicitly returning 0)
1478 	 *
1479 	 * NOTE: we don't repeat the blk_size check for each new device.
1480 	 * Stacking drivers are expected to know what they are doing.
1481 	 */
1482 	old_sector = -1;
1483 	old_dev = 0;
1484 	do {
1485 		char b[BDEVNAME_SIZE];
1486 
1487 		q = bdev_get_queue(bio->bi_bdev);
1488 		if (unlikely(!q)) {
1489 			printk(KERN_ERR
1490 			       "generic_make_request: Trying to access "
1491 				"nonexistent block-device %s (%Lu)\n",
1492 				bdevname(bio->bi_bdev, b),
1493 				(long long) bio->bi_sector);
1494 			goto end_io;
1495 		}
1496 
1497 		if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1498 			     nr_sectors > queue_max_hw_sectors(q))) {
1499 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1500 			       bdevname(bio->bi_bdev, b),
1501 			       bio_sectors(bio),
1502 			       queue_max_hw_sectors(q));
1503 			goto end_io;
1504 		}
1505 
1506 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1507 			goto end_io;
1508 
1509 		if (should_fail_request(bio))
1510 			goto end_io;
1511 
1512 		/*
1513 		 * If this device has partitions, remap block n
1514 		 * of partition p to block n+start(p) of the disk.
1515 		 */
1516 		blk_partition_remap(bio);
1517 
1518 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1519 			goto end_io;
1520 
1521 		if (old_sector != -1)
1522 			trace_block_bio_remap(q, bio, old_dev, old_sector);
1523 
1524 		old_sector = bio->bi_sector;
1525 		old_dev = bio->bi_bdev->bd_dev;
1526 
1527 		if (bio_check_eod(bio, nr_sectors))
1528 			goto end_io;
1529 
1530 		/*
1531 		 * Filter flush bio's early so that make_request based
1532 		 * drivers without flush support don't have to worry
1533 		 * about them.
1534 		 */
1535 		if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1536 			bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1537 			if (!nr_sectors) {
1538 				err = 0;
1539 				goto end_io;
1540 			}
1541 		}
1542 
1543 		if ((bio->bi_rw & REQ_DISCARD) &&
1544 		    (!blk_queue_discard(q) ||
1545 		     ((bio->bi_rw & REQ_SECURE) &&
1546 		      !blk_queue_secdiscard(q)))) {
1547 			err = -EOPNOTSUPP;
1548 			goto end_io;
1549 		}
1550 
1551 		blk_throtl_bio(q, &bio);
1552 
1553 		/*
1554 		 * If bio = NULL, bio has been throttled and will be submitted
1555 		 * later.
1556 		 */
1557 		if (!bio)
1558 			break;
1559 
1560 		trace_block_bio_queue(q, bio);
1561 
1562 		ret = q->make_request_fn(q, bio);
1563 	} while (ret);
1564 
1565 	return;
1566 
1567 end_io:
1568 	bio_endio(bio, err);
1569 }
1570 
1571 /*
1572  * We only want one ->make_request_fn to be active at a time,
1573  * else stack usage with stacked devices could be a problem.
1574  * So use current->bio_list to keep a list of requests
1575  * submited by a make_request_fn function.
1576  * current->bio_list is also used as a flag to say if
1577  * generic_make_request is currently active in this task or not.
1578  * If it is NULL, then no make_request is active.  If it is non-NULL,
1579  * then a make_request is active, and new requests should be added
1580  * at the tail
1581  */
1582 void generic_make_request(struct bio *bio)
1583 {
1584 	struct bio_list bio_list_on_stack;
1585 
1586 	if (current->bio_list) {
1587 		/* make_request is active */
1588 		bio_list_add(current->bio_list, bio);
1589 		return;
1590 	}
1591 	/* following loop may be a bit non-obvious, and so deserves some
1592 	 * explanation.
1593 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1594 	 * ensure that) so we have a list with a single bio.
1595 	 * We pretend that we have just taken it off a longer list, so
1596 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1597 	 * thus initialising the bio_list of new bios to be
1598 	 * added.  __generic_make_request may indeed add some more bios
1599 	 * through a recursive call to generic_make_request.  If it
1600 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1601 	 * from the top.  In this case we really did just take the bio
1602 	 * of the top of the list (no pretending) and so remove it from
1603 	 * bio_list, and call into __generic_make_request again.
1604 	 *
1605 	 * The loop was structured like this to make only one call to
1606 	 * __generic_make_request (which is important as it is large and
1607 	 * inlined) and to keep the structure simple.
1608 	 */
1609 	BUG_ON(bio->bi_next);
1610 	bio_list_init(&bio_list_on_stack);
1611 	current->bio_list = &bio_list_on_stack;
1612 	do {
1613 		__generic_make_request(bio);
1614 		bio = bio_list_pop(current->bio_list);
1615 	} while (bio);
1616 	current->bio_list = NULL; /* deactivate */
1617 }
1618 EXPORT_SYMBOL(generic_make_request);
1619 
1620 /**
1621  * submit_bio - submit a bio to the block device layer for I/O
1622  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1623  * @bio: The &struct bio which describes the I/O
1624  *
1625  * submit_bio() is very similar in purpose to generic_make_request(), and
1626  * uses that function to do most of the work. Both are fairly rough
1627  * interfaces; @bio must be presetup and ready for I/O.
1628  *
1629  */
1630 void submit_bio(int rw, struct bio *bio)
1631 {
1632 	int count = bio_sectors(bio);
1633 
1634 	bio->bi_rw |= rw;
1635 
1636 	/*
1637 	 * If it's a regular read/write or a barrier with data attached,
1638 	 * go through the normal accounting stuff before submission.
1639 	 */
1640 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1641 		if (rw & WRITE) {
1642 			count_vm_events(PGPGOUT, count);
1643 		} else {
1644 			task_io_account_read(bio->bi_size);
1645 			count_vm_events(PGPGIN, count);
1646 		}
1647 
1648 		if (unlikely(block_dump)) {
1649 			char b[BDEVNAME_SIZE];
1650 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1651 			current->comm, task_pid_nr(current),
1652 				(rw & WRITE) ? "WRITE" : "READ",
1653 				(unsigned long long)bio->bi_sector,
1654 				bdevname(bio->bi_bdev, b),
1655 				count);
1656 		}
1657 	}
1658 
1659 	generic_make_request(bio);
1660 }
1661 EXPORT_SYMBOL(submit_bio);
1662 
1663 /**
1664  * blk_rq_check_limits - Helper function to check a request for the queue limit
1665  * @q:  the queue
1666  * @rq: the request being checked
1667  *
1668  * Description:
1669  *    @rq may have been made based on weaker limitations of upper-level queues
1670  *    in request stacking drivers, and it may violate the limitation of @q.
1671  *    Since the block layer and the underlying device driver trust @rq
1672  *    after it is inserted to @q, it should be checked against @q before
1673  *    the insertion using this generic function.
1674  *
1675  *    This function should also be useful for request stacking drivers
1676  *    in some cases below, so export this function.
1677  *    Request stacking drivers like request-based dm may change the queue
1678  *    limits while requests are in the queue (e.g. dm's table swapping).
1679  *    Such request stacking drivers should check those requests agaist
1680  *    the new queue limits again when they dispatch those requests,
1681  *    although such checkings are also done against the old queue limits
1682  *    when submitting requests.
1683  */
1684 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1685 {
1686 	if (rq->cmd_flags & REQ_DISCARD)
1687 		return 0;
1688 
1689 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1690 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1691 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1692 		return -EIO;
1693 	}
1694 
1695 	/*
1696 	 * queue's settings related to segment counting like q->bounce_pfn
1697 	 * may differ from that of other stacking queues.
1698 	 * Recalculate it to check the request correctly on this queue's
1699 	 * limitation.
1700 	 */
1701 	blk_recalc_rq_segments(rq);
1702 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1703 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1704 		return -EIO;
1705 	}
1706 
1707 	return 0;
1708 }
1709 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1710 
1711 /**
1712  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1713  * @q:  the queue to submit the request
1714  * @rq: the request being queued
1715  */
1716 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1717 {
1718 	unsigned long flags;
1719 
1720 	if (blk_rq_check_limits(q, rq))
1721 		return -EIO;
1722 
1723 #ifdef CONFIG_FAIL_MAKE_REQUEST
1724 	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1725 	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
1726 		return -EIO;
1727 #endif
1728 
1729 	spin_lock_irqsave(q->queue_lock, flags);
1730 
1731 	/*
1732 	 * Submitting request must be dequeued before calling this function
1733 	 * because it will be linked to another request_queue
1734 	 */
1735 	BUG_ON(blk_queued_rq(rq));
1736 
1737 	add_acct_request(q, rq, ELEVATOR_INSERT_BACK);
1738 	spin_unlock_irqrestore(q->queue_lock, flags);
1739 
1740 	return 0;
1741 }
1742 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1743 
1744 /**
1745  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1746  * @rq: request to examine
1747  *
1748  * Description:
1749  *     A request could be merge of IOs which require different failure
1750  *     handling.  This function determines the number of bytes which
1751  *     can be failed from the beginning of the request without
1752  *     crossing into area which need to be retried further.
1753  *
1754  * Return:
1755  *     The number of bytes to fail.
1756  *
1757  * Context:
1758  *     queue_lock must be held.
1759  */
1760 unsigned int blk_rq_err_bytes(const struct request *rq)
1761 {
1762 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1763 	unsigned int bytes = 0;
1764 	struct bio *bio;
1765 
1766 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1767 		return blk_rq_bytes(rq);
1768 
1769 	/*
1770 	 * Currently the only 'mixing' which can happen is between
1771 	 * different fastfail types.  We can safely fail portions
1772 	 * which have all the failfast bits that the first one has -
1773 	 * the ones which are at least as eager to fail as the first
1774 	 * one.
1775 	 */
1776 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1777 		if ((bio->bi_rw & ff) != ff)
1778 			break;
1779 		bytes += bio->bi_size;
1780 	}
1781 
1782 	/* this could lead to infinite loop */
1783 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1784 	return bytes;
1785 }
1786 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1787 
1788 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1789 {
1790 	if (blk_do_io_stat(req)) {
1791 		const int rw = rq_data_dir(req);
1792 		struct hd_struct *part;
1793 		int cpu;
1794 
1795 		cpu = part_stat_lock();
1796 		part = req->part;
1797 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1798 		part_stat_unlock();
1799 	}
1800 }
1801 
1802 static void blk_account_io_done(struct request *req)
1803 {
1804 	/*
1805 	 * Account IO completion.  flush_rq isn't accounted as a
1806 	 * normal IO on queueing nor completion.  Accounting the
1807 	 * containing request is enough.
1808 	 */
1809 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1810 		unsigned long duration = jiffies - req->start_time;
1811 		const int rw = rq_data_dir(req);
1812 		struct hd_struct *part;
1813 		int cpu;
1814 
1815 		cpu = part_stat_lock();
1816 		part = req->part;
1817 
1818 		part_stat_inc(cpu, part, ios[rw]);
1819 		part_stat_add(cpu, part, ticks[rw], duration);
1820 		part_round_stats(cpu, part);
1821 		part_dec_in_flight(part, rw);
1822 
1823 		hd_struct_put(part);
1824 		part_stat_unlock();
1825 	}
1826 }
1827 
1828 /**
1829  * blk_peek_request - peek at the top of a request queue
1830  * @q: request queue to peek at
1831  *
1832  * Description:
1833  *     Return the request at the top of @q.  The returned request
1834  *     should be started using blk_start_request() before LLD starts
1835  *     processing it.
1836  *
1837  * Return:
1838  *     Pointer to the request at the top of @q if available.  Null
1839  *     otherwise.
1840  *
1841  * Context:
1842  *     queue_lock must be held.
1843  */
1844 struct request *blk_peek_request(struct request_queue *q)
1845 {
1846 	struct request *rq;
1847 	int ret;
1848 
1849 	while ((rq = __elv_next_request(q)) != NULL) {
1850 		if (!(rq->cmd_flags & REQ_STARTED)) {
1851 			/*
1852 			 * This is the first time the device driver
1853 			 * sees this request (possibly after
1854 			 * requeueing).  Notify IO scheduler.
1855 			 */
1856 			if (rq->cmd_flags & REQ_SORTED)
1857 				elv_activate_rq(q, rq);
1858 
1859 			/*
1860 			 * just mark as started even if we don't start
1861 			 * it, a request that has been delayed should
1862 			 * not be passed by new incoming requests
1863 			 */
1864 			rq->cmd_flags |= REQ_STARTED;
1865 			trace_block_rq_issue(q, rq);
1866 		}
1867 
1868 		if (!q->boundary_rq || q->boundary_rq == rq) {
1869 			q->end_sector = rq_end_sector(rq);
1870 			q->boundary_rq = NULL;
1871 		}
1872 
1873 		if (rq->cmd_flags & REQ_DONTPREP)
1874 			break;
1875 
1876 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1877 			/*
1878 			 * make sure space for the drain appears we
1879 			 * know we can do this because max_hw_segments
1880 			 * has been adjusted to be one fewer than the
1881 			 * device can handle
1882 			 */
1883 			rq->nr_phys_segments++;
1884 		}
1885 
1886 		if (!q->prep_rq_fn)
1887 			break;
1888 
1889 		ret = q->prep_rq_fn(q, rq);
1890 		if (ret == BLKPREP_OK) {
1891 			break;
1892 		} else if (ret == BLKPREP_DEFER) {
1893 			/*
1894 			 * the request may have been (partially) prepped.
1895 			 * we need to keep this request in the front to
1896 			 * avoid resource deadlock.  REQ_STARTED will
1897 			 * prevent other fs requests from passing this one.
1898 			 */
1899 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1900 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1901 				/*
1902 				 * remove the space for the drain we added
1903 				 * so that we don't add it again
1904 				 */
1905 				--rq->nr_phys_segments;
1906 			}
1907 
1908 			rq = NULL;
1909 			break;
1910 		} else if (ret == BLKPREP_KILL) {
1911 			rq->cmd_flags |= REQ_QUIET;
1912 			/*
1913 			 * Mark this request as started so we don't trigger
1914 			 * any debug logic in the end I/O path.
1915 			 */
1916 			blk_start_request(rq);
1917 			__blk_end_request_all(rq, -EIO);
1918 		} else {
1919 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1920 			break;
1921 		}
1922 	}
1923 
1924 	return rq;
1925 }
1926 EXPORT_SYMBOL(blk_peek_request);
1927 
1928 void blk_dequeue_request(struct request *rq)
1929 {
1930 	struct request_queue *q = rq->q;
1931 
1932 	BUG_ON(list_empty(&rq->queuelist));
1933 	BUG_ON(ELV_ON_HASH(rq));
1934 
1935 	list_del_init(&rq->queuelist);
1936 
1937 	/*
1938 	 * the time frame between a request being removed from the lists
1939 	 * and to it is freed is accounted as io that is in progress at
1940 	 * the driver side.
1941 	 */
1942 	if (blk_account_rq(rq)) {
1943 		q->in_flight[rq_is_sync(rq)]++;
1944 		set_io_start_time_ns(rq);
1945 	}
1946 }
1947 
1948 /**
1949  * blk_start_request - start request processing on the driver
1950  * @req: request to dequeue
1951  *
1952  * Description:
1953  *     Dequeue @req and start timeout timer on it.  This hands off the
1954  *     request to the driver.
1955  *
1956  *     Block internal functions which don't want to start timer should
1957  *     call blk_dequeue_request().
1958  *
1959  * Context:
1960  *     queue_lock must be held.
1961  */
1962 void blk_start_request(struct request *req)
1963 {
1964 	blk_dequeue_request(req);
1965 
1966 	/*
1967 	 * We are now handing the request to the hardware, initialize
1968 	 * resid_len to full count and add the timeout handler.
1969 	 */
1970 	req->resid_len = blk_rq_bytes(req);
1971 	if (unlikely(blk_bidi_rq(req)))
1972 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1973 
1974 	blk_add_timer(req);
1975 }
1976 EXPORT_SYMBOL(blk_start_request);
1977 
1978 /**
1979  * blk_fetch_request - fetch a request from a request queue
1980  * @q: request queue to fetch a request from
1981  *
1982  * Description:
1983  *     Return the request at the top of @q.  The request is started on
1984  *     return and LLD can start processing it immediately.
1985  *
1986  * Return:
1987  *     Pointer to the request at the top of @q if available.  Null
1988  *     otherwise.
1989  *
1990  * Context:
1991  *     queue_lock must be held.
1992  */
1993 struct request *blk_fetch_request(struct request_queue *q)
1994 {
1995 	struct request *rq;
1996 
1997 	rq = blk_peek_request(q);
1998 	if (rq)
1999 		blk_start_request(rq);
2000 	return rq;
2001 }
2002 EXPORT_SYMBOL(blk_fetch_request);
2003 
2004 /**
2005  * blk_update_request - Special helper function for request stacking drivers
2006  * @req:      the request being processed
2007  * @error:    %0 for success, < %0 for error
2008  * @nr_bytes: number of bytes to complete @req
2009  *
2010  * Description:
2011  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2012  *     the request structure even if @req doesn't have leftover.
2013  *     If @req has leftover, sets it up for the next range of segments.
2014  *
2015  *     This special helper function is only for request stacking drivers
2016  *     (e.g. request-based dm) so that they can handle partial completion.
2017  *     Actual device drivers should use blk_end_request instead.
2018  *
2019  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2020  *     %false return from this function.
2021  *
2022  * Return:
2023  *     %false - this request doesn't have any more data
2024  *     %true  - this request has more data
2025  **/
2026 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2027 {
2028 	int total_bytes, bio_nbytes, next_idx = 0;
2029 	struct bio *bio;
2030 
2031 	if (!req->bio)
2032 		return false;
2033 
2034 	trace_block_rq_complete(req->q, req);
2035 
2036 	/*
2037 	 * For fs requests, rq is just carrier of independent bio's
2038 	 * and each partial completion should be handled separately.
2039 	 * Reset per-request error on each partial completion.
2040 	 *
2041 	 * TODO: tj: This is too subtle.  It would be better to let
2042 	 * low level drivers do what they see fit.
2043 	 */
2044 	if (req->cmd_type == REQ_TYPE_FS)
2045 		req->errors = 0;
2046 
2047 	if (error && req->cmd_type == REQ_TYPE_FS &&
2048 	    !(req->cmd_flags & REQ_QUIET)) {
2049 		char *error_type;
2050 
2051 		switch (error) {
2052 		case -ENOLINK:
2053 			error_type = "recoverable transport";
2054 			break;
2055 		case -EREMOTEIO:
2056 			error_type = "critical target";
2057 			break;
2058 		case -EBADE:
2059 			error_type = "critical nexus";
2060 			break;
2061 		case -EIO:
2062 		default:
2063 			error_type = "I/O";
2064 			break;
2065 		}
2066 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2067 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2068 		       (unsigned long long)blk_rq_pos(req));
2069 	}
2070 
2071 	blk_account_io_completion(req, nr_bytes);
2072 
2073 	total_bytes = bio_nbytes = 0;
2074 	while ((bio = req->bio) != NULL) {
2075 		int nbytes;
2076 
2077 		if (nr_bytes >= bio->bi_size) {
2078 			req->bio = bio->bi_next;
2079 			nbytes = bio->bi_size;
2080 			req_bio_endio(req, bio, nbytes, error);
2081 			next_idx = 0;
2082 			bio_nbytes = 0;
2083 		} else {
2084 			int idx = bio->bi_idx + next_idx;
2085 
2086 			if (unlikely(idx >= bio->bi_vcnt)) {
2087 				blk_dump_rq_flags(req, "__end_that");
2088 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2089 				       __func__, idx, bio->bi_vcnt);
2090 				break;
2091 			}
2092 
2093 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2094 			BIO_BUG_ON(nbytes > bio->bi_size);
2095 
2096 			/*
2097 			 * not a complete bvec done
2098 			 */
2099 			if (unlikely(nbytes > nr_bytes)) {
2100 				bio_nbytes += nr_bytes;
2101 				total_bytes += nr_bytes;
2102 				break;
2103 			}
2104 
2105 			/*
2106 			 * advance to the next vector
2107 			 */
2108 			next_idx++;
2109 			bio_nbytes += nbytes;
2110 		}
2111 
2112 		total_bytes += nbytes;
2113 		nr_bytes -= nbytes;
2114 
2115 		bio = req->bio;
2116 		if (bio) {
2117 			/*
2118 			 * end more in this run, or just return 'not-done'
2119 			 */
2120 			if (unlikely(nr_bytes <= 0))
2121 				break;
2122 		}
2123 	}
2124 
2125 	/*
2126 	 * completely done
2127 	 */
2128 	if (!req->bio) {
2129 		/*
2130 		 * Reset counters so that the request stacking driver
2131 		 * can find how many bytes remain in the request
2132 		 * later.
2133 		 */
2134 		req->__data_len = 0;
2135 		return false;
2136 	}
2137 
2138 	/*
2139 	 * if the request wasn't completed, update state
2140 	 */
2141 	if (bio_nbytes) {
2142 		req_bio_endio(req, bio, bio_nbytes, error);
2143 		bio->bi_idx += next_idx;
2144 		bio_iovec(bio)->bv_offset += nr_bytes;
2145 		bio_iovec(bio)->bv_len -= nr_bytes;
2146 	}
2147 
2148 	req->__data_len -= total_bytes;
2149 	req->buffer = bio_data(req->bio);
2150 
2151 	/* update sector only for requests with clear definition of sector */
2152 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2153 		req->__sector += total_bytes >> 9;
2154 
2155 	/* mixed attributes always follow the first bio */
2156 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2157 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2158 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2159 	}
2160 
2161 	/*
2162 	 * If total number of sectors is less than the first segment
2163 	 * size, something has gone terribly wrong.
2164 	 */
2165 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2166 		blk_dump_rq_flags(req, "request botched");
2167 		req->__data_len = blk_rq_cur_bytes(req);
2168 	}
2169 
2170 	/* recalculate the number of segments */
2171 	blk_recalc_rq_segments(req);
2172 
2173 	return true;
2174 }
2175 EXPORT_SYMBOL_GPL(blk_update_request);
2176 
2177 static bool blk_update_bidi_request(struct request *rq, int error,
2178 				    unsigned int nr_bytes,
2179 				    unsigned int bidi_bytes)
2180 {
2181 	if (blk_update_request(rq, error, nr_bytes))
2182 		return true;
2183 
2184 	/* Bidi request must be completed as a whole */
2185 	if (unlikely(blk_bidi_rq(rq)) &&
2186 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2187 		return true;
2188 
2189 	if (blk_queue_add_random(rq->q))
2190 		add_disk_randomness(rq->rq_disk);
2191 
2192 	return false;
2193 }
2194 
2195 /**
2196  * blk_unprep_request - unprepare a request
2197  * @req:	the request
2198  *
2199  * This function makes a request ready for complete resubmission (or
2200  * completion).  It happens only after all error handling is complete,
2201  * so represents the appropriate moment to deallocate any resources
2202  * that were allocated to the request in the prep_rq_fn.  The queue
2203  * lock is held when calling this.
2204  */
2205 void blk_unprep_request(struct request *req)
2206 {
2207 	struct request_queue *q = req->q;
2208 
2209 	req->cmd_flags &= ~REQ_DONTPREP;
2210 	if (q->unprep_rq_fn)
2211 		q->unprep_rq_fn(q, req);
2212 }
2213 EXPORT_SYMBOL_GPL(blk_unprep_request);
2214 
2215 /*
2216  * queue lock must be held
2217  */
2218 static void blk_finish_request(struct request *req, int error)
2219 {
2220 	if (blk_rq_tagged(req))
2221 		blk_queue_end_tag(req->q, req);
2222 
2223 	BUG_ON(blk_queued_rq(req));
2224 
2225 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2226 		laptop_io_completion(&req->q->backing_dev_info);
2227 
2228 	blk_delete_timer(req);
2229 
2230 	if (req->cmd_flags & REQ_DONTPREP)
2231 		blk_unprep_request(req);
2232 
2233 
2234 	blk_account_io_done(req);
2235 
2236 	if (req->end_io)
2237 		req->end_io(req, error);
2238 	else {
2239 		if (blk_bidi_rq(req))
2240 			__blk_put_request(req->next_rq->q, req->next_rq);
2241 
2242 		__blk_put_request(req->q, req);
2243 	}
2244 }
2245 
2246 /**
2247  * blk_end_bidi_request - Complete a bidi request
2248  * @rq:         the request to complete
2249  * @error:      %0 for success, < %0 for error
2250  * @nr_bytes:   number of bytes to complete @rq
2251  * @bidi_bytes: number of bytes to complete @rq->next_rq
2252  *
2253  * Description:
2254  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2255  *     Drivers that supports bidi can safely call this member for any
2256  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2257  *     just ignored.
2258  *
2259  * Return:
2260  *     %false - we are done with this request
2261  *     %true  - still buffers pending for this request
2262  **/
2263 static bool blk_end_bidi_request(struct request *rq, int error,
2264 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2265 {
2266 	struct request_queue *q = rq->q;
2267 	unsigned long flags;
2268 
2269 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2270 		return true;
2271 
2272 	spin_lock_irqsave(q->queue_lock, flags);
2273 	blk_finish_request(rq, error);
2274 	spin_unlock_irqrestore(q->queue_lock, flags);
2275 
2276 	return false;
2277 }
2278 
2279 /**
2280  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2281  * @rq:         the request to complete
2282  * @error:      %0 for success, < %0 for error
2283  * @nr_bytes:   number of bytes to complete @rq
2284  * @bidi_bytes: number of bytes to complete @rq->next_rq
2285  *
2286  * Description:
2287  *     Identical to blk_end_bidi_request() except that queue lock is
2288  *     assumed to be locked on entry and remains so on return.
2289  *
2290  * Return:
2291  *     %false - we are done with this request
2292  *     %true  - still buffers pending for this request
2293  **/
2294 static bool __blk_end_bidi_request(struct request *rq, int error,
2295 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2296 {
2297 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2298 		return true;
2299 
2300 	blk_finish_request(rq, error);
2301 
2302 	return false;
2303 }
2304 
2305 /**
2306  * blk_end_request - Helper function for drivers to complete the request.
2307  * @rq:       the request being processed
2308  * @error:    %0 for success, < %0 for error
2309  * @nr_bytes: number of bytes to complete
2310  *
2311  * Description:
2312  *     Ends I/O on a number of bytes attached to @rq.
2313  *     If @rq has leftover, sets it up for the next range of segments.
2314  *
2315  * Return:
2316  *     %false - we are done with this request
2317  *     %true  - still buffers pending for this request
2318  **/
2319 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2320 {
2321 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2322 }
2323 EXPORT_SYMBOL(blk_end_request);
2324 
2325 /**
2326  * blk_end_request_all - Helper function for drives to finish the request.
2327  * @rq: the request to finish
2328  * @error: %0 for success, < %0 for error
2329  *
2330  * Description:
2331  *     Completely finish @rq.
2332  */
2333 void blk_end_request_all(struct request *rq, int error)
2334 {
2335 	bool pending;
2336 	unsigned int bidi_bytes = 0;
2337 
2338 	if (unlikely(blk_bidi_rq(rq)))
2339 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2340 
2341 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2342 	BUG_ON(pending);
2343 }
2344 EXPORT_SYMBOL(blk_end_request_all);
2345 
2346 /**
2347  * blk_end_request_cur - Helper function to finish the current request chunk.
2348  * @rq: the request to finish the current chunk for
2349  * @error: %0 for success, < %0 for error
2350  *
2351  * Description:
2352  *     Complete the current consecutively mapped chunk from @rq.
2353  *
2354  * Return:
2355  *     %false - we are done with this request
2356  *     %true  - still buffers pending for this request
2357  */
2358 bool blk_end_request_cur(struct request *rq, int error)
2359 {
2360 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2361 }
2362 EXPORT_SYMBOL(blk_end_request_cur);
2363 
2364 /**
2365  * blk_end_request_err - Finish a request till the next failure boundary.
2366  * @rq: the request to finish till the next failure boundary for
2367  * @error: must be negative errno
2368  *
2369  * Description:
2370  *     Complete @rq till the next failure boundary.
2371  *
2372  * Return:
2373  *     %false - we are done with this request
2374  *     %true  - still buffers pending for this request
2375  */
2376 bool blk_end_request_err(struct request *rq, int error)
2377 {
2378 	WARN_ON(error >= 0);
2379 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2380 }
2381 EXPORT_SYMBOL_GPL(blk_end_request_err);
2382 
2383 /**
2384  * __blk_end_request - Helper function for drivers to complete the request.
2385  * @rq:       the request being processed
2386  * @error:    %0 for success, < %0 for error
2387  * @nr_bytes: number of bytes to complete
2388  *
2389  * Description:
2390  *     Must be called with queue lock held unlike blk_end_request().
2391  *
2392  * Return:
2393  *     %false - we are done with this request
2394  *     %true  - still buffers pending for this request
2395  **/
2396 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2397 {
2398 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2399 }
2400 EXPORT_SYMBOL(__blk_end_request);
2401 
2402 /**
2403  * __blk_end_request_all - Helper function for drives to finish the request.
2404  * @rq: the request to finish
2405  * @error: %0 for success, < %0 for error
2406  *
2407  * Description:
2408  *     Completely finish @rq.  Must be called with queue lock held.
2409  */
2410 void __blk_end_request_all(struct request *rq, int error)
2411 {
2412 	bool pending;
2413 	unsigned int bidi_bytes = 0;
2414 
2415 	if (unlikely(blk_bidi_rq(rq)))
2416 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2417 
2418 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2419 	BUG_ON(pending);
2420 }
2421 EXPORT_SYMBOL(__blk_end_request_all);
2422 
2423 /**
2424  * __blk_end_request_cur - Helper function to finish the current request chunk.
2425  * @rq: the request to finish the current chunk for
2426  * @error: %0 for success, < %0 for error
2427  *
2428  * Description:
2429  *     Complete the current consecutively mapped chunk from @rq.  Must
2430  *     be called with queue lock held.
2431  *
2432  * Return:
2433  *     %false - we are done with this request
2434  *     %true  - still buffers pending for this request
2435  */
2436 bool __blk_end_request_cur(struct request *rq, int error)
2437 {
2438 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2439 }
2440 EXPORT_SYMBOL(__blk_end_request_cur);
2441 
2442 /**
2443  * __blk_end_request_err - Finish a request till the next failure boundary.
2444  * @rq: the request to finish till the next failure boundary for
2445  * @error: must be negative errno
2446  *
2447  * Description:
2448  *     Complete @rq till the next failure boundary.  Must be called
2449  *     with queue lock held.
2450  *
2451  * Return:
2452  *     %false - we are done with this request
2453  *     %true  - still buffers pending for this request
2454  */
2455 bool __blk_end_request_err(struct request *rq, int error)
2456 {
2457 	WARN_ON(error >= 0);
2458 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2459 }
2460 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2461 
2462 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2463 		     struct bio *bio)
2464 {
2465 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2466 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2467 
2468 	if (bio_has_data(bio)) {
2469 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2470 		rq->buffer = bio_data(bio);
2471 	}
2472 	rq->__data_len = bio->bi_size;
2473 	rq->bio = rq->biotail = bio;
2474 
2475 	if (bio->bi_bdev)
2476 		rq->rq_disk = bio->bi_bdev->bd_disk;
2477 }
2478 
2479 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2480 /**
2481  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2482  * @rq: the request to be flushed
2483  *
2484  * Description:
2485  *     Flush all pages in @rq.
2486  */
2487 void rq_flush_dcache_pages(struct request *rq)
2488 {
2489 	struct req_iterator iter;
2490 	struct bio_vec *bvec;
2491 
2492 	rq_for_each_segment(bvec, rq, iter)
2493 		flush_dcache_page(bvec->bv_page);
2494 }
2495 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2496 #endif
2497 
2498 /**
2499  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2500  * @q : the queue of the device being checked
2501  *
2502  * Description:
2503  *    Check if underlying low-level drivers of a device are busy.
2504  *    If the drivers want to export their busy state, they must set own
2505  *    exporting function using blk_queue_lld_busy() first.
2506  *
2507  *    Basically, this function is used only by request stacking drivers
2508  *    to stop dispatching requests to underlying devices when underlying
2509  *    devices are busy.  This behavior helps more I/O merging on the queue
2510  *    of the request stacking driver and prevents I/O throughput regression
2511  *    on burst I/O load.
2512  *
2513  * Return:
2514  *    0 - Not busy (The request stacking driver should dispatch request)
2515  *    1 - Busy (The request stacking driver should stop dispatching request)
2516  */
2517 int blk_lld_busy(struct request_queue *q)
2518 {
2519 	if (q->lld_busy_fn)
2520 		return q->lld_busy_fn(q);
2521 
2522 	return 0;
2523 }
2524 EXPORT_SYMBOL_GPL(blk_lld_busy);
2525 
2526 /**
2527  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2528  * @rq: the clone request to be cleaned up
2529  *
2530  * Description:
2531  *     Free all bios in @rq for a cloned request.
2532  */
2533 void blk_rq_unprep_clone(struct request *rq)
2534 {
2535 	struct bio *bio;
2536 
2537 	while ((bio = rq->bio) != NULL) {
2538 		rq->bio = bio->bi_next;
2539 
2540 		bio_put(bio);
2541 	}
2542 }
2543 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2544 
2545 /*
2546  * Copy attributes of the original request to the clone request.
2547  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2548  */
2549 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2550 {
2551 	dst->cpu = src->cpu;
2552 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2553 	dst->cmd_type = src->cmd_type;
2554 	dst->__sector = blk_rq_pos(src);
2555 	dst->__data_len = blk_rq_bytes(src);
2556 	dst->nr_phys_segments = src->nr_phys_segments;
2557 	dst->ioprio = src->ioprio;
2558 	dst->extra_len = src->extra_len;
2559 }
2560 
2561 /**
2562  * blk_rq_prep_clone - Helper function to setup clone request
2563  * @rq: the request to be setup
2564  * @rq_src: original request to be cloned
2565  * @bs: bio_set that bios for clone are allocated from
2566  * @gfp_mask: memory allocation mask for bio
2567  * @bio_ctr: setup function to be called for each clone bio.
2568  *           Returns %0 for success, non %0 for failure.
2569  * @data: private data to be passed to @bio_ctr
2570  *
2571  * Description:
2572  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2573  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2574  *     are not copied, and copying such parts is the caller's responsibility.
2575  *     Also, pages which the original bios are pointing to are not copied
2576  *     and the cloned bios just point same pages.
2577  *     So cloned bios must be completed before original bios, which means
2578  *     the caller must complete @rq before @rq_src.
2579  */
2580 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2581 		      struct bio_set *bs, gfp_t gfp_mask,
2582 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2583 		      void *data)
2584 {
2585 	struct bio *bio, *bio_src;
2586 
2587 	if (!bs)
2588 		bs = fs_bio_set;
2589 
2590 	blk_rq_init(NULL, rq);
2591 
2592 	__rq_for_each_bio(bio_src, rq_src) {
2593 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2594 		if (!bio)
2595 			goto free_and_out;
2596 
2597 		__bio_clone(bio, bio_src);
2598 
2599 		if (bio_integrity(bio_src) &&
2600 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2601 			goto free_and_out;
2602 
2603 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2604 			goto free_and_out;
2605 
2606 		if (rq->bio) {
2607 			rq->biotail->bi_next = bio;
2608 			rq->biotail = bio;
2609 		} else
2610 			rq->bio = rq->biotail = bio;
2611 	}
2612 
2613 	__blk_rq_prep_clone(rq, rq_src);
2614 
2615 	return 0;
2616 
2617 free_and_out:
2618 	if (bio)
2619 		bio_free(bio, bs);
2620 	blk_rq_unprep_clone(rq);
2621 
2622 	return -ENOMEM;
2623 }
2624 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2625 
2626 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2627 {
2628 	return queue_work(kblockd_workqueue, work);
2629 }
2630 EXPORT_SYMBOL(kblockd_schedule_work);
2631 
2632 int kblockd_schedule_delayed_work(struct request_queue *q,
2633 			struct delayed_work *dwork, unsigned long delay)
2634 {
2635 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2636 }
2637 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2638 
2639 #define PLUG_MAGIC	0x91827364
2640 
2641 void blk_start_plug(struct blk_plug *plug)
2642 {
2643 	struct task_struct *tsk = current;
2644 
2645 	plug->magic = PLUG_MAGIC;
2646 	INIT_LIST_HEAD(&plug->list);
2647 	INIT_LIST_HEAD(&plug->cb_list);
2648 	plug->should_sort = 0;
2649 
2650 	/*
2651 	 * If this is a nested plug, don't actually assign it. It will be
2652 	 * flushed on its own.
2653 	 */
2654 	if (!tsk->plug) {
2655 		/*
2656 		 * Store ordering should not be needed here, since a potential
2657 		 * preempt will imply a full memory barrier
2658 		 */
2659 		tsk->plug = plug;
2660 	}
2661 }
2662 EXPORT_SYMBOL(blk_start_plug);
2663 
2664 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2665 {
2666 	struct request *rqa = container_of(a, struct request, queuelist);
2667 	struct request *rqb = container_of(b, struct request, queuelist);
2668 
2669 	return !(rqa->q <= rqb->q);
2670 }
2671 
2672 /*
2673  * If 'from_schedule' is true, then postpone the dispatch of requests
2674  * until a safe kblockd context. We due this to avoid accidental big
2675  * additional stack usage in driver dispatch, in places where the originally
2676  * plugger did not intend it.
2677  */
2678 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2679 			    bool from_schedule)
2680 	__releases(q->queue_lock)
2681 {
2682 	trace_block_unplug(q, depth, !from_schedule);
2683 
2684 	/*
2685 	 * If we are punting this to kblockd, then we can safely drop
2686 	 * the queue_lock before waking kblockd (which needs to take
2687 	 * this lock).
2688 	 */
2689 	if (from_schedule) {
2690 		spin_unlock(q->queue_lock);
2691 		blk_run_queue_async(q);
2692 	} else {
2693 		__blk_run_queue(q);
2694 		spin_unlock(q->queue_lock);
2695 	}
2696 
2697 }
2698 
2699 static void flush_plug_callbacks(struct blk_plug *plug)
2700 {
2701 	LIST_HEAD(callbacks);
2702 
2703 	if (list_empty(&plug->cb_list))
2704 		return;
2705 
2706 	list_splice_init(&plug->cb_list, &callbacks);
2707 
2708 	while (!list_empty(&callbacks)) {
2709 		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2710 							  struct blk_plug_cb,
2711 							  list);
2712 		list_del(&cb->list);
2713 		cb->callback(cb);
2714 	}
2715 }
2716 
2717 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2718 {
2719 	struct request_queue *q;
2720 	unsigned long flags;
2721 	struct request *rq;
2722 	LIST_HEAD(list);
2723 	unsigned int depth;
2724 
2725 	BUG_ON(plug->magic != PLUG_MAGIC);
2726 
2727 	flush_plug_callbacks(plug);
2728 	if (list_empty(&plug->list))
2729 		return;
2730 
2731 	list_splice_init(&plug->list, &list);
2732 
2733 	if (plug->should_sort) {
2734 		list_sort(NULL, &list, plug_rq_cmp);
2735 		plug->should_sort = 0;
2736 	}
2737 
2738 	q = NULL;
2739 	depth = 0;
2740 
2741 	/*
2742 	 * Save and disable interrupts here, to avoid doing it for every
2743 	 * queue lock we have to take.
2744 	 */
2745 	local_irq_save(flags);
2746 	while (!list_empty(&list)) {
2747 		rq = list_entry_rq(list.next);
2748 		list_del_init(&rq->queuelist);
2749 		BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG));
2750 		BUG_ON(!rq->q);
2751 		if (rq->q != q) {
2752 			/*
2753 			 * This drops the queue lock
2754 			 */
2755 			if (q)
2756 				queue_unplugged(q, depth, from_schedule);
2757 			q = rq->q;
2758 			depth = 0;
2759 			spin_lock(q->queue_lock);
2760 		}
2761 		rq->cmd_flags &= ~REQ_ON_PLUG;
2762 
2763 		/*
2764 		 * rq is already accounted, so use raw insert
2765 		 */
2766 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2767 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2768 		else
2769 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2770 
2771 		depth++;
2772 	}
2773 
2774 	/*
2775 	 * This drops the queue lock
2776 	 */
2777 	if (q)
2778 		queue_unplugged(q, depth, from_schedule);
2779 
2780 	local_irq_restore(flags);
2781 }
2782 
2783 void blk_finish_plug(struct blk_plug *plug)
2784 {
2785 	blk_flush_plug_list(plug, false);
2786 
2787 	if (plug == current->plug)
2788 		current->plug = NULL;
2789 }
2790 EXPORT_SYMBOL(blk_finish_plug);
2791 
2792 int __init blk_dev_init(void)
2793 {
2794 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2795 			sizeof(((struct request *)0)->cmd_flags));
2796 
2797 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2798 	kblockd_workqueue = alloc_workqueue("kblockd",
2799 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2800 	if (!kblockd_workqueue)
2801 		panic("Failed to create kblockd\n");
2802 
2803 	request_cachep = kmem_cache_create("blkdev_requests",
2804 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2805 
2806 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2807 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2808 
2809 	return 0;
2810 }
2811