1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 #include <linux/list_sort.h> 31 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/block.h> 34 35 #include "blk.h" 36 37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 40 41 static int __make_request(struct request_queue *q, struct bio *bio); 42 43 /* 44 * For the allocated request tables 45 */ 46 static struct kmem_cache *request_cachep; 47 48 /* 49 * For queue allocation 50 */ 51 struct kmem_cache *blk_requestq_cachep; 52 53 /* 54 * Controlling structure to kblockd 55 */ 56 static struct workqueue_struct *kblockd_workqueue; 57 58 static void drive_stat_acct(struct request *rq, int new_io) 59 { 60 struct hd_struct *part; 61 int rw = rq_data_dir(rq); 62 int cpu; 63 64 if (!blk_do_io_stat(rq)) 65 return; 66 67 cpu = part_stat_lock(); 68 69 if (!new_io) { 70 part = rq->part; 71 part_stat_inc(cpu, part, merges[rw]); 72 } else { 73 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 74 if (!hd_struct_try_get(part)) { 75 /* 76 * The partition is already being removed, 77 * the request will be accounted on the disk only 78 * 79 * We take a reference on disk->part0 although that 80 * partition will never be deleted, so we can treat 81 * it as any other partition. 82 */ 83 part = &rq->rq_disk->part0; 84 hd_struct_get(part); 85 } 86 part_round_stats(cpu, part); 87 part_inc_in_flight(part, rw); 88 rq->part = part; 89 } 90 91 part_stat_unlock(); 92 } 93 94 void blk_queue_congestion_threshold(struct request_queue *q) 95 { 96 int nr; 97 98 nr = q->nr_requests - (q->nr_requests / 8) + 1; 99 if (nr > q->nr_requests) 100 nr = q->nr_requests; 101 q->nr_congestion_on = nr; 102 103 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 104 if (nr < 1) 105 nr = 1; 106 q->nr_congestion_off = nr; 107 } 108 109 /** 110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 111 * @bdev: device 112 * 113 * Locates the passed device's request queue and returns the address of its 114 * backing_dev_info 115 * 116 * Will return NULL if the request queue cannot be located. 117 */ 118 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 119 { 120 struct backing_dev_info *ret = NULL; 121 struct request_queue *q = bdev_get_queue(bdev); 122 123 if (q) 124 ret = &q->backing_dev_info; 125 return ret; 126 } 127 EXPORT_SYMBOL(blk_get_backing_dev_info); 128 129 void blk_rq_init(struct request_queue *q, struct request *rq) 130 { 131 memset(rq, 0, sizeof(*rq)); 132 133 INIT_LIST_HEAD(&rq->queuelist); 134 INIT_LIST_HEAD(&rq->timeout_list); 135 rq->cpu = -1; 136 rq->q = q; 137 rq->__sector = (sector_t) -1; 138 INIT_HLIST_NODE(&rq->hash); 139 RB_CLEAR_NODE(&rq->rb_node); 140 rq->cmd = rq->__cmd; 141 rq->cmd_len = BLK_MAX_CDB; 142 rq->tag = -1; 143 rq->ref_count = 1; 144 rq->start_time = jiffies; 145 set_start_time_ns(rq); 146 rq->part = NULL; 147 } 148 EXPORT_SYMBOL(blk_rq_init); 149 150 static void req_bio_endio(struct request *rq, struct bio *bio, 151 unsigned int nbytes, int error) 152 { 153 if (error) 154 clear_bit(BIO_UPTODATE, &bio->bi_flags); 155 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 156 error = -EIO; 157 158 if (unlikely(nbytes > bio->bi_size)) { 159 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 160 __func__, nbytes, bio->bi_size); 161 nbytes = bio->bi_size; 162 } 163 164 if (unlikely(rq->cmd_flags & REQ_QUIET)) 165 set_bit(BIO_QUIET, &bio->bi_flags); 166 167 bio->bi_size -= nbytes; 168 bio->bi_sector += (nbytes >> 9); 169 170 if (bio_integrity(bio)) 171 bio_integrity_advance(bio, nbytes); 172 173 /* don't actually finish bio if it's part of flush sequence */ 174 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 175 bio_endio(bio, error); 176 } 177 178 void blk_dump_rq_flags(struct request *rq, char *msg) 179 { 180 int bit; 181 182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 184 rq->cmd_flags); 185 186 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 187 (unsigned long long)blk_rq_pos(rq), 188 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 189 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 190 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 191 192 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 193 printk(KERN_INFO " cdb: "); 194 for (bit = 0; bit < BLK_MAX_CDB; bit++) 195 printk("%02x ", rq->cmd[bit]); 196 printk("\n"); 197 } 198 } 199 EXPORT_SYMBOL(blk_dump_rq_flags); 200 201 static void blk_delay_work(struct work_struct *work) 202 { 203 struct request_queue *q; 204 205 q = container_of(work, struct request_queue, delay_work.work); 206 spin_lock_irq(q->queue_lock); 207 __blk_run_queue(q); 208 spin_unlock_irq(q->queue_lock); 209 } 210 211 /** 212 * blk_delay_queue - restart queueing after defined interval 213 * @q: The &struct request_queue in question 214 * @msecs: Delay in msecs 215 * 216 * Description: 217 * Sometimes queueing needs to be postponed for a little while, to allow 218 * resources to come back. This function will make sure that queueing is 219 * restarted around the specified time. 220 */ 221 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 222 { 223 queue_delayed_work(kblockd_workqueue, &q->delay_work, 224 msecs_to_jiffies(msecs)); 225 } 226 EXPORT_SYMBOL(blk_delay_queue); 227 228 /** 229 * blk_start_queue - restart a previously stopped queue 230 * @q: The &struct request_queue in question 231 * 232 * Description: 233 * blk_start_queue() will clear the stop flag on the queue, and call 234 * the request_fn for the queue if it was in a stopped state when 235 * entered. Also see blk_stop_queue(). Queue lock must be held. 236 **/ 237 void blk_start_queue(struct request_queue *q) 238 { 239 WARN_ON(!irqs_disabled()); 240 241 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 242 __blk_run_queue(q); 243 } 244 EXPORT_SYMBOL(blk_start_queue); 245 246 /** 247 * blk_stop_queue - stop a queue 248 * @q: The &struct request_queue in question 249 * 250 * Description: 251 * The Linux block layer assumes that a block driver will consume all 252 * entries on the request queue when the request_fn strategy is called. 253 * Often this will not happen, because of hardware limitations (queue 254 * depth settings). If a device driver gets a 'queue full' response, 255 * or if it simply chooses not to queue more I/O at one point, it can 256 * call this function to prevent the request_fn from being called until 257 * the driver has signalled it's ready to go again. This happens by calling 258 * blk_start_queue() to restart queue operations. Queue lock must be held. 259 **/ 260 void blk_stop_queue(struct request_queue *q) 261 { 262 __cancel_delayed_work(&q->delay_work); 263 queue_flag_set(QUEUE_FLAG_STOPPED, q); 264 } 265 EXPORT_SYMBOL(blk_stop_queue); 266 267 /** 268 * blk_sync_queue - cancel any pending callbacks on a queue 269 * @q: the queue 270 * 271 * Description: 272 * The block layer may perform asynchronous callback activity 273 * on a queue, such as calling the unplug function after a timeout. 274 * A block device may call blk_sync_queue to ensure that any 275 * such activity is cancelled, thus allowing it to release resources 276 * that the callbacks might use. The caller must already have made sure 277 * that its ->make_request_fn will not re-add plugging prior to calling 278 * this function. 279 * 280 * This function does not cancel any asynchronous activity arising 281 * out of elevator or throttling code. That would require elevaotor_exit() 282 * and blk_throtl_exit() to be called with queue lock initialized. 283 * 284 */ 285 void blk_sync_queue(struct request_queue *q) 286 { 287 del_timer_sync(&q->timeout); 288 cancel_delayed_work_sync(&q->delay_work); 289 } 290 EXPORT_SYMBOL(blk_sync_queue); 291 292 /** 293 * __blk_run_queue - run a single device queue 294 * @q: The queue to run 295 * 296 * Description: 297 * See @blk_run_queue. This variant must be called with the queue lock 298 * held and interrupts disabled. 299 */ 300 void __blk_run_queue(struct request_queue *q) 301 { 302 if (unlikely(blk_queue_stopped(q))) 303 return; 304 305 q->request_fn(q); 306 } 307 EXPORT_SYMBOL(__blk_run_queue); 308 309 /** 310 * blk_run_queue_async - run a single device queue in workqueue context 311 * @q: The queue to run 312 * 313 * Description: 314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 315 * of us. 316 */ 317 void blk_run_queue_async(struct request_queue *q) 318 { 319 if (likely(!blk_queue_stopped(q))) 320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0); 321 } 322 EXPORT_SYMBOL(blk_run_queue_async); 323 324 /** 325 * blk_run_queue - run a single device queue 326 * @q: The queue to run 327 * 328 * Description: 329 * Invoke request handling on this queue, if it has pending work to do. 330 * May be used to restart queueing when a request has completed. 331 */ 332 void blk_run_queue(struct request_queue *q) 333 { 334 unsigned long flags; 335 336 spin_lock_irqsave(q->queue_lock, flags); 337 __blk_run_queue(q); 338 spin_unlock_irqrestore(q->queue_lock, flags); 339 } 340 EXPORT_SYMBOL(blk_run_queue); 341 342 void blk_put_queue(struct request_queue *q) 343 { 344 kobject_put(&q->kobj); 345 } 346 347 /* 348 * Note: If a driver supplied the queue lock, it should not zap that lock 349 * unexpectedly as some queue cleanup components like elevator_exit() and 350 * blk_throtl_exit() need queue lock. 351 */ 352 void blk_cleanup_queue(struct request_queue *q) 353 { 354 /* 355 * We know we have process context here, so we can be a little 356 * cautious and ensure that pending block actions on this device 357 * are done before moving on. Going into this function, we should 358 * not have processes doing IO to this device. 359 */ 360 blk_sync_queue(q); 361 362 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 363 mutex_lock(&q->sysfs_lock); 364 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 365 mutex_unlock(&q->sysfs_lock); 366 367 if (q->elevator) 368 elevator_exit(q->elevator); 369 370 blk_throtl_exit(q); 371 372 blk_put_queue(q); 373 } 374 EXPORT_SYMBOL(blk_cleanup_queue); 375 376 static int blk_init_free_list(struct request_queue *q) 377 { 378 struct request_list *rl = &q->rq; 379 380 if (unlikely(rl->rq_pool)) 381 return 0; 382 383 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 384 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 385 rl->elvpriv = 0; 386 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 387 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 388 389 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 390 mempool_free_slab, request_cachep, q->node); 391 392 if (!rl->rq_pool) 393 return -ENOMEM; 394 395 return 0; 396 } 397 398 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 399 { 400 return blk_alloc_queue_node(gfp_mask, -1); 401 } 402 EXPORT_SYMBOL(blk_alloc_queue); 403 404 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 405 { 406 struct request_queue *q; 407 int err; 408 409 q = kmem_cache_alloc_node(blk_requestq_cachep, 410 gfp_mask | __GFP_ZERO, node_id); 411 if (!q) 412 return NULL; 413 414 q->backing_dev_info.ra_pages = 415 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 416 q->backing_dev_info.state = 0; 417 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 418 q->backing_dev_info.name = "block"; 419 420 err = bdi_init(&q->backing_dev_info); 421 if (err) { 422 kmem_cache_free(blk_requestq_cachep, q); 423 return NULL; 424 } 425 426 if (blk_throtl_init(q)) { 427 kmem_cache_free(blk_requestq_cachep, q); 428 return NULL; 429 } 430 431 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 432 laptop_mode_timer_fn, (unsigned long) q); 433 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 434 INIT_LIST_HEAD(&q->timeout_list); 435 INIT_LIST_HEAD(&q->flush_queue[0]); 436 INIT_LIST_HEAD(&q->flush_queue[1]); 437 INIT_LIST_HEAD(&q->flush_data_in_flight); 438 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 439 440 kobject_init(&q->kobj, &blk_queue_ktype); 441 442 mutex_init(&q->sysfs_lock); 443 spin_lock_init(&q->__queue_lock); 444 445 /* 446 * By default initialize queue_lock to internal lock and driver can 447 * override it later if need be. 448 */ 449 q->queue_lock = &q->__queue_lock; 450 451 return q; 452 } 453 EXPORT_SYMBOL(blk_alloc_queue_node); 454 455 /** 456 * blk_init_queue - prepare a request queue for use with a block device 457 * @rfn: The function to be called to process requests that have been 458 * placed on the queue. 459 * @lock: Request queue spin lock 460 * 461 * Description: 462 * If a block device wishes to use the standard request handling procedures, 463 * which sorts requests and coalesces adjacent requests, then it must 464 * call blk_init_queue(). The function @rfn will be called when there 465 * are requests on the queue that need to be processed. If the device 466 * supports plugging, then @rfn may not be called immediately when requests 467 * are available on the queue, but may be called at some time later instead. 468 * Plugged queues are generally unplugged when a buffer belonging to one 469 * of the requests on the queue is needed, or due to memory pressure. 470 * 471 * @rfn is not required, or even expected, to remove all requests off the 472 * queue, but only as many as it can handle at a time. If it does leave 473 * requests on the queue, it is responsible for arranging that the requests 474 * get dealt with eventually. 475 * 476 * The queue spin lock must be held while manipulating the requests on the 477 * request queue; this lock will be taken also from interrupt context, so irq 478 * disabling is needed for it. 479 * 480 * Function returns a pointer to the initialized request queue, or %NULL if 481 * it didn't succeed. 482 * 483 * Note: 484 * blk_init_queue() must be paired with a blk_cleanup_queue() call 485 * when the block device is deactivated (such as at module unload). 486 **/ 487 488 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 489 { 490 return blk_init_queue_node(rfn, lock, -1); 491 } 492 EXPORT_SYMBOL(blk_init_queue); 493 494 struct request_queue * 495 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 496 { 497 struct request_queue *uninit_q, *q; 498 499 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 500 if (!uninit_q) 501 return NULL; 502 503 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id); 504 if (!q) 505 blk_cleanup_queue(uninit_q); 506 507 return q; 508 } 509 EXPORT_SYMBOL(blk_init_queue_node); 510 511 struct request_queue * 512 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 513 spinlock_t *lock) 514 { 515 return blk_init_allocated_queue_node(q, rfn, lock, -1); 516 } 517 EXPORT_SYMBOL(blk_init_allocated_queue); 518 519 struct request_queue * 520 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn, 521 spinlock_t *lock, int node_id) 522 { 523 if (!q) 524 return NULL; 525 526 q->node = node_id; 527 if (blk_init_free_list(q)) 528 return NULL; 529 530 q->request_fn = rfn; 531 q->prep_rq_fn = NULL; 532 q->unprep_rq_fn = NULL; 533 q->queue_flags = QUEUE_FLAG_DEFAULT; 534 535 /* Override internal queue lock with supplied lock pointer */ 536 if (lock) 537 q->queue_lock = lock; 538 539 /* 540 * This also sets hw/phys segments, boundary and size 541 */ 542 blk_queue_make_request(q, __make_request); 543 544 q->sg_reserved_size = INT_MAX; 545 546 /* 547 * all done 548 */ 549 if (!elevator_init(q, NULL)) { 550 blk_queue_congestion_threshold(q); 551 return q; 552 } 553 554 return NULL; 555 } 556 EXPORT_SYMBOL(blk_init_allocated_queue_node); 557 558 int blk_get_queue(struct request_queue *q) 559 { 560 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 561 kobject_get(&q->kobj); 562 return 0; 563 } 564 565 return 1; 566 } 567 568 static inline void blk_free_request(struct request_queue *q, struct request *rq) 569 { 570 BUG_ON(rq->cmd_flags & REQ_ON_PLUG); 571 572 if (rq->cmd_flags & REQ_ELVPRIV) 573 elv_put_request(q, rq); 574 mempool_free(rq, q->rq.rq_pool); 575 } 576 577 static struct request * 578 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask) 579 { 580 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 581 582 if (!rq) 583 return NULL; 584 585 blk_rq_init(q, rq); 586 587 rq->cmd_flags = flags | REQ_ALLOCED; 588 589 if (priv) { 590 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 591 mempool_free(rq, q->rq.rq_pool); 592 return NULL; 593 } 594 rq->cmd_flags |= REQ_ELVPRIV; 595 } 596 597 return rq; 598 } 599 600 /* 601 * ioc_batching returns true if the ioc is a valid batching request and 602 * should be given priority access to a request. 603 */ 604 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 605 { 606 if (!ioc) 607 return 0; 608 609 /* 610 * Make sure the process is able to allocate at least 1 request 611 * even if the batch times out, otherwise we could theoretically 612 * lose wakeups. 613 */ 614 return ioc->nr_batch_requests == q->nr_batching || 615 (ioc->nr_batch_requests > 0 616 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 617 } 618 619 /* 620 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 621 * will cause the process to be a "batcher" on all queues in the system. This 622 * is the behaviour we want though - once it gets a wakeup it should be given 623 * a nice run. 624 */ 625 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 626 { 627 if (!ioc || ioc_batching(q, ioc)) 628 return; 629 630 ioc->nr_batch_requests = q->nr_batching; 631 ioc->last_waited = jiffies; 632 } 633 634 static void __freed_request(struct request_queue *q, int sync) 635 { 636 struct request_list *rl = &q->rq; 637 638 if (rl->count[sync] < queue_congestion_off_threshold(q)) 639 blk_clear_queue_congested(q, sync); 640 641 if (rl->count[sync] + 1 <= q->nr_requests) { 642 if (waitqueue_active(&rl->wait[sync])) 643 wake_up(&rl->wait[sync]); 644 645 blk_clear_queue_full(q, sync); 646 } 647 } 648 649 /* 650 * A request has just been released. Account for it, update the full and 651 * congestion status, wake up any waiters. Called under q->queue_lock. 652 */ 653 static void freed_request(struct request_queue *q, int sync, int priv) 654 { 655 struct request_list *rl = &q->rq; 656 657 rl->count[sync]--; 658 if (priv) 659 rl->elvpriv--; 660 661 __freed_request(q, sync); 662 663 if (unlikely(rl->starved[sync ^ 1])) 664 __freed_request(q, sync ^ 1); 665 } 666 667 /* 668 * Determine if elevator data should be initialized when allocating the 669 * request associated with @bio. 670 */ 671 static bool blk_rq_should_init_elevator(struct bio *bio) 672 { 673 if (!bio) 674 return true; 675 676 /* 677 * Flush requests do not use the elevator so skip initialization. 678 * This allows a request to share the flush and elevator data. 679 */ 680 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 681 return false; 682 683 return true; 684 } 685 686 /* 687 * Get a free request, queue_lock must be held. 688 * Returns NULL on failure, with queue_lock held. 689 * Returns !NULL on success, with queue_lock *not held*. 690 */ 691 static struct request *get_request(struct request_queue *q, int rw_flags, 692 struct bio *bio, gfp_t gfp_mask) 693 { 694 struct request *rq = NULL; 695 struct request_list *rl = &q->rq; 696 struct io_context *ioc = NULL; 697 const bool is_sync = rw_is_sync(rw_flags) != 0; 698 int may_queue, priv = 0; 699 700 may_queue = elv_may_queue(q, rw_flags); 701 if (may_queue == ELV_MQUEUE_NO) 702 goto rq_starved; 703 704 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 705 if (rl->count[is_sync]+1 >= q->nr_requests) { 706 ioc = current_io_context(GFP_ATOMIC, q->node); 707 /* 708 * The queue will fill after this allocation, so set 709 * it as full, and mark this process as "batching". 710 * This process will be allowed to complete a batch of 711 * requests, others will be blocked. 712 */ 713 if (!blk_queue_full(q, is_sync)) { 714 ioc_set_batching(q, ioc); 715 blk_set_queue_full(q, is_sync); 716 } else { 717 if (may_queue != ELV_MQUEUE_MUST 718 && !ioc_batching(q, ioc)) { 719 /* 720 * The queue is full and the allocating 721 * process is not a "batcher", and not 722 * exempted by the IO scheduler 723 */ 724 goto out; 725 } 726 } 727 } 728 blk_set_queue_congested(q, is_sync); 729 } 730 731 /* 732 * Only allow batching queuers to allocate up to 50% over the defined 733 * limit of requests, otherwise we could have thousands of requests 734 * allocated with any setting of ->nr_requests 735 */ 736 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 737 goto out; 738 739 rl->count[is_sync]++; 740 rl->starved[is_sync] = 0; 741 742 if (blk_rq_should_init_elevator(bio)) { 743 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 744 if (priv) 745 rl->elvpriv++; 746 } 747 748 if (blk_queue_io_stat(q)) 749 rw_flags |= REQ_IO_STAT; 750 spin_unlock_irq(q->queue_lock); 751 752 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 753 if (unlikely(!rq)) { 754 /* 755 * Allocation failed presumably due to memory. Undo anything 756 * we might have messed up. 757 * 758 * Allocating task should really be put onto the front of the 759 * wait queue, but this is pretty rare. 760 */ 761 spin_lock_irq(q->queue_lock); 762 freed_request(q, is_sync, priv); 763 764 /* 765 * in the very unlikely event that allocation failed and no 766 * requests for this direction was pending, mark us starved 767 * so that freeing of a request in the other direction will 768 * notice us. another possible fix would be to split the 769 * rq mempool into READ and WRITE 770 */ 771 rq_starved: 772 if (unlikely(rl->count[is_sync] == 0)) 773 rl->starved[is_sync] = 1; 774 775 goto out; 776 } 777 778 /* 779 * ioc may be NULL here, and ioc_batching will be false. That's 780 * OK, if the queue is under the request limit then requests need 781 * not count toward the nr_batch_requests limit. There will always 782 * be some limit enforced by BLK_BATCH_TIME. 783 */ 784 if (ioc_batching(q, ioc)) 785 ioc->nr_batch_requests--; 786 787 trace_block_getrq(q, bio, rw_flags & 1); 788 out: 789 return rq; 790 } 791 792 /* 793 * No available requests for this queue, wait for some requests to become 794 * available. 795 * 796 * Called with q->queue_lock held, and returns with it unlocked. 797 */ 798 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 799 struct bio *bio) 800 { 801 const bool is_sync = rw_is_sync(rw_flags) != 0; 802 struct request *rq; 803 804 rq = get_request(q, rw_flags, bio, GFP_NOIO); 805 while (!rq) { 806 DEFINE_WAIT(wait); 807 struct io_context *ioc; 808 struct request_list *rl = &q->rq; 809 810 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 811 TASK_UNINTERRUPTIBLE); 812 813 trace_block_sleeprq(q, bio, rw_flags & 1); 814 815 spin_unlock_irq(q->queue_lock); 816 io_schedule(); 817 818 /* 819 * After sleeping, we become a "batching" process and 820 * will be able to allocate at least one request, and 821 * up to a big batch of them for a small period time. 822 * See ioc_batching, ioc_set_batching 823 */ 824 ioc = current_io_context(GFP_NOIO, q->node); 825 ioc_set_batching(q, ioc); 826 827 spin_lock_irq(q->queue_lock); 828 finish_wait(&rl->wait[is_sync], &wait); 829 830 rq = get_request(q, rw_flags, bio, GFP_NOIO); 831 }; 832 833 return rq; 834 } 835 836 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 837 { 838 struct request *rq; 839 840 BUG_ON(rw != READ && rw != WRITE); 841 842 spin_lock_irq(q->queue_lock); 843 if (gfp_mask & __GFP_WAIT) { 844 rq = get_request_wait(q, rw, NULL); 845 } else { 846 rq = get_request(q, rw, NULL, gfp_mask); 847 if (!rq) 848 spin_unlock_irq(q->queue_lock); 849 } 850 /* q->queue_lock is unlocked at this point */ 851 852 return rq; 853 } 854 EXPORT_SYMBOL(blk_get_request); 855 856 /** 857 * blk_make_request - given a bio, allocate a corresponding struct request. 858 * @q: target request queue 859 * @bio: The bio describing the memory mappings that will be submitted for IO. 860 * It may be a chained-bio properly constructed by block/bio layer. 861 * @gfp_mask: gfp flags to be used for memory allocation 862 * 863 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 864 * type commands. Where the struct request needs to be farther initialized by 865 * the caller. It is passed a &struct bio, which describes the memory info of 866 * the I/O transfer. 867 * 868 * The caller of blk_make_request must make sure that bi_io_vec 869 * are set to describe the memory buffers. That bio_data_dir() will return 870 * the needed direction of the request. (And all bio's in the passed bio-chain 871 * are properly set accordingly) 872 * 873 * If called under none-sleepable conditions, mapped bio buffers must not 874 * need bouncing, by calling the appropriate masked or flagged allocator, 875 * suitable for the target device. Otherwise the call to blk_queue_bounce will 876 * BUG. 877 * 878 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 879 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 880 * anything but the first bio in the chain. Otherwise you risk waiting for IO 881 * completion of a bio that hasn't been submitted yet, thus resulting in a 882 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 883 * of bio_alloc(), as that avoids the mempool deadlock. 884 * If possible a big IO should be split into smaller parts when allocation 885 * fails. Partial allocation should not be an error, or you risk a live-lock. 886 */ 887 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 888 gfp_t gfp_mask) 889 { 890 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 891 892 if (unlikely(!rq)) 893 return ERR_PTR(-ENOMEM); 894 895 for_each_bio(bio) { 896 struct bio *bounce_bio = bio; 897 int ret; 898 899 blk_queue_bounce(q, &bounce_bio); 900 ret = blk_rq_append_bio(q, rq, bounce_bio); 901 if (unlikely(ret)) { 902 blk_put_request(rq); 903 return ERR_PTR(ret); 904 } 905 } 906 907 return rq; 908 } 909 EXPORT_SYMBOL(blk_make_request); 910 911 /** 912 * blk_requeue_request - put a request back on queue 913 * @q: request queue where request should be inserted 914 * @rq: request to be inserted 915 * 916 * Description: 917 * Drivers often keep queueing requests until the hardware cannot accept 918 * more, when that condition happens we need to put the request back 919 * on the queue. Must be called with queue lock held. 920 */ 921 void blk_requeue_request(struct request_queue *q, struct request *rq) 922 { 923 blk_delete_timer(rq); 924 blk_clear_rq_complete(rq); 925 trace_block_rq_requeue(q, rq); 926 927 if (blk_rq_tagged(rq)) 928 blk_queue_end_tag(q, rq); 929 930 BUG_ON(blk_queued_rq(rq)); 931 932 elv_requeue_request(q, rq); 933 } 934 EXPORT_SYMBOL(blk_requeue_request); 935 936 static void add_acct_request(struct request_queue *q, struct request *rq, 937 int where) 938 { 939 drive_stat_acct(rq, 1); 940 __elv_add_request(q, rq, where); 941 } 942 943 /** 944 * blk_insert_request - insert a special request into a request queue 945 * @q: request queue where request should be inserted 946 * @rq: request to be inserted 947 * @at_head: insert request at head or tail of queue 948 * @data: private data 949 * 950 * Description: 951 * Many block devices need to execute commands asynchronously, so they don't 952 * block the whole kernel from preemption during request execution. This is 953 * accomplished normally by inserting aritficial requests tagged as 954 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 955 * be scheduled for actual execution by the request queue. 956 * 957 * We have the option of inserting the head or the tail of the queue. 958 * Typically we use the tail for new ioctls and so forth. We use the head 959 * of the queue for things like a QUEUE_FULL message from a device, or a 960 * host that is unable to accept a particular command. 961 */ 962 void blk_insert_request(struct request_queue *q, struct request *rq, 963 int at_head, void *data) 964 { 965 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 966 unsigned long flags; 967 968 /* 969 * tell I/O scheduler that this isn't a regular read/write (ie it 970 * must not attempt merges on this) and that it acts as a soft 971 * barrier 972 */ 973 rq->cmd_type = REQ_TYPE_SPECIAL; 974 975 rq->special = data; 976 977 spin_lock_irqsave(q->queue_lock, flags); 978 979 /* 980 * If command is tagged, release the tag 981 */ 982 if (blk_rq_tagged(rq)) 983 blk_queue_end_tag(q, rq); 984 985 add_acct_request(q, rq, where); 986 __blk_run_queue(q); 987 spin_unlock_irqrestore(q->queue_lock, flags); 988 } 989 EXPORT_SYMBOL(blk_insert_request); 990 991 static void part_round_stats_single(int cpu, struct hd_struct *part, 992 unsigned long now) 993 { 994 if (now == part->stamp) 995 return; 996 997 if (part_in_flight(part)) { 998 __part_stat_add(cpu, part, time_in_queue, 999 part_in_flight(part) * (now - part->stamp)); 1000 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1001 } 1002 part->stamp = now; 1003 } 1004 1005 /** 1006 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1007 * @cpu: cpu number for stats access 1008 * @part: target partition 1009 * 1010 * The average IO queue length and utilisation statistics are maintained 1011 * by observing the current state of the queue length and the amount of 1012 * time it has been in this state for. 1013 * 1014 * Normally, that accounting is done on IO completion, but that can result 1015 * in more than a second's worth of IO being accounted for within any one 1016 * second, leading to >100% utilisation. To deal with that, we call this 1017 * function to do a round-off before returning the results when reading 1018 * /proc/diskstats. This accounts immediately for all queue usage up to 1019 * the current jiffies and restarts the counters again. 1020 */ 1021 void part_round_stats(int cpu, struct hd_struct *part) 1022 { 1023 unsigned long now = jiffies; 1024 1025 if (part->partno) 1026 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1027 part_round_stats_single(cpu, part, now); 1028 } 1029 EXPORT_SYMBOL_GPL(part_round_stats); 1030 1031 /* 1032 * queue lock must be held 1033 */ 1034 void __blk_put_request(struct request_queue *q, struct request *req) 1035 { 1036 if (unlikely(!q)) 1037 return; 1038 if (unlikely(--req->ref_count)) 1039 return; 1040 1041 elv_completed_request(q, req); 1042 1043 /* this is a bio leak */ 1044 WARN_ON(req->bio != NULL); 1045 1046 /* 1047 * Request may not have originated from ll_rw_blk. if not, 1048 * it didn't come out of our reserved rq pools 1049 */ 1050 if (req->cmd_flags & REQ_ALLOCED) { 1051 int is_sync = rq_is_sync(req) != 0; 1052 int priv = req->cmd_flags & REQ_ELVPRIV; 1053 1054 BUG_ON(!list_empty(&req->queuelist)); 1055 BUG_ON(!hlist_unhashed(&req->hash)); 1056 1057 blk_free_request(q, req); 1058 freed_request(q, is_sync, priv); 1059 } 1060 } 1061 EXPORT_SYMBOL_GPL(__blk_put_request); 1062 1063 void blk_put_request(struct request *req) 1064 { 1065 unsigned long flags; 1066 struct request_queue *q = req->q; 1067 1068 spin_lock_irqsave(q->queue_lock, flags); 1069 __blk_put_request(q, req); 1070 spin_unlock_irqrestore(q->queue_lock, flags); 1071 } 1072 EXPORT_SYMBOL(blk_put_request); 1073 1074 /** 1075 * blk_add_request_payload - add a payload to a request 1076 * @rq: request to update 1077 * @page: page backing the payload 1078 * @len: length of the payload. 1079 * 1080 * This allows to later add a payload to an already submitted request by 1081 * a block driver. The driver needs to take care of freeing the payload 1082 * itself. 1083 * 1084 * Note that this is a quite horrible hack and nothing but handling of 1085 * discard requests should ever use it. 1086 */ 1087 void blk_add_request_payload(struct request *rq, struct page *page, 1088 unsigned int len) 1089 { 1090 struct bio *bio = rq->bio; 1091 1092 bio->bi_io_vec->bv_page = page; 1093 bio->bi_io_vec->bv_offset = 0; 1094 bio->bi_io_vec->bv_len = len; 1095 1096 bio->bi_size = len; 1097 bio->bi_vcnt = 1; 1098 bio->bi_phys_segments = 1; 1099 1100 rq->__data_len = rq->resid_len = len; 1101 rq->nr_phys_segments = 1; 1102 rq->buffer = bio_data(bio); 1103 } 1104 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1105 1106 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1107 struct bio *bio) 1108 { 1109 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1110 1111 /* 1112 * Debug stuff, kill later 1113 */ 1114 if (!rq_mergeable(req)) { 1115 blk_dump_rq_flags(req, "back"); 1116 return false; 1117 } 1118 1119 if (!ll_back_merge_fn(q, req, bio)) 1120 return false; 1121 1122 trace_block_bio_backmerge(q, bio); 1123 1124 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1125 blk_rq_set_mixed_merge(req); 1126 1127 req->biotail->bi_next = bio; 1128 req->biotail = bio; 1129 req->__data_len += bio->bi_size; 1130 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1131 1132 drive_stat_acct(req, 0); 1133 return true; 1134 } 1135 1136 static bool bio_attempt_front_merge(struct request_queue *q, 1137 struct request *req, struct bio *bio) 1138 { 1139 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1140 sector_t sector; 1141 1142 /* 1143 * Debug stuff, kill later 1144 */ 1145 if (!rq_mergeable(req)) { 1146 blk_dump_rq_flags(req, "front"); 1147 return false; 1148 } 1149 1150 if (!ll_front_merge_fn(q, req, bio)) 1151 return false; 1152 1153 trace_block_bio_frontmerge(q, bio); 1154 1155 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1156 blk_rq_set_mixed_merge(req); 1157 1158 sector = bio->bi_sector; 1159 1160 bio->bi_next = req->bio; 1161 req->bio = bio; 1162 1163 /* 1164 * may not be valid. if the low level driver said 1165 * it didn't need a bounce buffer then it better 1166 * not touch req->buffer either... 1167 */ 1168 req->buffer = bio_data(bio); 1169 req->__sector = bio->bi_sector; 1170 req->__data_len += bio->bi_size; 1171 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1172 1173 drive_stat_acct(req, 0); 1174 return true; 1175 } 1176 1177 /* 1178 * Attempts to merge with the plugged list in the current process. Returns 1179 * true if merge was successful, otherwise false. 1180 */ 1181 static bool attempt_plug_merge(struct task_struct *tsk, struct request_queue *q, 1182 struct bio *bio) 1183 { 1184 struct blk_plug *plug; 1185 struct request *rq; 1186 bool ret = false; 1187 1188 plug = tsk->plug; 1189 if (!plug) 1190 goto out; 1191 1192 list_for_each_entry_reverse(rq, &plug->list, queuelist) { 1193 int el_ret; 1194 1195 if (rq->q != q) 1196 continue; 1197 1198 el_ret = elv_try_merge(rq, bio); 1199 if (el_ret == ELEVATOR_BACK_MERGE) { 1200 ret = bio_attempt_back_merge(q, rq, bio); 1201 if (ret) 1202 break; 1203 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1204 ret = bio_attempt_front_merge(q, rq, bio); 1205 if (ret) 1206 break; 1207 } 1208 } 1209 out: 1210 return ret; 1211 } 1212 1213 void init_request_from_bio(struct request *req, struct bio *bio) 1214 { 1215 req->cpu = bio->bi_comp_cpu; 1216 req->cmd_type = REQ_TYPE_FS; 1217 1218 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1219 if (bio->bi_rw & REQ_RAHEAD) 1220 req->cmd_flags |= REQ_FAILFAST_MASK; 1221 1222 req->errors = 0; 1223 req->__sector = bio->bi_sector; 1224 req->ioprio = bio_prio(bio); 1225 blk_rq_bio_prep(req->q, req, bio); 1226 } 1227 1228 static int __make_request(struct request_queue *q, struct bio *bio) 1229 { 1230 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1231 struct blk_plug *plug; 1232 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1233 struct request *req; 1234 1235 /* 1236 * low level driver can indicate that it wants pages above a 1237 * certain limit bounced to low memory (ie for highmem, or even 1238 * ISA dma in theory) 1239 */ 1240 blk_queue_bounce(q, &bio); 1241 1242 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1243 spin_lock_irq(q->queue_lock); 1244 where = ELEVATOR_INSERT_FLUSH; 1245 goto get_rq; 1246 } 1247 1248 /* 1249 * Check if we can merge with the plugged list before grabbing 1250 * any locks. 1251 */ 1252 if (attempt_plug_merge(current, q, bio)) 1253 goto out; 1254 1255 spin_lock_irq(q->queue_lock); 1256 1257 el_ret = elv_merge(q, &req, bio); 1258 if (el_ret == ELEVATOR_BACK_MERGE) { 1259 BUG_ON(req->cmd_flags & REQ_ON_PLUG); 1260 if (bio_attempt_back_merge(q, req, bio)) { 1261 if (!attempt_back_merge(q, req)) 1262 elv_merged_request(q, req, el_ret); 1263 goto out_unlock; 1264 } 1265 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1266 BUG_ON(req->cmd_flags & REQ_ON_PLUG); 1267 if (bio_attempt_front_merge(q, req, bio)) { 1268 if (!attempt_front_merge(q, req)) 1269 elv_merged_request(q, req, el_ret); 1270 goto out_unlock; 1271 } 1272 } 1273 1274 get_rq: 1275 /* 1276 * This sync check and mask will be re-done in init_request_from_bio(), 1277 * but we need to set it earlier to expose the sync flag to the 1278 * rq allocator and io schedulers. 1279 */ 1280 rw_flags = bio_data_dir(bio); 1281 if (sync) 1282 rw_flags |= REQ_SYNC; 1283 1284 /* 1285 * Grab a free request. This is might sleep but can not fail. 1286 * Returns with the queue unlocked. 1287 */ 1288 req = get_request_wait(q, rw_flags, bio); 1289 1290 /* 1291 * After dropping the lock and possibly sleeping here, our request 1292 * may now be mergeable after it had proven unmergeable (above). 1293 * We don't worry about that case for efficiency. It won't happen 1294 * often, and the elevators are able to handle it. 1295 */ 1296 init_request_from_bio(req, bio); 1297 1298 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1299 bio_flagged(bio, BIO_CPU_AFFINE)) { 1300 req->cpu = blk_cpu_to_group(get_cpu()); 1301 put_cpu(); 1302 } 1303 1304 plug = current->plug; 1305 if (plug) { 1306 /* 1307 * If this is the first request added after a plug, fire 1308 * of a plug trace. If others have been added before, check 1309 * if we have multiple devices in this plug. If so, make a 1310 * note to sort the list before dispatch. 1311 */ 1312 if (list_empty(&plug->list)) 1313 trace_block_plug(q); 1314 else if (!plug->should_sort) { 1315 struct request *__rq; 1316 1317 __rq = list_entry_rq(plug->list.prev); 1318 if (__rq->q != q) 1319 plug->should_sort = 1; 1320 } 1321 /* 1322 * Debug flag, kill later 1323 */ 1324 req->cmd_flags |= REQ_ON_PLUG; 1325 list_add_tail(&req->queuelist, &plug->list); 1326 drive_stat_acct(req, 1); 1327 } else { 1328 spin_lock_irq(q->queue_lock); 1329 add_acct_request(q, req, where); 1330 __blk_run_queue(q); 1331 out_unlock: 1332 spin_unlock_irq(q->queue_lock); 1333 } 1334 out: 1335 return 0; 1336 } 1337 1338 /* 1339 * If bio->bi_dev is a partition, remap the location 1340 */ 1341 static inline void blk_partition_remap(struct bio *bio) 1342 { 1343 struct block_device *bdev = bio->bi_bdev; 1344 1345 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1346 struct hd_struct *p = bdev->bd_part; 1347 1348 bio->bi_sector += p->start_sect; 1349 bio->bi_bdev = bdev->bd_contains; 1350 1351 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1352 bdev->bd_dev, 1353 bio->bi_sector - p->start_sect); 1354 } 1355 } 1356 1357 static void handle_bad_sector(struct bio *bio) 1358 { 1359 char b[BDEVNAME_SIZE]; 1360 1361 printk(KERN_INFO "attempt to access beyond end of device\n"); 1362 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1363 bdevname(bio->bi_bdev, b), 1364 bio->bi_rw, 1365 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1366 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1367 1368 set_bit(BIO_EOF, &bio->bi_flags); 1369 } 1370 1371 #ifdef CONFIG_FAIL_MAKE_REQUEST 1372 1373 static DECLARE_FAULT_ATTR(fail_make_request); 1374 1375 static int __init setup_fail_make_request(char *str) 1376 { 1377 return setup_fault_attr(&fail_make_request, str); 1378 } 1379 __setup("fail_make_request=", setup_fail_make_request); 1380 1381 static int should_fail_request(struct bio *bio) 1382 { 1383 struct hd_struct *part = bio->bi_bdev->bd_part; 1384 1385 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1386 return should_fail(&fail_make_request, bio->bi_size); 1387 1388 return 0; 1389 } 1390 1391 static int __init fail_make_request_debugfs(void) 1392 { 1393 return init_fault_attr_dentries(&fail_make_request, 1394 "fail_make_request"); 1395 } 1396 1397 late_initcall(fail_make_request_debugfs); 1398 1399 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1400 1401 static inline int should_fail_request(struct bio *bio) 1402 { 1403 return 0; 1404 } 1405 1406 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1407 1408 /* 1409 * Check whether this bio extends beyond the end of the device. 1410 */ 1411 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1412 { 1413 sector_t maxsector; 1414 1415 if (!nr_sectors) 1416 return 0; 1417 1418 /* Test device or partition size, when known. */ 1419 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1420 if (maxsector) { 1421 sector_t sector = bio->bi_sector; 1422 1423 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1424 /* 1425 * This may well happen - the kernel calls bread() 1426 * without checking the size of the device, e.g., when 1427 * mounting a device. 1428 */ 1429 handle_bad_sector(bio); 1430 return 1; 1431 } 1432 } 1433 1434 return 0; 1435 } 1436 1437 /** 1438 * generic_make_request - hand a buffer to its device driver for I/O 1439 * @bio: The bio describing the location in memory and on the device. 1440 * 1441 * generic_make_request() is used to make I/O requests of block 1442 * devices. It is passed a &struct bio, which describes the I/O that needs 1443 * to be done. 1444 * 1445 * generic_make_request() does not return any status. The 1446 * success/failure status of the request, along with notification of 1447 * completion, is delivered asynchronously through the bio->bi_end_io 1448 * function described (one day) else where. 1449 * 1450 * The caller of generic_make_request must make sure that bi_io_vec 1451 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1452 * set to describe the device address, and the 1453 * bi_end_io and optionally bi_private are set to describe how 1454 * completion notification should be signaled. 1455 * 1456 * generic_make_request and the drivers it calls may use bi_next if this 1457 * bio happens to be merged with someone else, and may change bi_dev and 1458 * bi_sector for remaps as it sees fit. So the values of these fields 1459 * should NOT be depended on after the call to generic_make_request. 1460 */ 1461 static inline void __generic_make_request(struct bio *bio) 1462 { 1463 struct request_queue *q; 1464 sector_t old_sector; 1465 int ret, nr_sectors = bio_sectors(bio); 1466 dev_t old_dev; 1467 int err = -EIO; 1468 1469 might_sleep(); 1470 1471 if (bio_check_eod(bio, nr_sectors)) 1472 goto end_io; 1473 1474 /* 1475 * Resolve the mapping until finished. (drivers are 1476 * still free to implement/resolve their own stacking 1477 * by explicitly returning 0) 1478 * 1479 * NOTE: we don't repeat the blk_size check for each new device. 1480 * Stacking drivers are expected to know what they are doing. 1481 */ 1482 old_sector = -1; 1483 old_dev = 0; 1484 do { 1485 char b[BDEVNAME_SIZE]; 1486 1487 q = bdev_get_queue(bio->bi_bdev); 1488 if (unlikely(!q)) { 1489 printk(KERN_ERR 1490 "generic_make_request: Trying to access " 1491 "nonexistent block-device %s (%Lu)\n", 1492 bdevname(bio->bi_bdev, b), 1493 (long long) bio->bi_sector); 1494 goto end_io; 1495 } 1496 1497 if (unlikely(!(bio->bi_rw & REQ_DISCARD) && 1498 nr_sectors > queue_max_hw_sectors(q))) { 1499 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1500 bdevname(bio->bi_bdev, b), 1501 bio_sectors(bio), 1502 queue_max_hw_sectors(q)); 1503 goto end_io; 1504 } 1505 1506 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1507 goto end_io; 1508 1509 if (should_fail_request(bio)) 1510 goto end_io; 1511 1512 /* 1513 * If this device has partitions, remap block n 1514 * of partition p to block n+start(p) of the disk. 1515 */ 1516 blk_partition_remap(bio); 1517 1518 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1519 goto end_io; 1520 1521 if (old_sector != -1) 1522 trace_block_bio_remap(q, bio, old_dev, old_sector); 1523 1524 old_sector = bio->bi_sector; 1525 old_dev = bio->bi_bdev->bd_dev; 1526 1527 if (bio_check_eod(bio, nr_sectors)) 1528 goto end_io; 1529 1530 /* 1531 * Filter flush bio's early so that make_request based 1532 * drivers without flush support don't have to worry 1533 * about them. 1534 */ 1535 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1536 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1537 if (!nr_sectors) { 1538 err = 0; 1539 goto end_io; 1540 } 1541 } 1542 1543 if ((bio->bi_rw & REQ_DISCARD) && 1544 (!blk_queue_discard(q) || 1545 ((bio->bi_rw & REQ_SECURE) && 1546 !blk_queue_secdiscard(q)))) { 1547 err = -EOPNOTSUPP; 1548 goto end_io; 1549 } 1550 1551 blk_throtl_bio(q, &bio); 1552 1553 /* 1554 * If bio = NULL, bio has been throttled and will be submitted 1555 * later. 1556 */ 1557 if (!bio) 1558 break; 1559 1560 trace_block_bio_queue(q, bio); 1561 1562 ret = q->make_request_fn(q, bio); 1563 } while (ret); 1564 1565 return; 1566 1567 end_io: 1568 bio_endio(bio, err); 1569 } 1570 1571 /* 1572 * We only want one ->make_request_fn to be active at a time, 1573 * else stack usage with stacked devices could be a problem. 1574 * So use current->bio_list to keep a list of requests 1575 * submited by a make_request_fn function. 1576 * current->bio_list is also used as a flag to say if 1577 * generic_make_request is currently active in this task or not. 1578 * If it is NULL, then no make_request is active. If it is non-NULL, 1579 * then a make_request is active, and new requests should be added 1580 * at the tail 1581 */ 1582 void generic_make_request(struct bio *bio) 1583 { 1584 struct bio_list bio_list_on_stack; 1585 1586 if (current->bio_list) { 1587 /* make_request is active */ 1588 bio_list_add(current->bio_list, bio); 1589 return; 1590 } 1591 /* following loop may be a bit non-obvious, and so deserves some 1592 * explanation. 1593 * Before entering the loop, bio->bi_next is NULL (as all callers 1594 * ensure that) so we have a list with a single bio. 1595 * We pretend that we have just taken it off a longer list, so 1596 * we assign bio_list to a pointer to the bio_list_on_stack, 1597 * thus initialising the bio_list of new bios to be 1598 * added. __generic_make_request may indeed add some more bios 1599 * through a recursive call to generic_make_request. If it 1600 * did, we find a non-NULL value in bio_list and re-enter the loop 1601 * from the top. In this case we really did just take the bio 1602 * of the top of the list (no pretending) and so remove it from 1603 * bio_list, and call into __generic_make_request again. 1604 * 1605 * The loop was structured like this to make only one call to 1606 * __generic_make_request (which is important as it is large and 1607 * inlined) and to keep the structure simple. 1608 */ 1609 BUG_ON(bio->bi_next); 1610 bio_list_init(&bio_list_on_stack); 1611 current->bio_list = &bio_list_on_stack; 1612 do { 1613 __generic_make_request(bio); 1614 bio = bio_list_pop(current->bio_list); 1615 } while (bio); 1616 current->bio_list = NULL; /* deactivate */ 1617 } 1618 EXPORT_SYMBOL(generic_make_request); 1619 1620 /** 1621 * submit_bio - submit a bio to the block device layer for I/O 1622 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1623 * @bio: The &struct bio which describes the I/O 1624 * 1625 * submit_bio() is very similar in purpose to generic_make_request(), and 1626 * uses that function to do most of the work. Both are fairly rough 1627 * interfaces; @bio must be presetup and ready for I/O. 1628 * 1629 */ 1630 void submit_bio(int rw, struct bio *bio) 1631 { 1632 int count = bio_sectors(bio); 1633 1634 bio->bi_rw |= rw; 1635 1636 /* 1637 * If it's a regular read/write or a barrier with data attached, 1638 * go through the normal accounting stuff before submission. 1639 */ 1640 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) { 1641 if (rw & WRITE) { 1642 count_vm_events(PGPGOUT, count); 1643 } else { 1644 task_io_account_read(bio->bi_size); 1645 count_vm_events(PGPGIN, count); 1646 } 1647 1648 if (unlikely(block_dump)) { 1649 char b[BDEVNAME_SIZE]; 1650 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1651 current->comm, task_pid_nr(current), 1652 (rw & WRITE) ? "WRITE" : "READ", 1653 (unsigned long long)bio->bi_sector, 1654 bdevname(bio->bi_bdev, b), 1655 count); 1656 } 1657 } 1658 1659 generic_make_request(bio); 1660 } 1661 EXPORT_SYMBOL(submit_bio); 1662 1663 /** 1664 * blk_rq_check_limits - Helper function to check a request for the queue limit 1665 * @q: the queue 1666 * @rq: the request being checked 1667 * 1668 * Description: 1669 * @rq may have been made based on weaker limitations of upper-level queues 1670 * in request stacking drivers, and it may violate the limitation of @q. 1671 * Since the block layer and the underlying device driver trust @rq 1672 * after it is inserted to @q, it should be checked against @q before 1673 * the insertion using this generic function. 1674 * 1675 * This function should also be useful for request stacking drivers 1676 * in some cases below, so export this function. 1677 * Request stacking drivers like request-based dm may change the queue 1678 * limits while requests are in the queue (e.g. dm's table swapping). 1679 * Such request stacking drivers should check those requests agaist 1680 * the new queue limits again when they dispatch those requests, 1681 * although such checkings are also done against the old queue limits 1682 * when submitting requests. 1683 */ 1684 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1685 { 1686 if (rq->cmd_flags & REQ_DISCARD) 1687 return 0; 1688 1689 if (blk_rq_sectors(rq) > queue_max_sectors(q) || 1690 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) { 1691 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1692 return -EIO; 1693 } 1694 1695 /* 1696 * queue's settings related to segment counting like q->bounce_pfn 1697 * may differ from that of other stacking queues. 1698 * Recalculate it to check the request correctly on this queue's 1699 * limitation. 1700 */ 1701 blk_recalc_rq_segments(rq); 1702 if (rq->nr_phys_segments > queue_max_segments(q)) { 1703 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1704 return -EIO; 1705 } 1706 1707 return 0; 1708 } 1709 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1710 1711 /** 1712 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1713 * @q: the queue to submit the request 1714 * @rq: the request being queued 1715 */ 1716 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1717 { 1718 unsigned long flags; 1719 1720 if (blk_rq_check_limits(q, rq)) 1721 return -EIO; 1722 1723 #ifdef CONFIG_FAIL_MAKE_REQUEST 1724 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1725 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1726 return -EIO; 1727 #endif 1728 1729 spin_lock_irqsave(q->queue_lock, flags); 1730 1731 /* 1732 * Submitting request must be dequeued before calling this function 1733 * because it will be linked to another request_queue 1734 */ 1735 BUG_ON(blk_queued_rq(rq)); 1736 1737 add_acct_request(q, rq, ELEVATOR_INSERT_BACK); 1738 spin_unlock_irqrestore(q->queue_lock, flags); 1739 1740 return 0; 1741 } 1742 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1743 1744 /** 1745 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1746 * @rq: request to examine 1747 * 1748 * Description: 1749 * A request could be merge of IOs which require different failure 1750 * handling. This function determines the number of bytes which 1751 * can be failed from the beginning of the request without 1752 * crossing into area which need to be retried further. 1753 * 1754 * Return: 1755 * The number of bytes to fail. 1756 * 1757 * Context: 1758 * queue_lock must be held. 1759 */ 1760 unsigned int blk_rq_err_bytes(const struct request *rq) 1761 { 1762 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1763 unsigned int bytes = 0; 1764 struct bio *bio; 1765 1766 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1767 return blk_rq_bytes(rq); 1768 1769 /* 1770 * Currently the only 'mixing' which can happen is between 1771 * different fastfail types. We can safely fail portions 1772 * which have all the failfast bits that the first one has - 1773 * the ones which are at least as eager to fail as the first 1774 * one. 1775 */ 1776 for (bio = rq->bio; bio; bio = bio->bi_next) { 1777 if ((bio->bi_rw & ff) != ff) 1778 break; 1779 bytes += bio->bi_size; 1780 } 1781 1782 /* this could lead to infinite loop */ 1783 BUG_ON(blk_rq_bytes(rq) && !bytes); 1784 return bytes; 1785 } 1786 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1787 1788 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1789 { 1790 if (blk_do_io_stat(req)) { 1791 const int rw = rq_data_dir(req); 1792 struct hd_struct *part; 1793 int cpu; 1794 1795 cpu = part_stat_lock(); 1796 part = req->part; 1797 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1798 part_stat_unlock(); 1799 } 1800 } 1801 1802 static void blk_account_io_done(struct request *req) 1803 { 1804 /* 1805 * Account IO completion. flush_rq isn't accounted as a 1806 * normal IO on queueing nor completion. Accounting the 1807 * containing request is enough. 1808 */ 1809 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 1810 unsigned long duration = jiffies - req->start_time; 1811 const int rw = rq_data_dir(req); 1812 struct hd_struct *part; 1813 int cpu; 1814 1815 cpu = part_stat_lock(); 1816 part = req->part; 1817 1818 part_stat_inc(cpu, part, ios[rw]); 1819 part_stat_add(cpu, part, ticks[rw], duration); 1820 part_round_stats(cpu, part); 1821 part_dec_in_flight(part, rw); 1822 1823 hd_struct_put(part); 1824 part_stat_unlock(); 1825 } 1826 } 1827 1828 /** 1829 * blk_peek_request - peek at the top of a request queue 1830 * @q: request queue to peek at 1831 * 1832 * Description: 1833 * Return the request at the top of @q. The returned request 1834 * should be started using blk_start_request() before LLD starts 1835 * processing it. 1836 * 1837 * Return: 1838 * Pointer to the request at the top of @q if available. Null 1839 * otherwise. 1840 * 1841 * Context: 1842 * queue_lock must be held. 1843 */ 1844 struct request *blk_peek_request(struct request_queue *q) 1845 { 1846 struct request *rq; 1847 int ret; 1848 1849 while ((rq = __elv_next_request(q)) != NULL) { 1850 if (!(rq->cmd_flags & REQ_STARTED)) { 1851 /* 1852 * This is the first time the device driver 1853 * sees this request (possibly after 1854 * requeueing). Notify IO scheduler. 1855 */ 1856 if (rq->cmd_flags & REQ_SORTED) 1857 elv_activate_rq(q, rq); 1858 1859 /* 1860 * just mark as started even if we don't start 1861 * it, a request that has been delayed should 1862 * not be passed by new incoming requests 1863 */ 1864 rq->cmd_flags |= REQ_STARTED; 1865 trace_block_rq_issue(q, rq); 1866 } 1867 1868 if (!q->boundary_rq || q->boundary_rq == rq) { 1869 q->end_sector = rq_end_sector(rq); 1870 q->boundary_rq = NULL; 1871 } 1872 1873 if (rq->cmd_flags & REQ_DONTPREP) 1874 break; 1875 1876 if (q->dma_drain_size && blk_rq_bytes(rq)) { 1877 /* 1878 * make sure space for the drain appears we 1879 * know we can do this because max_hw_segments 1880 * has been adjusted to be one fewer than the 1881 * device can handle 1882 */ 1883 rq->nr_phys_segments++; 1884 } 1885 1886 if (!q->prep_rq_fn) 1887 break; 1888 1889 ret = q->prep_rq_fn(q, rq); 1890 if (ret == BLKPREP_OK) { 1891 break; 1892 } else if (ret == BLKPREP_DEFER) { 1893 /* 1894 * the request may have been (partially) prepped. 1895 * we need to keep this request in the front to 1896 * avoid resource deadlock. REQ_STARTED will 1897 * prevent other fs requests from passing this one. 1898 */ 1899 if (q->dma_drain_size && blk_rq_bytes(rq) && 1900 !(rq->cmd_flags & REQ_DONTPREP)) { 1901 /* 1902 * remove the space for the drain we added 1903 * so that we don't add it again 1904 */ 1905 --rq->nr_phys_segments; 1906 } 1907 1908 rq = NULL; 1909 break; 1910 } else if (ret == BLKPREP_KILL) { 1911 rq->cmd_flags |= REQ_QUIET; 1912 /* 1913 * Mark this request as started so we don't trigger 1914 * any debug logic in the end I/O path. 1915 */ 1916 blk_start_request(rq); 1917 __blk_end_request_all(rq, -EIO); 1918 } else { 1919 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 1920 break; 1921 } 1922 } 1923 1924 return rq; 1925 } 1926 EXPORT_SYMBOL(blk_peek_request); 1927 1928 void blk_dequeue_request(struct request *rq) 1929 { 1930 struct request_queue *q = rq->q; 1931 1932 BUG_ON(list_empty(&rq->queuelist)); 1933 BUG_ON(ELV_ON_HASH(rq)); 1934 1935 list_del_init(&rq->queuelist); 1936 1937 /* 1938 * the time frame between a request being removed from the lists 1939 * and to it is freed is accounted as io that is in progress at 1940 * the driver side. 1941 */ 1942 if (blk_account_rq(rq)) { 1943 q->in_flight[rq_is_sync(rq)]++; 1944 set_io_start_time_ns(rq); 1945 } 1946 } 1947 1948 /** 1949 * blk_start_request - start request processing on the driver 1950 * @req: request to dequeue 1951 * 1952 * Description: 1953 * Dequeue @req and start timeout timer on it. This hands off the 1954 * request to the driver. 1955 * 1956 * Block internal functions which don't want to start timer should 1957 * call blk_dequeue_request(). 1958 * 1959 * Context: 1960 * queue_lock must be held. 1961 */ 1962 void blk_start_request(struct request *req) 1963 { 1964 blk_dequeue_request(req); 1965 1966 /* 1967 * We are now handing the request to the hardware, initialize 1968 * resid_len to full count and add the timeout handler. 1969 */ 1970 req->resid_len = blk_rq_bytes(req); 1971 if (unlikely(blk_bidi_rq(req))) 1972 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 1973 1974 blk_add_timer(req); 1975 } 1976 EXPORT_SYMBOL(blk_start_request); 1977 1978 /** 1979 * blk_fetch_request - fetch a request from a request queue 1980 * @q: request queue to fetch a request from 1981 * 1982 * Description: 1983 * Return the request at the top of @q. The request is started on 1984 * return and LLD can start processing it immediately. 1985 * 1986 * Return: 1987 * Pointer to the request at the top of @q if available. Null 1988 * otherwise. 1989 * 1990 * Context: 1991 * queue_lock must be held. 1992 */ 1993 struct request *blk_fetch_request(struct request_queue *q) 1994 { 1995 struct request *rq; 1996 1997 rq = blk_peek_request(q); 1998 if (rq) 1999 blk_start_request(rq); 2000 return rq; 2001 } 2002 EXPORT_SYMBOL(blk_fetch_request); 2003 2004 /** 2005 * blk_update_request - Special helper function for request stacking drivers 2006 * @req: the request being processed 2007 * @error: %0 for success, < %0 for error 2008 * @nr_bytes: number of bytes to complete @req 2009 * 2010 * Description: 2011 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2012 * the request structure even if @req doesn't have leftover. 2013 * If @req has leftover, sets it up for the next range of segments. 2014 * 2015 * This special helper function is only for request stacking drivers 2016 * (e.g. request-based dm) so that they can handle partial completion. 2017 * Actual device drivers should use blk_end_request instead. 2018 * 2019 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2020 * %false return from this function. 2021 * 2022 * Return: 2023 * %false - this request doesn't have any more data 2024 * %true - this request has more data 2025 **/ 2026 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2027 { 2028 int total_bytes, bio_nbytes, next_idx = 0; 2029 struct bio *bio; 2030 2031 if (!req->bio) 2032 return false; 2033 2034 trace_block_rq_complete(req->q, req); 2035 2036 /* 2037 * For fs requests, rq is just carrier of independent bio's 2038 * and each partial completion should be handled separately. 2039 * Reset per-request error on each partial completion. 2040 * 2041 * TODO: tj: This is too subtle. It would be better to let 2042 * low level drivers do what they see fit. 2043 */ 2044 if (req->cmd_type == REQ_TYPE_FS) 2045 req->errors = 0; 2046 2047 if (error && req->cmd_type == REQ_TYPE_FS && 2048 !(req->cmd_flags & REQ_QUIET)) { 2049 char *error_type; 2050 2051 switch (error) { 2052 case -ENOLINK: 2053 error_type = "recoverable transport"; 2054 break; 2055 case -EREMOTEIO: 2056 error_type = "critical target"; 2057 break; 2058 case -EBADE: 2059 error_type = "critical nexus"; 2060 break; 2061 case -EIO: 2062 default: 2063 error_type = "I/O"; 2064 break; 2065 } 2066 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2067 error_type, req->rq_disk ? req->rq_disk->disk_name : "?", 2068 (unsigned long long)blk_rq_pos(req)); 2069 } 2070 2071 blk_account_io_completion(req, nr_bytes); 2072 2073 total_bytes = bio_nbytes = 0; 2074 while ((bio = req->bio) != NULL) { 2075 int nbytes; 2076 2077 if (nr_bytes >= bio->bi_size) { 2078 req->bio = bio->bi_next; 2079 nbytes = bio->bi_size; 2080 req_bio_endio(req, bio, nbytes, error); 2081 next_idx = 0; 2082 bio_nbytes = 0; 2083 } else { 2084 int idx = bio->bi_idx + next_idx; 2085 2086 if (unlikely(idx >= bio->bi_vcnt)) { 2087 blk_dump_rq_flags(req, "__end_that"); 2088 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2089 __func__, idx, bio->bi_vcnt); 2090 break; 2091 } 2092 2093 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2094 BIO_BUG_ON(nbytes > bio->bi_size); 2095 2096 /* 2097 * not a complete bvec done 2098 */ 2099 if (unlikely(nbytes > nr_bytes)) { 2100 bio_nbytes += nr_bytes; 2101 total_bytes += nr_bytes; 2102 break; 2103 } 2104 2105 /* 2106 * advance to the next vector 2107 */ 2108 next_idx++; 2109 bio_nbytes += nbytes; 2110 } 2111 2112 total_bytes += nbytes; 2113 nr_bytes -= nbytes; 2114 2115 bio = req->bio; 2116 if (bio) { 2117 /* 2118 * end more in this run, or just return 'not-done' 2119 */ 2120 if (unlikely(nr_bytes <= 0)) 2121 break; 2122 } 2123 } 2124 2125 /* 2126 * completely done 2127 */ 2128 if (!req->bio) { 2129 /* 2130 * Reset counters so that the request stacking driver 2131 * can find how many bytes remain in the request 2132 * later. 2133 */ 2134 req->__data_len = 0; 2135 return false; 2136 } 2137 2138 /* 2139 * if the request wasn't completed, update state 2140 */ 2141 if (bio_nbytes) { 2142 req_bio_endio(req, bio, bio_nbytes, error); 2143 bio->bi_idx += next_idx; 2144 bio_iovec(bio)->bv_offset += nr_bytes; 2145 bio_iovec(bio)->bv_len -= nr_bytes; 2146 } 2147 2148 req->__data_len -= total_bytes; 2149 req->buffer = bio_data(req->bio); 2150 2151 /* update sector only for requests with clear definition of sector */ 2152 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD)) 2153 req->__sector += total_bytes >> 9; 2154 2155 /* mixed attributes always follow the first bio */ 2156 if (req->cmd_flags & REQ_MIXED_MERGE) { 2157 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2158 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2159 } 2160 2161 /* 2162 * If total number of sectors is less than the first segment 2163 * size, something has gone terribly wrong. 2164 */ 2165 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2166 blk_dump_rq_flags(req, "request botched"); 2167 req->__data_len = blk_rq_cur_bytes(req); 2168 } 2169 2170 /* recalculate the number of segments */ 2171 blk_recalc_rq_segments(req); 2172 2173 return true; 2174 } 2175 EXPORT_SYMBOL_GPL(blk_update_request); 2176 2177 static bool blk_update_bidi_request(struct request *rq, int error, 2178 unsigned int nr_bytes, 2179 unsigned int bidi_bytes) 2180 { 2181 if (blk_update_request(rq, error, nr_bytes)) 2182 return true; 2183 2184 /* Bidi request must be completed as a whole */ 2185 if (unlikely(blk_bidi_rq(rq)) && 2186 blk_update_request(rq->next_rq, error, bidi_bytes)) 2187 return true; 2188 2189 if (blk_queue_add_random(rq->q)) 2190 add_disk_randomness(rq->rq_disk); 2191 2192 return false; 2193 } 2194 2195 /** 2196 * blk_unprep_request - unprepare a request 2197 * @req: the request 2198 * 2199 * This function makes a request ready for complete resubmission (or 2200 * completion). It happens only after all error handling is complete, 2201 * so represents the appropriate moment to deallocate any resources 2202 * that were allocated to the request in the prep_rq_fn. The queue 2203 * lock is held when calling this. 2204 */ 2205 void blk_unprep_request(struct request *req) 2206 { 2207 struct request_queue *q = req->q; 2208 2209 req->cmd_flags &= ~REQ_DONTPREP; 2210 if (q->unprep_rq_fn) 2211 q->unprep_rq_fn(q, req); 2212 } 2213 EXPORT_SYMBOL_GPL(blk_unprep_request); 2214 2215 /* 2216 * queue lock must be held 2217 */ 2218 static void blk_finish_request(struct request *req, int error) 2219 { 2220 if (blk_rq_tagged(req)) 2221 blk_queue_end_tag(req->q, req); 2222 2223 BUG_ON(blk_queued_rq(req)); 2224 2225 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2226 laptop_io_completion(&req->q->backing_dev_info); 2227 2228 blk_delete_timer(req); 2229 2230 if (req->cmd_flags & REQ_DONTPREP) 2231 blk_unprep_request(req); 2232 2233 2234 blk_account_io_done(req); 2235 2236 if (req->end_io) 2237 req->end_io(req, error); 2238 else { 2239 if (blk_bidi_rq(req)) 2240 __blk_put_request(req->next_rq->q, req->next_rq); 2241 2242 __blk_put_request(req->q, req); 2243 } 2244 } 2245 2246 /** 2247 * blk_end_bidi_request - Complete a bidi request 2248 * @rq: the request to complete 2249 * @error: %0 for success, < %0 for error 2250 * @nr_bytes: number of bytes to complete @rq 2251 * @bidi_bytes: number of bytes to complete @rq->next_rq 2252 * 2253 * Description: 2254 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2255 * Drivers that supports bidi can safely call this member for any 2256 * type of request, bidi or uni. In the later case @bidi_bytes is 2257 * just ignored. 2258 * 2259 * Return: 2260 * %false - we are done with this request 2261 * %true - still buffers pending for this request 2262 **/ 2263 static bool blk_end_bidi_request(struct request *rq, int error, 2264 unsigned int nr_bytes, unsigned int bidi_bytes) 2265 { 2266 struct request_queue *q = rq->q; 2267 unsigned long flags; 2268 2269 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2270 return true; 2271 2272 spin_lock_irqsave(q->queue_lock, flags); 2273 blk_finish_request(rq, error); 2274 spin_unlock_irqrestore(q->queue_lock, flags); 2275 2276 return false; 2277 } 2278 2279 /** 2280 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2281 * @rq: the request to complete 2282 * @error: %0 for success, < %0 for error 2283 * @nr_bytes: number of bytes to complete @rq 2284 * @bidi_bytes: number of bytes to complete @rq->next_rq 2285 * 2286 * Description: 2287 * Identical to blk_end_bidi_request() except that queue lock is 2288 * assumed to be locked on entry and remains so on return. 2289 * 2290 * Return: 2291 * %false - we are done with this request 2292 * %true - still buffers pending for this request 2293 **/ 2294 static bool __blk_end_bidi_request(struct request *rq, int error, 2295 unsigned int nr_bytes, unsigned int bidi_bytes) 2296 { 2297 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2298 return true; 2299 2300 blk_finish_request(rq, error); 2301 2302 return false; 2303 } 2304 2305 /** 2306 * blk_end_request - Helper function for drivers to complete the request. 2307 * @rq: the request being processed 2308 * @error: %0 for success, < %0 for error 2309 * @nr_bytes: number of bytes to complete 2310 * 2311 * Description: 2312 * Ends I/O on a number of bytes attached to @rq. 2313 * If @rq has leftover, sets it up for the next range of segments. 2314 * 2315 * Return: 2316 * %false - we are done with this request 2317 * %true - still buffers pending for this request 2318 **/ 2319 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2320 { 2321 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2322 } 2323 EXPORT_SYMBOL(blk_end_request); 2324 2325 /** 2326 * blk_end_request_all - Helper function for drives to finish the request. 2327 * @rq: the request to finish 2328 * @error: %0 for success, < %0 for error 2329 * 2330 * Description: 2331 * Completely finish @rq. 2332 */ 2333 void blk_end_request_all(struct request *rq, int error) 2334 { 2335 bool pending; 2336 unsigned int bidi_bytes = 0; 2337 2338 if (unlikely(blk_bidi_rq(rq))) 2339 bidi_bytes = blk_rq_bytes(rq->next_rq); 2340 2341 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2342 BUG_ON(pending); 2343 } 2344 EXPORT_SYMBOL(blk_end_request_all); 2345 2346 /** 2347 * blk_end_request_cur - Helper function to finish the current request chunk. 2348 * @rq: the request to finish the current chunk for 2349 * @error: %0 for success, < %0 for error 2350 * 2351 * Description: 2352 * Complete the current consecutively mapped chunk from @rq. 2353 * 2354 * Return: 2355 * %false - we are done with this request 2356 * %true - still buffers pending for this request 2357 */ 2358 bool blk_end_request_cur(struct request *rq, int error) 2359 { 2360 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2361 } 2362 EXPORT_SYMBOL(blk_end_request_cur); 2363 2364 /** 2365 * blk_end_request_err - Finish a request till the next failure boundary. 2366 * @rq: the request to finish till the next failure boundary for 2367 * @error: must be negative errno 2368 * 2369 * Description: 2370 * Complete @rq till the next failure boundary. 2371 * 2372 * Return: 2373 * %false - we are done with this request 2374 * %true - still buffers pending for this request 2375 */ 2376 bool blk_end_request_err(struct request *rq, int error) 2377 { 2378 WARN_ON(error >= 0); 2379 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2380 } 2381 EXPORT_SYMBOL_GPL(blk_end_request_err); 2382 2383 /** 2384 * __blk_end_request - Helper function for drivers to complete the request. 2385 * @rq: the request being processed 2386 * @error: %0 for success, < %0 for error 2387 * @nr_bytes: number of bytes to complete 2388 * 2389 * Description: 2390 * Must be called with queue lock held unlike blk_end_request(). 2391 * 2392 * Return: 2393 * %false - we are done with this request 2394 * %true - still buffers pending for this request 2395 **/ 2396 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2397 { 2398 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2399 } 2400 EXPORT_SYMBOL(__blk_end_request); 2401 2402 /** 2403 * __blk_end_request_all - Helper function for drives to finish the request. 2404 * @rq: the request to finish 2405 * @error: %0 for success, < %0 for error 2406 * 2407 * Description: 2408 * Completely finish @rq. Must be called with queue lock held. 2409 */ 2410 void __blk_end_request_all(struct request *rq, int error) 2411 { 2412 bool pending; 2413 unsigned int bidi_bytes = 0; 2414 2415 if (unlikely(blk_bidi_rq(rq))) 2416 bidi_bytes = blk_rq_bytes(rq->next_rq); 2417 2418 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2419 BUG_ON(pending); 2420 } 2421 EXPORT_SYMBOL(__blk_end_request_all); 2422 2423 /** 2424 * __blk_end_request_cur - Helper function to finish the current request chunk. 2425 * @rq: the request to finish the current chunk for 2426 * @error: %0 for success, < %0 for error 2427 * 2428 * Description: 2429 * Complete the current consecutively mapped chunk from @rq. Must 2430 * be called with queue lock held. 2431 * 2432 * Return: 2433 * %false - we are done with this request 2434 * %true - still buffers pending for this request 2435 */ 2436 bool __blk_end_request_cur(struct request *rq, int error) 2437 { 2438 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2439 } 2440 EXPORT_SYMBOL(__blk_end_request_cur); 2441 2442 /** 2443 * __blk_end_request_err - Finish a request till the next failure boundary. 2444 * @rq: the request to finish till the next failure boundary for 2445 * @error: must be negative errno 2446 * 2447 * Description: 2448 * Complete @rq till the next failure boundary. Must be called 2449 * with queue lock held. 2450 * 2451 * Return: 2452 * %false - we are done with this request 2453 * %true - still buffers pending for this request 2454 */ 2455 bool __blk_end_request_err(struct request *rq, int error) 2456 { 2457 WARN_ON(error >= 0); 2458 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2459 } 2460 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2461 2462 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2463 struct bio *bio) 2464 { 2465 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2466 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2467 2468 if (bio_has_data(bio)) { 2469 rq->nr_phys_segments = bio_phys_segments(q, bio); 2470 rq->buffer = bio_data(bio); 2471 } 2472 rq->__data_len = bio->bi_size; 2473 rq->bio = rq->biotail = bio; 2474 2475 if (bio->bi_bdev) 2476 rq->rq_disk = bio->bi_bdev->bd_disk; 2477 } 2478 2479 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2480 /** 2481 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2482 * @rq: the request to be flushed 2483 * 2484 * Description: 2485 * Flush all pages in @rq. 2486 */ 2487 void rq_flush_dcache_pages(struct request *rq) 2488 { 2489 struct req_iterator iter; 2490 struct bio_vec *bvec; 2491 2492 rq_for_each_segment(bvec, rq, iter) 2493 flush_dcache_page(bvec->bv_page); 2494 } 2495 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2496 #endif 2497 2498 /** 2499 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2500 * @q : the queue of the device being checked 2501 * 2502 * Description: 2503 * Check if underlying low-level drivers of a device are busy. 2504 * If the drivers want to export their busy state, they must set own 2505 * exporting function using blk_queue_lld_busy() first. 2506 * 2507 * Basically, this function is used only by request stacking drivers 2508 * to stop dispatching requests to underlying devices when underlying 2509 * devices are busy. This behavior helps more I/O merging on the queue 2510 * of the request stacking driver and prevents I/O throughput regression 2511 * on burst I/O load. 2512 * 2513 * Return: 2514 * 0 - Not busy (The request stacking driver should dispatch request) 2515 * 1 - Busy (The request stacking driver should stop dispatching request) 2516 */ 2517 int blk_lld_busy(struct request_queue *q) 2518 { 2519 if (q->lld_busy_fn) 2520 return q->lld_busy_fn(q); 2521 2522 return 0; 2523 } 2524 EXPORT_SYMBOL_GPL(blk_lld_busy); 2525 2526 /** 2527 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2528 * @rq: the clone request to be cleaned up 2529 * 2530 * Description: 2531 * Free all bios in @rq for a cloned request. 2532 */ 2533 void blk_rq_unprep_clone(struct request *rq) 2534 { 2535 struct bio *bio; 2536 2537 while ((bio = rq->bio) != NULL) { 2538 rq->bio = bio->bi_next; 2539 2540 bio_put(bio); 2541 } 2542 } 2543 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2544 2545 /* 2546 * Copy attributes of the original request to the clone request. 2547 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2548 */ 2549 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2550 { 2551 dst->cpu = src->cpu; 2552 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2553 dst->cmd_type = src->cmd_type; 2554 dst->__sector = blk_rq_pos(src); 2555 dst->__data_len = blk_rq_bytes(src); 2556 dst->nr_phys_segments = src->nr_phys_segments; 2557 dst->ioprio = src->ioprio; 2558 dst->extra_len = src->extra_len; 2559 } 2560 2561 /** 2562 * blk_rq_prep_clone - Helper function to setup clone request 2563 * @rq: the request to be setup 2564 * @rq_src: original request to be cloned 2565 * @bs: bio_set that bios for clone are allocated from 2566 * @gfp_mask: memory allocation mask for bio 2567 * @bio_ctr: setup function to be called for each clone bio. 2568 * Returns %0 for success, non %0 for failure. 2569 * @data: private data to be passed to @bio_ctr 2570 * 2571 * Description: 2572 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2573 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2574 * are not copied, and copying such parts is the caller's responsibility. 2575 * Also, pages which the original bios are pointing to are not copied 2576 * and the cloned bios just point same pages. 2577 * So cloned bios must be completed before original bios, which means 2578 * the caller must complete @rq before @rq_src. 2579 */ 2580 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2581 struct bio_set *bs, gfp_t gfp_mask, 2582 int (*bio_ctr)(struct bio *, struct bio *, void *), 2583 void *data) 2584 { 2585 struct bio *bio, *bio_src; 2586 2587 if (!bs) 2588 bs = fs_bio_set; 2589 2590 blk_rq_init(NULL, rq); 2591 2592 __rq_for_each_bio(bio_src, rq_src) { 2593 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs); 2594 if (!bio) 2595 goto free_and_out; 2596 2597 __bio_clone(bio, bio_src); 2598 2599 if (bio_integrity(bio_src) && 2600 bio_integrity_clone(bio, bio_src, gfp_mask, bs)) 2601 goto free_and_out; 2602 2603 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2604 goto free_and_out; 2605 2606 if (rq->bio) { 2607 rq->biotail->bi_next = bio; 2608 rq->biotail = bio; 2609 } else 2610 rq->bio = rq->biotail = bio; 2611 } 2612 2613 __blk_rq_prep_clone(rq, rq_src); 2614 2615 return 0; 2616 2617 free_and_out: 2618 if (bio) 2619 bio_free(bio, bs); 2620 blk_rq_unprep_clone(rq); 2621 2622 return -ENOMEM; 2623 } 2624 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2625 2626 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2627 { 2628 return queue_work(kblockd_workqueue, work); 2629 } 2630 EXPORT_SYMBOL(kblockd_schedule_work); 2631 2632 int kblockd_schedule_delayed_work(struct request_queue *q, 2633 struct delayed_work *dwork, unsigned long delay) 2634 { 2635 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2636 } 2637 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2638 2639 #define PLUG_MAGIC 0x91827364 2640 2641 void blk_start_plug(struct blk_plug *plug) 2642 { 2643 struct task_struct *tsk = current; 2644 2645 plug->magic = PLUG_MAGIC; 2646 INIT_LIST_HEAD(&plug->list); 2647 INIT_LIST_HEAD(&plug->cb_list); 2648 plug->should_sort = 0; 2649 2650 /* 2651 * If this is a nested plug, don't actually assign it. It will be 2652 * flushed on its own. 2653 */ 2654 if (!tsk->plug) { 2655 /* 2656 * Store ordering should not be needed here, since a potential 2657 * preempt will imply a full memory barrier 2658 */ 2659 tsk->plug = plug; 2660 } 2661 } 2662 EXPORT_SYMBOL(blk_start_plug); 2663 2664 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2665 { 2666 struct request *rqa = container_of(a, struct request, queuelist); 2667 struct request *rqb = container_of(b, struct request, queuelist); 2668 2669 return !(rqa->q <= rqb->q); 2670 } 2671 2672 /* 2673 * If 'from_schedule' is true, then postpone the dispatch of requests 2674 * until a safe kblockd context. We due this to avoid accidental big 2675 * additional stack usage in driver dispatch, in places where the originally 2676 * plugger did not intend it. 2677 */ 2678 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2679 bool from_schedule) 2680 __releases(q->queue_lock) 2681 { 2682 trace_block_unplug(q, depth, !from_schedule); 2683 2684 /* 2685 * If we are punting this to kblockd, then we can safely drop 2686 * the queue_lock before waking kblockd (which needs to take 2687 * this lock). 2688 */ 2689 if (from_schedule) { 2690 spin_unlock(q->queue_lock); 2691 blk_run_queue_async(q); 2692 } else { 2693 __blk_run_queue(q); 2694 spin_unlock(q->queue_lock); 2695 } 2696 2697 } 2698 2699 static void flush_plug_callbacks(struct blk_plug *plug) 2700 { 2701 LIST_HEAD(callbacks); 2702 2703 if (list_empty(&plug->cb_list)) 2704 return; 2705 2706 list_splice_init(&plug->cb_list, &callbacks); 2707 2708 while (!list_empty(&callbacks)) { 2709 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2710 struct blk_plug_cb, 2711 list); 2712 list_del(&cb->list); 2713 cb->callback(cb); 2714 } 2715 } 2716 2717 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2718 { 2719 struct request_queue *q; 2720 unsigned long flags; 2721 struct request *rq; 2722 LIST_HEAD(list); 2723 unsigned int depth; 2724 2725 BUG_ON(plug->magic != PLUG_MAGIC); 2726 2727 flush_plug_callbacks(plug); 2728 if (list_empty(&plug->list)) 2729 return; 2730 2731 list_splice_init(&plug->list, &list); 2732 2733 if (plug->should_sort) { 2734 list_sort(NULL, &list, plug_rq_cmp); 2735 plug->should_sort = 0; 2736 } 2737 2738 q = NULL; 2739 depth = 0; 2740 2741 /* 2742 * Save and disable interrupts here, to avoid doing it for every 2743 * queue lock we have to take. 2744 */ 2745 local_irq_save(flags); 2746 while (!list_empty(&list)) { 2747 rq = list_entry_rq(list.next); 2748 list_del_init(&rq->queuelist); 2749 BUG_ON(!(rq->cmd_flags & REQ_ON_PLUG)); 2750 BUG_ON(!rq->q); 2751 if (rq->q != q) { 2752 /* 2753 * This drops the queue lock 2754 */ 2755 if (q) 2756 queue_unplugged(q, depth, from_schedule); 2757 q = rq->q; 2758 depth = 0; 2759 spin_lock(q->queue_lock); 2760 } 2761 rq->cmd_flags &= ~REQ_ON_PLUG; 2762 2763 /* 2764 * rq is already accounted, so use raw insert 2765 */ 2766 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 2767 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 2768 else 2769 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 2770 2771 depth++; 2772 } 2773 2774 /* 2775 * This drops the queue lock 2776 */ 2777 if (q) 2778 queue_unplugged(q, depth, from_schedule); 2779 2780 local_irq_restore(flags); 2781 } 2782 2783 void blk_finish_plug(struct blk_plug *plug) 2784 { 2785 blk_flush_plug_list(plug, false); 2786 2787 if (plug == current->plug) 2788 current->plug = NULL; 2789 } 2790 EXPORT_SYMBOL(blk_finish_plug); 2791 2792 int __init blk_dev_init(void) 2793 { 2794 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 2795 sizeof(((struct request *)0)->cmd_flags)); 2796 2797 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 2798 kblockd_workqueue = alloc_workqueue("kblockd", 2799 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2800 if (!kblockd_workqueue) 2801 panic("Failed to create kblockd\n"); 2802 2803 request_cachep = kmem_cache_create("blkdev_requests", 2804 sizeof(struct request), 0, SLAB_PANIC, NULL); 2805 2806 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2807 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2808 2809 return 0; 2810 } 2811