1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/interrupt.h> 30 #include <linux/cpu.h> 31 #include <linux/blktrace_api.h> 32 #include <linux/fault-inject.h> 33 34 #include "blk.h" 35 36 static int __make_request(struct request_queue *q, struct bio *bio); 37 38 /* 39 * For the allocated request tables 40 */ 41 static struct kmem_cache *request_cachep; 42 43 /* 44 * For queue allocation 45 */ 46 struct kmem_cache *blk_requestq_cachep; 47 48 /* 49 * Controlling structure to kblockd 50 */ 51 static struct workqueue_struct *kblockd_workqueue; 52 53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done); 54 55 static void drive_stat_acct(struct request *rq, int new_io) 56 { 57 struct hd_struct *part; 58 int rw = rq_data_dir(rq); 59 60 if (!blk_fs_request(rq) || !rq->rq_disk) 61 return; 62 63 part = get_part(rq->rq_disk, rq->sector); 64 if (!new_io) 65 __all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector); 66 else { 67 disk_round_stats(rq->rq_disk); 68 rq->rq_disk->in_flight++; 69 if (part) { 70 part_round_stats(part); 71 part->in_flight++; 72 } 73 } 74 } 75 76 void blk_queue_congestion_threshold(struct request_queue *q) 77 { 78 int nr; 79 80 nr = q->nr_requests - (q->nr_requests / 8) + 1; 81 if (nr > q->nr_requests) 82 nr = q->nr_requests; 83 q->nr_congestion_on = nr; 84 85 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 86 if (nr < 1) 87 nr = 1; 88 q->nr_congestion_off = nr; 89 } 90 91 /** 92 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 93 * @bdev: device 94 * 95 * Locates the passed device's request queue and returns the address of its 96 * backing_dev_info 97 * 98 * Will return NULL if the request queue cannot be located. 99 */ 100 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 101 { 102 struct backing_dev_info *ret = NULL; 103 struct request_queue *q = bdev_get_queue(bdev); 104 105 if (q) 106 ret = &q->backing_dev_info; 107 return ret; 108 } 109 EXPORT_SYMBOL(blk_get_backing_dev_info); 110 111 void blk_rq_init(struct request_queue *q, struct request *rq) 112 { 113 memset(rq, 0, sizeof(*rq)); 114 115 INIT_LIST_HEAD(&rq->queuelist); 116 INIT_LIST_HEAD(&rq->donelist); 117 rq->q = q; 118 rq->sector = rq->hard_sector = (sector_t) -1; 119 INIT_HLIST_NODE(&rq->hash); 120 RB_CLEAR_NODE(&rq->rb_node); 121 rq->cmd = rq->__cmd; 122 rq->tag = -1; 123 rq->ref_count = 1; 124 } 125 EXPORT_SYMBOL(blk_rq_init); 126 127 static void req_bio_endio(struct request *rq, struct bio *bio, 128 unsigned int nbytes, int error) 129 { 130 struct request_queue *q = rq->q; 131 132 if (&q->bar_rq != rq) { 133 if (error) 134 clear_bit(BIO_UPTODATE, &bio->bi_flags); 135 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 136 error = -EIO; 137 138 if (unlikely(nbytes > bio->bi_size)) { 139 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 140 __func__, nbytes, bio->bi_size); 141 nbytes = bio->bi_size; 142 } 143 144 bio->bi_size -= nbytes; 145 bio->bi_sector += (nbytes >> 9); 146 147 if (bio_integrity(bio)) 148 bio_integrity_advance(bio, nbytes); 149 150 if (bio->bi_size == 0) 151 bio_endio(bio, error); 152 } else { 153 154 /* 155 * Okay, this is the barrier request in progress, just 156 * record the error; 157 */ 158 if (error && !q->orderr) 159 q->orderr = error; 160 } 161 } 162 163 void blk_dump_rq_flags(struct request *rq, char *msg) 164 { 165 int bit; 166 167 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 168 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 169 rq->cmd_flags); 170 171 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n", 172 (unsigned long long)rq->sector, 173 rq->nr_sectors, 174 rq->current_nr_sectors); 175 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n", 176 rq->bio, rq->biotail, 177 rq->buffer, rq->data, 178 rq->data_len); 179 180 if (blk_pc_request(rq)) { 181 printk(KERN_INFO " cdb: "); 182 for (bit = 0; bit < BLK_MAX_CDB; bit++) 183 printk("%02x ", rq->cmd[bit]); 184 printk("\n"); 185 } 186 } 187 EXPORT_SYMBOL(blk_dump_rq_flags); 188 189 /* 190 * "plug" the device if there are no outstanding requests: this will 191 * force the transfer to start only after we have put all the requests 192 * on the list. 193 * 194 * This is called with interrupts off and no requests on the queue and 195 * with the queue lock held. 196 */ 197 void blk_plug_device(struct request_queue *q) 198 { 199 WARN_ON(!irqs_disabled()); 200 201 /* 202 * don't plug a stopped queue, it must be paired with blk_start_queue() 203 * which will restart the queueing 204 */ 205 if (blk_queue_stopped(q)) 206 return; 207 208 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 209 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 210 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG); 211 } 212 } 213 EXPORT_SYMBOL(blk_plug_device); 214 215 /** 216 * blk_plug_device_unlocked - plug a device without queue lock held 217 * @q: The &struct request_queue to plug 218 * 219 * Description: 220 * Like @blk_plug_device(), but grabs the queue lock and disables 221 * interrupts. 222 **/ 223 void blk_plug_device_unlocked(struct request_queue *q) 224 { 225 unsigned long flags; 226 227 spin_lock_irqsave(q->queue_lock, flags); 228 blk_plug_device(q); 229 spin_unlock_irqrestore(q->queue_lock, flags); 230 } 231 EXPORT_SYMBOL(blk_plug_device_unlocked); 232 233 /* 234 * remove the queue from the plugged list, if present. called with 235 * queue lock held and interrupts disabled. 236 */ 237 int blk_remove_plug(struct request_queue *q) 238 { 239 WARN_ON(!irqs_disabled()); 240 241 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 242 return 0; 243 244 del_timer(&q->unplug_timer); 245 return 1; 246 } 247 EXPORT_SYMBOL(blk_remove_plug); 248 249 /* 250 * remove the plug and let it rip.. 251 */ 252 void __generic_unplug_device(struct request_queue *q) 253 { 254 if (unlikely(blk_queue_stopped(q))) 255 return; 256 257 if (!blk_remove_plug(q)) 258 return; 259 260 q->request_fn(q); 261 } 262 EXPORT_SYMBOL(__generic_unplug_device); 263 264 /** 265 * generic_unplug_device - fire a request queue 266 * @q: The &struct request_queue in question 267 * 268 * Description: 269 * Linux uses plugging to build bigger requests queues before letting 270 * the device have at them. If a queue is plugged, the I/O scheduler 271 * is still adding and merging requests on the queue. Once the queue 272 * gets unplugged, the request_fn defined for the queue is invoked and 273 * transfers started. 274 **/ 275 void generic_unplug_device(struct request_queue *q) 276 { 277 if (blk_queue_plugged(q)) { 278 spin_lock_irq(q->queue_lock); 279 __generic_unplug_device(q); 280 spin_unlock_irq(q->queue_lock); 281 } 282 } 283 EXPORT_SYMBOL(generic_unplug_device); 284 285 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 286 struct page *page) 287 { 288 struct request_queue *q = bdi->unplug_io_data; 289 290 blk_unplug(q); 291 } 292 293 void blk_unplug_work(struct work_struct *work) 294 { 295 struct request_queue *q = 296 container_of(work, struct request_queue, unplug_work); 297 298 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 299 q->rq.count[READ] + q->rq.count[WRITE]); 300 301 q->unplug_fn(q); 302 } 303 304 void blk_unplug_timeout(unsigned long data) 305 { 306 struct request_queue *q = (struct request_queue *)data; 307 308 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL, 309 q->rq.count[READ] + q->rq.count[WRITE]); 310 311 kblockd_schedule_work(&q->unplug_work); 312 } 313 314 void blk_unplug(struct request_queue *q) 315 { 316 /* 317 * devices don't necessarily have an ->unplug_fn defined 318 */ 319 if (q->unplug_fn) { 320 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 321 q->rq.count[READ] + q->rq.count[WRITE]); 322 323 q->unplug_fn(q); 324 } 325 } 326 EXPORT_SYMBOL(blk_unplug); 327 328 /** 329 * blk_start_queue - restart a previously stopped queue 330 * @q: The &struct request_queue in question 331 * 332 * Description: 333 * blk_start_queue() will clear the stop flag on the queue, and call 334 * the request_fn for the queue if it was in a stopped state when 335 * entered. Also see blk_stop_queue(). Queue lock must be held. 336 **/ 337 void blk_start_queue(struct request_queue *q) 338 { 339 WARN_ON(!irqs_disabled()); 340 341 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 342 343 /* 344 * one level of recursion is ok and is much faster than kicking 345 * the unplug handling 346 */ 347 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 348 q->request_fn(q); 349 queue_flag_clear(QUEUE_FLAG_REENTER, q); 350 } else { 351 blk_plug_device(q); 352 kblockd_schedule_work(&q->unplug_work); 353 } 354 } 355 EXPORT_SYMBOL(blk_start_queue); 356 357 /** 358 * blk_stop_queue - stop a queue 359 * @q: The &struct request_queue in question 360 * 361 * Description: 362 * The Linux block layer assumes that a block driver will consume all 363 * entries on the request queue when the request_fn strategy is called. 364 * Often this will not happen, because of hardware limitations (queue 365 * depth settings). If a device driver gets a 'queue full' response, 366 * or if it simply chooses not to queue more I/O at one point, it can 367 * call this function to prevent the request_fn from being called until 368 * the driver has signalled it's ready to go again. This happens by calling 369 * blk_start_queue() to restart queue operations. Queue lock must be held. 370 **/ 371 void blk_stop_queue(struct request_queue *q) 372 { 373 blk_remove_plug(q); 374 queue_flag_set(QUEUE_FLAG_STOPPED, q); 375 } 376 EXPORT_SYMBOL(blk_stop_queue); 377 378 /** 379 * blk_sync_queue - cancel any pending callbacks on a queue 380 * @q: the queue 381 * 382 * Description: 383 * The block layer may perform asynchronous callback activity 384 * on a queue, such as calling the unplug function after a timeout. 385 * A block device may call blk_sync_queue to ensure that any 386 * such activity is cancelled, thus allowing it to release resources 387 * that the callbacks might use. The caller must already have made sure 388 * that its ->make_request_fn will not re-add plugging prior to calling 389 * this function. 390 * 391 */ 392 void blk_sync_queue(struct request_queue *q) 393 { 394 del_timer_sync(&q->unplug_timer); 395 kblockd_flush_work(&q->unplug_work); 396 } 397 EXPORT_SYMBOL(blk_sync_queue); 398 399 /** 400 * blk_run_queue - run a single device queue 401 * @q: The queue to run 402 */ 403 void __blk_run_queue(struct request_queue *q) 404 { 405 blk_remove_plug(q); 406 407 /* 408 * Only recurse once to avoid overrunning the stack, let the unplug 409 * handling reinvoke the handler shortly if we already got there. 410 */ 411 if (!elv_queue_empty(q)) { 412 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 413 q->request_fn(q); 414 queue_flag_clear(QUEUE_FLAG_REENTER, q); 415 } else { 416 blk_plug_device(q); 417 kblockd_schedule_work(&q->unplug_work); 418 } 419 } 420 } 421 EXPORT_SYMBOL(__blk_run_queue); 422 423 /** 424 * blk_run_queue - run a single device queue 425 * @q: The queue to run 426 */ 427 void blk_run_queue(struct request_queue *q) 428 { 429 unsigned long flags; 430 431 spin_lock_irqsave(q->queue_lock, flags); 432 __blk_run_queue(q); 433 spin_unlock_irqrestore(q->queue_lock, flags); 434 } 435 EXPORT_SYMBOL(blk_run_queue); 436 437 void blk_put_queue(struct request_queue *q) 438 { 439 kobject_put(&q->kobj); 440 } 441 442 void blk_cleanup_queue(struct request_queue *q) 443 { 444 mutex_lock(&q->sysfs_lock); 445 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 446 mutex_unlock(&q->sysfs_lock); 447 448 if (q->elevator) 449 elevator_exit(q->elevator); 450 451 blk_put_queue(q); 452 } 453 EXPORT_SYMBOL(blk_cleanup_queue); 454 455 static int blk_init_free_list(struct request_queue *q) 456 { 457 struct request_list *rl = &q->rq; 458 459 rl->count[READ] = rl->count[WRITE] = 0; 460 rl->starved[READ] = rl->starved[WRITE] = 0; 461 rl->elvpriv = 0; 462 init_waitqueue_head(&rl->wait[READ]); 463 init_waitqueue_head(&rl->wait[WRITE]); 464 465 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 466 mempool_free_slab, request_cachep, q->node); 467 468 if (!rl->rq_pool) 469 return -ENOMEM; 470 471 return 0; 472 } 473 474 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 475 { 476 return blk_alloc_queue_node(gfp_mask, -1); 477 } 478 EXPORT_SYMBOL(blk_alloc_queue); 479 480 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 481 { 482 struct request_queue *q; 483 int err; 484 485 q = kmem_cache_alloc_node(blk_requestq_cachep, 486 gfp_mask | __GFP_ZERO, node_id); 487 if (!q) 488 return NULL; 489 490 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 491 q->backing_dev_info.unplug_io_data = q; 492 err = bdi_init(&q->backing_dev_info); 493 if (err) { 494 kmem_cache_free(blk_requestq_cachep, q); 495 return NULL; 496 } 497 498 init_timer(&q->unplug_timer); 499 500 kobject_init(&q->kobj, &blk_queue_ktype); 501 502 mutex_init(&q->sysfs_lock); 503 spin_lock_init(&q->__queue_lock); 504 505 return q; 506 } 507 EXPORT_SYMBOL(blk_alloc_queue_node); 508 509 /** 510 * blk_init_queue - prepare a request queue for use with a block device 511 * @rfn: The function to be called to process requests that have been 512 * placed on the queue. 513 * @lock: Request queue spin lock 514 * 515 * Description: 516 * If a block device wishes to use the standard request handling procedures, 517 * which sorts requests and coalesces adjacent requests, then it must 518 * call blk_init_queue(). The function @rfn will be called when there 519 * are requests on the queue that need to be processed. If the device 520 * supports plugging, then @rfn may not be called immediately when requests 521 * are available on the queue, but may be called at some time later instead. 522 * Plugged queues are generally unplugged when a buffer belonging to one 523 * of the requests on the queue is needed, or due to memory pressure. 524 * 525 * @rfn is not required, or even expected, to remove all requests off the 526 * queue, but only as many as it can handle at a time. If it does leave 527 * requests on the queue, it is responsible for arranging that the requests 528 * get dealt with eventually. 529 * 530 * The queue spin lock must be held while manipulating the requests on the 531 * request queue; this lock will be taken also from interrupt context, so irq 532 * disabling is needed for it. 533 * 534 * Function returns a pointer to the initialized request queue, or NULL if 535 * it didn't succeed. 536 * 537 * Note: 538 * blk_init_queue() must be paired with a blk_cleanup_queue() call 539 * when the block device is deactivated (such as at module unload). 540 **/ 541 542 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 543 { 544 return blk_init_queue_node(rfn, lock, -1); 545 } 546 EXPORT_SYMBOL(blk_init_queue); 547 548 struct request_queue * 549 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 550 { 551 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 552 553 if (!q) 554 return NULL; 555 556 q->node = node_id; 557 if (blk_init_free_list(q)) { 558 kmem_cache_free(blk_requestq_cachep, q); 559 return NULL; 560 } 561 562 /* 563 * if caller didn't supply a lock, they get per-queue locking with 564 * our embedded lock 565 */ 566 if (!lock) 567 lock = &q->__queue_lock; 568 569 q->request_fn = rfn; 570 q->prep_rq_fn = NULL; 571 q->unplug_fn = generic_unplug_device; 572 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER); 573 q->queue_lock = lock; 574 575 blk_queue_segment_boundary(q, 0xffffffff); 576 577 blk_queue_make_request(q, __make_request); 578 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); 579 580 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 581 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 582 583 q->sg_reserved_size = INT_MAX; 584 585 /* 586 * all done 587 */ 588 if (!elevator_init(q, NULL)) { 589 blk_queue_congestion_threshold(q); 590 return q; 591 } 592 593 blk_put_queue(q); 594 return NULL; 595 } 596 EXPORT_SYMBOL(blk_init_queue_node); 597 598 int blk_get_queue(struct request_queue *q) 599 { 600 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 601 kobject_get(&q->kobj); 602 return 0; 603 } 604 605 return 1; 606 } 607 608 static inline void blk_free_request(struct request_queue *q, struct request *rq) 609 { 610 if (rq->cmd_flags & REQ_ELVPRIV) 611 elv_put_request(q, rq); 612 mempool_free(rq, q->rq.rq_pool); 613 } 614 615 static struct request * 616 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask) 617 { 618 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 619 620 if (!rq) 621 return NULL; 622 623 blk_rq_init(q, rq); 624 625 /* 626 * first three bits are identical in rq->cmd_flags and bio->bi_rw, 627 * see bio.h and blkdev.h 628 */ 629 rq->cmd_flags = rw | REQ_ALLOCED; 630 631 if (priv) { 632 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 633 mempool_free(rq, q->rq.rq_pool); 634 return NULL; 635 } 636 rq->cmd_flags |= REQ_ELVPRIV; 637 } 638 639 return rq; 640 } 641 642 /* 643 * ioc_batching returns true if the ioc is a valid batching request and 644 * should be given priority access to a request. 645 */ 646 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 647 { 648 if (!ioc) 649 return 0; 650 651 /* 652 * Make sure the process is able to allocate at least 1 request 653 * even if the batch times out, otherwise we could theoretically 654 * lose wakeups. 655 */ 656 return ioc->nr_batch_requests == q->nr_batching || 657 (ioc->nr_batch_requests > 0 658 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 659 } 660 661 /* 662 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 663 * will cause the process to be a "batcher" on all queues in the system. This 664 * is the behaviour we want though - once it gets a wakeup it should be given 665 * a nice run. 666 */ 667 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 668 { 669 if (!ioc || ioc_batching(q, ioc)) 670 return; 671 672 ioc->nr_batch_requests = q->nr_batching; 673 ioc->last_waited = jiffies; 674 } 675 676 static void __freed_request(struct request_queue *q, int rw) 677 { 678 struct request_list *rl = &q->rq; 679 680 if (rl->count[rw] < queue_congestion_off_threshold(q)) 681 blk_clear_queue_congested(q, rw); 682 683 if (rl->count[rw] + 1 <= q->nr_requests) { 684 if (waitqueue_active(&rl->wait[rw])) 685 wake_up(&rl->wait[rw]); 686 687 blk_clear_queue_full(q, rw); 688 } 689 } 690 691 /* 692 * A request has just been released. Account for it, update the full and 693 * congestion status, wake up any waiters. Called under q->queue_lock. 694 */ 695 static void freed_request(struct request_queue *q, int rw, int priv) 696 { 697 struct request_list *rl = &q->rq; 698 699 rl->count[rw]--; 700 if (priv) 701 rl->elvpriv--; 702 703 __freed_request(q, rw); 704 705 if (unlikely(rl->starved[rw ^ 1])) 706 __freed_request(q, rw ^ 1); 707 } 708 709 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist) 710 /* 711 * Get a free request, queue_lock must be held. 712 * Returns NULL on failure, with queue_lock held. 713 * Returns !NULL on success, with queue_lock *not held*. 714 */ 715 static struct request *get_request(struct request_queue *q, int rw_flags, 716 struct bio *bio, gfp_t gfp_mask) 717 { 718 struct request *rq = NULL; 719 struct request_list *rl = &q->rq; 720 struct io_context *ioc = NULL; 721 const int rw = rw_flags & 0x01; 722 int may_queue, priv; 723 724 may_queue = elv_may_queue(q, rw_flags); 725 if (may_queue == ELV_MQUEUE_NO) 726 goto rq_starved; 727 728 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) { 729 if (rl->count[rw]+1 >= q->nr_requests) { 730 ioc = current_io_context(GFP_ATOMIC, q->node); 731 /* 732 * The queue will fill after this allocation, so set 733 * it as full, and mark this process as "batching". 734 * This process will be allowed to complete a batch of 735 * requests, others will be blocked. 736 */ 737 if (!blk_queue_full(q, rw)) { 738 ioc_set_batching(q, ioc); 739 blk_set_queue_full(q, rw); 740 } else { 741 if (may_queue != ELV_MQUEUE_MUST 742 && !ioc_batching(q, ioc)) { 743 /* 744 * The queue is full and the allocating 745 * process is not a "batcher", and not 746 * exempted by the IO scheduler 747 */ 748 goto out; 749 } 750 } 751 } 752 blk_set_queue_congested(q, rw); 753 } 754 755 /* 756 * Only allow batching queuers to allocate up to 50% over the defined 757 * limit of requests, otherwise we could have thousands of requests 758 * allocated with any setting of ->nr_requests 759 */ 760 if (rl->count[rw] >= (3 * q->nr_requests / 2)) 761 goto out; 762 763 rl->count[rw]++; 764 rl->starved[rw] = 0; 765 766 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 767 if (priv) 768 rl->elvpriv++; 769 770 spin_unlock_irq(q->queue_lock); 771 772 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 773 if (unlikely(!rq)) { 774 /* 775 * Allocation failed presumably due to memory. Undo anything 776 * we might have messed up. 777 * 778 * Allocating task should really be put onto the front of the 779 * wait queue, but this is pretty rare. 780 */ 781 spin_lock_irq(q->queue_lock); 782 freed_request(q, rw, priv); 783 784 /* 785 * in the very unlikely event that allocation failed and no 786 * requests for this direction was pending, mark us starved 787 * so that freeing of a request in the other direction will 788 * notice us. another possible fix would be to split the 789 * rq mempool into READ and WRITE 790 */ 791 rq_starved: 792 if (unlikely(rl->count[rw] == 0)) 793 rl->starved[rw] = 1; 794 795 goto out; 796 } 797 798 /* 799 * ioc may be NULL here, and ioc_batching will be false. That's 800 * OK, if the queue is under the request limit then requests need 801 * not count toward the nr_batch_requests limit. There will always 802 * be some limit enforced by BLK_BATCH_TIME. 803 */ 804 if (ioc_batching(q, ioc)) 805 ioc->nr_batch_requests--; 806 807 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ); 808 out: 809 return rq; 810 } 811 812 /* 813 * No available requests for this queue, unplug the device and wait for some 814 * requests to become available. 815 * 816 * Called with q->queue_lock held, and returns with it unlocked. 817 */ 818 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 819 struct bio *bio) 820 { 821 const int rw = rw_flags & 0x01; 822 struct request *rq; 823 824 rq = get_request(q, rw_flags, bio, GFP_NOIO); 825 while (!rq) { 826 DEFINE_WAIT(wait); 827 struct io_context *ioc; 828 struct request_list *rl = &q->rq; 829 830 prepare_to_wait_exclusive(&rl->wait[rw], &wait, 831 TASK_UNINTERRUPTIBLE); 832 833 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ); 834 835 __generic_unplug_device(q); 836 spin_unlock_irq(q->queue_lock); 837 io_schedule(); 838 839 /* 840 * After sleeping, we become a "batching" process and 841 * will be able to allocate at least one request, and 842 * up to a big batch of them for a small period time. 843 * See ioc_batching, ioc_set_batching 844 */ 845 ioc = current_io_context(GFP_NOIO, q->node); 846 ioc_set_batching(q, ioc); 847 848 spin_lock_irq(q->queue_lock); 849 finish_wait(&rl->wait[rw], &wait); 850 851 rq = get_request(q, rw_flags, bio, GFP_NOIO); 852 }; 853 854 return rq; 855 } 856 857 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 858 { 859 struct request *rq; 860 861 BUG_ON(rw != READ && rw != WRITE); 862 863 spin_lock_irq(q->queue_lock); 864 if (gfp_mask & __GFP_WAIT) { 865 rq = get_request_wait(q, rw, NULL); 866 } else { 867 rq = get_request(q, rw, NULL, gfp_mask); 868 if (!rq) 869 spin_unlock_irq(q->queue_lock); 870 } 871 /* q->queue_lock is unlocked at this point */ 872 873 return rq; 874 } 875 EXPORT_SYMBOL(blk_get_request); 876 877 /** 878 * blk_start_queueing - initiate dispatch of requests to device 879 * @q: request queue to kick into gear 880 * 881 * This is basically a helper to remove the need to know whether a queue 882 * is plugged or not if someone just wants to initiate dispatch of requests 883 * for this queue. 884 * 885 * The queue lock must be held with interrupts disabled. 886 */ 887 void blk_start_queueing(struct request_queue *q) 888 { 889 if (!blk_queue_plugged(q)) 890 q->request_fn(q); 891 else 892 __generic_unplug_device(q); 893 } 894 EXPORT_SYMBOL(blk_start_queueing); 895 896 /** 897 * blk_requeue_request - put a request back on queue 898 * @q: request queue where request should be inserted 899 * @rq: request to be inserted 900 * 901 * Description: 902 * Drivers often keep queueing requests until the hardware cannot accept 903 * more, when that condition happens we need to put the request back 904 * on the queue. Must be called with queue lock held. 905 */ 906 void blk_requeue_request(struct request_queue *q, struct request *rq) 907 { 908 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE); 909 910 if (blk_rq_tagged(rq)) 911 blk_queue_end_tag(q, rq); 912 913 elv_requeue_request(q, rq); 914 } 915 EXPORT_SYMBOL(blk_requeue_request); 916 917 /** 918 * blk_insert_request - insert a special request in to a request queue 919 * @q: request queue where request should be inserted 920 * @rq: request to be inserted 921 * @at_head: insert request at head or tail of queue 922 * @data: private data 923 * 924 * Description: 925 * Many block devices need to execute commands asynchronously, so they don't 926 * block the whole kernel from preemption during request execution. This is 927 * accomplished normally by inserting aritficial requests tagged as 928 * REQ_SPECIAL in to the corresponding request queue, and letting them be 929 * scheduled for actual execution by the request queue. 930 * 931 * We have the option of inserting the head or the tail of the queue. 932 * Typically we use the tail for new ioctls and so forth. We use the head 933 * of the queue for things like a QUEUE_FULL message from a device, or a 934 * host that is unable to accept a particular command. 935 */ 936 void blk_insert_request(struct request_queue *q, struct request *rq, 937 int at_head, void *data) 938 { 939 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 940 unsigned long flags; 941 942 /* 943 * tell I/O scheduler that this isn't a regular read/write (ie it 944 * must not attempt merges on this) and that it acts as a soft 945 * barrier 946 */ 947 rq->cmd_type = REQ_TYPE_SPECIAL; 948 rq->cmd_flags |= REQ_SOFTBARRIER; 949 950 rq->special = data; 951 952 spin_lock_irqsave(q->queue_lock, flags); 953 954 /* 955 * If command is tagged, release the tag 956 */ 957 if (blk_rq_tagged(rq)) 958 blk_queue_end_tag(q, rq); 959 960 drive_stat_acct(rq, 1); 961 __elv_add_request(q, rq, where, 0); 962 blk_start_queueing(q); 963 spin_unlock_irqrestore(q->queue_lock, flags); 964 } 965 EXPORT_SYMBOL(blk_insert_request); 966 967 /* 968 * add-request adds a request to the linked list. 969 * queue lock is held and interrupts disabled, as we muck with the 970 * request queue list. 971 */ 972 static inline void add_request(struct request_queue *q, struct request *req) 973 { 974 drive_stat_acct(req, 1); 975 976 /* 977 * elevator indicated where it wants this request to be 978 * inserted at elevator_merge time 979 */ 980 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 981 } 982 983 /* 984 * disk_round_stats() - Round off the performance stats on a struct 985 * disk_stats. 986 * 987 * The average IO queue length and utilisation statistics are maintained 988 * by observing the current state of the queue length and the amount of 989 * time it has been in this state for. 990 * 991 * Normally, that accounting is done on IO completion, but that can result 992 * in more than a second's worth of IO being accounted for within any one 993 * second, leading to >100% utilisation. To deal with that, we call this 994 * function to do a round-off before returning the results when reading 995 * /proc/diskstats. This accounts immediately for all queue usage up to 996 * the current jiffies and restarts the counters again. 997 */ 998 void disk_round_stats(struct gendisk *disk) 999 { 1000 unsigned long now = jiffies; 1001 1002 if (now == disk->stamp) 1003 return; 1004 1005 if (disk->in_flight) { 1006 __disk_stat_add(disk, time_in_queue, 1007 disk->in_flight * (now - disk->stamp)); 1008 __disk_stat_add(disk, io_ticks, (now - disk->stamp)); 1009 } 1010 disk->stamp = now; 1011 } 1012 EXPORT_SYMBOL_GPL(disk_round_stats); 1013 1014 void part_round_stats(struct hd_struct *part) 1015 { 1016 unsigned long now = jiffies; 1017 1018 if (now == part->stamp) 1019 return; 1020 1021 if (part->in_flight) { 1022 __part_stat_add(part, time_in_queue, 1023 part->in_flight * (now - part->stamp)); 1024 __part_stat_add(part, io_ticks, (now - part->stamp)); 1025 } 1026 part->stamp = now; 1027 } 1028 1029 /* 1030 * queue lock must be held 1031 */ 1032 void __blk_put_request(struct request_queue *q, struct request *req) 1033 { 1034 if (unlikely(!q)) 1035 return; 1036 if (unlikely(--req->ref_count)) 1037 return; 1038 1039 elv_completed_request(q, req); 1040 1041 /* 1042 * Request may not have originated from ll_rw_blk. if not, 1043 * it didn't come out of our reserved rq pools 1044 */ 1045 if (req->cmd_flags & REQ_ALLOCED) { 1046 int rw = rq_data_dir(req); 1047 int priv = req->cmd_flags & REQ_ELVPRIV; 1048 1049 BUG_ON(!list_empty(&req->queuelist)); 1050 BUG_ON(!hlist_unhashed(&req->hash)); 1051 1052 blk_free_request(q, req); 1053 freed_request(q, rw, priv); 1054 } 1055 } 1056 EXPORT_SYMBOL_GPL(__blk_put_request); 1057 1058 void blk_put_request(struct request *req) 1059 { 1060 unsigned long flags; 1061 struct request_queue *q = req->q; 1062 1063 spin_lock_irqsave(q->queue_lock, flags); 1064 __blk_put_request(q, req); 1065 spin_unlock_irqrestore(q->queue_lock, flags); 1066 } 1067 EXPORT_SYMBOL(blk_put_request); 1068 1069 void init_request_from_bio(struct request *req, struct bio *bio) 1070 { 1071 req->cmd_type = REQ_TYPE_FS; 1072 1073 /* 1074 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1075 */ 1076 if (bio_rw_ahead(bio) || bio_failfast(bio)) 1077 req->cmd_flags |= REQ_FAILFAST; 1078 1079 /* 1080 * REQ_BARRIER implies no merging, but lets make it explicit 1081 */ 1082 if (unlikely(bio_barrier(bio))) 1083 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE); 1084 1085 if (bio_sync(bio)) 1086 req->cmd_flags |= REQ_RW_SYNC; 1087 if (bio_rw_meta(bio)) 1088 req->cmd_flags |= REQ_RW_META; 1089 1090 req->errors = 0; 1091 req->hard_sector = req->sector = bio->bi_sector; 1092 req->ioprio = bio_prio(bio); 1093 req->start_time = jiffies; 1094 blk_rq_bio_prep(req->q, req, bio); 1095 } 1096 1097 static int __make_request(struct request_queue *q, struct bio *bio) 1098 { 1099 struct request *req; 1100 int el_ret, nr_sectors, barrier, err; 1101 const unsigned short prio = bio_prio(bio); 1102 const int sync = bio_sync(bio); 1103 int rw_flags; 1104 1105 nr_sectors = bio_sectors(bio); 1106 1107 /* 1108 * low level driver can indicate that it wants pages above a 1109 * certain limit bounced to low memory (ie for highmem, or even 1110 * ISA dma in theory) 1111 */ 1112 blk_queue_bounce(q, &bio); 1113 1114 barrier = bio_barrier(bio); 1115 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) { 1116 err = -EOPNOTSUPP; 1117 goto end_io; 1118 } 1119 1120 spin_lock_irq(q->queue_lock); 1121 1122 if (unlikely(barrier) || elv_queue_empty(q)) 1123 goto get_rq; 1124 1125 el_ret = elv_merge(q, &req, bio); 1126 switch (el_ret) { 1127 case ELEVATOR_BACK_MERGE: 1128 BUG_ON(!rq_mergeable(req)); 1129 1130 if (!ll_back_merge_fn(q, req, bio)) 1131 break; 1132 1133 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE); 1134 1135 req->biotail->bi_next = bio; 1136 req->biotail = bio; 1137 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1138 req->ioprio = ioprio_best(req->ioprio, prio); 1139 drive_stat_acct(req, 0); 1140 if (!attempt_back_merge(q, req)) 1141 elv_merged_request(q, req, el_ret); 1142 goto out; 1143 1144 case ELEVATOR_FRONT_MERGE: 1145 BUG_ON(!rq_mergeable(req)); 1146 1147 if (!ll_front_merge_fn(q, req, bio)) 1148 break; 1149 1150 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE); 1151 1152 bio->bi_next = req->bio; 1153 req->bio = bio; 1154 1155 /* 1156 * may not be valid. if the low level driver said 1157 * it didn't need a bounce buffer then it better 1158 * not touch req->buffer either... 1159 */ 1160 req->buffer = bio_data(bio); 1161 req->current_nr_sectors = bio_cur_sectors(bio); 1162 req->hard_cur_sectors = req->current_nr_sectors; 1163 req->sector = req->hard_sector = bio->bi_sector; 1164 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1165 req->ioprio = ioprio_best(req->ioprio, prio); 1166 drive_stat_acct(req, 0); 1167 if (!attempt_front_merge(q, req)) 1168 elv_merged_request(q, req, el_ret); 1169 goto out; 1170 1171 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1172 default: 1173 ; 1174 } 1175 1176 get_rq: 1177 /* 1178 * This sync check and mask will be re-done in init_request_from_bio(), 1179 * but we need to set it earlier to expose the sync flag to the 1180 * rq allocator and io schedulers. 1181 */ 1182 rw_flags = bio_data_dir(bio); 1183 if (sync) 1184 rw_flags |= REQ_RW_SYNC; 1185 1186 /* 1187 * Grab a free request. This is might sleep but can not fail. 1188 * Returns with the queue unlocked. 1189 */ 1190 req = get_request_wait(q, rw_flags, bio); 1191 1192 /* 1193 * After dropping the lock and possibly sleeping here, our request 1194 * may now be mergeable after it had proven unmergeable (above). 1195 * We don't worry about that case for efficiency. It won't happen 1196 * often, and the elevators are able to handle it. 1197 */ 1198 init_request_from_bio(req, bio); 1199 1200 spin_lock_irq(q->queue_lock); 1201 if (elv_queue_empty(q)) 1202 blk_plug_device(q); 1203 add_request(q, req); 1204 out: 1205 if (sync) 1206 __generic_unplug_device(q); 1207 1208 spin_unlock_irq(q->queue_lock); 1209 return 0; 1210 1211 end_io: 1212 bio_endio(bio, err); 1213 return 0; 1214 } 1215 1216 /* 1217 * If bio->bi_dev is a partition, remap the location 1218 */ 1219 static inline void blk_partition_remap(struct bio *bio) 1220 { 1221 struct block_device *bdev = bio->bi_bdev; 1222 1223 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1224 struct hd_struct *p = bdev->bd_part; 1225 1226 bio->bi_sector += p->start_sect; 1227 bio->bi_bdev = bdev->bd_contains; 1228 1229 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio, 1230 bdev->bd_dev, bio->bi_sector, 1231 bio->bi_sector - p->start_sect); 1232 } 1233 } 1234 1235 static void handle_bad_sector(struct bio *bio) 1236 { 1237 char b[BDEVNAME_SIZE]; 1238 1239 printk(KERN_INFO "attempt to access beyond end of device\n"); 1240 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1241 bdevname(bio->bi_bdev, b), 1242 bio->bi_rw, 1243 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1244 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1245 1246 set_bit(BIO_EOF, &bio->bi_flags); 1247 } 1248 1249 #ifdef CONFIG_FAIL_MAKE_REQUEST 1250 1251 static DECLARE_FAULT_ATTR(fail_make_request); 1252 1253 static int __init setup_fail_make_request(char *str) 1254 { 1255 return setup_fault_attr(&fail_make_request, str); 1256 } 1257 __setup("fail_make_request=", setup_fail_make_request); 1258 1259 static int should_fail_request(struct bio *bio) 1260 { 1261 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) || 1262 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail)) 1263 return should_fail(&fail_make_request, bio->bi_size); 1264 1265 return 0; 1266 } 1267 1268 static int __init fail_make_request_debugfs(void) 1269 { 1270 return init_fault_attr_dentries(&fail_make_request, 1271 "fail_make_request"); 1272 } 1273 1274 late_initcall(fail_make_request_debugfs); 1275 1276 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1277 1278 static inline int should_fail_request(struct bio *bio) 1279 { 1280 return 0; 1281 } 1282 1283 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1284 1285 /* 1286 * Check whether this bio extends beyond the end of the device. 1287 */ 1288 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1289 { 1290 sector_t maxsector; 1291 1292 if (!nr_sectors) 1293 return 0; 1294 1295 /* Test device or partition size, when known. */ 1296 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1297 if (maxsector) { 1298 sector_t sector = bio->bi_sector; 1299 1300 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1301 /* 1302 * This may well happen - the kernel calls bread() 1303 * without checking the size of the device, e.g., when 1304 * mounting a device. 1305 */ 1306 handle_bad_sector(bio); 1307 return 1; 1308 } 1309 } 1310 1311 return 0; 1312 } 1313 1314 /** 1315 * generic_make_request: hand a buffer to its device driver for I/O 1316 * @bio: The bio describing the location in memory and on the device. 1317 * 1318 * generic_make_request() is used to make I/O requests of block 1319 * devices. It is passed a &struct bio, which describes the I/O that needs 1320 * to be done. 1321 * 1322 * generic_make_request() does not return any status. The 1323 * success/failure status of the request, along with notification of 1324 * completion, is delivered asynchronously through the bio->bi_end_io 1325 * function described (one day) else where. 1326 * 1327 * The caller of generic_make_request must make sure that bi_io_vec 1328 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1329 * set to describe the device address, and the 1330 * bi_end_io and optionally bi_private are set to describe how 1331 * completion notification should be signaled. 1332 * 1333 * generic_make_request and the drivers it calls may use bi_next if this 1334 * bio happens to be merged with someone else, and may change bi_dev and 1335 * bi_sector for remaps as it sees fit. So the values of these fields 1336 * should NOT be depended on after the call to generic_make_request. 1337 */ 1338 static inline void __generic_make_request(struct bio *bio) 1339 { 1340 struct request_queue *q; 1341 sector_t old_sector; 1342 int ret, nr_sectors = bio_sectors(bio); 1343 dev_t old_dev; 1344 int err = -EIO; 1345 1346 might_sleep(); 1347 1348 if (bio_check_eod(bio, nr_sectors)) 1349 goto end_io; 1350 1351 /* 1352 * Resolve the mapping until finished. (drivers are 1353 * still free to implement/resolve their own stacking 1354 * by explicitly returning 0) 1355 * 1356 * NOTE: we don't repeat the blk_size check for each new device. 1357 * Stacking drivers are expected to know what they are doing. 1358 */ 1359 old_sector = -1; 1360 old_dev = 0; 1361 do { 1362 char b[BDEVNAME_SIZE]; 1363 1364 q = bdev_get_queue(bio->bi_bdev); 1365 if (!q) { 1366 printk(KERN_ERR 1367 "generic_make_request: Trying to access " 1368 "nonexistent block-device %s (%Lu)\n", 1369 bdevname(bio->bi_bdev, b), 1370 (long long) bio->bi_sector); 1371 end_io: 1372 bio_endio(bio, err); 1373 break; 1374 } 1375 1376 if (unlikely(nr_sectors > q->max_hw_sectors)) { 1377 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1378 bdevname(bio->bi_bdev, b), 1379 bio_sectors(bio), 1380 q->max_hw_sectors); 1381 goto end_io; 1382 } 1383 1384 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1385 goto end_io; 1386 1387 if (should_fail_request(bio)) 1388 goto end_io; 1389 1390 /* 1391 * If this device has partitions, remap block n 1392 * of partition p to block n+start(p) of the disk. 1393 */ 1394 blk_partition_remap(bio); 1395 1396 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1397 goto end_io; 1398 1399 if (old_sector != -1) 1400 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector, 1401 old_sector); 1402 1403 blk_add_trace_bio(q, bio, BLK_TA_QUEUE); 1404 1405 old_sector = bio->bi_sector; 1406 old_dev = bio->bi_bdev->bd_dev; 1407 1408 if (bio_check_eod(bio, nr_sectors)) 1409 goto end_io; 1410 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) { 1411 err = -EOPNOTSUPP; 1412 goto end_io; 1413 } 1414 1415 ret = q->make_request_fn(q, bio); 1416 } while (ret); 1417 } 1418 1419 /* 1420 * We only want one ->make_request_fn to be active at a time, 1421 * else stack usage with stacked devices could be a problem. 1422 * So use current->bio_{list,tail} to keep a list of requests 1423 * submited by a make_request_fn function. 1424 * current->bio_tail is also used as a flag to say if 1425 * generic_make_request is currently active in this task or not. 1426 * If it is NULL, then no make_request is active. If it is non-NULL, 1427 * then a make_request is active, and new requests should be added 1428 * at the tail 1429 */ 1430 void generic_make_request(struct bio *bio) 1431 { 1432 if (current->bio_tail) { 1433 /* make_request is active */ 1434 *(current->bio_tail) = bio; 1435 bio->bi_next = NULL; 1436 current->bio_tail = &bio->bi_next; 1437 return; 1438 } 1439 /* following loop may be a bit non-obvious, and so deserves some 1440 * explanation. 1441 * Before entering the loop, bio->bi_next is NULL (as all callers 1442 * ensure that) so we have a list with a single bio. 1443 * We pretend that we have just taken it off a longer list, so 1444 * we assign bio_list to the next (which is NULL) and bio_tail 1445 * to &bio_list, thus initialising the bio_list of new bios to be 1446 * added. __generic_make_request may indeed add some more bios 1447 * through a recursive call to generic_make_request. If it 1448 * did, we find a non-NULL value in bio_list and re-enter the loop 1449 * from the top. In this case we really did just take the bio 1450 * of the top of the list (no pretending) and so fixup bio_list and 1451 * bio_tail or bi_next, and call into __generic_make_request again. 1452 * 1453 * The loop was structured like this to make only one call to 1454 * __generic_make_request (which is important as it is large and 1455 * inlined) and to keep the structure simple. 1456 */ 1457 BUG_ON(bio->bi_next); 1458 do { 1459 current->bio_list = bio->bi_next; 1460 if (bio->bi_next == NULL) 1461 current->bio_tail = ¤t->bio_list; 1462 else 1463 bio->bi_next = NULL; 1464 __generic_make_request(bio); 1465 bio = current->bio_list; 1466 } while (bio); 1467 current->bio_tail = NULL; /* deactivate */ 1468 } 1469 EXPORT_SYMBOL(generic_make_request); 1470 1471 /** 1472 * submit_bio: submit a bio to the block device layer for I/O 1473 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1474 * @bio: The &struct bio which describes the I/O 1475 * 1476 * submit_bio() is very similar in purpose to generic_make_request(), and 1477 * uses that function to do most of the work. Both are fairly rough 1478 * interfaces, @bio must be presetup and ready for I/O. 1479 * 1480 */ 1481 void submit_bio(int rw, struct bio *bio) 1482 { 1483 int count = bio_sectors(bio); 1484 1485 bio->bi_rw |= rw; 1486 1487 /* 1488 * If it's a regular read/write or a barrier with data attached, 1489 * go through the normal accounting stuff before submission. 1490 */ 1491 if (!bio_empty_barrier(bio)) { 1492 1493 BIO_BUG_ON(!bio->bi_size); 1494 BIO_BUG_ON(!bio->bi_io_vec); 1495 1496 if (rw & WRITE) { 1497 count_vm_events(PGPGOUT, count); 1498 } else { 1499 task_io_account_read(bio->bi_size); 1500 count_vm_events(PGPGIN, count); 1501 } 1502 1503 if (unlikely(block_dump)) { 1504 char b[BDEVNAME_SIZE]; 1505 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1506 current->comm, task_pid_nr(current), 1507 (rw & WRITE) ? "WRITE" : "READ", 1508 (unsigned long long)bio->bi_sector, 1509 bdevname(bio->bi_bdev, b)); 1510 } 1511 } 1512 1513 generic_make_request(bio); 1514 } 1515 EXPORT_SYMBOL(submit_bio); 1516 1517 /** 1518 * __end_that_request_first - end I/O on a request 1519 * @req: the request being processed 1520 * @error: 0 for success, < 0 for error 1521 * @nr_bytes: number of bytes to complete 1522 * 1523 * Description: 1524 * Ends I/O on a number of bytes attached to @req, and sets it up 1525 * for the next range of segments (if any) in the cluster. 1526 * 1527 * Return: 1528 * 0 - we are done with this request, call end_that_request_last() 1529 * 1 - still buffers pending for this request 1530 **/ 1531 static int __end_that_request_first(struct request *req, int error, 1532 int nr_bytes) 1533 { 1534 int total_bytes, bio_nbytes, next_idx = 0; 1535 struct bio *bio; 1536 1537 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE); 1538 1539 /* 1540 * for a REQ_BLOCK_PC request, we want to carry any eventual 1541 * sense key with us all the way through 1542 */ 1543 if (!blk_pc_request(req)) 1544 req->errors = 0; 1545 1546 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1547 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1548 req->rq_disk ? req->rq_disk->disk_name : "?", 1549 (unsigned long long)req->sector); 1550 } 1551 1552 if (blk_fs_request(req) && req->rq_disk) { 1553 struct hd_struct *part = get_part(req->rq_disk, req->sector); 1554 const int rw = rq_data_dir(req); 1555 1556 all_stat_add(req->rq_disk, part, sectors[rw], 1557 nr_bytes >> 9, req->sector); 1558 } 1559 1560 total_bytes = bio_nbytes = 0; 1561 while ((bio = req->bio) != NULL) { 1562 int nbytes; 1563 1564 /* 1565 * For an empty barrier request, the low level driver must 1566 * store a potential error location in ->sector. We pass 1567 * that back up in ->bi_sector. 1568 */ 1569 if (blk_empty_barrier(req)) 1570 bio->bi_sector = req->sector; 1571 1572 if (nr_bytes >= bio->bi_size) { 1573 req->bio = bio->bi_next; 1574 nbytes = bio->bi_size; 1575 req_bio_endio(req, bio, nbytes, error); 1576 next_idx = 0; 1577 bio_nbytes = 0; 1578 } else { 1579 int idx = bio->bi_idx + next_idx; 1580 1581 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { 1582 blk_dump_rq_flags(req, "__end_that"); 1583 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1584 __func__, bio->bi_idx, bio->bi_vcnt); 1585 break; 1586 } 1587 1588 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1589 BIO_BUG_ON(nbytes > bio->bi_size); 1590 1591 /* 1592 * not a complete bvec done 1593 */ 1594 if (unlikely(nbytes > nr_bytes)) { 1595 bio_nbytes += nr_bytes; 1596 total_bytes += nr_bytes; 1597 break; 1598 } 1599 1600 /* 1601 * advance to the next vector 1602 */ 1603 next_idx++; 1604 bio_nbytes += nbytes; 1605 } 1606 1607 total_bytes += nbytes; 1608 nr_bytes -= nbytes; 1609 1610 bio = req->bio; 1611 if (bio) { 1612 /* 1613 * end more in this run, or just return 'not-done' 1614 */ 1615 if (unlikely(nr_bytes <= 0)) 1616 break; 1617 } 1618 } 1619 1620 /* 1621 * completely done 1622 */ 1623 if (!req->bio) 1624 return 0; 1625 1626 /* 1627 * if the request wasn't completed, update state 1628 */ 1629 if (bio_nbytes) { 1630 req_bio_endio(req, bio, bio_nbytes, error); 1631 bio->bi_idx += next_idx; 1632 bio_iovec(bio)->bv_offset += nr_bytes; 1633 bio_iovec(bio)->bv_len -= nr_bytes; 1634 } 1635 1636 blk_recalc_rq_sectors(req, total_bytes >> 9); 1637 blk_recalc_rq_segments(req); 1638 return 1; 1639 } 1640 1641 /* 1642 * splice the completion data to a local structure and hand off to 1643 * process_completion_queue() to complete the requests 1644 */ 1645 static void blk_done_softirq(struct softirq_action *h) 1646 { 1647 struct list_head *cpu_list, local_list; 1648 1649 local_irq_disable(); 1650 cpu_list = &__get_cpu_var(blk_cpu_done); 1651 list_replace_init(cpu_list, &local_list); 1652 local_irq_enable(); 1653 1654 while (!list_empty(&local_list)) { 1655 struct request *rq; 1656 1657 rq = list_entry(local_list.next, struct request, donelist); 1658 list_del_init(&rq->donelist); 1659 rq->q->softirq_done_fn(rq); 1660 } 1661 } 1662 1663 static int __cpuinit blk_cpu_notify(struct notifier_block *self, 1664 unsigned long action, void *hcpu) 1665 { 1666 /* 1667 * If a CPU goes away, splice its entries to the current CPU 1668 * and trigger a run of the softirq 1669 */ 1670 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1671 int cpu = (unsigned long) hcpu; 1672 1673 local_irq_disable(); 1674 list_splice_init(&per_cpu(blk_cpu_done, cpu), 1675 &__get_cpu_var(blk_cpu_done)); 1676 raise_softirq_irqoff(BLOCK_SOFTIRQ); 1677 local_irq_enable(); 1678 } 1679 1680 return NOTIFY_OK; 1681 } 1682 1683 1684 static struct notifier_block blk_cpu_notifier __cpuinitdata = { 1685 .notifier_call = blk_cpu_notify, 1686 }; 1687 1688 /** 1689 * blk_complete_request - end I/O on a request 1690 * @req: the request being processed 1691 * 1692 * Description: 1693 * Ends all I/O on a request. It does not handle partial completions, 1694 * unless the driver actually implements this in its completion callback 1695 * through requeueing. The actual completion happens out-of-order, 1696 * through a softirq handler. The user must have registered a completion 1697 * callback through blk_queue_softirq_done(). 1698 **/ 1699 1700 void blk_complete_request(struct request *req) 1701 { 1702 struct list_head *cpu_list; 1703 unsigned long flags; 1704 1705 BUG_ON(!req->q->softirq_done_fn); 1706 1707 local_irq_save(flags); 1708 1709 cpu_list = &__get_cpu_var(blk_cpu_done); 1710 list_add_tail(&req->donelist, cpu_list); 1711 raise_softirq_irqoff(BLOCK_SOFTIRQ); 1712 1713 local_irq_restore(flags); 1714 } 1715 EXPORT_SYMBOL(blk_complete_request); 1716 1717 /* 1718 * queue lock must be held 1719 */ 1720 static void end_that_request_last(struct request *req, int error) 1721 { 1722 struct gendisk *disk = req->rq_disk; 1723 1724 if (blk_rq_tagged(req)) 1725 blk_queue_end_tag(req->q, req); 1726 1727 if (blk_queued_rq(req)) 1728 blkdev_dequeue_request(req); 1729 1730 if (unlikely(laptop_mode) && blk_fs_request(req)) 1731 laptop_io_completion(); 1732 1733 /* 1734 * Account IO completion. bar_rq isn't accounted as a normal 1735 * IO on queueing nor completion. Accounting the containing 1736 * request is enough. 1737 */ 1738 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) { 1739 unsigned long duration = jiffies - req->start_time; 1740 const int rw = rq_data_dir(req); 1741 struct hd_struct *part = get_part(disk, req->sector); 1742 1743 __all_stat_inc(disk, part, ios[rw], req->sector); 1744 __all_stat_add(disk, part, ticks[rw], duration, req->sector); 1745 disk_round_stats(disk); 1746 disk->in_flight--; 1747 if (part) { 1748 part_round_stats(part); 1749 part->in_flight--; 1750 } 1751 } 1752 1753 if (req->end_io) 1754 req->end_io(req, error); 1755 else { 1756 if (blk_bidi_rq(req)) 1757 __blk_put_request(req->next_rq->q, req->next_rq); 1758 1759 __blk_put_request(req->q, req); 1760 } 1761 } 1762 1763 static inline void __end_request(struct request *rq, int uptodate, 1764 unsigned int nr_bytes) 1765 { 1766 int error = 0; 1767 1768 if (uptodate <= 0) 1769 error = uptodate ? uptodate : -EIO; 1770 1771 __blk_end_request(rq, error, nr_bytes); 1772 } 1773 1774 /** 1775 * blk_rq_bytes - Returns bytes left to complete in the entire request 1776 * @rq: the request being processed 1777 **/ 1778 unsigned int blk_rq_bytes(struct request *rq) 1779 { 1780 if (blk_fs_request(rq)) 1781 return rq->hard_nr_sectors << 9; 1782 1783 return rq->data_len; 1784 } 1785 EXPORT_SYMBOL_GPL(blk_rq_bytes); 1786 1787 /** 1788 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment 1789 * @rq: the request being processed 1790 **/ 1791 unsigned int blk_rq_cur_bytes(struct request *rq) 1792 { 1793 if (blk_fs_request(rq)) 1794 return rq->current_nr_sectors << 9; 1795 1796 if (rq->bio) 1797 return rq->bio->bi_size; 1798 1799 return rq->data_len; 1800 } 1801 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes); 1802 1803 /** 1804 * end_queued_request - end all I/O on a queued request 1805 * @rq: the request being processed 1806 * @uptodate: error value or 0/1 uptodate flag 1807 * 1808 * Description: 1809 * Ends all I/O on a request, and removes it from the block layer queues. 1810 * Not suitable for normal IO completion, unless the driver still has 1811 * the request attached to the block layer. 1812 * 1813 **/ 1814 void end_queued_request(struct request *rq, int uptodate) 1815 { 1816 __end_request(rq, uptodate, blk_rq_bytes(rq)); 1817 } 1818 EXPORT_SYMBOL(end_queued_request); 1819 1820 /** 1821 * end_dequeued_request - end all I/O on a dequeued request 1822 * @rq: the request being processed 1823 * @uptodate: error value or 0/1 uptodate flag 1824 * 1825 * Description: 1826 * Ends all I/O on a request. The request must already have been 1827 * dequeued using blkdev_dequeue_request(), as is normally the case 1828 * for most drivers. 1829 * 1830 **/ 1831 void end_dequeued_request(struct request *rq, int uptodate) 1832 { 1833 __end_request(rq, uptodate, blk_rq_bytes(rq)); 1834 } 1835 EXPORT_SYMBOL(end_dequeued_request); 1836 1837 1838 /** 1839 * end_request - end I/O on the current segment of the request 1840 * @req: the request being processed 1841 * @uptodate: error value or 0/1 uptodate flag 1842 * 1843 * Description: 1844 * Ends I/O on the current segment of a request. If that is the only 1845 * remaining segment, the request is also completed and freed. 1846 * 1847 * This is a remnant of how older block drivers handled IO completions. 1848 * Modern drivers typically end IO on the full request in one go, unless 1849 * they have a residual value to account for. For that case this function 1850 * isn't really useful, unless the residual just happens to be the 1851 * full current segment. In other words, don't use this function in new 1852 * code. Either use end_request_completely(), or the 1853 * end_that_request_chunk() (along with end_that_request_last()) for 1854 * partial completions. 1855 * 1856 **/ 1857 void end_request(struct request *req, int uptodate) 1858 { 1859 __end_request(req, uptodate, req->hard_cur_sectors << 9); 1860 } 1861 EXPORT_SYMBOL(end_request); 1862 1863 /** 1864 * blk_end_io - Generic end_io function to complete a request. 1865 * @rq: the request being processed 1866 * @error: 0 for success, < 0 for error 1867 * @nr_bytes: number of bytes to complete @rq 1868 * @bidi_bytes: number of bytes to complete @rq->next_rq 1869 * @drv_callback: function called between completion of bios in the request 1870 * and completion of the request. 1871 * If the callback returns non 0, this helper returns without 1872 * completion of the request. 1873 * 1874 * Description: 1875 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1876 * If @rq has leftover, sets it up for the next range of segments. 1877 * 1878 * Return: 1879 * 0 - we are done with this request 1880 * 1 - this request is not freed yet, it still has pending buffers. 1881 **/ 1882 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes, 1883 unsigned int bidi_bytes, 1884 int (drv_callback)(struct request *)) 1885 { 1886 struct request_queue *q = rq->q; 1887 unsigned long flags = 0UL; 1888 1889 if (blk_fs_request(rq) || blk_pc_request(rq)) { 1890 if (__end_that_request_first(rq, error, nr_bytes)) 1891 return 1; 1892 1893 /* Bidi request must be completed as a whole */ 1894 if (blk_bidi_rq(rq) && 1895 __end_that_request_first(rq->next_rq, error, bidi_bytes)) 1896 return 1; 1897 } 1898 1899 /* Special feature for tricky drivers */ 1900 if (drv_callback && drv_callback(rq)) 1901 return 1; 1902 1903 add_disk_randomness(rq->rq_disk); 1904 1905 spin_lock_irqsave(q->queue_lock, flags); 1906 end_that_request_last(rq, error); 1907 spin_unlock_irqrestore(q->queue_lock, flags); 1908 1909 return 0; 1910 } 1911 1912 /** 1913 * blk_end_request - Helper function for drivers to complete the request. 1914 * @rq: the request being processed 1915 * @error: 0 for success, < 0 for error 1916 * @nr_bytes: number of bytes to complete 1917 * 1918 * Description: 1919 * Ends I/O on a number of bytes attached to @rq. 1920 * If @rq has leftover, sets it up for the next range of segments. 1921 * 1922 * Return: 1923 * 0 - we are done with this request 1924 * 1 - still buffers pending for this request 1925 **/ 1926 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1927 { 1928 return blk_end_io(rq, error, nr_bytes, 0, NULL); 1929 } 1930 EXPORT_SYMBOL_GPL(blk_end_request); 1931 1932 /** 1933 * __blk_end_request - Helper function for drivers to complete the request. 1934 * @rq: the request being processed 1935 * @error: 0 for success, < 0 for error 1936 * @nr_bytes: number of bytes to complete 1937 * 1938 * Description: 1939 * Must be called with queue lock held unlike blk_end_request(). 1940 * 1941 * Return: 1942 * 0 - we are done with this request 1943 * 1 - still buffers pending for this request 1944 **/ 1945 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1946 { 1947 if (blk_fs_request(rq) || blk_pc_request(rq)) { 1948 if (__end_that_request_first(rq, error, nr_bytes)) 1949 return 1; 1950 } 1951 1952 add_disk_randomness(rq->rq_disk); 1953 1954 end_that_request_last(rq, error); 1955 1956 return 0; 1957 } 1958 EXPORT_SYMBOL_GPL(__blk_end_request); 1959 1960 /** 1961 * blk_end_bidi_request - Helper function for drivers to complete bidi request. 1962 * @rq: the bidi request being processed 1963 * @error: 0 for success, < 0 for error 1964 * @nr_bytes: number of bytes to complete @rq 1965 * @bidi_bytes: number of bytes to complete @rq->next_rq 1966 * 1967 * Description: 1968 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1969 * 1970 * Return: 1971 * 0 - we are done with this request 1972 * 1 - still buffers pending for this request 1973 **/ 1974 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes, 1975 unsigned int bidi_bytes) 1976 { 1977 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL); 1978 } 1979 EXPORT_SYMBOL_GPL(blk_end_bidi_request); 1980 1981 /** 1982 * blk_end_request_callback - Special helper function for tricky drivers 1983 * @rq: the request being processed 1984 * @error: 0 for success, < 0 for error 1985 * @nr_bytes: number of bytes to complete 1986 * @drv_callback: function called between completion of bios in the request 1987 * and completion of the request. 1988 * If the callback returns non 0, this helper returns without 1989 * completion of the request. 1990 * 1991 * Description: 1992 * Ends I/O on a number of bytes attached to @rq. 1993 * If @rq has leftover, sets it up for the next range of segments. 1994 * 1995 * This special helper function is used only for existing tricky drivers. 1996 * (e.g. cdrom_newpc_intr() of ide-cd) 1997 * This interface will be removed when such drivers are rewritten. 1998 * Don't use this interface in other places anymore. 1999 * 2000 * Return: 2001 * 0 - we are done with this request 2002 * 1 - this request is not freed yet. 2003 * this request still has pending buffers or 2004 * the driver doesn't want to finish this request yet. 2005 **/ 2006 int blk_end_request_callback(struct request *rq, int error, 2007 unsigned int nr_bytes, 2008 int (drv_callback)(struct request *)) 2009 { 2010 return blk_end_io(rq, error, nr_bytes, 0, drv_callback); 2011 } 2012 EXPORT_SYMBOL_GPL(blk_end_request_callback); 2013 2014 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2015 struct bio *bio) 2016 { 2017 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */ 2018 rq->cmd_flags |= (bio->bi_rw & 3); 2019 2020 rq->nr_phys_segments = bio_phys_segments(q, bio); 2021 rq->nr_hw_segments = bio_hw_segments(q, bio); 2022 rq->current_nr_sectors = bio_cur_sectors(bio); 2023 rq->hard_cur_sectors = rq->current_nr_sectors; 2024 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); 2025 rq->buffer = bio_data(bio); 2026 rq->data_len = bio->bi_size; 2027 2028 rq->bio = rq->biotail = bio; 2029 2030 if (bio->bi_bdev) 2031 rq->rq_disk = bio->bi_bdev->bd_disk; 2032 } 2033 2034 int kblockd_schedule_work(struct work_struct *work) 2035 { 2036 return queue_work(kblockd_workqueue, work); 2037 } 2038 EXPORT_SYMBOL(kblockd_schedule_work); 2039 2040 void kblockd_flush_work(struct work_struct *work) 2041 { 2042 cancel_work_sync(work); 2043 } 2044 EXPORT_SYMBOL(kblockd_flush_work); 2045 2046 int __init blk_dev_init(void) 2047 { 2048 int i; 2049 2050 kblockd_workqueue = create_workqueue("kblockd"); 2051 if (!kblockd_workqueue) 2052 panic("Failed to create kblockd\n"); 2053 2054 request_cachep = kmem_cache_create("blkdev_requests", 2055 sizeof(struct request), 0, SLAB_PANIC, NULL); 2056 2057 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2058 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2059 2060 for_each_possible_cpu(i) 2061 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i)); 2062 2063 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 2064 register_hotcpu_notifier(&blk_cpu_notifier); 2065 2066 return 0; 2067 } 2068 2069