xref: /linux/block/blk-core.c (revision 71fe07d040626de7b72244bf6de889c2e0f5aea3)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 #include <linux/pm_runtime.h>
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/block.h>
37 
38 #include "blk.h"
39 #include "blk-cgroup.h"
40 
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
45 
46 DEFINE_IDA(blk_queue_ida);
47 
48 /*
49  * For the allocated request tables
50  */
51 static struct kmem_cache *request_cachep;
52 
53 /*
54  * For queue allocation
55  */
56 struct kmem_cache *blk_requestq_cachep;
57 
58 /*
59  * Controlling structure to kblockd
60  */
61 static struct workqueue_struct *kblockd_workqueue;
62 
63 static void drive_stat_acct(struct request *rq, int new_io)
64 {
65 	struct hd_struct *part;
66 	int rw = rq_data_dir(rq);
67 	int cpu;
68 
69 	if (!blk_do_io_stat(rq))
70 		return;
71 
72 	cpu = part_stat_lock();
73 
74 	if (!new_io) {
75 		part = rq->part;
76 		part_stat_inc(cpu, part, merges[rw]);
77 	} else {
78 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
79 		if (!hd_struct_try_get(part)) {
80 			/*
81 			 * The partition is already being removed,
82 			 * the request will be accounted on the disk only
83 			 *
84 			 * We take a reference on disk->part0 although that
85 			 * partition will never be deleted, so we can treat
86 			 * it as any other partition.
87 			 */
88 			part = &rq->rq_disk->part0;
89 			hd_struct_get(part);
90 		}
91 		part_round_stats(cpu, part);
92 		part_inc_in_flight(part, rw);
93 		rq->part = part;
94 	}
95 
96 	part_stat_unlock();
97 }
98 
99 void blk_queue_congestion_threshold(struct request_queue *q)
100 {
101 	int nr;
102 
103 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 	if (nr > q->nr_requests)
105 		nr = q->nr_requests;
106 	q->nr_congestion_on = nr;
107 
108 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 	if (nr < 1)
110 		nr = 1;
111 	q->nr_congestion_off = nr;
112 }
113 
114 /**
115  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116  * @bdev:	device
117  *
118  * Locates the passed device's request queue and returns the address of its
119  * backing_dev_info
120  *
121  * Will return NULL if the request queue cannot be located.
122  */
123 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124 {
125 	struct backing_dev_info *ret = NULL;
126 	struct request_queue *q = bdev_get_queue(bdev);
127 
128 	if (q)
129 		ret = &q->backing_dev_info;
130 	return ret;
131 }
132 EXPORT_SYMBOL(blk_get_backing_dev_info);
133 
134 void blk_rq_init(struct request_queue *q, struct request *rq)
135 {
136 	memset(rq, 0, sizeof(*rq));
137 
138 	INIT_LIST_HEAD(&rq->queuelist);
139 	INIT_LIST_HEAD(&rq->timeout_list);
140 	rq->cpu = -1;
141 	rq->q = q;
142 	rq->__sector = (sector_t) -1;
143 	INIT_HLIST_NODE(&rq->hash);
144 	RB_CLEAR_NODE(&rq->rb_node);
145 	rq->cmd = rq->__cmd;
146 	rq->cmd_len = BLK_MAX_CDB;
147 	rq->tag = -1;
148 	rq->start_time = jiffies;
149 	set_start_time_ns(rq);
150 	rq->part = NULL;
151 }
152 EXPORT_SYMBOL(blk_rq_init);
153 
154 static void req_bio_endio(struct request *rq, struct bio *bio,
155 			  unsigned int nbytes, int error)
156 {
157 	if (error)
158 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
159 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
160 		error = -EIO;
161 
162 	if (unlikely(rq->cmd_flags & REQ_QUIET))
163 		set_bit(BIO_QUIET, &bio->bi_flags);
164 
165 	bio_advance(bio, nbytes);
166 
167 	/* don't actually finish bio if it's part of flush sequence */
168 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
169 		bio_endio(bio, error);
170 }
171 
172 void blk_dump_rq_flags(struct request *rq, char *msg)
173 {
174 	int bit;
175 
176 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
177 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
178 		(unsigned long long) rq->cmd_flags);
179 
180 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
181 	       (unsigned long long)blk_rq_pos(rq),
182 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
183 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
184 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
185 
186 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
187 		printk(KERN_INFO "  cdb: ");
188 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
189 			printk("%02x ", rq->cmd[bit]);
190 		printk("\n");
191 	}
192 }
193 EXPORT_SYMBOL(blk_dump_rq_flags);
194 
195 static void blk_delay_work(struct work_struct *work)
196 {
197 	struct request_queue *q;
198 
199 	q = container_of(work, struct request_queue, delay_work.work);
200 	spin_lock_irq(q->queue_lock);
201 	__blk_run_queue(q);
202 	spin_unlock_irq(q->queue_lock);
203 }
204 
205 /**
206  * blk_delay_queue - restart queueing after defined interval
207  * @q:		The &struct request_queue in question
208  * @msecs:	Delay in msecs
209  *
210  * Description:
211  *   Sometimes queueing needs to be postponed for a little while, to allow
212  *   resources to come back. This function will make sure that queueing is
213  *   restarted around the specified time. Queue lock must be held.
214  */
215 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
216 {
217 	if (likely(!blk_queue_dead(q)))
218 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
219 				   msecs_to_jiffies(msecs));
220 }
221 EXPORT_SYMBOL(blk_delay_queue);
222 
223 /**
224  * blk_start_queue - restart a previously stopped queue
225  * @q:    The &struct request_queue in question
226  *
227  * Description:
228  *   blk_start_queue() will clear the stop flag on the queue, and call
229  *   the request_fn for the queue if it was in a stopped state when
230  *   entered. Also see blk_stop_queue(). Queue lock must be held.
231  **/
232 void blk_start_queue(struct request_queue *q)
233 {
234 	WARN_ON(!irqs_disabled());
235 
236 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
237 	__blk_run_queue(q);
238 }
239 EXPORT_SYMBOL(blk_start_queue);
240 
241 /**
242  * blk_stop_queue - stop a queue
243  * @q:    The &struct request_queue in question
244  *
245  * Description:
246  *   The Linux block layer assumes that a block driver will consume all
247  *   entries on the request queue when the request_fn strategy is called.
248  *   Often this will not happen, because of hardware limitations (queue
249  *   depth settings). If a device driver gets a 'queue full' response,
250  *   or if it simply chooses not to queue more I/O at one point, it can
251  *   call this function to prevent the request_fn from being called until
252  *   the driver has signalled it's ready to go again. This happens by calling
253  *   blk_start_queue() to restart queue operations. Queue lock must be held.
254  **/
255 void blk_stop_queue(struct request_queue *q)
256 {
257 	cancel_delayed_work(&q->delay_work);
258 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
259 }
260 EXPORT_SYMBOL(blk_stop_queue);
261 
262 /**
263  * blk_sync_queue - cancel any pending callbacks on a queue
264  * @q: the queue
265  *
266  * Description:
267  *     The block layer may perform asynchronous callback activity
268  *     on a queue, such as calling the unplug function after a timeout.
269  *     A block device may call blk_sync_queue to ensure that any
270  *     such activity is cancelled, thus allowing it to release resources
271  *     that the callbacks might use. The caller must already have made sure
272  *     that its ->make_request_fn will not re-add plugging prior to calling
273  *     this function.
274  *
275  *     This function does not cancel any asynchronous activity arising
276  *     out of elevator or throttling code. That would require elevaotor_exit()
277  *     and blkcg_exit_queue() to be called with queue lock initialized.
278  *
279  */
280 void blk_sync_queue(struct request_queue *q)
281 {
282 	del_timer_sync(&q->timeout);
283 	cancel_delayed_work_sync(&q->delay_work);
284 }
285 EXPORT_SYMBOL(blk_sync_queue);
286 
287 /**
288  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
289  * @q:	The queue to run
290  *
291  * Description:
292  *    Invoke request handling on a queue if there are any pending requests.
293  *    May be used to restart request handling after a request has completed.
294  *    This variant runs the queue whether or not the queue has been
295  *    stopped. Must be called with the queue lock held and interrupts
296  *    disabled. See also @blk_run_queue.
297  */
298 inline void __blk_run_queue_uncond(struct request_queue *q)
299 {
300 	if (unlikely(blk_queue_dead(q)))
301 		return;
302 
303 	/*
304 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
305 	 * the queue lock internally. As a result multiple threads may be
306 	 * running such a request function concurrently. Keep track of the
307 	 * number of active request_fn invocations such that blk_drain_queue()
308 	 * can wait until all these request_fn calls have finished.
309 	 */
310 	q->request_fn_active++;
311 	q->request_fn(q);
312 	q->request_fn_active--;
313 }
314 
315 /**
316  * __blk_run_queue - run a single device queue
317  * @q:	The queue to run
318  *
319  * Description:
320  *    See @blk_run_queue. This variant must be called with the queue lock
321  *    held and interrupts disabled.
322  */
323 void __blk_run_queue(struct request_queue *q)
324 {
325 	if (unlikely(blk_queue_stopped(q)))
326 		return;
327 
328 	__blk_run_queue_uncond(q);
329 }
330 EXPORT_SYMBOL(__blk_run_queue);
331 
332 /**
333  * blk_run_queue_async - run a single device queue in workqueue context
334  * @q:	The queue to run
335  *
336  * Description:
337  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
338  *    of us. The caller must hold the queue lock.
339  */
340 void blk_run_queue_async(struct request_queue *q)
341 {
342 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
343 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
344 }
345 EXPORT_SYMBOL(blk_run_queue_async);
346 
347 /**
348  * blk_run_queue - run a single device queue
349  * @q: The queue to run
350  *
351  * Description:
352  *    Invoke request handling on this queue, if it has pending work to do.
353  *    May be used to restart queueing when a request has completed.
354  */
355 void blk_run_queue(struct request_queue *q)
356 {
357 	unsigned long flags;
358 
359 	spin_lock_irqsave(q->queue_lock, flags);
360 	__blk_run_queue(q);
361 	spin_unlock_irqrestore(q->queue_lock, flags);
362 }
363 EXPORT_SYMBOL(blk_run_queue);
364 
365 void blk_put_queue(struct request_queue *q)
366 {
367 	kobject_put(&q->kobj);
368 }
369 EXPORT_SYMBOL(blk_put_queue);
370 
371 /**
372  * __blk_drain_queue - drain requests from request_queue
373  * @q: queue to drain
374  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
375  *
376  * Drain requests from @q.  If @drain_all is set, all requests are drained.
377  * If not, only ELVPRIV requests are drained.  The caller is responsible
378  * for ensuring that no new requests which need to be drained are queued.
379  */
380 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
381 	__releases(q->queue_lock)
382 	__acquires(q->queue_lock)
383 {
384 	int i;
385 
386 	lockdep_assert_held(q->queue_lock);
387 
388 	while (true) {
389 		bool drain = false;
390 
391 		/*
392 		 * The caller might be trying to drain @q before its
393 		 * elevator is initialized.
394 		 */
395 		if (q->elevator)
396 			elv_drain_elevator(q);
397 
398 		blkcg_drain_queue(q);
399 
400 		/*
401 		 * This function might be called on a queue which failed
402 		 * driver init after queue creation or is not yet fully
403 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
404 		 * in such cases.  Kick queue iff dispatch queue has
405 		 * something on it and @q has request_fn set.
406 		 */
407 		if (!list_empty(&q->queue_head) && q->request_fn)
408 			__blk_run_queue(q);
409 
410 		drain |= q->nr_rqs_elvpriv;
411 		drain |= q->request_fn_active;
412 
413 		/*
414 		 * Unfortunately, requests are queued at and tracked from
415 		 * multiple places and there's no single counter which can
416 		 * be drained.  Check all the queues and counters.
417 		 */
418 		if (drain_all) {
419 			drain |= !list_empty(&q->queue_head);
420 			for (i = 0; i < 2; i++) {
421 				drain |= q->nr_rqs[i];
422 				drain |= q->in_flight[i];
423 				drain |= !list_empty(&q->flush_queue[i]);
424 			}
425 		}
426 
427 		if (!drain)
428 			break;
429 
430 		spin_unlock_irq(q->queue_lock);
431 
432 		msleep(10);
433 
434 		spin_lock_irq(q->queue_lock);
435 	}
436 
437 	/*
438 	 * With queue marked dead, any woken up waiter will fail the
439 	 * allocation path, so the wakeup chaining is lost and we're
440 	 * left with hung waiters. We need to wake up those waiters.
441 	 */
442 	if (q->request_fn) {
443 		struct request_list *rl;
444 
445 		blk_queue_for_each_rl(rl, q)
446 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
447 				wake_up_all(&rl->wait[i]);
448 	}
449 }
450 
451 /**
452  * blk_queue_bypass_start - enter queue bypass mode
453  * @q: queue of interest
454  *
455  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
456  * function makes @q enter bypass mode and drains all requests which were
457  * throttled or issued before.  On return, it's guaranteed that no request
458  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
459  * inside queue or RCU read lock.
460  */
461 void blk_queue_bypass_start(struct request_queue *q)
462 {
463 	bool drain;
464 
465 	spin_lock_irq(q->queue_lock);
466 	drain = !q->bypass_depth++;
467 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
468 	spin_unlock_irq(q->queue_lock);
469 
470 	if (drain) {
471 		spin_lock_irq(q->queue_lock);
472 		__blk_drain_queue(q, false);
473 		spin_unlock_irq(q->queue_lock);
474 
475 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
476 		synchronize_rcu();
477 	}
478 }
479 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
480 
481 /**
482  * blk_queue_bypass_end - leave queue bypass mode
483  * @q: queue of interest
484  *
485  * Leave bypass mode and restore the normal queueing behavior.
486  */
487 void blk_queue_bypass_end(struct request_queue *q)
488 {
489 	spin_lock_irq(q->queue_lock);
490 	if (!--q->bypass_depth)
491 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
492 	WARN_ON_ONCE(q->bypass_depth < 0);
493 	spin_unlock_irq(q->queue_lock);
494 }
495 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
496 
497 /**
498  * blk_cleanup_queue - shutdown a request queue
499  * @q: request queue to shutdown
500  *
501  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
502  * put it.  All future requests will be failed immediately with -ENODEV.
503  */
504 void blk_cleanup_queue(struct request_queue *q)
505 {
506 	spinlock_t *lock = q->queue_lock;
507 
508 	/* mark @q DYING, no new request or merges will be allowed afterwards */
509 	mutex_lock(&q->sysfs_lock);
510 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
511 	spin_lock_irq(lock);
512 
513 	/*
514 	 * A dying queue is permanently in bypass mode till released.  Note
515 	 * that, unlike blk_queue_bypass_start(), we aren't performing
516 	 * synchronize_rcu() after entering bypass mode to avoid the delay
517 	 * as some drivers create and destroy a lot of queues while
518 	 * probing.  This is still safe because blk_release_queue() will be
519 	 * called only after the queue refcnt drops to zero and nothing,
520 	 * RCU or not, would be traversing the queue by then.
521 	 */
522 	q->bypass_depth++;
523 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
524 
525 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
526 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
527 	queue_flag_set(QUEUE_FLAG_DYING, q);
528 	spin_unlock_irq(lock);
529 	mutex_unlock(&q->sysfs_lock);
530 
531 	/*
532 	 * Drain all requests queued before DYING marking. Set DEAD flag to
533 	 * prevent that q->request_fn() gets invoked after draining finished.
534 	 */
535 	spin_lock_irq(lock);
536 	__blk_drain_queue(q, true);
537 	queue_flag_set(QUEUE_FLAG_DEAD, q);
538 	spin_unlock_irq(lock);
539 
540 	/* @q won't process any more request, flush async actions */
541 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
542 	blk_sync_queue(q);
543 
544 	spin_lock_irq(lock);
545 	if (q->queue_lock != &q->__queue_lock)
546 		q->queue_lock = &q->__queue_lock;
547 	spin_unlock_irq(lock);
548 
549 	/* @q is and will stay empty, shutdown and put */
550 	blk_put_queue(q);
551 }
552 EXPORT_SYMBOL(blk_cleanup_queue);
553 
554 int blk_init_rl(struct request_list *rl, struct request_queue *q,
555 		gfp_t gfp_mask)
556 {
557 	if (unlikely(rl->rq_pool))
558 		return 0;
559 
560 	rl->q = q;
561 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
562 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
563 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
564 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
565 
566 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
567 					  mempool_free_slab, request_cachep,
568 					  gfp_mask, q->node);
569 	if (!rl->rq_pool)
570 		return -ENOMEM;
571 
572 	return 0;
573 }
574 
575 void blk_exit_rl(struct request_list *rl)
576 {
577 	if (rl->rq_pool)
578 		mempool_destroy(rl->rq_pool);
579 }
580 
581 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
582 {
583 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
584 }
585 EXPORT_SYMBOL(blk_alloc_queue);
586 
587 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
588 {
589 	struct request_queue *q;
590 	int err;
591 
592 	q = kmem_cache_alloc_node(blk_requestq_cachep,
593 				gfp_mask | __GFP_ZERO, node_id);
594 	if (!q)
595 		return NULL;
596 
597 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
598 	if (q->id < 0)
599 		goto fail_q;
600 
601 	q->backing_dev_info.ra_pages =
602 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
603 	q->backing_dev_info.state = 0;
604 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
605 	q->backing_dev_info.name = "block";
606 	q->node = node_id;
607 
608 	err = bdi_init(&q->backing_dev_info);
609 	if (err)
610 		goto fail_id;
611 
612 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
613 		    laptop_mode_timer_fn, (unsigned long) q);
614 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
615 	INIT_LIST_HEAD(&q->queue_head);
616 	INIT_LIST_HEAD(&q->timeout_list);
617 	INIT_LIST_HEAD(&q->icq_list);
618 #ifdef CONFIG_BLK_CGROUP
619 	INIT_LIST_HEAD(&q->blkg_list);
620 #endif
621 	INIT_LIST_HEAD(&q->flush_queue[0]);
622 	INIT_LIST_HEAD(&q->flush_queue[1]);
623 	INIT_LIST_HEAD(&q->flush_data_in_flight);
624 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
625 
626 	kobject_init(&q->kobj, &blk_queue_ktype);
627 
628 	mutex_init(&q->sysfs_lock);
629 	spin_lock_init(&q->__queue_lock);
630 
631 	/*
632 	 * By default initialize queue_lock to internal lock and driver can
633 	 * override it later if need be.
634 	 */
635 	q->queue_lock = &q->__queue_lock;
636 
637 	/*
638 	 * A queue starts its life with bypass turned on to avoid
639 	 * unnecessary bypass on/off overhead and nasty surprises during
640 	 * init.  The initial bypass will be finished when the queue is
641 	 * registered by blk_register_queue().
642 	 */
643 	q->bypass_depth = 1;
644 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
645 
646 	if (blkcg_init_queue(q))
647 		goto fail_id;
648 
649 	return q;
650 
651 fail_id:
652 	ida_simple_remove(&blk_queue_ida, q->id);
653 fail_q:
654 	kmem_cache_free(blk_requestq_cachep, q);
655 	return NULL;
656 }
657 EXPORT_SYMBOL(blk_alloc_queue_node);
658 
659 /**
660  * blk_init_queue  - prepare a request queue for use with a block device
661  * @rfn:  The function to be called to process requests that have been
662  *        placed on the queue.
663  * @lock: Request queue spin lock
664  *
665  * Description:
666  *    If a block device wishes to use the standard request handling procedures,
667  *    which sorts requests and coalesces adjacent requests, then it must
668  *    call blk_init_queue().  The function @rfn will be called when there
669  *    are requests on the queue that need to be processed.  If the device
670  *    supports plugging, then @rfn may not be called immediately when requests
671  *    are available on the queue, but may be called at some time later instead.
672  *    Plugged queues are generally unplugged when a buffer belonging to one
673  *    of the requests on the queue is needed, or due to memory pressure.
674  *
675  *    @rfn is not required, or even expected, to remove all requests off the
676  *    queue, but only as many as it can handle at a time.  If it does leave
677  *    requests on the queue, it is responsible for arranging that the requests
678  *    get dealt with eventually.
679  *
680  *    The queue spin lock must be held while manipulating the requests on the
681  *    request queue; this lock will be taken also from interrupt context, so irq
682  *    disabling is needed for it.
683  *
684  *    Function returns a pointer to the initialized request queue, or %NULL if
685  *    it didn't succeed.
686  *
687  * Note:
688  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
689  *    when the block device is deactivated (such as at module unload).
690  **/
691 
692 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
693 {
694 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
695 }
696 EXPORT_SYMBOL(blk_init_queue);
697 
698 struct request_queue *
699 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
700 {
701 	struct request_queue *uninit_q, *q;
702 
703 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
704 	if (!uninit_q)
705 		return NULL;
706 
707 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
708 	if (!q)
709 		blk_cleanup_queue(uninit_q);
710 
711 	return q;
712 }
713 EXPORT_SYMBOL(blk_init_queue_node);
714 
715 struct request_queue *
716 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
717 			 spinlock_t *lock)
718 {
719 	if (!q)
720 		return NULL;
721 
722 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
723 		return NULL;
724 
725 	q->request_fn		= rfn;
726 	q->prep_rq_fn		= NULL;
727 	q->unprep_rq_fn		= NULL;
728 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
729 
730 	/* Override internal queue lock with supplied lock pointer */
731 	if (lock)
732 		q->queue_lock		= lock;
733 
734 	/*
735 	 * This also sets hw/phys segments, boundary and size
736 	 */
737 	blk_queue_make_request(q, blk_queue_bio);
738 
739 	q->sg_reserved_size = INT_MAX;
740 
741 	/* init elevator */
742 	if (elevator_init(q, NULL))
743 		return NULL;
744 	return q;
745 }
746 EXPORT_SYMBOL(blk_init_allocated_queue);
747 
748 bool blk_get_queue(struct request_queue *q)
749 {
750 	if (likely(!blk_queue_dying(q))) {
751 		__blk_get_queue(q);
752 		return true;
753 	}
754 
755 	return false;
756 }
757 EXPORT_SYMBOL(blk_get_queue);
758 
759 static inline void blk_free_request(struct request_list *rl, struct request *rq)
760 {
761 	if (rq->cmd_flags & REQ_ELVPRIV) {
762 		elv_put_request(rl->q, rq);
763 		if (rq->elv.icq)
764 			put_io_context(rq->elv.icq->ioc);
765 	}
766 
767 	mempool_free(rq, rl->rq_pool);
768 }
769 
770 /*
771  * ioc_batching returns true if the ioc is a valid batching request and
772  * should be given priority access to a request.
773  */
774 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
775 {
776 	if (!ioc)
777 		return 0;
778 
779 	/*
780 	 * Make sure the process is able to allocate at least 1 request
781 	 * even if the batch times out, otherwise we could theoretically
782 	 * lose wakeups.
783 	 */
784 	return ioc->nr_batch_requests == q->nr_batching ||
785 		(ioc->nr_batch_requests > 0
786 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
787 }
788 
789 /*
790  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
791  * will cause the process to be a "batcher" on all queues in the system. This
792  * is the behaviour we want though - once it gets a wakeup it should be given
793  * a nice run.
794  */
795 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
796 {
797 	if (!ioc || ioc_batching(q, ioc))
798 		return;
799 
800 	ioc->nr_batch_requests = q->nr_batching;
801 	ioc->last_waited = jiffies;
802 }
803 
804 static void __freed_request(struct request_list *rl, int sync)
805 {
806 	struct request_queue *q = rl->q;
807 
808 	/*
809 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
810 	 * blkcg anyway, just use root blkcg state.
811 	 */
812 	if (rl == &q->root_rl &&
813 	    rl->count[sync] < queue_congestion_off_threshold(q))
814 		blk_clear_queue_congested(q, sync);
815 
816 	if (rl->count[sync] + 1 <= q->nr_requests) {
817 		if (waitqueue_active(&rl->wait[sync]))
818 			wake_up(&rl->wait[sync]);
819 
820 		blk_clear_rl_full(rl, sync);
821 	}
822 }
823 
824 /*
825  * A request has just been released.  Account for it, update the full and
826  * congestion status, wake up any waiters.   Called under q->queue_lock.
827  */
828 static void freed_request(struct request_list *rl, unsigned int flags)
829 {
830 	struct request_queue *q = rl->q;
831 	int sync = rw_is_sync(flags);
832 
833 	q->nr_rqs[sync]--;
834 	rl->count[sync]--;
835 	if (flags & REQ_ELVPRIV)
836 		q->nr_rqs_elvpriv--;
837 
838 	__freed_request(rl, sync);
839 
840 	if (unlikely(rl->starved[sync ^ 1]))
841 		__freed_request(rl, sync ^ 1);
842 }
843 
844 /*
845  * Determine if elevator data should be initialized when allocating the
846  * request associated with @bio.
847  */
848 static bool blk_rq_should_init_elevator(struct bio *bio)
849 {
850 	if (!bio)
851 		return true;
852 
853 	/*
854 	 * Flush requests do not use the elevator so skip initialization.
855 	 * This allows a request to share the flush and elevator data.
856 	 */
857 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
858 		return false;
859 
860 	return true;
861 }
862 
863 /**
864  * rq_ioc - determine io_context for request allocation
865  * @bio: request being allocated is for this bio (can be %NULL)
866  *
867  * Determine io_context to use for request allocation for @bio.  May return
868  * %NULL if %current->io_context doesn't exist.
869  */
870 static struct io_context *rq_ioc(struct bio *bio)
871 {
872 #ifdef CONFIG_BLK_CGROUP
873 	if (bio && bio->bi_ioc)
874 		return bio->bi_ioc;
875 #endif
876 	return current->io_context;
877 }
878 
879 /**
880  * __get_request - get a free request
881  * @rl: request list to allocate from
882  * @rw_flags: RW and SYNC flags
883  * @bio: bio to allocate request for (can be %NULL)
884  * @gfp_mask: allocation mask
885  *
886  * Get a free request from @q.  This function may fail under memory
887  * pressure or if @q is dead.
888  *
889  * Must be callled with @q->queue_lock held and,
890  * Returns %NULL on failure, with @q->queue_lock held.
891  * Returns !%NULL on success, with @q->queue_lock *not held*.
892  */
893 static struct request *__get_request(struct request_list *rl, int rw_flags,
894 				     struct bio *bio, gfp_t gfp_mask)
895 {
896 	struct request_queue *q = rl->q;
897 	struct request *rq;
898 	struct elevator_type *et = q->elevator->type;
899 	struct io_context *ioc = rq_ioc(bio);
900 	struct io_cq *icq = NULL;
901 	const bool is_sync = rw_is_sync(rw_flags) != 0;
902 	int may_queue;
903 
904 	if (unlikely(blk_queue_dying(q)))
905 		return NULL;
906 
907 	may_queue = elv_may_queue(q, rw_flags);
908 	if (may_queue == ELV_MQUEUE_NO)
909 		goto rq_starved;
910 
911 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
912 		if (rl->count[is_sync]+1 >= q->nr_requests) {
913 			/*
914 			 * The queue will fill after this allocation, so set
915 			 * it as full, and mark this process as "batching".
916 			 * This process will be allowed to complete a batch of
917 			 * requests, others will be blocked.
918 			 */
919 			if (!blk_rl_full(rl, is_sync)) {
920 				ioc_set_batching(q, ioc);
921 				blk_set_rl_full(rl, is_sync);
922 			} else {
923 				if (may_queue != ELV_MQUEUE_MUST
924 						&& !ioc_batching(q, ioc)) {
925 					/*
926 					 * The queue is full and the allocating
927 					 * process is not a "batcher", and not
928 					 * exempted by the IO scheduler
929 					 */
930 					return NULL;
931 				}
932 			}
933 		}
934 		/*
935 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
936 		 * root blkcg anyway, just use root blkcg state.
937 		 */
938 		if (rl == &q->root_rl)
939 			blk_set_queue_congested(q, is_sync);
940 	}
941 
942 	/*
943 	 * Only allow batching queuers to allocate up to 50% over the defined
944 	 * limit of requests, otherwise we could have thousands of requests
945 	 * allocated with any setting of ->nr_requests
946 	 */
947 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
948 		return NULL;
949 
950 	q->nr_rqs[is_sync]++;
951 	rl->count[is_sync]++;
952 	rl->starved[is_sync] = 0;
953 
954 	/*
955 	 * Decide whether the new request will be managed by elevator.  If
956 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
957 	 * prevent the current elevator from being destroyed until the new
958 	 * request is freed.  This guarantees icq's won't be destroyed and
959 	 * makes creating new ones safe.
960 	 *
961 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
962 	 * it will be created after releasing queue_lock.
963 	 */
964 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
965 		rw_flags |= REQ_ELVPRIV;
966 		q->nr_rqs_elvpriv++;
967 		if (et->icq_cache && ioc)
968 			icq = ioc_lookup_icq(ioc, q);
969 	}
970 
971 	if (blk_queue_io_stat(q))
972 		rw_flags |= REQ_IO_STAT;
973 	spin_unlock_irq(q->queue_lock);
974 
975 	/* allocate and init request */
976 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
977 	if (!rq)
978 		goto fail_alloc;
979 
980 	blk_rq_init(q, rq);
981 	blk_rq_set_rl(rq, rl);
982 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
983 
984 	/* init elvpriv */
985 	if (rw_flags & REQ_ELVPRIV) {
986 		if (unlikely(et->icq_cache && !icq)) {
987 			if (ioc)
988 				icq = ioc_create_icq(ioc, q, gfp_mask);
989 			if (!icq)
990 				goto fail_elvpriv;
991 		}
992 
993 		rq->elv.icq = icq;
994 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
995 			goto fail_elvpriv;
996 
997 		/* @rq->elv.icq holds io_context until @rq is freed */
998 		if (icq)
999 			get_io_context(icq->ioc);
1000 	}
1001 out:
1002 	/*
1003 	 * ioc may be NULL here, and ioc_batching will be false. That's
1004 	 * OK, if the queue is under the request limit then requests need
1005 	 * not count toward the nr_batch_requests limit. There will always
1006 	 * be some limit enforced by BLK_BATCH_TIME.
1007 	 */
1008 	if (ioc_batching(q, ioc))
1009 		ioc->nr_batch_requests--;
1010 
1011 	trace_block_getrq(q, bio, rw_flags & 1);
1012 	return rq;
1013 
1014 fail_elvpriv:
1015 	/*
1016 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1017 	 * and may fail indefinitely under memory pressure and thus
1018 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1019 	 * disturb iosched and blkcg but weird is bettern than dead.
1020 	 */
1021 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1022 			   dev_name(q->backing_dev_info.dev));
1023 
1024 	rq->cmd_flags &= ~REQ_ELVPRIV;
1025 	rq->elv.icq = NULL;
1026 
1027 	spin_lock_irq(q->queue_lock);
1028 	q->nr_rqs_elvpriv--;
1029 	spin_unlock_irq(q->queue_lock);
1030 	goto out;
1031 
1032 fail_alloc:
1033 	/*
1034 	 * Allocation failed presumably due to memory. Undo anything we
1035 	 * might have messed up.
1036 	 *
1037 	 * Allocating task should really be put onto the front of the wait
1038 	 * queue, but this is pretty rare.
1039 	 */
1040 	spin_lock_irq(q->queue_lock);
1041 	freed_request(rl, rw_flags);
1042 
1043 	/*
1044 	 * in the very unlikely event that allocation failed and no
1045 	 * requests for this direction was pending, mark us starved so that
1046 	 * freeing of a request in the other direction will notice
1047 	 * us. another possible fix would be to split the rq mempool into
1048 	 * READ and WRITE
1049 	 */
1050 rq_starved:
1051 	if (unlikely(rl->count[is_sync] == 0))
1052 		rl->starved[is_sync] = 1;
1053 	return NULL;
1054 }
1055 
1056 /**
1057  * get_request - get a free request
1058  * @q: request_queue to allocate request from
1059  * @rw_flags: RW and SYNC flags
1060  * @bio: bio to allocate request for (can be %NULL)
1061  * @gfp_mask: allocation mask
1062  *
1063  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1064  * function keeps retrying under memory pressure and fails iff @q is dead.
1065  *
1066  * Must be callled with @q->queue_lock held and,
1067  * Returns %NULL on failure, with @q->queue_lock held.
1068  * Returns !%NULL on success, with @q->queue_lock *not held*.
1069  */
1070 static struct request *get_request(struct request_queue *q, int rw_flags,
1071 				   struct bio *bio, gfp_t gfp_mask)
1072 {
1073 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1074 	DEFINE_WAIT(wait);
1075 	struct request_list *rl;
1076 	struct request *rq;
1077 
1078 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1079 retry:
1080 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1081 	if (rq)
1082 		return rq;
1083 
1084 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1085 		blk_put_rl(rl);
1086 		return NULL;
1087 	}
1088 
1089 	/* wait on @rl and retry */
1090 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1091 				  TASK_UNINTERRUPTIBLE);
1092 
1093 	trace_block_sleeprq(q, bio, rw_flags & 1);
1094 
1095 	spin_unlock_irq(q->queue_lock);
1096 	io_schedule();
1097 
1098 	/*
1099 	 * After sleeping, we become a "batching" process and will be able
1100 	 * to allocate at least one request, and up to a big batch of them
1101 	 * for a small period time.  See ioc_batching, ioc_set_batching
1102 	 */
1103 	ioc_set_batching(q, current->io_context);
1104 
1105 	spin_lock_irq(q->queue_lock);
1106 	finish_wait(&rl->wait[is_sync], &wait);
1107 
1108 	goto retry;
1109 }
1110 
1111 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1112 {
1113 	struct request *rq;
1114 
1115 	BUG_ON(rw != READ && rw != WRITE);
1116 
1117 	/* create ioc upfront */
1118 	create_io_context(gfp_mask, q->node);
1119 
1120 	spin_lock_irq(q->queue_lock);
1121 	rq = get_request(q, rw, NULL, gfp_mask);
1122 	if (!rq)
1123 		spin_unlock_irq(q->queue_lock);
1124 	/* q->queue_lock is unlocked at this point */
1125 
1126 	return rq;
1127 }
1128 EXPORT_SYMBOL(blk_get_request);
1129 
1130 /**
1131  * blk_make_request - given a bio, allocate a corresponding struct request.
1132  * @q: target request queue
1133  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1134  *        It may be a chained-bio properly constructed by block/bio layer.
1135  * @gfp_mask: gfp flags to be used for memory allocation
1136  *
1137  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1138  * type commands. Where the struct request needs to be farther initialized by
1139  * the caller. It is passed a &struct bio, which describes the memory info of
1140  * the I/O transfer.
1141  *
1142  * The caller of blk_make_request must make sure that bi_io_vec
1143  * are set to describe the memory buffers. That bio_data_dir() will return
1144  * the needed direction of the request. (And all bio's in the passed bio-chain
1145  * are properly set accordingly)
1146  *
1147  * If called under none-sleepable conditions, mapped bio buffers must not
1148  * need bouncing, by calling the appropriate masked or flagged allocator,
1149  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1150  * BUG.
1151  *
1152  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1153  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1154  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1155  * completion of a bio that hasn't been submitted yet, thus resulting in a
1156  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1157  * of bio_alloc(), as that avoids the mempool deadlock.
1158  * If possible a big IO should be split into smaller parts when allocation
1159  * fails. Partial allocation should not be an error, or you risk a live-lock.
1160  */
1161 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1162 				 gfp_t gfp_mask)
1163 {
1164 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1165 
1166 	if (unlikely(!rq))
1167 		return ERR_PTR(-ENOMEM);
1168 
1169 	for_each_bio(bio) {
1170 		struct bio *bounce_bio = bio;
1171 		int ret;
1172 
1173 		blk_queue_bounce(q, &bounce_bio);
1174 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1175 		if (unlikely(ret)) {
1176 			blk_put_request(rq);
1177 			return ERR_PTR(ret);
1178 		}
1179 	}
1180 
1181 	return rq;
1182 }
1183 EXPORT_SYMBOL(blk_make_request);
1184 
1185 /**
1186  * blk_requeue_request - put a request back on queue
1187  * @q:		request queue where request should be inserted
1188  * @rq:		request to be inserted
1189  *
1190  * Description:
1191  *    Drivers often keep queueing requests until the hardware cannot accept
1192  *    more, when that condition happens we need to put the request back
1193  *    on the queue. Must be called with queue lock held.
1194  */
1195 void blk_requeue_request(struct request_queue *q, struct request *rq)
1196 {
1197 	blk_delete_timer(rq);
1198 	blk_clear_rq_complete(rq);
1199 	trace_block_rq_requeue(q, rq);
1200 
1201 	if (blk_rq_tagged(rq))
1202 		blk_queue_end_tag(q, rq);
1203 
1204 	BUG_ON(blk_queued_rq(rq));
1205 
1206 	elv_requeue_request(q, rq);
1207 }
1208 EXPORT_SYMBOL(blk_requeue_request);
1209 
1210 static void add_acct_request(struct request_queue *q, struct request *rq,
1211 			     int where)
1212 {
1213 	drive_stat_acct(rq, 1);
1214 	__elv_add_request(q, rq, where);
1215 }
1216 
1217 static void part_round_stats_single(int cpu, struct hd_struct *part,
1218 				    unsigned long now)
1219 {
1220 	if (now == part->stamp)
1221 		return;
1222 
1223 	if (part_in_flight(part)) {
1224 		__part_stat_add(cpu, part, time_in_queue,
1225 				part_in_flight(part) * (now - part->stamp));
1226 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1227 	}
1228 	part->stamp = now;
1229 }
1230 
1231 /**
1232  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1233  * @cpu: cpu number for stats access
1234  * @part: target partition
1235  *
1236  * The average IO queue length and utilisation statistics are maintained
1237  * by observing the current state of the queue length and the amount of
1238  * time it has been in this state for.
1239  *
1240  * Normally, that accounting is done on IO completion, but that can result
1241  * in more than a second's worth of IO being accounted for within any one
1242  * second, leading to >100% utilisation.  To deal with that, we call this
1243  * function to do a round-off before returning the results when reading
1244  * /proc/diskstats.  This accounts immediately for all queue usage up to
1245  * the current jiffies and restarts the counters again.
1246  */
1247 void part_round_stats(int cpu, struct hd_struct *part)
1248 {
1249 	unsigned long now = jiffies;
1250 
1251 	if (part->partno)
1252 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1253 	part_round_stats_single(cpu, part, now);
1254 }
1255 EXPORT_SYMBOL_GPL(part_round_stats);
1256 
1257 #ifdef CONFIG_PM_RUNTIME
1258 static void blk_pm_put_request(struct request *rq)
1259 {
1260 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1261 		pm_runtime_mark_last_busy(rq->q->dev);
1262 }
1263 #else
1264 static inline void blk_pm_put_request(struct request *rq) {}
1265 #endif
1266 
1267 /*
1268  * queue lock must be held
1269  */
1270 void __blk_put_request(struct request_queue *q, struct request *req)
1271 {
1272 	if (unlikely(!q))
1273 		return;
1274 
1275 	blk_pm_put_request(req);
1276 
1277 	elv_completed_request(q, req);
1278 
1279 	/* this is a bio leak */
1280 	WARN_ON(req->bio != NULL);
1281 
1282 	/*
1283 	 * Request may not have originated from ll_rw_blk. if not,
1284 	 * it didn't come out of our reserved rq pools
1285 	 */
1286 	if (req->cmd_flags & REQ_ALLOCED) {
1287 		unsigned int flags = req->cmd_flags;
1288 		struct request_list *rl = blk_rq_rl(req);
1289 
1290 		BUG_ON(!list_empty(&req->queuelist));
1291 		BUG_ON(!hlist_unhashed(&req->hash));
1292 
1293 		blk_free_request(rl, req);
1294 		freed_request(rl, flags);
1295 		blk_put_rl(rl);
1296 	}
1297 }
1298 EXPORT_SYMBOL_GPL(__blk_put_request);
1299 
1300 void blk_put_request(struct request *req)
1301 {
1302 	unsigned long flags;
1303 	struct request_queue *q = req->q;
1304 
1305 	spin_lock_irqsave(q->queue_lock, flags);
1306 	__blk_put_request(q, req);
1307 	spin_unlock_irqrestore(q->queue_lock, flags);
1308 }
1309 EXPORT_SYMBOL(blk_put_request);
1310 
1311 /**
1312  * blk_add_request_payload - add a payload to a request
1313  * @rq: request to update
1314  * @page: page backing the payload
1315  * @len: length of the payload.
1316  *
1317  * This allows to later add a payload to an already submitted request by
1318  * a block driver.  The driver needs to take care of freeing the payload
1319  * itself.
1320  *
1321  * Note that this is a quite horrible hack and nothing but handling of
1322  * discard requests should ever use it.
1323  */
1324 void blk_add_request_payload(struct request *rq, struct page *page,
1325 		unsigned int len)
1326 {
1327 	struct bio *bio = rq->bio;
1328 
1329 	bio->bi_io_vec->bv_page = page;
1330 	bio->bi_io_vec->bv_offset = 0;
1331 	bio->bi_io_vec->bv_len = len;
1332 
1333 	bio->bi_size = len;
1334 	bio->bi_vcnt = 1;
1335 	bio->bi_phys_segments = 1;
1336 
1337 	rq->__data_len = rq->resid_len = len;
1338 	rq->nr_phys_segments = 1;
1339 	rq->buffer = bio_data(bio);
1340 }
1341 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1342 
1343 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1344 				   struct bio *bio)
1345 {
1346 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1347 
1348 	if (!ll_back_merge_fn(q, req, bio))
1349 		return false;
1350 
1351 	trace_block_bio_backmerge(q, req, bio);
1352 
1353 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1354 		blk_rq_set_mixed_merge(req);
1355 
1356 	req->biotail->bi_next = bio;
1357 	req->biotail = bio;
1358 	req->__data_len += bio->bi_size;
1359 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1360 
1361 	drive_stat_acct(req, 0);
1362 	return true;
1363 }
1364 
1365 static bool bio_attempt_front_merge(struct request_queue *q,
1366 				    struct request *req, struct bio *bio)
1367 {
1368 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1369 
1370 	if (!ll_front_merge_fn(q, req, bio))
1371 		return false;
1372 
1373 	trace_block_bio_frontmerge(q, req, bio);
1374 
1375 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1376 		blk_rq_set_mixed_merge(req);
1377 
1378 	bio->bi_next = req->bio;
1379 	req->bio = bio;
1380 
1381 	/*
1382 	 * may not be valid. if the low level driver said
1383 	 * it didn't need a bounce buffer then it better
1384 	 * not touch req->buffer either...
1385 	 */
1386 	req->buffer = bio_data(bio);
1387 	req->__sector = bio->bi_sector;
1388 	req->__data_len += bio->bi_size;
1389 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1390 
1391 	drive_stat_acct(req, 0);
1392 	return true;
1393 }
1394 
1395 /**
1396  * attempt_plug_merge - try to merge with %current's plugged list
1397  * @q: request_queue new bio is being queued at
1398  * @bio: new bio being queued
1399  * @request_count: out parameter for number of traversed plugged requests
1400  *
1401  * Determine whether @bio being queued on @q can be merged with a request
1402  * on %current's plugged list.  Returns %true if merge was successful,
1403  * otherwise %false.
1404  *
1405  * Plugging coalesces IOs from the same issuer for the same purpose without
1406  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1407  * than scheduling, and the request, while may have elvpriv data, is not
1408  * added on the elevator at this point.  In addition, we don't have
1409  * reliable access to the elevator outside queue lock.  Only check basic
1410  * merging parameters without querying the elevator.
1411  */
1412 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1413 			       unsigned int *request_count)
1414 {
1415 	struct blk_plug *plug;
1416 	struct request *rq;
1417 	bool ret = false;
1418 
1419 	plug = current->plug;
1420 	if (!plug)
1421 		goto out;
1422 	*request_count = 0;
1423 
1424 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1425 		int el_ret;
1426 
1427 		if (rq->q == q)
1428 			(*request_count)++;
1429 
1430 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1431 			continue;
1432 
1433 		el_ret = blk_try_merge(rq, bio);
1434 		if (el_ret == ELEVATOR_BACK_MERGE) {
1435 			ret = bio_attempt_back_merge(q, rq, bio);
1436 			if (ret)
1437 				break;
1438 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1439 			ret = bio_attempt_front_merge(q, rq, bio);
1440 			if (ret)
1441 				break;
1442 		}
1443 	}
1444 out:
1445 	return ret;
1446 }
1447 
1448 void init_request_from_bio(struct request *req, struct bio *bio)
1449 {
1450 	req->cmd_type = REQ_TYPE_FS;
1451 
1452 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1453 	if (bio->bi_rw & REQ_RAHEAD)
1454 		req->cmd_flags |= REQ_FAILFAST_MASK;
1455 
1456 	req->errors = 0;
1457 	req->__sector = bio->bi_sector;
1458 	req->ioprio = bio_prio(bio);
1459 	blk_rq_bio_prep(req->q, req, bio);
1460 }
1461 
1462 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1463 {
1464 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1465 	struct blk_plug *plug;
1466 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1467 	struct request *req;
1468 	unsigned int request_count = 0;
1469 
1470 	/*
1471 	 * low level driver can indicate that it wants pages above a
1472 	 * certain limit bounced to low memory (ie for highmem, or even
1473 	 * ISA dma in theory)
1474 	 */
1475 	blk_queue_bounce(q, &bio);
1476 
1477 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1478 		bio_endio(bio, -EIO);
1479 		return;
1480 	}
1481 
1482 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1483 		spin_lock_irq(q->queue_lock);
1484 		where = ELEVATOR_INSERT_FLUSH;
1485 		goto get_rq;
1486 	}
1487 
1488 	/*
1489 	 * Check if we can merge with the plugged list before grabbing
1490 	 * any locks.
1491 	 */
1492 	if (attempt_plug_merge(q, bio, &request_count))
1493 		return;
1494 
1495 	spin_lock_irq(q->queue_lock);
1496 
1497 	el_ret = elv_merge(q, &req, bio);
1498 	if (el_ret == ELEVATOR_BACK_MERGE) {
1499 		if (bio_attempt_back_merge(q, req, bio)) {
1500 			elv_bio_merged(q, req, bio);
1501 			if (!attempt_back_merge(q, req))
1502 				elv_merged_request(q, req, el_ret);
1503 			goto out_unlock;
1504 		}
1505 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1506 		if (bio_attempt_front_merge(q, req, bio)) {
1507 			elv_bio_merged(q, req, bio);
1508 			if (!attempt_front_merge(q, req))
1509 				elv_merged_request(q, req, el_ret);
1510 			goto out_unlock;
1511 		}
1512 	}
1513 
1514 get_rq:
1515 	/*
1516 	 * This sync check and mask will be re-done in init_request_from_bio(),
1517 	 * but we need to set it earlier to expose the sync flag to the
1518 	 * rq allocator and io schedulers.
1519 	 */
1520 	rw_flags = bio_data_dir(bio);
1521 	if (sync)
1522 		rw_flags |= REQ_SYNC;
1523 
1524 	/*
1525 	 * Grab a free request. This is might sleep but can not fail.
1526 	 * Returns with the queue unlocked.
1527 	 */
1528 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1529 	if (unlikely(!req)) {
1530 		bio_endio(bio, -ENODEV);	/* @q is dead */
1531 		goto out_unlock;
1532 	}
1533 
1534 	/*
1535 	 * After dropping the lock and possibly sleeping here, our request
1536 	 * may now be mergeable after it had proven unmergeable (above).
1537 	 * We don't worry about that case for efficiency. It won't happen
1538 	 * often, and the elevators are able to handle it.
1539 	 */
1540 	init_request_from_bio(req, bio);
1541 
1542 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1543 		req->cpu = raw_smp_processor_id();
1544 
1545 	plug = current->plug;
1546 	if (plug) {
1547 		/*
1548 		 * If this is the first request added after a plug, fire
1549 		 * of a plug trace.
1550 		 */
1551 		if (!request_count)
1552 			trace_block_plug(q);
1553 		else {
1554 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1555 				blk_flush_plug_list(plug, false);
1556 				trace_block_plug(q);
1557 			}
1558 		}
1559 		list_add_tail(&req->queuelist, &plug->list);
1560 		drive_stat_acct(req, 1);
1561 	} else {
1562 		spin_lock_irq(q->queue_lock);
1563 		add_acct_request(q, req, where);
1564 		__blk_run_queue(q);
1565 out_unlock:
1566 		spin_unlock_irq(q->queue_lock);
1567 	}
1568 }
1569 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1570 
1571 /*
1572  * If bio->bi_dev is a partition, remap the location
1573  */
1574 static inline void blk_partition_remap(struct bio *bio)
1575 {
1576 	struct block_device *bdev = bio->bi_bdev;
1577 
1578 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1579 		struct hd_struct *p = bdev->bd_part;
1580 
1581 		bio->bi_sector += p->start_sect;
1582 		bio->bi_bdev = bdev->bd_contains;
1583 
1584 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1585 				      bdev->bd_dev,
1586 				      bio->bi_sector - p->start_sect);
1587 	}
1588 }
1589 
1590 static void handle_bad_sector(struct bio *bio)
1591 {
1592 	char b[BDEVNAME_SIZE];
1593 
1594 	printk(KERN_INFO "attempt to access beyond end of device\n");
1595 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1596 			bdevname(bio->bi_bdev, b),
1597 			bio->bi_rw,
1598 			(unsigned long long)bio_end_sector(bio),
1599 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1600 
1601 	set_bit(BIO_EOF, &bio->bi_flags);
1602 }
1603 
1604 #ifdef CONFIG_FAIL_MAKE_REQUEST
1605 
1606 static DECLARE_FAULT_ATTR(fail_make_request);
1607 
1608 static int __init setup_fail_make_request(char *str)
1609 {
1610 	return setup_fault_attr(&fail_make_request, str);
1611 }
1612 __setup("fail_make_request=", setup_fail_make_request);
1613 
1614 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1615 {
1616 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1617 }
1618 
1619 static int __init fail_make_request_debugfs(void)
1620 {
1621 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1622 						NULL, &fail_make_request);
1623 
1624 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1625 }
1626 
1627 late_initcall(fail_make_request_debugfs);
1628 
1629 #else /* CONFIG_FAIL_MAKE_REQUEST */
1630 
1631 static inline bool should_fail_request(struct hd_struct *part,
1632 					unsigned int bytes)
1633 {
1634 	return false;
1635 }
1636 
1637 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1638 
1639 /*
1640  * Check whether this bio extends beyond the end of the device.
1641  */
1642 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1643 {
1644 	sector_t maxsector;
1645 
1646 	if (!nr_sectors)
1647 		return 0;
1648 
1649 	/* Test device or partition size, when known. */
1650 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1651 	if (maxsector) {
1652 		sector_t sector = bio->bi_sector;
1653 
1654 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1655 			/*
1656 			 * This may well happen - the kernel calls bread()
1657 			 * without checking the size of the device, e.g., when
1658 			 * mounting a device.
1659 			 */
1660 			handle_bad_sector(bio);
1661 			return 1;
1662 		}
1663 	}
1664 
1665 	return 0;
1666 }
1667 
1668 static noinline_for_stack bool
1669 generic_make_request_checks(struct bio *bio)
1670 {
1671 	struct request_queue *q;
1672 	int nr_sectors = bio_sectors(bio);
1673 	int err = -EIO;
1674 	char b[BDEVNAME_SIZE];
1675 	struct hd_struct *part;
1676 
1677 	might_sleep();
1678 
1679 	if (bio_check_eod(bio, nr_sectors))
1680 		goto end_io;
1681 
1682 	q = bdev_get_queue(bio->bi_bdev);
1683 	if (unlikely(!q)) {
1684 		printk(KERN_ERR
1685 		       "generic_make_request: Trying to access "
1686 			"nonexistent block-device %s (%Lu)\n",
1687 			bdevname(bio->bi_bdev, b),
1688 			(long long) bio->bi_sector);
1689 		goto end_io;
1690 	}
1691 
1692 	if (likely(bio_is_rw(bio) &&
1693 		   nr_sectors > queue_max_hw_sectors(q))) {
1694 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1695 		       bdevname(bio->bi_bdev, b),
1696 		       bio_sectors(bio),
1697 		       queue_max_hw_sectors(q));
1698 		goto end_io;
1699 	}
1700 
1701 	part = bio->bi_bdev->bd_part;
1702 	if (should_fail_request(part, bio->bi_size) ||
1703 	    should_fail_request(&part_to_disk(part)->part0,
1704 				bio->bi_size))
1705 		goto end_io;
1706 
1707 	/*
1708 	 * If this device has partitions, remap block n
1709 	 * of partition p to block n+start(p) of the disk.
1710 	 */
1711 	blk_partition_remap(bio);
1712 
1713 	if (bio_check_eod(bio, nr_sectors))
1714 		goto end_io;
1715 
1716 	/*
1717 	 * Filter flush bio's early so that make_request based
1718 	 * drivers without flush support don't have to worry
1719 	 * about them.
1720 	 */
1721 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1722 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1723 		if (!nr_sectors) {
1724 			err = 0;
1725 			goto end_io;
1726 		}
1727 	}
1728 
1729 	if ((bio->bi_rw & REQ_DISCARD) &&
1730 	    (!blk_queue_discard(q) ||
1731 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1732 		err = -EOPNOTSUPP;
1733 		goto end_io;
1734 	}
1735 
1736 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1737 		err = -EOPNOTSUPP;
1738 		goto end_io;
1739 	}
1740 
1741 	/*
1742 	 * Various block parts want %current->io_context and lazy ioc
1743 	 * allocation ends up trading a lot of pain for a small amount of
1744 	 * memory.  Just allocate it upfront.  This may fail and block
1745 	 * layer knows how to live with it.
1746 	 */
1747 	create_io_context(GFP_ATOMIC, q->node);
1748 
1749 	if (blk_throtl_bio(q, bio))
1750 		return false;	/* throttled, will be resubmitted later */
1751 
1752 	trace_block_bio_queue(q, bio);
1753 	return true;
1754 
1755 end_io:
1756 	bio_endio(bio, err);
1757 	return false;
1758 }
1759 
1760 /**
1761  * generic_make_request - hand a buffer to its device driver for I/O
1762  * @bio:  The bio describing the location in memory and on the device.
1763  *
1764  * generic_make_request() is used to make I/O requests of block
1765  * devices. It is passed a &struct bio, which describes the I/O that needs
1766  * to be done.
1767  *
1768  * generic_make_request() does not return any status.  The
1769  * success/failure status of the request, along with notification of
1770  * completion, is delivered asynchronously through the bio->bi_end_io
1771  * function described (one day) else where.
1772  *
1773  * The caller of generic_make_request must make sure that bi_io_vec
1774  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1775  * set to describe the device address, and the
1776  * bi_end_io and optionally bi_private are set to describe how
1777  * completion notification should be signaled.
1778  *
1779  * generic_make_request and the drivers it calls may use bi_next if this
1780  * bio happens to be merged with someone else, and may resubmit the bio to
1781  * a lower device by calling into generic_make_request recursively, which
1782  * means the bio should NOT be touched after the call to ->make_request_fn.
1783  */
1784 void generic_make_request(struct bio *bio)
1785 {
1786 	struct bio_list bio_list_on_stack;
1787 
1788 	if (!generic_make_request_checks(bio))
1789 		return;
1790 
1791 	/*
1792 	 * We only want one ->make_request_fn to be active at a time, else
1793 	 * stack usage with stacked devices could be a problem.  So use
1794 	 * current->bio_list to keep a list of requests submited by a
1795 	 * make_request_fn function.  current->bio_list is also used as a
1796 	 * flag to say if generic_make_request is currently active in this
1797 	 * task or not.  If it is NULL, then no make_request is active.  If
1798 	 * it is non-NULL, then a make_request is active, and new requests
1799 	 * should be added at the tail
1800 	 */
1801 	if (current->bio_list) {
1802 		bio_list_add(current->bio_list, bio);
1803 		return;
1804 	}
1805 
1806 	/* following loop may be a bit non-obvious, and so deserves some
1807 	 * explanation.
1808 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1809 	 * ensure that) so we have a list with a single bio.
1810 	 * We pretend that we have just taken it off a longer list, so
1811 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1812 	 * thus initialising the bio_list of new bios to be
1813 	 * added.  ->make_request() may indeed add some more bios
1814 	 * through a recursive call to generic_make_request.  If it
1815 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1816 	 * from the top.  In this case we really did just take the bio
1817 	 * of the top of the list (no pretending) and so remove it from
1818 	 * bio_list, and call into ->make_request() again.
1819 	 */
1820 	BUG_ON(bio->bi_next);
1821 	bio_list_init(&bio_list_on_stack);
1822 	current->bio_list = &bio_list_on_stack;
1823 	do {
1824 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1825 
1826 		q->make_request_fn(q, bio);
1827 
1828 		bio = bio_list_pop(current->bio_list);
1829 	} while (bio);
1830 	current->bio_list = NULL; /* deactivate */
1831 }
1832 EXPORT_SYMBOL(generic_make_request);
1833 
1834 /**
1835  * submit_bio - submit a bio to the block device layer for I/O
1836  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1837  * @bio: The &struct bio which describes the I/O
1838  *
1839  * submit_bio() is very similar in purpose to generic_make_request(), and
1840  * uses that function to do most of the work. Both are fairly rough
1841  * interfaces; @bio must be presetup and ready for I/O.
1842  *
1843  */
1844 void submit_bio(int rw, struct bio *bio)
1845 {
1846 	bio->bi_rw |= rw;
1847 
1848 	/*
1849 	 * If it's a regular read/write or a barrier with data attached,
1850 	 * go through the normal accounting stuff before submission.
1851 	 */
1852 	if (bio_has_data(bio)) {
1853 		unsigned int count;
1854 
1855 		if (unlikely(rw & REQ_WRITE_SAME))
1856 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1857 		else
1858 			count = bio_sectors(bio);
1859 
1860 		if (rw & WRITE) {
1861 			count_vm_events(PGPGOUT, count);
1862 		} else {
1863 			task_io_account_read(bio->bi_size);
1864 			count_vm_events(PGPGIN, count);
1865 		}
1866 
1867 		if (unlikely(block_dump)) {
1868 			char b[BDEVNAME_SIZE];
1869 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1870 			current->comm, task_pid_nr(current),
1871 				(rw & WRITE) ? "WRITE" : "READ",
1872 				(unsigned long long)bio->bi_sector,
1873 				bdevname(bio->bi_bdev, b),
1874 				count);
1875 		}
1876 	}
1877 
1878 	generic_make_request(bio);
1879 }
1880 EXPORT_SYMBOL(submit_bio);
1881 
1882 /**
1883  * blk_rq_check_limits - Helper function to check a request for the queue limit
1884  * @q:  the queue
1885  * @rq: the request being checked
1886  *
1887  * Description:
1888  *    @rq may have been made based on weaker limitations of upper-level queues
1889  *    in request stacking drivers, and it may violate the limitation of @q.
1890  *    Since the block layer and the underlying device driver trust @rq
1891  *    after it is inserted to @q, it should be checked against @q before
1892  *    the insertion using this generic function.
1893  *
1894  *    This function should also be useful for request stacking drivers
1895  *    in some cases below, so export this function.
1896  *    Request stacking drivers like request-based dm may change the queue
1897  *    limits while requests are in the queue (e.g. dm's table swapping).
1898  *    Such request stacking drivers should check those requests agaist
1899  *    the new queue limits again when they dispatch those requests,
1900  *    although such checkings are also done against the old queue limits
1901  *    when submitting requests.
1902  */
1903 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1904 {
1905 	if (!rq_mergeable(rq))
1906 		return 0;
1907 
1908 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1909 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1910 		return -EIO;
1911 	}
1912 
1913 	/*
1914 	 * queue's settings related to segment counting like q->bounce_pfn
1915 	 * may differ from that of other stacking queues.
1916 	 * Recalculate it to check the request correctly on this queue's
1917 	 * limitation.
1918 	 */
1919 	blk_recalc_rq_segments(rq);
1920 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1921 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1922 		return -EIO;
1923 	}
1924 
1925 	return 0;
1926 }
1927 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1928 
1929 /**
1930  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1931  * @q:  the queue to submit the request
1932  * @rq: the request being queued
1933  */
1934 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1935 {
1936 	unsigned long flags;
1937 	int where = ELEVATOR_INSERT_BACK;
1938 
1939 	if (blk_rq_check_limits(q, rq))
1940 		return -EIO;
1941 
1942 	if (rq->rq_disk &&
1943 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1944 		return -EIO;
1945 
1946 	spin_lock_irqsave(q->queue_lock, flags);
1947 	if (unlikely(blk_queue_dying(q))) {
1948 		spin_unlock_irqrestore(q->queue_lock, flags);
1949 		return -ENODEV;
1950 	}
1951 
1952 	/*
1953 	 * Submitting request must be dequeued before calling this function
1954 	 * because it will be linked to another request_queue
1955 	 */
1956 	BUG_ON(blk_queued_rq(rq));
1957 
1958 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1959 		where = ELEVATOR_INSERT_FLUSH;
1960 
1961 	add_acct_request(q, rq, where);
1962 	if (where == ELEVATOR_INSERT_FLUSH)
1963 		__blk_run_queue(q);
1964 	spin_unlock_irqrestore(q->queue_lock, flags);
1965 
1966 	return 0;
1967 }
1968 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1969 
1970 /**
1971  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1972  * @rq: request to examine
1973  *
1974  * Description:
1975  *     A request could be merge of IOs which require different failure
1976  *     handling.  This function determines the number of bytes which
1977  *     can be failed from the beginning of the request without
1978  *     crossing into area which need to be retried further.
1979  *
1980  * Return:
1981  *     The number of bytes to fail.
1982  *
1983  * Context:
1984  *     queue_lock must be held.
1985  */
1986 unsigned int blk_rq_err_bytes(const struct request *rq)
1987 {
1988 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1989 	unsigned int bytes = 0;
1990 	struct bio *bio;
1991 
1992 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1993 		return blk_rq_bytes(rq);
1994 
1995 	/*
1996 	 * Currently the only 'mixing' which can happen is between
1997 	 * different fastfail types.  We can safely fail portions
1998 	 * which have all the failfast bits that the first one has -
1999 	 * the ones which are at least as eager to fail as the first
2000 	 * one.
2001 	 */
2002 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2003 		if ((bio->bi_rw & ff) != ff)
2004 			break;
2005 		bytes += bio->bi_size;
2006 	}
2007 
2008 	/* this could lead to infinite loop */
2009 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2010 	return bytes;
2011 }
2012 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2013 
2014 static void blk_account_io_completion(struct request *req, unsigned int bytes)
2015 {
2016 	if (blk_do_io_stat(req)) {
2017 		const int rw = rq_data_dir(req);
2018 		struct hd_struct *part;
2019 		int cpu;
2020 
2021 		cpu = part_stat_lock();
2022 		part = req->part;
2023 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2024 		part_stat_unlock();
2025 	}
2026 }
2027 
2028 static void blk_account_io_done(struct request *req)
2029 {
2030 	/*
2031 	 * Account IO completion.  flush_rq isn't accounted as a
2032 	 * normal IO on queueing nor completion.  Accounting the
2033 	 * containing request is enough.
2034 	 */
2035 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2036 		unsigned long duration = jiffies - req->start_time;
2037 		const int rw = rq_data_dir(req);
2038 		struct hd_struct *part;
2039 		int cpu;
2040 
2041 		cpu = part_stat_lock();
2042 		part = req->part;
2043 
2044 		part_stat_inc(cpu, part, ios[rw]);
2045 		part_stat_add(cpu, part, ticks[rw], duration);
2046 		part_round_stats(cpu, part);
2047 		part_dec_in_flight(part, rw);
2048 
2049 		hd_struct_put(part);
2050 		part_stat_unlock();
2051 	}
2052 }
2053 
2054 #ifdef CONFIG_PM_RUNTIME
2055 /*
2056  * Don't process normal requests when queue is suspended
2057  * or in the process of suspending/resuming
2058  */
2059 static struct request *blk_pm_peek_request(struct request_queue *q,
2060 					   struct request *rq)
2061 {
2062 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2063 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2064 		return NULL;
2065 	else
2066 		return rq;
2067 }
2068 #else
2069 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2070 						  struct request *rq)
2071 {
2072 	return rq;
2073 }
2074 #endif
2075 
2076 /**
2077  * blk_peek_request - peek at the top of a request queue
2078  * @q: request queue to peek at
2079  *
2080  * Description:
2081  *     Return the request at the top of @q.  The returned request
2082  *     should be started using blk_start_request() before LLD starts
2083  *     processing it.
2084  *
2085  * Return:
2086  *     Pointer to the request at the top of @q if available.  Null
2087  *     otherwise.
2088  *
2089  * Context:
2090  *     queue_lock must be held.
2091  */
2092 struct request *blk_peek_request(struct request_queue *q)
2093 {
2094 	struct request *rq;
2095 	int ret;
2096 
2097 	while ((rq = __elv_next_request(q)) != NULL) {
2098 
2099 		rq = blk_pm_peek_request(q, rq);
2100 		if (!rq)
2101 			break;
2102 
2103 		if (!(rq->cmd_flags & REQ_STARTED)) {
2104 			/*
2105 			 * This is the first time the device driver
2106 			 * sees this request (possibly after
2107 			 * requeueing).  Notify IO scheduler.
2108 			 */
2109 			if (rq->cmd_flags & REQ_SORTED)
2110 				elv_activate_rq(q, rq);
2111 
2112 			/*
2113 			 * just mark as started even if we don't start
2114 			 * it, a request that has been delayed should
2115 			 * not be passed by new incoming requests
2116 			 */
2117 			rq->cmd_flags |= REQ_STARTED;
2118 			trace_block_rq_issue(q, rq);
2119 		}
2120 
2121 		if (!q->boundary_rq || q->boundary_rq == rq) {
2122 			q->end_sector = rq_end_sector(rq);
2123 			q->boundary_rq = NULL;
2124 		}
2125 
2126 		if (rq->cmd_flags & REQ_DONTPREP)
2127 			break;
2128 
2129 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2130 			/*
2131 			 * make sure space for the drain appears we
2132 			 * know we can do this because max_hw_segments
2133 			 * has been adjusted to be one fewer than the
2134 			 * device can handle
2135 			 */
2136 			rq->nr_phys_segments++;
2137 		}
2138 
2139 		if (!q->prep_rq_fn)
2140 			break;
2141 
2142 		ret = q->prep_rq_fn(q, rq);
2143 		if (ret == BLKPREP_OK) {
2144 			break;
2145 		} else if (ret == BLKPREP_DEFER) {
2146 			/*
2147 			 * the request may have been (partially) prepped.
2148 			 * we need to keep this request in the front to
2149 			 * avoid resource deadlock.  REQ_STARTED will
2150 			 * prevent other fs requests from passing this one.
2151 			 */
2152 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2153 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2154 				/*
2155 				 * remove the space for the drain we added
2156 				 * so that we don't add it again
2157 				 */
2158 				--rq->nr_phys_segments;
2159 			}
2160 
2161 			rq = NULL;
2162 			break;
2163 		} else if (ret == BLKPREP_KILL) {
2164 			rq->cmd_flags |= REQ_QUIET;
2165 			/*
2166 			 * Mark this request as started so we don't trigger
2167 			 * any debug logic in the end I/O path.
2168 			 */
2169 			blk_start_request(rq);
2170 			__blk_end_request_all(rq, -EIO);
2171 		} else {
2172 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2173 			break;
2174 		}
2175 	}
2176 
2177 	return rq;
2178 }
2179 EXPORT_SYMBOL(blk_peek_request);
2180 
2181 void blk_dequeue_request(struct request *rq)
2182 {
2183 	struct request_queue *q = rq->q;
2184 
2185 	BUG_ON(list_empty(&rq->queuelist));
2186 	BUG_ON(ELV_ON_HASH(rq));
2187 
2188 	list_del_init(&rq->queuelist);
2189 
2190 	/*
2191 	 * the time frame between a request being removed from the lists
2192 	 * and to it is freed is accounted as io that is in progress at
2193 	 * the driver side.
2194 	 */
2195 	if (blk_account_rq(rq)) {
2196 		q->in_flight[rq_is_sync(rq)]++;
2197 		set_io_start_time_ns(rq);
2198 	}
2199 }
2200 
2201 /**
2202  * blk_start_request - start request processing on the driver
2203  * @req: request to dequeue
2204  *
2205  * Description:
2206  *     Dequeue @req and start timeout timer on it.  This hands off the
2207  *     request to the driver.
2208  *
2209  *     Block internal functions which don't want to start timer should
2210  *     call blk_dequeue_request().
2211  *
2212  * Context:
2213  *     queue_lock must be held.
2214  */
2215 void blk_start_request(struct request *req)
2216 {
2217 	blk_dequeue_request(req);
2218 
2219 	/*
2220 	 * We are now handing the request to the hardware, initialize
2221 	 * resid_len to full count and add the timeout handler.
2222 	 */
2223 	req->resid_len = blk_rq_bytes(req);
2224 	if (unlikely(blk_bidi_rq(req)))
2225 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2226 
2227 	blk_add_timer(req);
2228 }
2229 EXPORT_SYMBOL(blk_start_request);
2230 
2231 /**
2232  * blk_fetch_request - fetch a request from a request queue
2233  * @q: request queue to fetch a request from
2234  *
2235  * Description:
2236  *     Return the request at the top of @q.  The request is started on
2237  *     return and LLD can start processing it immediately.
2238  *
2239  * Return:
2240  *     Pointer to the request at the top of @q if available.  Null
2241  *     otherwise.
2242  *
2243  * Context:
2244  *     queue_lock must be held.
2245  */
2246 struct request *blk_fetch_request(struct request_queue *q)
2247 {
2248 	struct request *rq;
2249 
2250 	rq = blk_peek_request(q);
2251 	if (rq)
2252 		blk_start_request(rq);
2253 	return rq;
2254 }
2255 EXPORT_SYMBOL(blk_fetch_request);
2256 
2257 /**
2258  * blk_update_request - Special helper function for request stacking drivers
2259  * @req:      the request being processed
2260  * @error:    %0 for success, < %0 for error
2261  * @nr_bytes: number of bytes to complete @req
2262  *
2263  * Description:
2264  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2265  *     the request structure even if @req doesn't have leftover.
2266  *     If @req has leftover, sets it up for the next range of segments.
2267  *
2268  *     This special helper function is only for request stacking drivers
2269  *     (e.g. request-based dm) so that they can handle partial completion.
2270  *     Actual device drivers should use blk_end_request instead.
2271  *
2272  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2273  *     %false return from this function.
2274  *
2275  * Return:
2276  *     %false - this request doesn't have any more data
2277  *     %true  - this request has more data
2278  **/
2279 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2280 {
2281 	int total_bytes;
2282 
2283 	if (!req->bio)
2284 		return false;
2285 
2286 	trace_block_rq_complete(req->q, req);
2287 
2288 	/*
2289 	 * For fs requests, rq is just carrier of independent bio's
2290 	 * and each partial completion should be handled separately.
2291 	 * Reset per-request error on each partial completion.
2292 	 *
2293 	 * TODO: tj: This is too subtle.  It would be better to let
2294 	 * low level drivers do what they see fit.
2295 	 */
2296 	if (req->cmd_type == REQ_TYPE_FS)
2297 		req->errors = 0;
2298 
2299 	if (error && req->cmd_type == REQ_TYPE_FS &&
2300 	    !(req->cmd_flags & REQ_QUIET)) {
2301 		char *error_type;
2302 
2303 		switch (error) {
2304 		case -ENOLINK:
2305 			error_type = "recoverable transport";
2306 			break;
2307 		case -EREMOTEIO:
2308 			error_type = "critical target";
2309 			break;
2310 		case -EBADE:
2311 			error_type = "critical nexus";
2312 			break;
2313 		case -ETIMEDOUT:
2314 			error_type = "timeout";
2315 			break;
2316 		case -ENOSPC:
2317 			error_type = "critical space allocation";
2318 			break;
2319 		case -ENODATA:
2320 			error_type = "critical medium";
2321 			break;
2322 		case -EIO:
2323 		default:
2324 			error_type = "I/O";
2325 			break;
2326 		}
2327 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2328 				   error_type, req->rq_disk ?
2329 				   req->rq_disk->disk_name : "?",
2330 				   (unsigned long long)blk_rq_pos(req));
2331 
2332 	}
2333 
2334 	blk_account_io_completion(req, nr_bytes);
2335 
2336 	total_bytes = 0;
2337 	while (req->bio) {
2338 		struct bio *bio = req->bio;
2339 		unsigned bio_bytes = min(bio->bi_size, nr_bytes);
2340 
2341 		if (bio_bytes == bio->bi_size)
2342 			req->bio = bio->bi_next;
2343 
2344 		req_bio_endio(req, bio, bio_bytes, error);
2345 
2346 		total_bytes += bio_bytes;
2347 		nr_bytes -= bio_bytes;
2348 
2349 		if (!nr_bytes)
2350 			break;
2351 	}
2352 
2353 	/*
2354 	 * completely done
2355 	 */
2356 	if (!req->bio) {
2357 		/*
2358 		 * Reset counters so that the request stacking driver
2359 		 * can find how many bytes remain in the request
2360 		 * later.
2361 		 */
2362 		req->__data_len = 0;
2363 		return false;
2364 	}
2365 
2366 	req->__data_len -= total_bytes;
2367 	req->buffer = bio_data(req->bio);
2368 
2369 	/* update sector only for requests with clear definition of sector */
2370 	if (req->cmd_type == REQ_TYPE_FS)
2371 		req->__sector += total_bytes >> 9;
2372 
2373 	/* mixed attributes always follow the first bio */
2374 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2375 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2376 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2377 	}
2378 
2379 	/*
2380 	 * If total number of sectors is less than the first segment
2381 	 * size, something has gone terribly wrong.
2382 	 */
2383 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2384 		blk_dump_rq_flags(req, "request botched");
2385 		req->__data_len = blk_rq_cur_bytes(req);
2386 	}
2387 
2388 	/* recalculate the number of segments */
2389 	blk_recalc_rq_segments(req);
2390 
2391 	return true;
2392 }
2393 EXPORT_SYMBOL_GPL(blk_update_request);
2394 
2395 static bool blk_update_bidi_request(struct request *rq, int error,
2396 				    unsigned int nr_bytes,
2397 				    unsigned int bidi_bytes)
2398 {
2399 	if (blk_update_request(rq, error, nr_bytes))
2400 		return true;
2401 
2402 	/* Bidi request must be completed as a whole */
2403 	if (unlikely(blk_bidi_rq(rq)) &&
2404 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2405 		return true;
2406 
2407 	if (blk_queue_add_random(rq->q))
2408 		add_disk_randomness(rq->rq_disk);
2409 
2410 	return false;
2411 }
2412 
2413 /**
2414  * blk_unprep_request - unprepare a request
2415  * @req:	the request
2416  *
2417  * This function makes a request ready for complete resubmission (or
2418  * completion).  It happens only after all error handling is complete,
2419  * so represents the appropriate moment to deallocate any resources
2420  * that were allocated to the request in the prep_rq_fn.  The queue
2421  * lock is held when calling this.
2422  */
2423 void blk_unprep_request(struct request *req)
2424 {
2425 	struct request_queue *q = req->q;
2426 
2427 	req->cmd_flags &= ~REQ_DONTPREP;
2428 	if (q->unprep_rq_fn)
2429 		q->unprep_rq_fn(q, req);
2430 }
2431 EXPORT_SYMBOL_GPL(blk_unprep_request);
2432 
2433 /*
2434  * queue lock must be held
2435  */
2436 static void blk_finish_request(struct request *req, int error)
2437 {
2438 	if (blk_rq_tagged(req))
2439 		blk_queue_end_tag(req->q, req);
2440 
2441 	BUG_ON(blk_queued_rq(req));
2442 
2443 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2444 		laptop_io_completion(&req->q->backing_dev_info);
2445 
2446 	blk_delete_timer(req);
2447 
2448 	if (req->cmd_flags & REQ_DONTPREP)
2449 		blk_unprep_request(req);
2450 
2451 
2452 	blk_account_io_done(req);
2453 
2454 	if (req->end_io)
2455 		req->end_io(req, error);
2456 	else {
2457 		if (blk_bidi_rq(req))
2458 			__blk_put_request(req->next_rq->q, req->next_rq);
2459 
2460 		__blk_put_request(req->q, req);
2461 	}
2462 }
2463 
2464 /**
2465  * blk_end_bidi_request - Complete a bidi request
2466  * @rq:         the request to complete
2467  * @error:      %0 for success, < %0 for error
2468  * @nr_bytes:   number of bytes to complete @rq
2469  * @bidi_bytes: number of bytes to complete @rq->next_rq
2470  *
2471  * Description:
2472  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2473  *     Drivers that supports bidi can safely call this member for any
2474  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2475  *     just ignored.
2476  *
2477  * Return:
2478  *     %false - we are done with this request
2479  *     %true  - still buffers pending for this request
2480  **/
2481 static bool blk_end_bidi_request(struct request *rq, int error,
2482 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2483 {
2484 	struct request_queue *q = rq->q;
2485 	unsigned long flags;
2486 
2487 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2488 		return true;
2489 
2490 	spin_lock_irqsave(q->queue_lock, flags);
2491 	blk_finish_request(rq, error);
2492 	spin_unlock_irqrestore(q->queue_lock, flags);
2493 
2494 	return false;
2495 }
2496 
2497 /**
2498  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2499  * @rq:         the request to complete
2500  * @error:      %0 for success, < %0 for error
2501  * @nr_bytes:   number of bytes to complete @rq
2502  * @bidi_bytes: number of bytes to complete @rq->next_rq
2503  *
2504  * Description:
2505  *     Identical to blk_end_bidi_request() except that queue lock is
2506  *     assumed to be locked on entry and remains so on return.
2507  *
2508  * Return:
2509  *     %false - we are done with this request
2510  *     %true  - still buffers pending for this request
2511  **/
2512 bool __blk_end_bidi_request(struct request *rq, int error,
2513 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2514 {
2515 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2516 		return true;
2517 
2518 	blk_finish_request(rq, error);
2519 
2520 	return false;
2521 }
2522 
2523 /**
2524  * blk_end_request - Helper function for drivers to complete the request.
2525  * @rq:       the request being processed
2526  * @error:    %0 for success, < %0 for error
2527  * @nr_bytes: number of bytes to complete
2528  *
2529  * Description:
2530  *     Ends I/O on a number of bytes attached to @rq.
2531  *     If @rq has leftover, sets it up for the next range of segments.
2532  *
2533  * Return:
2534  *     %false - we are done with this request
2535  *     %true  - still buffers pending for this request
2536  **/
2537 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2538 {
2539 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2540 }
2541 EXPORT_SYMBOL(blk_end_request);
2542 
2543 /**
2544  * blk_end_request_all - Helper function for drives to finish the request.
2545  * @rq: the request to finish
2546  * @error: %0 for success, < %0 for error
2547  *
2548  * Description:
2549  *     Completely finish @rq.
2550  */
2551 void blk_end_request_all(struct request *rq, int error)
2552 {
2553 	bool pending;
2554 	unsigned int bidi_bytes = 0;
2555 
2556 	if (unlikely(blk_bidi_rq(rq)))
2557 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2558 
2559 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2560 	BUG_ON(pending);
2561 }
2562 EXPORT_SYMBOL(blk_end_request_all);
2563 
2564 /**
2565  * blk_end_request_cur - Helper function to finish the current request chunk.
2566  * @rq: the request to finish the current chunk for
2567  * @error: %0 for success, < %0 for error
2568  *
2569  * Description:
2570  *     Complete the current consecutively mapped chunk from @rq.
2571  *
2572  * Return:
2573  *     %false - we are done with this request
2574  *     %true  - still buffers pending for this request
2575  */
2576 bool blk_end_request_cur(struct request *rq, int error)
2577 {
2578 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2579 }
2580 EXPORT_SYMBOL(blk_end_request_cur);
2581 
2582 /**
2583  * blk_end_request_err - Finish a request till the next failure boundary.
2584  * @rq: the request to finish till the next failure boundary for
2585  * @error: must be negative errno
2586  *
2587  * Description:
2588  *     Complete @rq till the next failure boundary.
2589  *
2590  * Return:
2591  *     %false - we are done with this request
2592  *     %true  - still buffers pending for this request
2593  */
2594 bool blk_end_request_err(struct request *rq, int error)
2595 {
2596 	WARN_ON(error >= 0);
2597 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2598 }
2599 EXPORT_SYMBOL_GPL(blk_end_request_err);
2600 
2601 /**
2602  * __blk_end_request - Helper function for drivers to complete the request.
2603  * @rq:       the request being processed
2604  * @error:    %0 for success, < %0 for error
2605  * @nr_bytes: number of bytes to complete
2606  *
2607  * Description:
2608  *     Must be called with queue lock held unlike blk_end_request().
2609  *
2610  * Return:
2611  *     %false - we are done with this request
2612  *     %true  - still buffers pending for this request
2613  **/
2614 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2615 {
2616 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2617 }
2618 EXPORT_SYMBOL(__blk_end_request);
2619 
2620 /**
2621  * __blk_end_request_all - Helper function for drives to finish the request.
2622  * @rq: the request to finish
2623  * @error: %0 for success, < %0 for error
2624  *
2625  * Description:
2626  *     Completely finish @rq.  Must be called with queue lock held.
2627  */
2628 void __blk_end_request_all(struct request *rq, int error)
2629 {
2630 	bool pending;
2631 	unsigned int bidi_bytes = 0;
2632 
2633 	if (unlikely(blk_bidi_rq(rq)))
2634 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2635 
2636 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2637 	BUG_ON(pending);
2638 }
2639 EXPORT_SYMBOL(__blk_end_request_all);
2640 
2641 /**
2642  * __blk_end_request_cur - Helper function to finish the current request chunk.
2643  * @rq: the request to finish the current chunk for
2644  * @error: %0 for success, < %0 for error
2645  *
2646  * Description:
2647  *     Complete the current consecutively mapped chunk from @rq.  Must
2648  *     be called with queue lock held.
2649  *
2650  * Return:
2651  *     %false - we are done with this request
2652  *     %true  - still buffers pending for this request
2653  */
2654 bool __blk_end_request_cur(struct request *rq, int error)
2655 {
2656 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2657 }
2658 EXPORT_SYMBOL(__blk_end_request_cur);
2659 
2660 /**
2661  * __blk_end_request_err - Finish a request till the next failure boundary.
2662  * @rq: the request to finish till the next failure boundary for
2663  * @error: must be negative errno
2664  *
2665  * Description:
2666  *     Complete @rq till the next failure boundary.  Must be called
2667  *     with queue lock held.
2668  *
2669  * Return:
2670  *     %false - we are done with this request
2671  *     %true  - still buffers pending for this request
2672  */
2673 bool __blk_end_request_err(struct request *rq, int error)
2674 {
2675 	WARN_ON(error >= 0);
2676 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2677 }
2678 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2679 
2680 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2681 		     struct bio *bio)
2682 {
2683 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2684 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2685 
2686 	if (bio_has_data(bio)) {
2687 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2688 		rq->buffer = bio_data(bio);
2689 	}
2690 	rq->__data_len = bio->bi_size;
2691 	rq->bio = rq->biotail = bio;
2692 
2693 	if (bio->bi_bdev)
2694 		rq->rq_disk = bio->bi_bdev->bd_disk;
2695 }
2696 
2697 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2698 /**
2699  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2700  * @rq: the request to be flushed
2701  *
2702  * Description:
2703  *     Flush all pages in @rq.
2704  */
2705 void rq_flush_dcache_pages(struct request *rq)
2706 {
2707 	struct req_iterator iter;
2708 	struct bio_vec *bvec;
2709 
2710 	rq_for_each_segment(bvec, rq, iter)
2711 		flush_dcache_page(bvec->bv_page);
2712 }
2713 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2714 #endif
2715 
2716 /**
2717  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2718  * @q : the queue of the device being checked
2719  *
2720  * Description:
2721  *    Check if underlying low-level drivers of a device are busy.
2722  *    If the drivers want to export their busy state, they must set own
2723  *    exporting function using blk_queue_lld_busy() first.
2724  *
2725  *    Basically, this function is used only by request stacking drivers
2726  *    to stop dispatching requests to underlying devices when underlying
2727  *    devices are busy.  This behavior helps more I/O merging on the queue
2728  *    of the request stacking driver and prevents I/O throughput regression
2729  *    on burst I/O load.
2730  *
2731  * Return:
2732  *    0 - Not busy (The request stacking driver should dispatch request)
2733  *    1 - Busy (The request stacking driver should stop dispatching request)
2734  */
2735 int blk_lld_busy(struct request_queue *q)
2736 {
2737 	if (q->lld_busy_fn)
2738 		return q->lld_busy_fn(q);
2739 
2740 	return 0;
2741 }
2742 EXPORT_SYMBOL_GPL(blk_lld_busy);
2743 
2744 /**
2745  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2746  * @rq: the clone request to be cleaned up
2747  *
2748  * Description:
2749  *     Free all bios in @rq for a cloned request.
2750  */
2751 void blk_rq_unprep_clone(struct request *rq)
2752 {
2753 	struct bio *bio;
2754 
2755 	while ((bio = rq->bio) != NULL) {
2756 		rq->bio = bio->bi_next;
2757 
2758 		bio_put(bio);
2759 	}
2760 }
2761 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2762 
2763 /*
2764  * Copy attributes of the original request to the clone request.
2765  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2766  */
2767 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2768 {
2769 	dst->cpu = src->cpu;
2770 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2771 	dst->cmd_type = src->cmd_type;
2772 	dst->__sector = blk_rq_pos(src);
2773 	dst->__data_len = blk_rq_bytes(src);
2774 	dst->nr_phys_segments = src->nr_phys_segments;
2775 	dst->ioprio = src->ioprio;
2776 	dst->extra_len = src->extra_len;
2777 }
2778 
2779 /**
2780  * blk_rq_prep_clone - Helper function to setup clone request
2781  * @rq: the request to be setup
2782  * @rq_src: original request to be cloned
2783  * @bs: bio_set that bios for clone are allocated from
2784  * @gfp_mask: memory allocation mask for bio
2785  * @bio_ctr: setup function to be called for each clone bio.
2786  *           Returns %0 for success, non %0 for failure.
2787  * @data: private data to be passed to @bio_ctr
2788  *
2789  * Description:
2790  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2791  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2792  *     are not copied, and copying such parts is the caller's responsibility.
2793  *     Also, pages which the original bios are pointing to are not copied
2794  *     and the cloned bios just point same pages.
2795  *     So cloned bios must be completed before original bios, which means
2796  *     the caller must complete @rq before @rq_src.
2797  */
2798 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2799 		      struct bio_set *bs, gfp_t gfp_mask,
2800 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2801 		      void *data)
2802 {
2803 	struct bio *bio, *bio_src;
2804 
2805 	if (!bs)
2806 		bs = fs_bio_set;
2807 
2808 	blk_rq_init(NULL, rq);
2809 
2810 	__rq_for_each_bio(bio_src, rq_src) {
2811 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2812 		if (!bio)
2813 			goto free_and_out;
2814 
2815 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2816 			goto free_and_out;
2817 
2818 		if (rq->bio) {
2819 			rq->biotail->bi_next = bio;
2820 			rq->biotail = bio;
2821 		} else
2822 			rq->bio = rq->biotail = bio;
2823 	}
2824 
2825 	__blk_rq_prep_clone(rq, rq_src);
2826 
2827 	return 0;
2828 
2829 free_and_out:
2830 	if (bio)
2831 		bio_put(bio);
2832 	blk_rq_unprep_clone(rq);
2833 
2834 	return -ENOMEM;
2835 }
2836 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2837 
2838 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2839 {
2840 	return queue_work(kblockd_workqueue, work);
2841 }
2842 EXPORT_SYMBOL(kblockd_schedule_work);
2843 
2844 int kblockd_schedule_delayed_work(struct request_queue *q,
2845 			struct delayed_work *dwork, unsigned long delay)
2846 {
2847 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2848 }
2849 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2850 
2851 #define PLUG_MAGIC	0x91827364
2852 
2853 /**
2854  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2855  * @plug:	The &struct blk_plug that needs to be initialized
2856  *
2857  * Description:
2858  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2859  *   pending I/O should the task end up blocking between blk_start_plug() and
2860  *   blk_finish_plug(). This is important from a performance perspective, but
2861  *   also ensures that we don't deadlock. For instance, if the task is blocking
2862  *   for a memory allocation, memory reclaim could end up wanting to free a
2863  *   page belonging to that request that is currently residing in our private
2864  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2865  *   this kind of deadlock.
2866  */
2867 void blk_start_plug(struct blk_plug *plug)
2868 {
2869 	struct task_struct *tsk = current;
2870 
2871 	plug->magic = PLUG_MAGIC;
2872 	INIT_LIST_HEAD(&plug->list);
2873 	INIT_LIST_HEAD(&plug->cb_list);
2874 
2875 	/*
2876 	 * If this is a nested plug, don't actually assign it. It will be
2877 	 * flushed on its own.
2878 	 */
2879 	if (!tsk->plug) {
2880 		/*
2881 		 * Store ordering should not be needed here, since a potential
2882 		 * preempt will imply a full memory barrier
2883 		 */
2884 		tsk->plug = plug;
2885 	}
2886 }
2887 EXPORT_SYMBOL(blk_start_plug);
2888 
2889 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2890 {
2891 	struct request *rqa = container_of(a, struct request, queuelist);
2892 	struct request *rqb = container_of(b, struct request, queuelist);
2893 
2894 	return !(rqa->q < rqb->q ||
2895 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2896 }
2897 
2898 /*
2899  * If 'from_schedule' is true, then postpone the dispatch of requests
2900  * until a safe kblockd context. We due this to avoid accidental big
2901  * additional stack usage in driver dispatch, in places where the originally
2902  * plugger did not intend it.
2903  */
2904 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2905 			    bool from_schedule)
2906 	__releases(q->queue_lock)
2907 {
2908 	trace_block_unplug(q, depth, !from_schedule);
2909 
2910 	if (from_schedule)
2911 		blk_run_queue_async(q);
2912 	else
2913 		__blk_run_queue(q);
2914 	spin_unlock(q->queue_lock);
2915 }
2916 
2917 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2918 {
2919 	LIST_HEAD(callbacks);
2920 
2921 	while (!list_empty(&plug->cb_list)) {
2922 		list_splice_init(&plug->cb_list, &callbacks);
2923 
2924 		while (!list_empty(&callbacks)) {
2925 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2926 							  struct blk_plug_cb,
2927 							  list);
2928 			list_del(&cb->list);
2929 			cb->callback(cb, from_schedule);
2930 		}
2931 	}
2932 }
2933 
2934 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2935 				      int size)
2936 {
2937 	struct blk_plug *plug = current->plug;
2938 	struct blk_plug_cb *cb;
2939 
2940 	if (!plug)
2941 		return NULL;
2942 
2943 	list_for_each_entry(cb, &plug->cb_list, list)
2944 		if (cb->callback == unplug && cb->data == data)
2945 			return cb;
2946 
2947 	/* Not currently on the callback list */
2948 	BUG_ON(size < sizeof(*cb));
2949 	cb = kzalloc(size, GFP_ATOMIC);
2950 	if (cb) {
2951 		cb->data = data;
2952 		cb->callback = unplug;
2953 		list_add(&cb->list, &plug->cb_list);
2954 	}
2955 	return cb;
2956 }
2957 EXPORT_SYMBOL(blk_check_plugged);
2958 
2959 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2960 {
2961 	struct request_queue *q;
2962 	unsigned long flags;
2963 	struct request *rq;
2964 	LIST_HEAD(list);
2965 	unsigned int depth;
2966 
2967 	BUG_ON(plug->magic != PLUG_MAGIC);
2968 
2969 	flush_plug_callbacks(plug, from_schedule);
2970 	if (list_empty(&plug->list))
2971 		return;
2972 
2973 	list_splice_init(&plug->list, &list);
2974 
2975 	list_sort(NULL, &list, plug_rq_cmp);
2976 
2977 	q = NULL;
2978 	depth = 0;
2979 
2980 	/*
2981 	 * Save and disable interrupts here, to avoid doing it for every
2982 	 * queue lock we have to take.
2983 	 */
2984 	local_irq_save(flags);
2985 	while (!list_empty(&list)) {
2986 		rq = list_entry_rq(list.next);
2987 		list_del_init(&rq->queuelist);
2988 		BUG_ON(!rq->q);
2989 		if (rq->q != q) {
2990 			/*
2991 			 * This drops the queue lock
2992 			 */
2993 			if (q)
2994 				queue_unplugged(q, depth, from_schedule);
2995 			q = rq->q;
2996 			depth = 0;
2997 			spin_lock(q->queue_lock);
2998 		}
2999 
3000 		/*
3001 		 * Short-circuit if @q is dead
3002 		 */
3003 		if (unlikely(blk_queue_dying(q))) {
3004 			__blk_end_request_all(rq, -ENODEV);
3005 			continue;
3006 		}
3007 
3008 		/*
3009 		 * rq is already accounted, so use raw insert
3010 		 */
3011 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3012 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3013 		else
3014 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3015 
3016 		depth++;
3017 	}
3018 
3019 	/*
3020 	 * This drops the queue lock
3021 	 */
3022 	if (q)
3023 		queue_unplugged(q, depth, from_schedule);
3024 
3025 	local_irq_restore(flags);
3026 }
3027 
3028 void blk_finish_plug(struct blk_plug *plug)
3029 {
3030 	blk_flush_plug_list(plug, false);
3031 
3032 	if (plug == current->plug)
3033 		current->plug = NULL;
3034 }
3035 EXPORT_SYMBOL(blk_finish_plug);
3036 
3037 #ifdef CONFIG_PM_RUNTIME
3038 /**
3039  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3040  * @q: the queue of the device
3041  * @dev: the device the queue belongs to
3042  *
3043  * Description:
3044  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3045  *    @dev. Drivers that want to take advantage of request-based runtime PM
3046  *    should call this function after @dev has been initialized, and its
3047  *    request queue @q has been allocated, and runtime PM for it can not happen
3048  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3049  *    cases, driver should call this function before any I/O has taken place.
3050  *
3051  *    This function takes care of setting up using auto suspend for the device,
3052  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3053  *    until an updated value is either set by user or by driver. Drivers do
3054  *    not need to touch other autosuspend settings.
3055  *
3056  *    The block layer runtime PM is request based, so only works for drivers
3057  *    that use request as their IO unit instead of those directly use bio's.
3058  */
3059 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3060 {
3061 	q->dev = dev;
3062 	q->rpm_status = RPM_ACTIVE;
3063 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3064 	pm_runtime_use_autosuspend(q->dev);
3065 }
3066 EXPORT_SYMBOL(blk_pm_runtime_init);
3067 
3068 /**
3069  * blk_pre_runtime_suspend - Pre runtime suspend check
3070  * @q: the queue of the device
3071  *
3072  * Description:
3073  *    This function will check if runtime suspend is allowed for the device
3074  *    by examining if there are any requests pending in the queue. If there
3075  *    are requests pending, the device can not be runtime suspended; otherwise,
3076  *    the queue's status will be updated to SUSPENDING and the driver can
3077  *    proceed to suspend the device.
3078  *
3079  *    For the not allowed case, we mark last busy for the device so that
3080  *    runtime PM core will try to autosuspend it some time later.
3081  *
3082  *    This function should be called near the start of the device's
3083  *    runtime_suspend callback.
3084  *
3085  * Return:
3086  *    0		- OK to runtime suspend the device
3087  *    -EBUSY	- Device should not be runtime suspended
3088  */
3089 int blk_pre_runtime_suspend(struct request_queue *q)
3090 {
3091 	int ret = 0;
3092 
3093 	spin_lock_irq(q->queue_lock);
3094 	if (q->nr_pending) {
3095 		ret = -EBUSY;
3096 		pm_runtime_mark_last_busy(q->dev);
3097 	} else {
3098 		q->rpm_status = RPM_SUSPENDING;
3099 	}
3100 	spin_unlock_irq(q->queue_lock);
3101 	return ret;
3102 }
3103 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3104 
3105 /**
3106  * blk_post_runtime_suspend - Post runtime suspend processing
3107  * @q: the queue of the device
3108  * @err: return value of the device's runtime_suspend function
3109  *
3110  * Description:
3111  *    Update the queue's runtime status according to the return value of the
3112  *    device's runtime suspend function and mark last busy for the device so
3113  *    that PM core will try to auto suspend the device at a later time.
3114  *
3115  *    This function should be called near the end of the device's
3116  *    runtime_suspend callback.
3117  */
3118 void blk_post_runtime_suspend(struct request_queue *q, int err)
3119 {
3120 	spin_lock_irq(q->queue_lock);
3121 	if (!err) {
3122 		q->rpm_status = RPM_SUSPENDED;
3123 	} else {
3124 		q->rpm_status = RPM_ACTIVE;
3125 		pm_runtime_mark_last_busy(q->dev);
3126 	}
3127 	spin_unlock_irq(q->queue_lock);
3128 }
3129 EXPORT_SYMBOL(blk_post_runtime_suspend);
3130 
3131 /**
3132  * blk_pre_runtime_resume - Pre runtime resume processing
3133  * @q: the queue of the device
3134  *
3135  * Description:
3136  *    Update the queue's runtime status to RESUMING in preparation for the
3137  *    runtime resume of the device.
3138  *
3139  *    This function should be called near the start of the device's
3140  *    runtime_resume callback.
3141  */
3142 void blk_pre_runtime_resume(struct request_queue *q)
3143 {
3144 	spin_lock_irq(q->queue_lock);
3145 	q->rpm_status = RPM_RESUMING;
3146 	spin_unlock_irq(q->queue_lock);
3147 }
3148 EXPORT_SYMBOL(blk_pre_runtime_resume);
3149 
3150 /**
3151  * blk_post_runtime_resume - Post runtime resume processing
3152  * @q: the queue of the device
3153  * @err: return value of the device's runtime_resume function
3154  *
3155  * Description:
3156  *    Update the queue's runtime status according to the return value of the
3157  *    device's runtime_resume function. If it is successfully resumed, process
3158  *    the requests that are queued into the device's queue when it is resuming
3159  *    and then mark last busy and initiate autosuspend for it.
3160  *
3161  *    This function should be called near the end of the device's
3162  *    runtime_resume callback.
3163  */
3164 void blk_post_runtime_resume(struct request_queue *q, int err)
3165 {
3166 	spin_lock_irq(q->queue_lock);
3167 	if (!err) {
3168 		q->rpm_status = RPM_ACTIVE;
3169 		__blk_run_queue(q);
3170 		pm_runtime_mark_last_busy(q->dev);
3171 		pm_request_autosuspend(q->dev);
3172 	} else {
3173 		q->rpm_status = RPM_SUSPENDED;
3174 	}
3175 	spin_unlock_irq(q->queue_lock);
3176 }
3177 EXPORT_SYMBOL(blk_post_runtime_resume);
3178 #endif
3179 
3180 int __init blk_dev_init(void)
3181 {
3182 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3183 			sizeof(((struct request *)0)->cmd_flags));
3184 
3185 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3186 	kblockd_workqueue = alloc_workqueue("kblockd",
3187 					    WQ_MEM_RECLAIM | WQ_HIGHPRI |
3188 					    WQ_POWER_EFFICIENT, 0);
3189 	if (!kblockd_workqueue)
3190 		panic("Failed to create kblockd\n");
3191 
3192 	request_cachep = kmem_cache_create("blkdev_requests",
3193 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3194 
3195 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3196 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3197 
3198 	return 0;
3199 }
3200