1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/string.h> 25 #include <linux/init.h> 26 #include <linux/completion.h> 27 #include <linux/slab.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/fault-inject.h> 32 #include <linux/list_sort.h> 33 #include <linux/delay.h> 34 #include <linux/ratelimit.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/blk-cgroup.h> 37 #include <linux/t10-pi.h> 38 #include <linux/debugfs.h> 39 #include <linux/bpf.h> 40 #include <linux/psi.h> 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/block.h> 44 45 #include "blk.h" 46 #include "blk-mq.h" 47 #include "blk-mq-sched.h" 48 #include "blk-pm.h" 49 #include "blk-rq-qos.h" 50 51 #ifdef CONFIG_DEBUG_FS 52 struct dentry *blk_debugfs_root; 53 #endif 54 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 60 61 DEFINE_IDA(blk_queue_ida); 62 63 /* 64 * For queue allocation 65 */ 66 struct kmem_cache *blk_requestq_cachep; 67 68 /* 69 * Controlling structure to kblockd 70 */ 71 static struct workqueue_struct *kblockd_workqueue; 72 73 /** 74 * blk_queue_flag_set - atomically set a queue flag 75 * @flag: flag to be set 76 * @q: request queue 77 */ 78 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 79 { 80 set_bit(flag, &q->queue_flags); 81 } 82 EXPORT_SYMBOL(blk_queue_flag_set); 83 84 /** 85 * blk_queue_flag_clear - atomically clear a queue flag 86 * @flag: flag to be cleared 87 * @q: request queue 88 */ 89 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 90 { 91 clear_bit(flag, &q->queue_flags); 92 } 93 EXPORT_SYMBOL(blk_queue_flag_clear); 94 95 /** 96 * blk_queue_flag_test_and_set - atomically test and set a queue flag 97 * @flag: flag to be set 98 * @q: request queue 99 * 100 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 101 * the flag was already set. 102 */ 103 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 104 { 105 return test_and_set_bit(flag, &q->queue_flags); 106 } 107 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 108 109 void blk_rq_init(struct request_queue *q, struct request *rq) 110 { 111 memset(rq, 0, sizeof(*rq)); 112 113 INIT_LIST_HEAD(&rq->queuelist); 114 rq->q = q; 115 rq->__sector = (sector_t) -1; 116 INIT_HLIST_NODE(&rq->hash); 117 RB_CLEAR_NODE(&rq->rb_node); 118 rq->tag = -1; 119 rq->internal_tag = -1; 120 rq->start_time_ns = ktime_get_ns(); 121 rq->part = NULL; 122 refcount_set(&rq->ref, 1); 123 } 124 EXPORT_SYMBOL(blk_rq_init); 125 126 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 127 static const char *const blk_op_name[] = { 128 REQ_OP_NAME(READ), 129 REQ_OP_NAME(WRITE), 130 REQ_OP_NAME(FLUSH), 131 REQ_OP_NAME(DISCARD), 132 REQ_OP_NAME(SECURE_ERASE), 133 REQ_OP_NAME(ZONE_RESET), 134 REQ_OP_NAME(ZONE_RESET_ALL), 135 REQ_OP_NAME(ZONE_OPEN), 136 REQ_OP_NAME(ZONE_CLOSE), 137 REQ_OP_NAME(ZONE_FINISH), 138 REQ_OP_NAME(WRITE_SAME), 139 REQ_OP_NAME(WRITE_ZEROES), 140 REQ_OP_NAME(SCSI_IN), 141 REQ_OP_NAME(SCSI_OUT), 142 REQ_OP_NAME(DRV_IN), 143 REQ_OP_NAME(DRV_OUT), 144 }; 145 #undef REQ_OP_NAME 146 147 /** 148 * blk_op_str - Return string XXX in the REQ_OP_XXX. 149 * @op: REQ_OP_XXX. 150 * 151 * Description: Centralize block layer function to convert REQ_OP_XXX into 152 * string format. Useful in the debugging and tracing bio or request. For 153 * invalid REQ_OP_XXX it returns string "UNKNOWN". 154 */ 155 inline const char *blk_op_str(unsigned int op) 156 { 157 const char *op_str = "UNKNOWN"; 158 159 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 160 op_str = blk_op_name[op]; 161 162 return op_str; 163 } 164 EXPORT_SYMBOL_GPL(blk_op_str); 165 166 static const struct { 167 int errno; 168 const char *name; 169 } blk_errors[] = { 170 [BLK_STS_OK] = { 0, "" }, 171 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 172 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 173 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 174 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 175 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 176 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 177 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 178 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 179 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 180 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 181 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 182 183 /* device mapper special case, should not leak out: */ 184 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 185 186 /* everything else not covered above: */ 187 [BLK_STS_IOERR] = { -EIO, "I/O" }, 188 }; 189 190 blk_status_t errno_to_blk_status(int errno) 191 { 192 int i; 193 194 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 195 if (blk_errors[i].errno == errno) 196 return (__force blk_status_t)i; 197 } 198 199 return BLK_STS_IOERR; 200 } 201 EXPORT_SYMBOL_GPL(errno_to_blk_status); 202 203 int blk_status_to_errno(blk_status_t status) 204 { 205 int idx = (__force int)status; 206 207 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 208 return -EIO; 209 return blk_errors[idx].errno; 210 } 211 EXPORT_SYMBOL_GPL(blk_status_to_errno); 212 213 static void print_req_error(struct request *req, blk_status_t status, 214 const char *caller) 215 { 216 int idx = (__force int)status; 217 218 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 219 return; 220 221 printk_ratelimited(KERN_ERR 222 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 223 "phys_seg %u prio class %u\n", 224 caller, blk_errors[idx].name, 225 req->rq_disk ? req->rq_disk->disk_name : "?", 226 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 227 req->cmd_flags & ~REQ_OP_MASK, 228 req->nr_phys_segments, 229 IOPRIO_PRIO_CLASS(req->ioprio)); 230 } 231 232 static void req_bio_endio(struct request *rq, struct bio *bio, 233 unsigned int nbytes, blk_status_t error) 234 { 235 if (error) 236 bio->bi_status = error; 237 238 if (unlikely(rq->rq_flags & RQF_QUIET)) 239 bio_set_flag(bio, BIO_QUIET); 240 241 bio_advance(bio, nbytes); 242 243 /* don't actually finish bio if it's part of flush sequence */ 244 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 245 bio_endio(bio); 246 } 247 248 void blk_dump_rq_flags(struct request *rq, char *msg) 249 { 250 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 251 rq->rq_disk ? rq->rq_disk->disk_name : "?", 252 (unsigned long long) rq->cmd_flags); 253 254 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 255 (unsigned long long)blk_rq_pos(rq), 256 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 257 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 258 rq->bio, rq->biotail, blk_rq_bytes(rq)); 259 } 260 EXPORT_SYMBOL(blk_dump_rq_flags); 261 262 /** 263 * blk_sync_queue - cancel any pending callbacks on a queue 264 * @q: the queue 265 * 266 * Description: 267 * The block layer may perform asynchronous callback activity 268 * on a queue, such as calling the unplug function after a timeout. 269 * A block device may call blk_sync_queue to ensure that any 270 * such activity is cancelled, thus allowing it to release resources 271 * that the callbacks might use. The caller must already have made sure 272 * that its ->make_request_fn will not re-add plugging prior to calling 273 * this function. 274 * 275 * This function does not cancel any asynchronous activity arising 276 * out of elevator or throttling code. That would require elevator_exit() 277 * and blkcg_exit_queue() to be called with queue lock initialized. 278 * 279 */ 280 void blk_sync_queue(struct request_queue *q) 281 { 282 del_timer_sync(&q->timeout); 283 cancel_work_sync(&q->timeout_work); 284 } 285 EXPORT_SYMBOL(blk_sync_queue); 286 287 /** 288 * blk_set_pm_only - increment pm_only counter 289 * @q: request queue pointer 290 */ 291 void blk_set_pm_only(struct request_queue *q) 292 { 293 atomic_inc(&q->pm_only); 294 } 295 EXPORT_SYMBOL_GPL(blk_set_pm_only); 296 297 void blk_clear_pm_only(struct request_queue *q) 298 { 299 int pm_only; 300 301 pm_only = atomic_dec_return(&q->pm_only); 302 WARN_ON_ONCE(pm_only < 0); 303 if (pm_only == 0) 304 wake_up_all(&q->mq_freeze_wq); 305 } 306 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 307 308 void blk_put_queue(struct request_queue *q) 309 { 310 kobject_put(&q->kobj); 311 } 312 EXPORT_SYMBOL(blk_put_queue); 313 314 void blk_set_queue_dying(struct request_queue *q) 315 { 316 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 317 318 /* 319 * When queue DYING flag is set, we need to block new req 320 * entering queue, so we call blk_freeze_queue_start() to 321 * prevent I/O from crossing blk_queue_enter(). 322 */ 323 blk_freeze_queue_start(q); 324 325 if (queue_is_mq(q)) 326 blk_mq_wake_waiters(q); 327 328 /* Make blk_queue_enter() reexamine the DYING flag. */ 329 wake_up_all(&q->mq_freeze_wq); 330 } 331 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 332 333 /** 334 * blk_cleanup_queue - shutdown a request queue 335 * @q: request queue to shutdown 336 * 337 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 338 * put it. All future requests will be failed immediately with -ENODEV. 339 */ 340 void blk_cleanup_queue(struct request_queue *q) 341 { 342 WARN_ON_ONCE(blk_queue_registered(q)); 343 344 /* mark @q DYING, no new request or merges will be allowed afterwards */ 345 blk_set_queue_dying(q); 346 347 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 348 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 349 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 350 351 /* 352 * Drain all requests queued before DYING marking. Set DEAD flag to 353 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 354 * after draining finished. 355 */ 356 blk_freeze_queue(q); 357 358 rq_qos_exit(q); 359 360 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 361 362 /* for synchronous bio-based driver finish in-flight integrity i/o */ 363 blk_flush_integrity(); 364 365 /* @q won't process any more request, flush async actions */ 366 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 367 blk_sync_queue(q); 368 369 if (queue_is_mq(q)) 370 blk_mq_exit_queue(q); 371 372 /* 373 * In theory, request pool of sched_tags belongs to request queue. 374 * However, the current implementation requires tag_set for freeing 375 * requests, so free the pool now. 376 * 377 * Queue has become frozen, there can't be any in-queue requests, so 378 * it is safe to free requests now. 379 */ 380 mutex_lock(&q->sysfs_lock); 381 if (q->elevator) 382 blk_mq_sched_free_requests(q); 383 mutex_unlock(&q->sysfs_lock); 384 385 percpu_ref_exit(&q->q_usage_counter); 386 387 /* @q is and will stay empty, shutdown and put */ 388 blk_put_queue(q); 389 } 390 EXPORT_SYMBOL(blk_cleanup_queue); 391 392 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 393 { 394 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 395 } 396 EXPORT_SYMBOL(blk_alloc_queue); 397 398 /** 399 * blk_queue_enter() - try to increase q->q_usage_counter 400 * @q: request queue pointer 401 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 402 */ 403 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 404 { 405 const bool pm = flags & BLK_MQ_REQ_PREEMPT; 406 407 while (true) { 408 bool success = false; 409 410 rcu_read_lock(); 411 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 412 /* 413 * The code that increments the pm_only counter is 414 * responsible for ensuring that that counter is 415 * globally visible before the queue is unfrozen. 416 */ 417 if (pm || !blk_queue_pm_only(q)) { 418 success = true; 419 } else { 420 percpu_ref_put(&q->q_usage_counter); 421 } 422 } 423 rcu_read_unlock(); 424 425 if (success) 426 return 0; 427 428 if (flags & BLK_MQ_REQ_NOWAIT) 429 return -EBUSY; 430 431 /* 432 * read pair of barrier in blk_freeze_queue_start(), 433 * we need to order reading __PERCPU_REF_DEAD flag of 434 * .q_usage_counter and reading .mq_freeze_depth or 435 * queue dying flag, otherwise the following wait may 436 * never return if the two reads are reordered. 437 */ 438 smp_rmb(); 439 440 wait_event(q->mq_freeze_wq, 441 (!q->mq_freeze_depth && 442 (pm || (blk_pm_request_resume(q), 443 !blk_queue_pm_only(q)))) || 444 blk_queue_dying(q)); 445 if (blk_queue_dying(q)) 446 return -ENODEV; 447 } 448 } 449 450 void blk_queue_exit(struct request_queue *q) 451 { 452 percpu_ref_put(&q->q_usage_counter); 453 } 454 455 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 456 { 457 struct request_queue *q = 458 container_of(ref, struct request_queue, q_usage_counter); 459 460 wake_up_all(&q->mq_freeze_wq); 461 } 462 463 static void blk_rq_timed_out_timer(struct timer_list *t) 464 { 465 struct request_queue *q = from_timer(q, t, timeout); 466 467 kblockd_schedule_work(&q->timeout_work); 468 } 469 470 static void blk_timeout_work(struct work_struct *work) 471 { 472 } 473 474 /** 475 * blk_alloc_queue_node - allocate a request queue 476 * @gfp_mask: memory allocation flags 477 * @node_id: NUMA node to allocate memory from 478 */ 479 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 480 { 481 struct request_queue *q; 482 int ret; 483 484 q = kmem_cache_alloc_node(blk_requestq_cachep, 485 gfp_mask | __GFP_ZERO, node_id); 486 if (!q) 487 return NULL; 488 489 q->last_merge = NULL; 490 491 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 492 if (q->id < 0) 493 goto fail_q; 494 495 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 496 if (ret) 497 goto fail_id; 498 499 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 500 if (!q->backing_dev_info) 501 goto fail_split; 502 503 q->stats = blk_alloc_queue_stats(); 504 if (!q->stats) 505 goto fail_stats; 506 507 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES; 508 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 509 q->backing_dev_info->name = "block"; 510 q->node = node_id; 511 512 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 513 laptop_mode_timer_fn, 0); 514 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 515 INIT_WORK(&q->timeout_work, blk_timeout_work); 516 INIT_LIST_HEAD(&q->icq_list); 517 #ifdef CONFIG_BLK_CGROUP 518 INIT_LIST_HEAD(&q->blkg_list); 519 #endif 520 521 kobject_init(&q->kobj, &blk_queue_ktype); 522 523 #ifdef CONFIG_BLK_DEV_IO_TRACE 524 mutex_init(&q->blk_trace_mutex); 525 #endif 526 mutex_init(&q->sysfs_lock); 527 mutex_init(&q->sysfs_dir_lock); 528 spin_lock_init(&q->queue_lock); 529 530 init_waitqueue_head(&q->mq_freeze_wq); 531 mutex_init(&q->mq_freeze_lock); 532 533 /* 534 * Init percpu_ref in atomic mode so that it's faster to shutdown. 535 * See blk_register_queue() for details. 536 */ 537 if (percpu_ref_init(&q->q_usage_counter, 538 blk_queue_usage_counter_release, 539 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 540 goto fail_bdi; 541 542 if (blkcg_init_queue(q)) 543 goto fail_ref; 544 545 return q; 546 547 fail_ref: 548 percpu_ref_exit(&q->q_usage_counter); 549 fail_bdi: 550 blk_free_queue_stats(q->stats); 551 fail_stats: 552 bdi_put(q->backing_dev_info); 553 fail_split: 554 bioset_exit(&q->bio_split); 555 fail_id: 556 ida_simple_remove(&blk_queue_ida, q->id); 557 fail_q: 558 kmem_cache_free(blk_requestq_cachep, q); 559 return NULL; 560 } 561 EXPORT_SYMBOL(blk_alloc_queue_node); 562 563 bool blk_get_queue(struct request_queue *q) 564 { 565 if (likely(!blk_queue_dying(q))) { 566 __blk_get_queue(q); 567 return true; 568 } 569 570 return false; 571 } 572 EXPORT_SYMBOL(blk_get_queue); 573 574 /** 575 * blk_get_request - allocate a request 576 * @q: request queue to allocate a request for 577 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 578 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 579 */ 580 struct request *blk_get_request(struct request_queue *q, unsigned int op, 581 blk_mq_req_flags_t flags) 582 { 583 struct request *req; 584 585 WARN_ON_ONCE(op & REQ_NOWAIT); 586 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 587 588 req = blk_mq_alloc_request(q, op, flags); 589 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 590 q->mq_ops->initialize_rq_fn(req); 591 592 return req; 593 } 594 EXPORT_SYMBOL(blk_get_request); 595 596 void blk_put_request(struct request *req) 597 { 598 blk_mq_free_request(req); 599 } 600 EXPORT_SYMBOL(blk_put_request); 601 602 bool bio_attempt_back_merge(struct request *req, struct bio *bio, 603 unsigned int nr_segs) 604 { 605 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 606 607 if (!ll_back_merge_fn(req, bio, nr_segs)) 608 return false; 609 610 trace_block_bio_backmerge(req->q, req, bio); 611 rq_qos_merge(req->q, req, bio); 612 613 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 614 blk_rq_set_mixed_merge(req); 615 616 req->biotail->bi_next = bio; 617 req->biotail = bio; 618 req->__data_len += bio->bi_iter.bi_size; 619 620 blk_account_io_start(req, false); 621 return true; 622 } 623 624 bool bio_attempt_front_merge(struct request *req, struct bio *bio, 625 unsigned int nr_segs) 626 { 627 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 628 629 if (!ll_front_merge_fn(req, bio, nr_segs)) 630 return false; 631 632 trace_block_bio_frontmerge(req->q, req, bio); 633 rq_qos_merge(req->q, req, bio); 634 635 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 636 blk_rq_set_mixed_merge(req); 637 638 bio->bi_next = req->bio; 639 req->bio = bio; 640 641 req->__sector = bio->bi_iter.bi_sector; 642 req->__data_len += bio->bi_iter.bi_size; 643 644 blk_account_io_start(req, false); 645 return true; 646 } 647 648 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 649 struct bio *bio) 650 { 651 unsigned short segments = blk_rq_nr_discard_segments(req); 652 653 if (segments >= queue_max_discard_segments(q)) 654 goto no_merge; 655 if (blk_rq_sectors(req) + bio_sectors(bio) > 656 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 657 goto no_merge; 658 659 rq_qos_merge(q, req, bio); 660 661 req->biotail->bi_next = bio; 662 req->biotail = bio; 663 req->__data_len += bio->bi_iter.bi_size; 664 req->nr_phys_segments = segments + 1; 665 666 blk_account_io_start(req, false); 667 return true; 668 no_merge: 669 req_set_nomerge(q, req); 670 return false; 671 } 672 673 /** 674 * blk_attempt_plug_merge - try to merge with %current's plugged list 675 * @q: request_queue new bio is being queued at 676 * @bio: new bio being queued 677 * @nr_segs: number of segments in @bio 678 * @same_queue_rq: pointer to &struct request that gets filled in when 679 * another request associated with @q is found on the plug list 680 * (optional, may be %NULL) 681 * 682 * Determine whether @bio being queued on @q can be merged with a request 683 * on %current's plugged list. Returns %true if merge was successful, 684 * otherwise %false. 685 * 686 * Plugging coalesces IOs from the same issuer for the same purpose without 687 * going through @q->queue_lock. As such it's more of an issuing mechanism 688 * than scheduling, and the request, while may have elvpriv data, is not 689 * added on the elevator at this point. In addition, we don't have 690 * reliable access to the elevator outside queue lock. Only check basic 691 * merging parameters without querying the elevator. 692 * 693 * Caller must ensure !blk_queue_nomerges(q) beforehand. 694 */ 695 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 696 unsigned int nr_segs, struct request **same_queue_rq) 697 { 698 struct blk_plug *plug; 699 struct request *rq; 700 struct list_head *plug_list; 701 702 plug = blk_mq_plug(q, bio); 703 if (!plug) 704 return false; 705 706 plug_list = &plug->mq_list; 707 708 list_for_each_entry_reverse(rq, plug_list, queuelist) { 709 bool merged = false; 710 711 if (rq->q == q && same_queue_rq) { 712 /* 713 * Only blk-mq multiple hardware queues case checks the 714 * rq in the same queue, there should be only one such 715 * rq in a queue 716 **/ 717 *same_queue_rq = rq; 718 } 719 720 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 721 continue; 722 723 switch (blk_try_merge(rq, bio)) { 724 case ELEVATOR_BACK_MERGE: 725 merged = bio_attempt_back_merge(rq, bio, nr_segs); 726 break; 727 case ELEVATOR_FRONT_MERGE: 728 merged = bio_attempt_front_merge(rq, bio, nr_segs); 729 break; 730 case ELEVATOR_DISCARD_MERGE: 731 merged = bio_attempt_discard_merge(q, rq, bio); 732 break; 733 default: 734 break; 735 } 736 737 if (merged) 738 return true; 739 } 740 741 return false; 742 } 743 744 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 745 { 746 char b[BDEVNAME_SIZE]; 747 748 printk(KERN_INFO "attempt to access beyond end of device\n"); 749 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 750 bio_devname(bio, b), bio->bi_opf, 751 (unsigned long long)bio_end_sector(bio), 752 (long long)maxsector); 753 } 754 755 #ifdef CONFIG_FAIL_MAKE_REQUEST 756 757 static DECLARE_FAULT_ATTR(fail_make_request); 758 759 static int __init setup_fail_make_request(char *str) 760 { 761 return setup_fault_attr(&fail_make_request, str); 762 } 763 __setup("fail_make_request=", setup_fail_make_request); 764 765 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 766 { 767 return part->make_it_fail && should_fail(&fail_make_request, bytes); 768 } 769 770 static int __init fail_make_request_debugfs(void) 771 { 772 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 773 NULL, &fail_make_request); 774 775 return PTR_ERR_OR_ZERO(dir); 776 } 777 778 late_initcall(fail_make_request_debugfs); 779 780 #else /* CONFIG_FAIL_MAKE_REQUEST */ 781 782 static inline bool should_fail_request(struct hd_struct *part, 783 unsigned int bytes) 784 { 785 return false; 786 } 787 788 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 789 790 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 791 { 792 const int op = bio_op(bio); 793 794 if (part->policy && op_is_write(op)) { 795 char b[BDEVNAME_SIZE]; 796 797 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 798 return false; 799 800 WARN_ONCE(1, 801 "generic_make_request: Trying to write " 802 "to read-only block-device %s (partno %d)\n", 803 bio_devname(bio, b), part->partno); 804 /* Older lvm-tools actually trigger this */ 805 return false; 806 } 807 808 return false; 809 } 810 811 static noinline int should_fail_bio(struct bio *bio) 812 { 813 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 814 return -EIO; 815 return 0; 816 } 817 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 818 819 /* 820 * Check whether this bio extends beyond the end of the device or partition. 821 * This may well happen - the kernel calls bread() without checking the size of 822 * the device, e.g., when mounting a file system. 823 */ 824 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 825 { 826 unsigned int nr_sectors = bio_sectors(bio); 827 828 if (nr_sectors && maxsector && 829 (nr_sectors > maxsector || 830 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 831 handle_bad_sector(bio, maxsector); 832 return -EIO; 833 } 834 return 0; 835 } 836 837 /* 838 * Remap block n of partition p to block n+start(p) of the disk. 839 */ 840 static inline int blk_partition_remap(struct bio *bio) 841 { 842 struct hd_struct *p; 843 int ret = -EIO; 844 845 rcu_read_lock(); 846 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 847 if (unlikely(!p)) 848 goto out; 849 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 850 goto out; 851 if (unlikely(bio_check_ro(bio, p))) 852 goto out; 853 854 if (bio_sectors(bio)) { 855 if (bio_check_eod(bio, part_nr_sects_read(p))) 856 goto out; 857 bio->bi_iter.bi_sector += p->start_sect; 858 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 859 bio->bi_iter.bi_sector - p->start_sect); 860 } 861 bio->bi_partno = 0; 862 ret = 0; 863 out: 864 rcu_read_unlock(); 865 return ret; 866 } 867 868 static noinline_for_stack bool 869 generic_make_request_checks(struct bio *bio) 870 { 871 struct request_queue *q; 872 int nr_sectors = bio_sectors(bio); 873 blk_status_t status = BLK_STS_IOERR; 874 char b[BDEVNAME_SIZE]; 875 876 might_sleep(); 877 878 q = bio->bi_disk->queue; 879 if (unlikely(!q)) { 880 printk(KERN_ERR 881 "generic_make_request: Trying to access " 882 "nonexistent block-device %s (%Lu)\n", 883 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 884 goto end_io; 885 } 886 887 /* 888 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 889 * if queue is not a request based queue. 890 */ 891 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) 892 goto not_supported; 893 894 if (should_fail_bio(bio)) 895 goto end_io; 896 897 if (bio->bi_partno) { 898 if (unlikely(blk_partition_remap(bio))) 899 goto end_io; 900 } else { 901 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 902 goto end_io; 903 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 904 goto end_io; 905 } 906 907 /* 908 * Filter flush bio's early so that make_request based 909 * drivers without flush support don't have to worry 910 * about them. 911 */ 912 if (op_is_flush(bio->bi_opf) && 913 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 914 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 915 if (!nr_sectors) { 916 status = BLK_STS_OK; 917 goto end_io; 918 } 919 } 920 921 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 922 bio->bi_opf &= ~REQ_HIPRI; 923 924 switch (bio_op(bio)) { 925 case REQ_OP_DISCARD: 926 if (!blk_queue_discard(q)) 927 goto not_supported; 928 break; 929 case REQ_OP_SECURE_ERASE: 930 if (!blk_queue_secure_erase(q)) 931 goto not_supported; 932 break; 933 case REQ_OP_WRITE_SAME: 934 if (!q->limits.max_write_same_sectors) 935 goto not_supported; 936 break; 937 case REQ_OP_ZONE_RESET: 938 case REQ_OP_ZONE_OPEN: 939 case REQ_OP_ZONE_CLOSE: 940 case REQ_OP_ZONE_FINISH: 941 if (!blk_queue_is_zoned(q)) 942 goto not_supported; 943 break; 944 case REQ_OP_ZONE_RESET_ALL: 945 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 946 goto not_supported; 947 break; 948 case REQ_OP_WRITE_ZEROES: 949 if (!q->limits.max_write_zeroes_sectors) 950 goto not_supported; 951 break; 952 default: 953 break; 954 } 955 956 /* 957 * Various block parts want %current->io_context and lazy ioc 958 * allocation ends up trading a lot of pain for a small amount of 959 * memory. Just allocate it upfront. This may fail and block 960 * layer knows how to live with it. 961 */ 962 create_io_context(GFP_ATOMIC, q->node); 963 964 if (!blkcg_bio_issue_check(q, bio)) 965 return false; 966 967 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 968 trace_block_bio_queue(q, bio); 969 /* Now that enqueuing has been traced, we need to trace 970 * completion as well. 971 */ 972 bio_set_flag(bio, BIO_TRACE_COMPLETION); 973 } 974 return true; 975 976 not_supported: 977 status = BLK_STS_NOTSUPP; 978 end_io: 979 bio->bi_status = status; 980 bio_endio(bio); 981 return false; 982 } 983 984 /** 985 * generic_make_request - hand a buffer to its device driver for I/O 986 * @bio: The bio describing the location in memory and on the device. 987 * 988 * generic_make_request() is used to make I/O requests of block 989 * devices. It is passed a &struct bio, which describes the I/O that needs 990 * to be done. 991 * 992 * generic_make_request() does not return any status. The 993 * success/failure status of the request, along with notification of 994 * completion, is delivered asynchronously through the bio->bi_end_io 995 * function described (one day) else where. 996 * 997 * The caller of generic_make_request must make sure that bi_io_vec 998 * are set to describe the memory buffer, and that bi_dev and bi_sector are 999 * set to describe the device address, and the 1000 * bi_end_io and optionally bi_private are set to describe how 1001 * completion notification should be signaled. 1002 * 1003 * generic_make_request and the drivers it calls may use bi_next if this 1004 * bio happens to be merged with someone else, and may resubmit the bio to 1005 * a lower device by calling into generic_make_request recursively, which 1006 * means the bio should NOT be touched after the call to ->make_request_fn. 1007 */ 1008 blk_qc_t generic_make_request(struct bio *bio) 1009 { 1010 /* 1011 * bio_list_on_stack[0] contains bios submitted by the current 1012 * make_request_fn. 1013 * bio_list_on_stack[1] contains bios that were submitted before 1014 * the current make_request_fn, but that haven't been processed 1015 * yet. 1016 */ 1017 struct bio_list bio_list_on_stack[2]; 1018 blk_qc_t ret = BLK_QC_T_NONE; 1019 1020 if (!generic_make_request_checks(bio)) 1021 goto out; 1022 1023 /* 1024 * We only want one ->make_request_fn to be active at a time, else 1025 * stack usage with stacked devices could be a problem. So use 1026 * current->bio_list to keep a list of requests submited by a 1027 * make_request_fn function. current->bio_list is also used as a 1028 * flag to say if generic_make_request is currently active in this 1029 * task or not. If it is NULL, then no make_request is active. If 1030 * it is non-NULL, then a make_request is active, and new requests 1031 * should be added at the tail 1032 */ 1033 if (current->bio_list) { 1034 bio_list_add(¤t->bio_list[0], bio); 1035 goto out; 1036 } 1037 1038 /* following loop may be a bit non-obvious, and so deserves some 1039 * explanation. 1040 * Before entering the loop, bio->bi_next is NULL (as all callers 1041 * ensure that) so we have a list with a single bio. 1042 * We pretend that we have just taken it off a longer list, so 1043 * we assign bio_list to a pointer to the bio_list_on_stack, 1044 * thus initialising the bio_list of new bios to be 1045 * added. ->make_request() may indeed add some more bios 1046 * through a recursive call to generic_make_request. If it 1047 * did, we find a non-NULL value in bio_list and re-enter the loop 1048 * from the top. In this case we really did just take the bio 1049 * of the top of the list (no pretending) and so remove it from 1050 * bio_list, and call into ->make_request() again. 1051 */ 1052 BUG_ON(bio->bi_next); 1053 bio_list_init(&bio_list_on_stack[0]); 1054 current->bio_list = bio_list_on_stack; 1055 do { 1056 struct request_queue *q = bio->bi_disk->queue; 1057 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ? 1058 BLK_MQ_REQ_NOWAIT : 0; 1059 1060 if (likely(blk_queue_enter(q, flags) == 0)) { 1061 struct bio_list lower, same; 1062 1063 /* Create a fresh bio_list for all subordinate requests */ 1064 bio_list_on_stack[1] = bio_list_on_stack[0]; 1065 bio_list_init(&bio_list_on_stack[0]); 1066 ret = q->make_request_fn(q, bio); 1067 1068 blk_queue_exit(q); 1069 1070 /* sort new bios into those for a lower level 1071 * and those for the same level 1072 */ 1073 bio_list_init(&lower); 1074 bio_list_init(&same); 1075 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 1076 if (q == bio->bi_disk->queue) 1077 bio_list_add(&same, bio); 1078 else 1079 bio_list_add(&lower, bio); 1080 /* now assemble so we handle the lowest level first */ 1081 bio_list_merge(&bio_list_on_stack[0], &lower); 1082 bio_list_merge(&bio_list_on_stack[0], &same); 1083 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 1084 } else { 1085 if (unlikely(!blk_queue_dying(q) && 1086 (bio->bi_opf & REQ_NOWAIT))) 1087 bio_wouldblock_error(bio); 1088 else 1089 bio_io_error(bio); 1090 } 1091 bio = bio_list_pop(&bio_list_on_stack[0]); 1092 } while (bio); 1093 current->bio_list = NULL; /* deactivate */ 1094 1095 out: 1096 return ret; 1097 } 1098 EXPORT_SYMBOL(generic_make_request); 1099 1100 /** 1101 * direct_make_request - hand a buffer directly to its device driver for I/O 1102 * @bio: The bio describing the location in memory and on the device. 1103 * 1104 * This function behaves like generic_make_request(), but does not protect 1105 * against recursion. Must only be used if the called driver is known 1106 * to not call generic_make_request (or direct_make_request) again from 1107 * its make_request function. (Calling direct_make_request again from 1108 * a workqueue is perfectly fine as that doesn't recurse). 1109 */ 1110 blk_qc_t direct_make_request(struct bio *bio) 1111 { 1112 struct request_queue *q = bio->bi_disk->queue; 1113 bool nowait = bio->bi_opf & REQ_NOWAIT; 1114 blk_qc_t ret; 1115 1116 if (!generic_make_request_checks(bio)) 1117 return BLK_QC_T_NONE; 1118 1119 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 1120 if (nowait && !blk_queue_dying(q)) 1121 bio->bi_status = BLK_STS_AGAIN; 1122 else 1123 bio->bi_status = BLK_STS_IOERR; 1124 bio_endio(bio); 1125 return BLK_QC_T_NONE; 1126 } 1127 1128 ret = q->make_request_fn(q, bio); 1129 blk_queue_exit(q); 1130 return ret; 1131 } 1132 EXPORT_SYMBOL_GPL(direct_make_request); 1133 1134 /** 1135 * submit_bio - submit a bio to the block device layer for I/O 1136 * @bio: The &struct bio which describes the I/O 1137 * 1138 * submit_bio() is very similar in purpose to generic_make_request(), and 1139 * uses that function to do most of the work. Both are fairly rough 1140 * interfaces; @bio must be presetup and ready for I/O. 1141 * 1142 */ 1143 blk_qc_t submit_bio(struct bio *bio) 1144 { 1145 bool workingset_read = false; 1146 unsigned long pflags; 1147 blk_qc_t ret; 1148 1149 if (blkcg_punt_bio_submit(bio)) 1150 return BLK_QC_T_NONE; 1151 1152 /* 1153 * If it's a regular read/write or a barrier with data attached, 1154 * go through the normal accounting stuff before submission. 1155 */ 1156 if (bio_has_data(bio)) { 1157 unsigned int count; 1158 1159 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1160 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1161 else 1162 count = bio_sectors(bio); 1163 1164 if (op_is_write(bio_op(bio))) { 1165 count_vm_events(PGPGOUT, count); 1166 } else { 1167 if (bio_flagged(bio, BIO_WORKINGSET)) 1168 workingset_read = true; 1169 task_io_account_read(bio->bi_iter.bi_size); 1170 count_vm_events(PGPGIN, count); 1171 } 1172 1173 if (unlikely(block_dump)) { 1174 char b[BDEVNAME_SIZE]; 1175 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1176 current->comm, task_pid_nr(current), 1177 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1178 (unsigned long long)bio->bi_iter.bi_sector, 1179 bio_devname(bio, b), count); 1180 } 1181 } 1182 1183 /* 1184 * If we're reading data that is part of the userspace 1185 * workingset, count submission time as memory stall. When the 1186 * device is congested, or the submitting cgroup IO-throttled, 1187 * submission can be a significant part of overall IO time. 1188 */ 1189 if (workingset_read) 1190 psi_memstall_enter(&pflags); 1191 1192 ret = generic_make_request(bio); 1193 1194 if (workingset_read) 1195 psi_memstall_leave(&pflags); 1196 1197 return ret; 1198 } 1199 EXPORT_SYMBOL(submit_bio); 1200 1201 /** 1202 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1203 * for new the queue limits 1204 * @q: the queue 1205 * @rq: the request being checked 1206 * 1207 * Description: 1208 * @rq may have been made based on weaker limitations of upper-level queues 1209 * in request stacking drivers, and it may violate the limitation of @q. 1210 * Since the block layer and the underlying device driver trust @rq 1211 * after it is inserted to @q, it should be checked against @q before 1212 * the insertion using this generic function. 1213 * 1214 * Request stacking drivers like request-based dm may change the queue 1215 * limits when retrying requests on other queues. Those requests need 1216 * to be checked against the new queue limits again during dispatch. 1217 */ 1218 static int blk_cloned_rq_check_limits(struct request_queue *q, 1219 struct request *rq) 1220 { 1221 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 1222 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1223 __func__, blk_rq_sectors(rq), 1224 blk_queue_get_max_sectors(q, req_op(rq))); 1225 return -EIO; 1226 } 1227 1228 /* 1229 * queue's settings related to segment counting like q->bounce_pfn 1230 * may differ from that of other stacking queues. 1231 * Recalculate it to check the request correctly on this queue's 1232 * limitation. 1233 */ 1234 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1235 if (rq->nr_phys_segments > queue_max_segments(q)) { 1236 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1237 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1238 return -EIO; 1239 } 1240 1241 return 0; 1242 } 1243 1244 /** 1245 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1246 * @q: the queue to submit the request 1247 * @rq: the request being queued 1248 */ 1249 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1250 { 1251 if (blk_cloned_rq_check_limits(q, rq)) 1252 return BLK_STS_IOERR; 1253 1254 if (rq->rq_disk && 1255 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1256 return BLK_STS_IOERR; 1257 1258 if (blk_queue_io_stat(q)) 1259 blk_account_io_start(rq, true); 1260 1261 /* 1262 * Since we have a scheduler attached on the top device, 1263 * bypass a potential scheduler on the bottom device for 1264 * insert. 1265 */ 1266 return blk_mq_request_issue_directly(rq, true); 1267 } 1268 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1269 1270 /** 1271 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1272 * @rq: request to examine 1273 * 1274 * Description: 1275 * A request could be merge of IOs which require different failure 1276 * handling. This function determines the number of bytes which 1277 * can be failed from the beginning of the request without 1278 * crossing into area which need to be retried further. 1279 * 1280 * Return: 1281 * The number of bytes to fail. 1282 */ 1283 unsigned int blk_rq_err_bytes(const struct request *rq) 1284 { 1285 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1286 unsigned int bytes = 0; 1287 struct bio *bio; 1288 1289 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1290 return blk_rq_bytes(rq); 1291 1292 /* 1293 * Currently the only 'mixing' which can happen is between 1294 * different fastfail types. We can safely fail portions 1295 * which have all the failfast bits that the first one has - 1296 * the ones which are at least as eager to fail as the first 1297 * one. 1298 */ 1299 for (bio = rq->bio; bio; bio = bio->bi_next) { 1300 if ((bio->bi_opf & ff) != ff) 1301 break; 1302 bytes += bio->bi_iter.bi_size; 1303 } 1304 1305 /* this could lead to infinite loop */ 1306 BUG_ON(blk_rq_bytes(rq) && !bytes); 1307 return bytes; 1308 } 1309 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1310 1311 void blk_account_io_completion(struct request *req, unsigned int bytes) 1312 { 1313 if (req->part && blk_do_io_stat(req)) { 1314 const int sgrp = op_stat_group(req_op(req)); 1315 struct hd_struct *part; 1316 1317 part_stat_lock(); 1318 part = req->part; 1319 part_stat_add(part, sectors[sgrp], bytes >> 9); 1320 part_stat_unlock(); 1321 } 1322 } 1323 1324 void blk_account_io_done(struct request *req, u64 now) 1325 { 1326 /* 1327 * Account IO completion. flush_rq isn't accounted as a 1328 * normal IO on queueing nor completion. Accounting the 1329 * containing request is enough. 1330 */ 1331 if (req->part && blk_do_io_stat(req) && 1332 !(req->rq_flags & RQF_FLUSH_SEQ)) { 1333 const int sgrp = op_stat_group(req_op(req)); 1334 struct hd_struct *part; 1335 1336 part_stat_lock(); 1337 part = req->part; 1338 1339 update_io_ticks(part, jiffies); 1340 part_stat_inc(part, ios[sgrp]); 1341 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); 1342 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns)); 1343 part_dec_in_flight(req->q, part, rq_data_dir(req)); 1344 1345 hd_struct_put(part); 1346 part_stat_unlock(); 1347 } 1348 } 1349 1350 void blk_account_io_start(struct request *rq, bool new_io) 1351 { 1352 struct hd_struct *part; 1353 int rw = rq_data_dir(rq); 1354 1355 if (!blk_do_io_stat(rq)) 1356 return; 1357 1358 part_stat_lock(); 1359 1360 if (!new_io) { 1361 part = rq->part; 1362 part_stat_inc(part, merges[rw]); 1363 } else { 1364 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1365 if (!hd_struct_try_get(part)) { 1366 /* 1367 * The partition is already being removed, 1368 * the request will be accounted on the disk only 1369 * 1370 * We take a reference on disk->part0 although that 1371 * partition will never be deleted, so we can treat 1372 * it as any other partition. 1373 */ 1374 part = &rq->rq_disk->part0; 1375 hd_struct_get(part); 1376 } 1377 part_inc_in_flight(rq->q, part, rw); 1378 rq->part = part; 1379 } 1380 1381 update_io_ticks(part, jiffies); 1382 1383 part_stat_unlock(); 1384 } 1385 1386 /* 1387 * Steal bios from a request and add them to a bio list. 1388 * The request must not have been partially completed before. 1389 */ 1390 void blk_steal_bios(struct bio_list *list, struct request *rq) 1391 { 1392 if (rq->bio) { 1393 if (list->tail) 1394 list->tail->bi_next = rq->bio; 1395 else 1396 list->head = rq->bio; 1397 list->tail = rq->biotail; 1398 1399 rq->bio = NULL; 1400 rq->biotail = NULL; 1401 } 1402 1403 rq->__data_len = 0; 1404 } 1405 EXPORT_SYMBOL_GPL(blk_steal_bios); 1406 1407 /** 1408 * blk_update_request - Special helper function for request stacking drivers 1409 * @req: the request being processed 1410 * @error: block status code 1411 * @nr_bytes: number of bytes to complete @req 1412 * 1413 * Description: 1414 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1415 * the request structure even if @req doesn't have leftover. 1416 * If @req has leftover, sets it up for the next range of segments. 1417 * 1418 * This special helper function is only for request stacking drivers 1419 * (e.g. request-based dm) so that they can handle partial completion. 1420 * Actual device drivers should use blk_mq_end_request instead. 1421 * 1422 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1423 * %false return from this function. 1424 * 1425 * Note: 1426 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1427 * blk_rq_bytes() and in blk_update_request(). 1428 * 1429 * Return: 1430 * %false - this request doesn't have any more data 1431 * %true - this request has more data 1432 **/ 1433 bool blk_update_request(struct request *req, blk_status_t error, 1434 unsigned int nr_bytes) 1435 { 1436 int total_bytes; 1437 1438 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1439 1440 if (!req->bio) 1441 return false; 1442 1443 #ifdef CONFIG_BLK_DEV_INTEGRITY 1444 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 1445 error == BLK_STS_OK) 1446 req->q->integrity.profile->complete_fn(req, nr_bytes); 1447 #endif 1448 1449 if (unlikely(error && !blk_rq_is_passthrough(req) && 1450 !(req->rq_flags & RQF_QUIET))) 1451 print_req_error(req, error, __func__); 1452 1453 blk_account_io_completion(req, nr_bytes); 1454 1455 total_bytes = 0; 1456 while (req->bio) { 1457 struct bio *bio = req->bio; 1458 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1459 1460 if (bio_bytes == bio->bi_iter.bi_size) 1461 req->bio = bio->bi_next; 1462 1463 /* Completion has already been traced */ 1464 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1465 req_bio_endio(req, bio, bio_bytes, error); 1466 1467 total_bytes += bio_bytes; 1468 nr_bytes -= bio_bytes; 1469 1470 if (!nr_bytes) 1471 break; 1472 } 1473 1474 /* 1475 * completely done 1476 */ 1477 if (!req->bio) { 1478 /* 1479 * Reset counters so that the request stacking driver 1480 * can find how many bytes remain in the request 1481 * later. 1482 */ 1483 req->__data_len = 0; 1484 return false; 1485 } 1486 1487 req->__data_len -= total_bytes; 1488 1489 /* update sector only for requests with clear definition of sector */ 1490 if (!blk_rq_is_passthrough(req)) 1491 req->__sector += total_bytes >> 9; 1492 1493 /* mixed attributes always follow the first bio */ 1494 if (req->rq_flags & RQF_MIXED_MERGE) { 1495 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1496 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1497 } 1498 1499 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1500 /* 1501 * If total number of sectors is less than the first segment 1502 * size, something has gone terribly wrong. 1503 */ 1504 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1505 blk_dump_rq_flags(req, "request botched"); 1506 req->__data_len = blk_rq_cur_bytes(req); 1507 } 1508 1509 /* recalculate the number of segments */ 1510 req->nr_phys_segments = blk_recalc_rq_segments(req); 1511 } 1512 1513 return true; 1514 } 1515 EXPORT_SYMBOL_GPL(blk_update_request); 1516 1517 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1518 /** 1519 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1520 * @rq: the request to be flushed 1521 * 1522 * Description: 1523 * Flush all pages in @rq. 1524 */ 1525 void rq_flush_dcache_pages(struct request *rq) 1526 { 1527 struct req_iterator iter; 1528 struct bio_vec bvec; 1529 1530 rq_for_each_segment(bvec, rq, iter) 1531 flush_dcache_page(bvec.bv_page); 1532 } 1533 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1534 #endif 1535 1536 /** 1537 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1538 * @q : the queue of the device being checked 1539 * 1540 * Description: 1541 * Check if underlying low-level drivers of a device are busy. 1542 * If the drivers want to export their busy state, they must set own 1543 * exporting function using blk_queue_lld_busy() first. 1544 * 1545 * Basically, this function is used only by request stacking drivers 1546 * to stop dispatching requests to underlying devices when underlying 1547 * devices are busy. This behavior helps more I/O merging on the queue 1548 * of the request stacking driver and prevents I/O throughput regression 1549 * on burst I/O load. 1550 * 1551 * Return: 1552 * 0 - Not busy (The request stacking driver should dispatch request) 1553 * 1 - Busy (The request stacking driver should stop dispatching request) 1554 */ 1555 int blk_lld_busy(struct request_queue *q) 1556 { 1557 if (queue_is_mq(q) && q->mq_ops->busy) 1558 return q->mq_ops->busy(q); 1559 1560 return 0; 1561 } 1562 EXPORT_SYMBOL_GPL(blk_lld_busy); 1563 1564 /** 1565 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1566 * @rq: the clone request to be cleaned up 1567 * 1568 * Description: 1569 * Free all bios in @rq for a cloned request. 1570 */ 1571 void blk_rq_unprep_clone(struct request *rq) 1572 { 1573 struct bio *bio; 1574 1575 while ((bio = rq->bio) != NULL) { 1576 rq->bio = bio->bi_next; 1577 1578 bio_put(bio); 1579 } 1580 } 1581 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1582 1583 /* 1584 * Copy attributes of the original request to the clone request. 1585 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 1586 */ 1587 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 1588 { 1589 dst->__sector = blk_rq_pos(src); 1590 dst->__data_len = blk_rq_bytes(src); 1591 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1592 dst->rq_flags |= RQF_SPECIAL_PAYLOAD; 1593 dst->special_vec = src->special_vec; 1594 } 1595 dst->nr_phys_segments = src->nr_phys_segments; 1596 dst->ioprio = src->ioprio; 1597 dst->extra_len = src->extra_len; 1598 } 1599 1600 /** 1601 * blk_rq_prep_clone - Helper function to setup clone request 1602 * @rq: the request to be setup 1603 * @rq_src: original request to be cloned 1604 * @bs: bio_set that bios for clone are allocated from 1605 * @gfp_mask: memory allocation mask for bio 1606 * @bio_ctr: setup function to be called for each clone bio. 1607 * Returns %0 for success, non %0 for failure. 1608 * @data: private data to be passed to @bio_ctr 1609 * 1610 * Description: 1611 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1612 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 1613 * are not copied, and copying such parts is the caller's responsibility. 1614 * Also, pages which the original bios are pointing to are not copied 1615 * and the cloned bios just point same pages. 1616 * So cloned bios must be completed before original bios, which means 1617 * the caller must complete @rq before @rq_src. 1618 */ 1619 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1620 struct bio_set *bs, gfp_t gfp_mask, 1621 int (*bio_ctr)(struct bio *, struct bio *, void *), 1622 void *data) 1623 { 1624 struct bio *bio, *bio_src; 1625 1626 if (!bs) 1627 bs = &fs_bio_set; 1628 1629 __rq_for_each_bio(bio_src, rq_src) { 1630 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1631 if (!bio) 1632 goto free_and_out; 1633 1634 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1635 goto free_and_out; 1636 1637 if (rq->bio) { 1638 rq->biotail->bi_next = bio; 1639 rq->biotail = bio; 1640 } else 1641 rq->bio = rq->biotail = bio; 1642 } 1643 1644 __blk_rq_prep_clone(rq, rq_src); 1645 1646 return 0; 1647 1648 free_and_out: 1649 if (bio) 1650 bio_put(bio); 1651 blk_rq_unprep_clone(rq); 1652 1653 return -ENOMEM; 1654 } 1655 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1656 1657 int kblockd_schedule_work(struct work_struct *work) 1658 { 1659 return queue_work(kblockd_workqueue, work); 1660 } 1661 EXPORT_SYMBOL(kblockd_schedule_work); 1662 1663 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 1664 { 1665 return queue_work_on(cpu, kblockd_workqueue, work); 1666 } 1667 EXPORT_SYMBOL(kblockd_schedule_work_on); 1668 1669 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1670 unsigned long delay) 1671 { 1672 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1673 } 1674 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1675 1676 /** 1677 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1678 * @plug: The &struct blk_plug that needs to be initialized 1679 * 1680 * Description: 1681 * blk_start_plug() indicates to the block layer an intent by the caller 1682 * to submit multiple I/O requests in a batch. The block layer may use 1683 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1684 * is called. However, the block layer may choose to submit requests 1685 * before a call to blk_finish_plug() if the number of queued I/Os 1686 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1687 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1688 * the task schedules (see below). 1689 * 1690 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1691 * pending I/O should the task end up blocking between blk_start_plug() and 1692 * blk_finish_plug(). This is important from a performance perspective, but 1693 * also ensures that we don't deadlock. For instance, if the task is blocking 1694 * for a memory allocation, memory reclaim could end up wanting to free a 1695 * page belonging to that request that is currently residing in our private 1696 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1697 * this kind of deadlock. 1698 */ 1699 void blk_start_plug(struct blk_plug *plug) 1700 { 1701 struct task_struct *tsk = current; 1702 1703 /* 1704 * If this is a nested plug, don't actually assign it. 1705 */ 1706 if (tsk->plug) 1707 return; 1708 1709 INIT_LIST_HEAD(&plug->mq_list); 1710 INIT_LIST_HEAD(&plug->cb_list); 1711 plug->rq_count = 0; 1712 plug->multiple_queues = false; 1713 1714 /* 1715 * Store ordering should not be needed here, since a potential 1716 * preempt will imply a full memory barrier 1717 */ 1718 tsk->plug = plug; 1719 } 1720 EXPORT_SYMBOL(blk_start_plug); 1721 1722 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1723 { 1724 LIST_HEAD(callbacks); 1725 1726 while (!list_empty(&plug->cb_list)) { 1727 list_splice_init(&plug->cb_list, &callbacks); 1728 1729 while (!list_empty(&callbacks)) { 1730 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1731 struct blk_plug_cb, 1732 list); 1733 list_del(&cb->list); 1734 cb->callback(cb, from_schedule); 1735 } 1736 } 1737 } 1738 1739 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1740 int size) 1741 { 1742 struct blk_plug *plug = current->plug; 1743 struct blk_plug_cb *cb; 1744 1745 if (!plug) 1746 return NULL; 1747 1748 list_for_each_entry(cb, &plug->cb_list, list) 1749 if (cb->callback == unplug && cb->data == data) 1750 return cb; 1751 1752 /* Not currently on the callback list */ 1753 BUG_ON(size < sizeof(*cb)); 1754 cb = kzalloc(size, GFP_ATOMIC); 1755 if (cb) { 1756 cb->data = data; 1757 cb->callback = unplug; 1758 list_add(&cb->list, &plug->cb_list); 1759 } 1760 return cb; 1761 } 1762 EXPORT_SYMBOL(blk_check_plugged); 1763 1764 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1765 { 1766 flush_plug_callbacks(plug, from_schedule); 1767 1768 if (!list_empty(&plug->mq_list)) 1769 blk_mq_flush_plug_list(plug, from_schedule); 1770 } 1771 1772 /** 1773 * blk_finish_plug - mark the end of a batch of submitted I/O 1774 * @plug: The &struct blk_plug passed to blk_start_plug() 1775 * 1776 * Description: 1777 * Indicate that a batch of I/O submissions is complete. This function 1778 * must be paired with an initial call to blk_start_plug(). The intent 1779 * is to allow the block layer to optimize I/O submission. See the 1780 * documentation for blk_start_plug() for more information. 1781 */ 1782 void blk_finish_plug(struct blk_plug *plug) 1783 { 1784 if (plug != current->plug) 1785 return; 1786 blk_flush_plug_list(plug, false); 1787 1788 current->plug = NULL; 1789 } 1790 EXPORT_SYMBOL(blk_finish_plug); 1791 1792 int __init blk_dev_init(void) 1793 { 1794 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1795 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1796 sizeof_field(struct request, cmd_flags)); 1797 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1798 sizeof_field(struct bio, bi_opf)); 1799 1800 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1801 kblockd_workqueue = alloc_workqueue("kblockd", 1802 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1803 if (!kblockd_workqueue) 1804 panic("Failed to create kblockd\n"); 1805 1806 blk_requestq_cachep = kmem_cache_create("request_queue", 1807 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1808 1809 #ifdef CONFIG_DEBUG_FS 1810 blk_debugfs_root = debugfs_create_dir("block", NULL); 1811 #endif 1812 1813 return 0; 1814 } 1815