xref: /linux/block/blk-core.c (revision 6ea76f33e9ab99c7888547e1acba2baf8e4b5b17)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39 
40 #include "blk.h"
41 #include "blk-mq.h"
42 #include "blk-wbt.h"
43 
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
49 
50 DEFINE_IDA(blk_queue_ida);
51 
52 /*
53  * For the allocated request tables
54  */
55 struct kmem_cache *request_cachep;
56 
57 /*
58  * For queue allocation
59  */
60 struct kmem_cache *blk_requestq_cachep;
61 
62 /*
63  * Controlling structure to kblockd
64  */
65 static struct workqueue_struct *kblockd_workqueue;
66 
67 static void blk_clear_congested(struct request_list *rl, int sync)
68 {
69 #ifdef CONFIG_CGROUP_WRITEBACK
70 	clear_wb_congested(rl->blkg->wb_congested, sync);
71 #else
72 	/*
73 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
74 	 * flip its congestion state for events on other blkcgs.
75 	 */
76 	if (rl == &rl->q->root_rl)
77 		clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
78 #endif
79 }
80 
81 static void blk_set_congested(struct request_list *rl, int sync)
82 {
83 #ifdef CONFIG_CGROUP_WRITEBACK
84 	set_wb_congested(rl->blkg->wb_congested, sync);
85 #else
86 	/* see blk_clear_congested() */
87 	if (rl == &rl->q->root_rl)
88 		set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
89 #endif
90 }
91 
92 void blk_queue_congestion_threshold(struct request_queue *q)
93 {
94 	int nr;
95 
96 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 	if (nr > q->nr_requests)
98 		nr = q->nr_requests;
99 	q->nr_congestion_on = nr;
100 
101 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
102 	if (nr < 1)
103 		nr = 1;
104 	q->nr_congestion_off = nr;
105 }
106 
107 /**
108  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
109  * @bdev:	device
110  *
111  * Locates the passed device's request queue and returns the address of its
112  * backing_dev_info.  This function can only be called if @bdev is opened
113  * and the return value is never NULL.
114  */
115 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
116 {
117 	struct request_queue *q = bdev_get_queue(bdev);
118 
119 	return &q->backing_dev_info;
120 }
121 EXPORT_SYMBOL(blk_get_backing_dev_info);
122 
123 void blk_rq_init(struct request_queue *q, struct request *rq)
124 {
125 	memset(rq, 0, sizeof(*rq));
126 
127 	INIT_LIST_HEAD(&rq->queuelist);
128 	INIT_LIST_HEAD(&rq->timeout_list);
129 	rq->cpu = -1;
130 	rq->q = q;
131 	rq->__sector = (sector_t) -1;
132 	INIT_HLIST_NODE(&rq->hash);
133 	RB_CLEAR_NODE(&rq->rb_node);
134 	rq->cmd = rq->__cmd;
135 	rq->cmd_len = BLK_MAX_CDB;
136 	rq->tag = -1;
137 	rq->start_time = jiffies;
138 	set_start_time_ns(rq);
139 	rq->part = NULL;
140 }
141 EXPORT_SYMBOL(blk_rq_init);
142 
143 static void req_bio_endio(struct request *rq, struct bio *bio,
144 			  unsigned int nbytes, int error)
145 {
146 	if (error)
147 		bio->bi_error = error;
148 
149 	if (unlikely(rq->rq_flags & RQF_QUIET))
150 		bio_set_flag(bio, BIO_QUIET);
151 
152 	bio_advance(bio, nbytes);
153 
154 	/* don't actually finish bio if it's part of flush sequence */
155 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
156 		bio_endio(bio);
157 }
158 
159 void blk_dump_rq_flags(struct request *rq, char *msg)
160 {
161 	int bit;
162 
163 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
164 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
165 		(unsigned long long) rq->cmd_flags);
166 
167 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
168 	       (unsigned long long)blk_rq_pos(rq),
169 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
170 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
171 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
172 
173 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
174 		printk(KERN_INFO "  cdb: ");
175 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
176 			printk("%02x ", rq->cmd[bit]);
177 		printk("\n");
178 	}
179 }
180 EXPORT_SYMBOL(blk_dump_rq_flags);
181 
182 static void blk_delay_work(struct work_struct *work)
183 {
184 	struct request_queue *q;
185 
186 	q = container_of(work, struct request_queue, delay_work.work);
187 	spin_lock_irq(q->queue_lock);
188 	__blk_run_queue(q);
189 	spin_unlock_irq(q->queue_lock);
190 }
191 
192 /**
193  * blk_delay_queue - restart queueing after defined interval
194  * @q:		The &struct request_queue in question
195  * @msecs:	Delay in msecs
196  *
197  * Description:
198  *   Sometimes queueing needs to be postponed for a little while, to allow
199  *   resources to come back. This function will make sure that queueing is
200  *   restarted around the specified time. Queue lock must be held.
201  */
202 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
203 {
204 	if (likely(!blk_queue_dead(q)))
205 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
206 				   msecs_to_jiffies(msecs));
207 }
208 EXPORT_SYMBOL(blk_delay_queue);
209 
210 /**
211  * blk_start_queue_async - asynchronously restart a previously stopped queue
212  * @q:    The &struct request_queue in question
213  *
214  * Description:
215  *   blk_start_queue_async() will clear the stop flag on the queue, and
216  *   ensure that the request_fn for the queue is run from an async
217  *   context.
218  **/
219 void blk_start_queue_async(struct request_queue *q)
220 {
221 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
222 	blk_run_queue_async(q);
223 }
224 EXPORT_SYMBOL(blk_start_queue_async);
225 
226 /**
227  * blk_start_queue - restart a previously stopped queue
228  * @q:    The &struct request_queue in question
229  *
230  * Description:
231  *   blk_start_queue() will clear the stop flag on the queue, and call
232  *   the request_fn for the queue if it was in a stopped state when
233  *   entered. Also see blk_stop_queue(). Queue lock must be held.
234  **/
235 void blk_start_queue(struct request_queue *q)
236 {
237 	WARN_ON(!irqs_disabled());
238 
239 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
240 	__blk_run_queue(q);
241 }
242 EXPORT_SYMBOL(blk_start_queue);
243 
244 /**
245  * blk_stop_queue - stop a queue
246  * @q:    The &struct request_queue in question
247  *
248  * Description:
249  *   The Linux block layer assumes that a block driver will consume all
250  *   entries on the request queue when the request_fn strategy is called.
251  *   Often this will not happen, because of hardware limitations (queue
252  *   depth settings). If a device driver gets a 'queue full' response,
253  *   or if it simply chooses not to queue more I/O at one point, it can
254  *   call this function to prevent the request_fn from being called until
255  *   the driver has signalled it's ready to go again. This happens by calling
256  *   blk_start_queue() to restart queue operations. Queue lock must be held.
257  **/
258 void blk_stop_queue(struct request_queue *q)
259 {
260 	cancel_delayed_work(&q->delay_work);
261 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
262 }
263 EXPORT_SYMBOL(blk_stop_queue);
264 
265 /**
266  * blk_sync_queue - cancel any pending callbacks on a queue
267  * @q: the queue
268  *
269  * Description:
270  *     The block layer may perform asynchronous callback activity
271  *     on a queue, such as calling the unplug function after a timeout.
272  *     A block device may call blk_sync_queue to ensure that any
273  *     such activity is cancelled, thus allowing it to release resources
274  *     that the callbacks might use. The caller must already have made sure
275  *     that its ->make_request_fn will not re-add plugging prior to calling
276  *     this function.
277  *
278  *     This function does not cancel any asynchronous activity arising
279  *     out of elevator or throttling code. That would require elevator_exit()
280  *     and blkcg_exit_queue() to be called with queue lock initialized.
281  *
282  */
283 void blk_sync_queue(struct request_queue *q)
284 {
285 	del_timer_sync(&q->timeout);
286 
287 	if (q->mq_ops) {
288 		struct blk_mq_hw_ctx *hctx;
289 		int i;
290 
291 		queue_for_each_hw_ctx(q, hctx, i) {
292 			cancel_work_sync(&hctx->run_work);
293 			cancel_delayed_work_sync(&hctx->delay_work);
294 		}
295 	} else {
296 		cancel_delayed_work_sync(&q->delay_work);
297 	}
298 }
299 EXPORT_SYMBOL(blk_sync_queue);
300 
301 /**
302  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
303  * @q:	The queue to run
304  *
305  * Description:
306  *    Invoke request handling on a queue if there are any pending requests.
307  *    May be used to restart request handling after a request has completed.
308  *    This variant runs the queue whether or not the queue has been
309  *    stopped. Must be called with the queue lock held and interrupts
310  *    disabled. See also @blk_run_queue.
311  */
312 inline void __blk_run_queue_uncond(struct request_queue *q)
313 {
314 	if (unlikely(blk_queue_dead(q)))
315 		return;
316 
317 	/*
318 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
319 	 * the queue lock internally. As a result multiple threads may be
320 	 * running such a request function concurrently. Keep track of the
321 	 * number of active request_fn invocations such that blk_drain_queue()
322 	 * can wait until all these request_fn calls have finished.
323 	 */
324 	q->request_fn_active++;
325 	q->request_fn(q);
326 	q->request_fn_active--;
327 }
328 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
329 
330 /**
331  * __blk_run_queue - run a single device queue
332  * @q:	The queue to run
333  *
334  * Description:
335  *    See @blk_run_queue. This variant must be called with the queue lock
336  *    held and interrupts disabled.
337  */
338 void __blk_run_queue(struct request_queue *q)
339 {
340 	if (unlikely(blk_queue_stopped(q)))
341 		return;
342 
343 	__blk_run_queue_uncond(q);
344 }
345 EXPORT_SYMBOL(__blk_run_queue);
346 
347 /**
348  * blk_run_queue_async - run a single device queue in workqueue context
349  * @q:	The queue to run
350  *
351  * Description:
352  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
353  *    of us. The caller must hold the queue lock.
354  */
355 void blk_run_queue_async(struct request_queue *q)
356 {
357 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
358 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
359 }
360 EXPORT_SYMBOL(blk_run_queue_async);
361 
362 /**
363  * blk_run_queue - run a single device queue
364  * @q: The queue to run
365  *
366  * Description:
367  *    Invoke request handling on this queue, if it has pending work to do.
368  *    May be used to restart queueing when a request has completed.
369  */
370 void blk_run_queue(struct request_queue *q)
371 {
372 	unsigned long flags;
373 
374 	spin_lock_irqsave(q->queue_lock, flags);
375 	__blk_run_queue(q);
376 	spin_unlock_irqrestore(q->queue_lock, flags);
377 }
378 EXPORT_SYMBOL(blk_run_queue);
379 
380 void blk_put_queue(struct request_queue *q)
381 {
382 	kobject_put(&q->kobj);
383 }
384 EXPORT_SYMBOL(blk_put_queue);
385 
386 /**
387  * __blk_drain_queue - drain requests from request_queue
388  * @q: queue to drain
389  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
390  *
391  * Drain requests from @q.  If @drain_all is set, all requests are drained.
392  * If not, only ELVPRIV requests are drained.  The caller is responsible
393  * for ensuring that no new requests which need to be drained are queued.
394  */
395 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
396 	__releases(q->queue_lock)
397 	__acquires(q->queue_lock)
398 {
399 	int i;
400 
401 	lockdep_assert_held(q->queue_lock);
402 
403 	while (true) {
404 		bool drain = false;
405 
406 		/*
407 		 * The caller might be trying to drain @q before its
408 		 * elevator is initialized.
409 		 */
410 		if (q->elevator)
411 			elv_drain_elevator(q);
412 
413 		blkcg_drain_queue(q);
414 
415 		/*
416 		 * This function might be called on a queue which failed
417 		 * driver init after queue creation or is not yet fully
418 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
419 		 * in such cases.  Kick queue iff dispatch queue has
420 		 * something on it and @q has request_fn set.
421 		 */
422 		if (!list_empty(&q->queue_head) && q->request_fn)
423 			__blk_run_queue(q);
424 
425 		drain |= q->nr_rqs_elvpriv;
426 		drain |= q->request_fn_active;
427 
428 		/*
429 		 * Unfortunately, requests are queued at and tracked from
430 		 * multiple places and there's no single counter which can
431 		 * be drained.  Check all the queues and counters.
432 		 */
433 		if (drain_all) {
434 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
435 			drain |= !list_empty(&q->queue_head);
436 			for (i = 0; i < 2; i++) {
437 				drain |= q->nr_rqs[i];
438 				drain |= q->in_flight[i];
439 				if (fq)
440 				    drain |= !list_empty(&fq->flush_queue[i]);
441 			}
442 		}
443 
444 		if (!drain)
445 			break;
446 
447 		spin_unlock_irq(q->queue_lock);
448 
449 		msleep(10);
450 
451 		spin_lock_irq(q->queue_lock);
452 	}
453 
454 	/*
455 	 * With queue marked dead, any woken up waiter will fail the
456 	 * allocation path, so the wakeup chaining is lost and we're
457 	 * left with hung waiters. We need to wake up those waiters.
458 	 */
459 	if (q->request_fn) {
460 		struct request_list *rl;
461 
462 		blk_queue_for_each_rl(rl, q)
463 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
464 				wake_up_all(&rl->wait[i]);
465 	}
466 }
467 
468 /**
469  * blk_queue_bypass_start - enter queue bypass mode
470  * @q: queue of interest
471  *
472  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
473  * function makes @q enter bypass mode and drains all requests which were
474  * throttled or issued before.  On return, it's guaranteed that no request
475  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
476  * inside queue or RCU read lock.
477  */
478 void blk_queue_bypass_start(struct request_queue *q)
479 {
480 	spin_lock_irq(q->queue_lock);
481 	q->bypass_depth++;
482 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
483 	spin_unlock_irq(q->queue_lock);
484 
485 	/*
486 	 * Queues start drained.  Skip actual draining till init is
487 	 * complete.  This avoids lenghty delays during queue init which
488 	 * can happen many times during boot.
489 	 */
490 	if (blk_queue_init_done(q)) {
491 		spin_lock_irq(q->queue_lock);
492 		__blk_drain_queue(q, false);
493 		spin_unlock_irq(q->queue_lock);
494 
495 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
496 		synchronize_rcu();
497 	}
498 }
499 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
500 
501 /**
502  * blk_queue_bypass_end - leave queue bypass mode
503  * @q: queue of interest
504  *
505  * Leave bypass mode and restore the normal queueing behavior.
506  */
507 void blk_queue_bypass_end(struct request_queue *q)
508 {
509 	spin_lock_irq(q->queue_lock);
510 	if (!--q->bypass_depth)
511 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
512 	WARN_ON_ONCE(q->bypass_depth < 0);
513 	spin_unlock_irq(q->queue_lock);
514 }
515 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
516 
517 void blk_set_queue_dying(struct request_queue *q)
518 {
519 	spin_lock_irq(q->queue_lock);
520 	queue_flag_set(QUEUE_FLAG_DYING, q);
521 	spin_unlock_irq(q->queue_lock);
522 
523 	if (q->mq_ops)
524 		blk_mq_wake_waiters(q);
525 	else {
526 		struct request_list *rl;
527 
528 		blk_queue_for_each_rl(rl, q) {
529 			if (rl->rq_pool) {
530 				wake_up(&rl->wait[BLK_RW_SYNC]);
531 				wake_up(&rl->wait[BLK_RW_ASYNC]);
532 			}
533 		}
534 	}
535 }
536 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
537 
538 /**
539  * blk_cleanup_queue - shutdown a request queue
540  * @q: request queue to shutdown
541  *
542  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
543  * put it.  All future requests will be failed immediately with -ENODEV.
544  */
545 void blk_cleanup_queue(struct request_queue *q)
546 {
547 	spinlock_t *lock = q->queue_lock;
548 
549 	/* mark @q DYING, no new request or merges will be allowed afterwards */
550 	mutex_lock(&q->sysfs_lock);
551 	blk_set_queue_dying(q);
552 	spin_lock_irq(lock);
553 
554 	/*
555 	 * A dying queue is permanently in bypass mode till released.  Note
556 	 * that, unlike blk_queue_bypass_start(), we aren't performing
557 	 * synchronize_rcu() after entering bypass mode to avoid the delay
558 	 * as some drivers create and destroy a lot of queues while
559 	 * probing.  This is still safe because blk_release_queue() will be
560 	 * called only after the queue refcnt drops to zero and nothing,
561 	 * RCU or not, would be traversing the queue by then.
562 	 */
563 	q->bypass_depth++;
564 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
565 
566 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
567 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
568 	queue_flag_set(QUEUE_FLAG_DYING, q);
569 	spin_unlock_irq(lock);
570 	mutex_unlock(&q->sysfs_lock);
571 
572 	/*
573 	 * Drain all requests queued before DYING marking. Set DEAD flag to
574 	 * prevent that q->request_fn() gets invoked after draining finished.
575 	 */
576 	blk_freeze_queue(q);
577 	spin_lock_irq(lock);
578 	if (!q->mq_ops)
579 		__blk_drain_queue(q, true);
580 	queue_flag_set(QUEUE_FLAG_DEAD, q);
581 	spin_unlock_irq(lock);
582 
583 	/* for synchronous bio-based driver finish in-flight integrity i/o */
584 	blk_flush_integrity();
585 
586 	/* @q won't process any more request, flush async actions */
587 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
588 	blk_sync_queue(q);
589 
590 	if (q->mq_ops)
591 		blk_mq_free_queue(q);
592 	percpu_ref_exit(&q->q_usage_counter);
593 
594 	spin_lock_irq(lock);
595 	if (q->queue_lock != &q->__queue_lock)
596 		q->queue_lock = &q->__queue_lock;
597 	spin_unlock_irq(lock);
598 
599 	bdi_unregister(&q->backing_dev_info);
600 
601 	/* @q is and will stay empty, shutdown and put */
602 	blk_put_queue(q);
603 }
604 EXPORT_SYMBOL(blk_cleanup_queue);
605 
606 /* Allocate memory local to the request queue */
607 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
608 {
609 	int nid = (int)(long)data;
610 	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
611 }
612 
613 static void free_request_struct(void *element, void *unused)
614 {
615 	kmem_cache_free(request_cachep, element);
616 }
617 
618 int blk_init_rl(struct request_list *rl, struct request_queue *q,
619 		gfp_t gfp_mask)
620 {
621 	if (unlikely(rl->rq_pool))
622 		return 0;
623 
624 	rl->q = q;
625 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
626 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
627 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
628 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
629 
630 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
631 					  free_request_struct,
632 					  (void *)(long)q->node, gfp_mask,
633 					  q->node);
634 	if (!rl->rq_pool)
635 		return -ENOMEM;
636 
637 	return 0;
638 }
639 
640 void blk_exit_rl(struct request_list *rl)
641 {
642 	if (rl->rq_pool)
643 		mempool_destroy(rl->rq_pool);
644 }
645 
646 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
647 {
648 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
649 }
650 EXPORT_SYMBOL(blk_alloc_queue);
651 
652 int blk_queue_enter(struct request_queue *q, bool nowait)
653 {
654 	while (true) {
655 		int ret;
656 
657 		if (percpu_ref_tryget_live(&q->q_usage_counter))
658 			return 0;
659 
660 		if (nowait)
661 			return -EBUSY;
662 
663 		ret = wait_event_interruptible(q->mq_freeze_wq,
664 				!atomic_read(&q->mq_freeze_depth) ||
665 				blk_queue_dying(q));
666 		if (blk_queue_dying(q))
667 			return -ENODEV;
668 		if (ret)
669 			return ret;
670 	}
671 }
672 
673 void blk_queue_exit(struct request_queue *q)
674 {
675 	percpu_ref_put(&q->q_usage_counter);
676 }
677 
678 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
679 {
680 	struct request_queue *q =
681 		container_of(ref, struct request_queue, q_usage_counter);
682 
683 	wake_up_all(&q->mq_freeze_wq);
684 }
685 
686 static void blk_rq_timed_out_timer(unsigned long data)
687 {
688 	struct request_queue *q = (struct request_queue *)data;
689 
690 	kblockd_schedule_work(&q->timeout_work);
691 }
692 
693 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
694 {
695 	struct request_queue *q;
696 	int err;
697 
698 	q = kmem_cache_alloc_node(blk_requestq_cachep,
699 				gfp_mask | __GFP_ZERO, node_id);
700 	if (!q)
701 		return NULL;
702 
703 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
704 	if (q->id < 0)
705 		goto fail_q;
706 
707 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
708 	if (!q->bio_split)
709 		goto fail_id;
710 
711 	q->backing_dev_info.ra_pages =
712 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
713 	q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
714 	q->backing_dev_info.name = "block";
715 	q->node = node_id;
716 
717 	err = bdi_init(&q->backing_dev_info);
718 	if (err)
719 		goto fail_split;
720 
721 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
722 		    laptop_mode_timer_fn, (unsigned long) q);
723 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
724 	INIT_LIST_HEAD(&q->queue_head);
725 	INIT_LIST_HEAD(&q->timeout_list);
726 	INIT_LIST_HEAD(&q->icq_list);
727 #ifdef CONFIG_BLK_CGROUP
728 	INIT_LIST_HEAD(&q->blkg_list);
729 #endif
730 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
731 
732 	kobject_init(&q->kobj, &blk_queue_ktype);
733 
734 	mutex_init(&q->sysfs_lock);
735 	spin_lock_init(&q->__queue_lock);
736 
737 	/*
738 	 * By default initialize queue_lock to internal lock and driver can
739 	 * override it later if need be.
740 	 */
741 	q->queue_lock = &q->__queue_lock;
742 
743 	/*
744 	 * A queue starts its life with bypass turned on to avoid
745 	 * unnecessary bypass on/off overhead and nasty surprises during
746 	 * init.  The initial bypass will be finished when the queue is
747 	 * registered by blk_register_queue().
748 	 */
749 	q->bypass_depth = 1;
750 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
751 
752 	init_waitqueue_head(&q->mq_freeze_wq);
753 
754 	/*
755 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
756 	 * See blk_register_queue() for details.
757 	 */
758 	if (percpu_ref_init(&q->q_usage_counter,
759 				blk_queue_usage_counter_release,
760 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
761 		goto fail_bdi;
762 
763 	if (blkcg_init_queue(q))
764 		goto fail_ref;
765 
766 	return q;
767 
768 fail_ref:
769 	percpu_ref_exit(&q->q_usage_counter);
770 fail_bdi:
771 	bdi_destroy(&q->backing_dev_info);
772 fail_split:
773 	bioset_free(q->bio_split);
774 fail_id:
775 	ida_simple_remove(&blk_queue_ida, q->id);
776 fail_q:
777 	kmem_cache_free(blk_requestq_cachep, q);
778 	return NULL;
779 }
780 EXPORT_SYMBOL(blk_alloc_queue_node);
781 
782 /**
783  * blk_init_queue  - prepare a request queue for use with a block device
784  * @rfn:  The function to be called to process requests that have been
785  *        placed on the queue.
786  * @lock: Request queue spin lock
787  *
788  * Description:
789  *    If a block device wishes to use the standard request handling procedures,
790  *    which sorts requests and coalesces adjacent requests, then it must
791  *    call blk_init_queue().  The function @rfn will be called when there
792  *    are requests on the queue that need to be processed.  If the device
793  *    supports plugging, then @rfn may not be called immediately when requests
794  *    are available on the queue, but may be called at some time later instead.
795  *    Plugged queues are generally unplugged when a buffer belonging to one
796  *    of the requests on the queue is needed, or due to memory pressure.
797  *
798  *    @rfn is not required, or even expected, to remove all requests off the
799  *    queue, but only as many as it can handle at a time.  If it does leave
800  *    requests on the queue, it is responsible for arranging that the requests
801  *    get dealt with eventually.
802  *
803  *    The queue spin lock must be held while manipulating the requests on the
804  *    request queue; this lock will be taken also from interrupt context, so irq
805  *    disabling is needed for it.
806  *
807  *    Function returns a pointer to the initialized request queue, or %NULL if
808  *    it didn't succeed.
809  *
810  * Note:
811  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
812  *    when the block device is deactivated (such as at module unload).
813  **/
814 
815 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
816 {
817 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
818 }
819 EXPORT_SYMBOL(blk_init_queue);
820 
821 struct request_queue *
822 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
823 {
824 	struct request_queue *uninit_q, *q;
825 
826 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
827 	if (!uninit_q)
828 		return NULL;
829 
830 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
831 	if (!q)
832 		blk_cleanup_queue(uninit_q);
833 
834 	return q;
835 }
836 EXPORT_SYMBOL(blk_init_queue_node);
837 
838 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
839 
840 struct request_queue *
841 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
842 			 spinlock_t *lock)
843 {
844 	if (!q)
845 		return NULL;
846 
847 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
848 	if (!q->fq)
849 		return NULL;
850 
851 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
852 		goto fail;
853 
854 	INIT_WORK(&q->timeout_work, blk_timeout_work);
855 	q->request_fn		= rfn;
856 	q->prep_rq_fn		= NULL;
857 	q->unprep_rq_fn		= NULL;
858 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
859 
860 	/* Override internal queue lock with supplied lock pointer */
861 	if (lock)
862 		q->queue_lock		= lock;
863 
864 	/*
865 	 * This also sets hw/phys segments, boundary and size
866 	 */
867 	blk_queue_make_request(q, blk_queue_bio);
868 
869 	q->sg_reserved_size = INT_MAX;
870 
871 	/* Protect q->elevator from elevator_change */
872 	mutex_lock(&q->sysfs_lock);
873 
874 	/* init elevator */
875 	if (elevator_init(q, NULL)) {
876 		mutex_unlock(&q->sysfs_lock);
877 		goto fail;
878 	}
879 
880 	mutex_unlock(&q->sysfs_lock);
881 
882 	return q;
883 
884 fail:
885 	blk_free_flush_queue(q->fq);
886 	wbt_exit(q);
887 	return NULL;
888 }
889 EXPORT_SYMBOL(blk_init_allocated_queue);
890 
891 bool blk_get_queue(struct request_queue *q)
892 {
893 	if (likely(!blk_queue_dying(q))) {
894 		__blk_get_queue(q);
895 		return true;
896 	}
897 
898 	return false;
899 }
900 EXPORT_SYMBOL(blk_get_queue);
901 
902 static inline void blk_free_request(struct request_list *rl, struct request *rq)
903 {
904 	if (rq->rq_flags & RQF_ELVPRIV) {
905 		elv_put_request(rl->q, rq);
906 		if (rq->elv.icq)
907 			put_io_context(rq->elv.icq->ioc);
908 	}
909 
910 	mempool_free(rq, rl->rq_pool);
911 }
912 
913 /*
914  * ioc_batching returns true if the ioc is a valid batching request and
915  * should be given priority access to a request.
916  */
917 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
918 {
919 	if (!ioc)
920 		return 0;
921 
922 	/*
923 	 * Make sure the process is able to allocate at least 1 request
924 	 * even if the batch times out, otherwise we could theoretically
925 	 * lose wakeups.
926 	 */
927 	return ioc->nr_batch_requests == q->nr_batching ||
928 		(ioc->nr_batch_requests > 0
929 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
930 }
931 
932 /*
933  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
934  * will cause the process to be a "batcher" on all queues in the system. This
935  * is the behaviour we want though - once it gets a wakeup it should be given
936  * a nice run.
937  */
938 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
939 {
940 	if (!ioc || ioc_batching(q, ioc))
941 		return;
942 
943 	ioc->nr_batch_requests = q->nr_batching;
944 	ioc->last_waited = jiffies;
945 }
946 
947 static void __freed_request(struct request_list *rl, int sync)
948 {
949 	struct request_queue *q = rl->q;
950 
951 	if (rl->count[sync] < queue_congestion_off_threshold(q))
952 		blk_clear_congested(rl, sync);
953 
954 	if (rl->count[sync] + 1 <= q->nr_requests) {
955 		if (waitqueue_active(&rl->wait[sync]))
956 			wake_up(&rl->wait[sync]);
957 
958 		blk_clear_rl_full(rl, sync);
959 	}
960 }
961 
962 /*
963  * A request has just been released.  Account for it, update the full and
964  * congestion status, wake up any waiters.   Called under q->queue_lock.
965  */
966 static void freed_request(struct request_list *rl, bool sync,
967 		req_flags_t rq_flags)
968 {
969 	struct request_queue *q = rl->q;
970 
971 	q->nr_rqs[sync]--;
972 	rl->count[sync]--;
973 	if (rq_flags & RQF_ELVPRIV)
974 		q->nr_rqs_elvpriv--;
975 
976 	__freed_request(rl, sync);
977 
978 	if (unlikely(rl->starved[sync ^ 1]))
979 		__freed_request(rl, sync ^ 1);
980 }
981 
982 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
983 {
984 	struct request_list *rl;
985 	int on_thresh, off_thresh;
986 
987 	spin_lock_irq(q->queue_lock);
988 	q->nr_requests = nr;
989 	blk_queue_congestion_threshold(q);
990 	on_thresh = queue_congestion_on_threshold(q);
991 	off_thresh = queue_congestion_off_threshold(q);
992 
993 	blk_queue_for_each_rl(rl, q) {
994 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
995 			blk_set_congested(rl, BLK_RW_SYNC);
996 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
997 			blk_clear_congested(rl, BLK_RW_SYNC);
998 
999 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1000 			blk_set_congested(rl, BLK_RW_ASYNC);
1001 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1002 			blk_clear_congested(rl, BLK_RW_ASYNC);
1003 
1004 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1005 			blk_set_rl_full(rl, BLK_RW_SYNC);
1006 		} else {
1007 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1008 			wake_up(&rl->wait[BLK_RW_SYNC]);
1009 		}
1010 
1011 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1012 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1013 		} else {
1014 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1015 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1016 		}
1017 	}
1018 
1019 	spin_unlock_irq(q->queue_lock);
1020 	return 0;
1021 }
1022 
1023 /*
1024  * Determine if elevator data should be initialized when allocating the
1025  * request associated with @bio.
1026  */
1027 static bool blk_rq_should_init_elevator(struct bio *bio)
1028 {
1029 	if (!bio)
1030 		return true;
1031 
1032 	/*
1033 	 * Flush requests do not use the elevator so skip initialization.
1034 	 * This allows a request to share the flush and elevator data.
1035 	 */
1036 	if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1037 		return false;
1038 
1039 	return true;
1040 }
1041 
1042 /**
1043  * rq_ioc - determine io_context for request allocation
1044  * @bio: request being allocated is for this bio (can be %NULL)
1045  *
1046  * Determine io_context to use for request allocation for @bio.  May return
1047  * %NULL if %current->io_context doesn't exist.
1048  */
1049 static struct io_context *rq_ioc(struct bio *bio)
1050 {
1051 #ifdef CONFIG_BLK_CGROUP
1052 	if (bio && bio->bi_ioc)
1053 		return bio->bi_ioc;
1054 #endif
1055 	return current->io_context;
1056 }
1057 
1058 /**
1059  * __get_request - get a free request
1060  * @rl: request list to allocate from
1061  * @op: operation and flags
1062  * @bio: bio to allocate request for (can be %NULL)
1063  * @gfp_mask: allocation mask
1064  *
1065  * Get a free request from @q.  This function may fail under memory
1066  * pressure or if @q is dead.
1067  *
1068  * Must be called with @q->queue_lock held and,
1069  * Returns ERR_PTR on failure, with @q->queue_lock held.
1070  * Returns request pointer on success, with @q->queue_lock *not held*.
1071  */
1072 static struct request *__get_request(struct request_list *rl, unsigned int op,
1073 		struct bio *bio, gfp_t gfp_mask)
1074 {
1075 	struct request_queue *q = rl->q;
1076 	struct request *rq;
1077 	struct elevator_type *et = q->elevator->type;
1078 	struct io_context *ioc = rq_ioc(bio);
1079 	struct io_cq *icq = NULL;
1080 	const bool is_sync = op_is_sync(op);
1081 	int may_queue;
1082 	req_flags_t rq_flags = RQF_ALLOCED;
1083 
1084 	if (unlikely(blk_queue_dying(q)))
1085 		return ERR_PTR(-ENODEV);
1086 
1087 	may_queue = elv_may_queue(q, op);
1088 	if (may_queue == ELV_MQUEUE_NO)
1089 		goto rq_starved;
1090 
1091 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1092 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1093 			/*
1094 			 * The queue will fill after this allocation, so set
1095 			 * it as full, and mark this process as "batching".
1096 			 * This process will be allowed to complete a batch of
1097 			 * requests, others will be blocked.
1098 			 */
1099 			if (!blk_rl_full(rl, is_sync)) {
1100 				ioc_set_batching(q, ioc);
1101 				blk_set_rl_full(rl, is_sync);
1102 			} else {
1103 				if (may_queue != ELV_MQUEUE_MUST
1104 						&& !ioc_batching(q, ioc)) {
1105 					/*
1106 					 * The queue is full and the allocating
1107 					 * process is not a "batcher", and not
1108 					 * exempted by the IO scheduler
1109 					 */
1110 					return ERR_PTR(-ENOMEM);
1111 				}
1112 			}
1113 		}
1114 		blk_set_congested(rl, is_sync);
1115 	}
1116 
1117 	/*
1118 	 * Only allow batching queuers to allocate up to 50% over the defined
1119 	 * limit of requests, otherwise we could have thousands of requests
1120 	 * allocated with any setting of ->nr_requests
1121 	 */
1122 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1123 		return ERR_PTR(-ENOMEM);
1124 
1125 	q->nr_rqs[is_sync]++;
1126 	rl->count[is_sync]++;
1127 	rl->starved[is_sync] = 0;
1128 
1129 	/*
1130 	 * Decide whether the new request will be managed by elevator.  If
1131 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1132 	 * prevent the current elevator from being destroyed until the new
1133 	 * request is freed.  This guarantees icq's won't be destroyed and
1134 	 * makes creating new ones safe.
1135 	 *
1136 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1137 	 * it will be created after releasing queue_lock.
1138 	 */
1139 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1140 		rq_flags |= RQF_ELVPRIV;
1141 		q->nr_rqs_elvpriv++;
1142 		if (et->icq_cache && ioc)
1143 			icq = ioc_lookup_icq(ioc, q);
1144 	}
1145 
1146 	if (blk_queue_io_stat(q))
1147 		rq_flags |= RQF_IO_STAT;
1148 	spin_unlock_irq(q->queue_lock);
1149 
1150 	/* allocate and init request */
1151 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1152 	if (!rq)
1153 		goto fail_alloc;
1154 
1155 	blk_rq_init(q, rq);
1156 	blk_rq_set_rl(rq, rl);
1157 	rq->cmd_flags = op;
1158 	rq->rq_flags = rq_flags;
1159 
1160 	/* init elvpriv */
1161 	if (rq_flags & RQF_ELVPRIV) {
1162 		if (unlikely(et->icq_cache && !icq)) {
1163 			if (ioc)
1164 				icq = ioc_create_icq(ioc, q, gfp_mask);
1165 			if (!icq)
1166 				goto fail_elvpriv;
1167 		}
1168 
1169 		rq->elv.icq = icq;
1170 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1171 			goto fail_elvpriv;
1172 
1173 		/* @rq->elv.icq holds io_context until @rq is freed */
1174 		if (icq)
1175 			get_io_context(icq->ioc);
1176 	}
1177 out:
1178 	/*
1179 	 * ioc may be NULL here, and ioc_batching will be false. That's
1180 	 * OK, if the queue is under the request limit then requests need
1181 	 * not count toward the nr_batch_requests limit. There will always
1182 	 * be some limit enforced by BLK_BATCH_TIME.
1183 	 */
1184 	if (ioc_batching(q, ioc))
1185 		ioc->nr_batch_requests--;
1186 
1187 	trace_block_getrq(q, bio, op);
1188 	return rq;
1189 
1190 fail_elvpriv:
1191 	/*
1192 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1193 	 * and may fail indefinitely under memory pressure and thus
1194 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1195 	 * disturb iosched and blkcg but weird is bettern than dead.
1196 	 */
1197 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1198 			   __func__, dev_name(q->backing_dev_info.dev));
1199 
1200 	rq->rq_flags &= ~RQF_ELVPRIV;
1201 	rq->elv.icq = NULL;
1202 
1203 	spin_lock_irq(q->queue_lock);
1204 	q->nr_rqs_elvpriv--;
1205 	spin_unlock_irq(q->queue_lock);
1206 	goto out;
1207 
1208 fail_alloc:
1209 	/*
1210 	 * Allocation failed presumably due to memory. Undo anything we
1211 	 * might have messed up.
1212 	 *
1213 	 * Allocating task should really be put onto the front of the wait
1214 	 * queue, but this is pretty rare.
1215 	 */
1216 	spin_lock_irq(q->queue_lock);
1217 	freed_request(rl, is_sync, rq_flags);
1218 
1219 	/*
1220 	 * in the very unlikely event that allocation failed and no
1221 	 * requests for this direction was pending, mark us starved so that
1222 	 * freeing of a request in the other direction will notice
1223 	 * us. another possible fix would be to split the rq mempool into
1224 	 * READ and WRITE
1225 	 */
1226 rq_starved:
1227 	if (unlikely(rl->count[is_sync] == 0))
1228 		rl->starved[is_sync] = 1;
1229 	return ERR_PTR(-ENOMEM);
1230 }
1231 
1232 /**
1233  * get_request - get a free request
1234  * @q: request_queue to allocate request from
1235  * @op: operation and flags
1236  * @bio: bio to allocate request for (can be %NULL)
1237  * @gfp_mask: allocation mask
1238  *
1239  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1240  * this function keeps retrying under memory pressure and fails iff @q is dead.
1241  *
1242  * Must be called with @q->queue_lock held and,
1243  * Returns ERR_PTR on failure, with @q->queue_lock held.
1244  * Returns request pointer on success, with @q->queue_lock *not held*.
1245  */
1246 static struct request *get_request(struct request_queue *q, unsigned int op,
1247 		struct bio *bio, gfp_t gfp_mask)
1248 {
1249 	const bool is_sync = op_is_sync(op);
1250 	DEFINE_WAIT(wait);
1251 	struct request_list *rl;
1252 	struct request *rq;
1253 
1254 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1255 retry:
1256 	rq = __get_request(rl, op, bio, gfp_mask);
1257 	if (!IS_ERR(rq))
1258 		return rq;
1259 
1260 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1261 		blk_put_rl(rl);
1262 		return rq;
1263 	}
1264 
1265 	/* wait on @rl and retry */
1266 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1267 				  TASK_UNINTERRUPTIBLE);
1268 
1269 	trace_block_sleeprq(q, bio, op);
1270 
1271 	spin_unlock_irq(q->queue_lock);
1272 	io_schedule();
1273 
1274 	/*
1275 	 * After sleeping, we become a "batching" process and will be able
1276 	 * to allocate at least one request, and up to a big batch of them
1277 	 * for a small period time.  See ioc_batching, ioc_set_batching
1278 	 */
1279 	ioc_set_batching(q, current->io_context);
1280 
1281 	spin_lock_irq(q->queue_lock);
1282 	finish_wait(&rl->wait[is_sync], &wait);
1283 
1284 	goto retry;
1285 }
1286 
1287 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1288 		gfp_t gfp_mask)
1289 {
1290 	struct request *rq;
1291 
1292 	BUG_ON(rw != READ && rw != WRITE);
1293 
1294 	/* create ioc upfront */
1295 	create_io_context(gfp_mask, q->node);
1296 
1297 	spin_lock_irq(q->queue_lock);
1298 	rq = get_request(q, rw, NULL, gfp_mask);
1299 	if (IS_ERR(rq)) {
1300 		spin_unlock_irq(q->queue_lock);
1301 		return rq;
1302 	}
1303 
1304 	/* q->queue_lock is unlocked at this point */
1305 	rq->__data_len = 0;
1306 	rq->__sector = (sector_t) -1;
1307 	rq->bio = rq->biotail = NULL;
1308 	return rq;
1309 }
1310 
1311 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1312 {
1313 	if (q->mq_ops)
1314 		return blk_mq_alloc_request(q, rw,
1315 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1316 				0 : BLK_MQ_REQ_NOWAIT);
1317 	else
1318 		return blk_old_get_request(q, rw, gfp_mask);
1319 }
1320 EXPORT_SYMBOL(blk_get_request);
1321 
1322 /**
1323  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1324  * @rq:		request to be initialized
1325  *
1326  */
1327 void blk_rq_set_block_pc(struct request *rq)
1328 {
1329 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1330 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1331 }
1332 EXPORT_SYMBOL(blk_rq_set_block_pc);
1333 
1334 /**
1335  * blk_requeue_request - put a request back on queue
1336  * @q:		request queue where request should be inserted
1337  * @rq:		request to be inserted
1338  *
1339  * Description:
1340  *    Drivers often keep queueing requests until the hardware cannot accept
1341  *    more, when that condition happens we need to put the request back
1342  *    on the queue. Must be called with queue lock held.
1343  */
1344 void blk_requeue_request(struct request_queue *q, struct request *rq)
1345 {
1346 	blk_delete_timer(rq);
1347 	blk_clear_rq_complete(rq);
1348 	trace_block_rq_requeue(q, rq);
1349 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1350 
1351 	if (rq->rq_flags & RQF_QUEUED)
1352 		blk_queue_end_tag(q, rq);
1353 
1354 	BUG_ON(blk_queued_rq(rq));
1355 
1356 	elv_requeue_request(q, rq);
1357 }
1358 EXPORT_SYMBOL(blk_requeue_request);
1359 
1360 static void add_acct_request(struct request_queue *q, struct request *rq,
1361 			     int where)
1362 {
1363 	blk_account_io_start(rq, true);
1364 	__elv_add_request(q, rq, where);
1365 }
1366 
1367 static void part_round_stats_single(int cpu, struct hd_struct *part,
1368 				    unsigned long now)
1369 {
1370 	int inflight;
1371 
1372 	if (now == part->stamp)
1373 		return;
1374 
1375 	inflight = part_in_flight(part);
1376 	if (inflight) {
1377 		__part_stat_add(cpu, part, time_in_queue,
1378 				inflight * (now - part->stamp));
1379 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1380 	}
1381 	part->stamp = now;
1382 }
1383 
1384 /**
1385  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1386  * @cpu: cpu number for stats access
1387  * @part: target partition
1388  *
1389  * The average IO queue length and utilisation statistics are maintained
1390  * by observing the current state of the queue length and the amount of
1391  * time it has been in this state for.
1392  *
1393  * Normally, that accounting is done on IO completion, but that can result
1394  * in more than a second's worth of IO being accounted for within any one
1395  * second, leading to >100% utilisation.  To deal with that, we call this
1396  * function to do a round-off before returning the results when reading
1397  * /proc/diskstats.  This accounts immediately for all queue usage up to
1398  * the current jiffies and restarts the counters again.
1399  */
1400 void part_round_stats(int cpu, struct hd_struct *part)
1401 {
1402 	unsigned long now = jiffies;
1403 
1404 	if (part->partno)
1405 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1406 	part_round_stats_single(cpu, part, now);
1407 }
1408 EXPORT_SYMBOL_GPL(part_round_stats);
1409 
1410 #ifdef CONFIG_PM
1411 static void blk_pm_put_request(struct request *rq)
1412 {
1413 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1414 		pm_runtime_mark_last_busy(rq->q->dev);
1415 }
1416 #else
1417 static inline void blk_pm_put_request(struct request *rq) {}
1418 #endif
1419 
1420 /*
1421  * queue lock must be held
1422  */
1423 void __blk_put_request(struct request_queue *q, struct request *req)
1424 {
1425 	req_flags_t rq_flags = req->rq_flags;
1426 
1427 	if (unlikely(!q))
1428 		return;
1429 
1430 	if (q->mq_ops) {
1431 		blk_mq_free_request(req);
1432 		return;
1433 	}
1434 
1435 	blk_pm_put_request(req);
1436 
1437 	elv_completed_request(q, req);
1438 
1439 	/* this is a bio leak */
1440 	WARN_ON(req->bio != NULL);
1441 
1442 	wbt_done(q->rq_wb, &req->issue_stat);
1443 
1444 	/*
1445 	 * Request may not have originated from ll_rw_blk. if not,
1446 	 * it didn't come out of our reserved rq pools
1447 	 */
1448 	if (rq_flags & RQF_ALLOCED) {
1449 		struct request_list *rl = blk_rq_rl(req);
1450 		bool sync = op_is_sync(req->cmd_flags);
1451 
1452 		BUG_ON(!list_empty(&req->queuelist));
1453 		BUG_ON(ELV_ON_HASH(req));
1454 
1455 		blk_free_request(rl, req);
1456 		freed_request(rl, sync, rq_flags);
1457 		blk_put_rl(rl);
1458 	}
1459 }
1460 EXPORT_SYMBOL_GPL(__blk_put_request);
1461 
1462 void blk_put_request(struct request *req)
1463 {
1464 	struct request_queue *q = req->q;
1465 
1466 	if (q->mq_ops)
1467 		blk_mq_free_request(req);
1468 	else {
1469 		unsigned long flags;
1470 
1471 		spin_lock_irqsave(q->queue_lock, flags);
1472 		__blk_put_request(q, req);
1473 		spin_unlock_irqrestore(q->queue_lock, flags);
1474 	}
1475 }
1476 EXPORT_SYMBOL(blk_put_request);
1477 
1478 /**
1479  * blk_add_request_payload - add a payload to a request
1480  * @rq: request to update
1481  * @page: page backing the payload
1482  * @offset: offset in page
1483  * @len: length of the payload.
1484  *
1485  * This allows to later add a payload to an already submitted request by
1486  * a block driver.  The driver needs to take care of freeing the payload
1487  * itself.
1488  *
1489  * Note that this is a quite horrible hack and nothing but handling of
1490  * discard requests should ever use it.
1491  */
1492 void blk_add_request_payload(struct request *rq, struct page *page,
1493 		int offset, unsigned int len)
1494 {
1495 	struct bio *bio = rq->bio;
1496 
1497 	bio->bi_io_vec->bv_page = page;
1498 	bio->bi_io_vec->bv_offset = offset;
1499 	bio->bi_io_vec->bv_len = len;
1500 
1501 	bio->bi_iter.bi_size = len;
1502 	bio->bi_vcnt = 1;
1503 	bio->bi_phys_segments = 1;
1504 
1505 	rq->__data_len = rq->resid_len = len;
1506 	rq->nr_phys_segments = 1;
1507 }
1508 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1509 
1510 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1511 			    struct bio *bio)
1512 {
1513 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1514 
1515 	if (!ll_back_merge_fn(q, req, bio))
1516 		return false;
1517 
1518 	trace_block_bio_backmerge(q, req, bio);
1519 
1520 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1521 		blk_rq_set_mixed_merge(req);
1522 
1523 	req->biotail->bi_next = bio;
1524 	req->biotail = bio;
1525 	req->__data_len += bio->bi_iter.bi_size;
1526 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1527 
1528 	blk_account_io_start(req, false);
1529 	return true;
1530 }
1531 
1532 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1533 			     struct bio *bio)
1534 {
1535 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1536 
1537 	if (!ll_front_merge_fn(q, req, bio))
1538 		return false;
1539 
1540 	trace_block_bio_frontmerge(q, req, bio);
1541 
1542 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1543 		blk_rq_set_mixed_merge(req);
1544 
1545 	bio->bi_next = req->bio;
1546 	req->bio = bio;
1547 
1548 	req->__sector = bio->bi_iter.bi_sector;
1549 	req->__data_len += bio->bi_iter.bi_size;
1550 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1551 
1552 	blk_account_io_start(req, false);
1553 	return true;
1554 }
1555 
1556 /**
1557  * blk_attempt_plug_merge - try to merge with %current's plugged list
1558  * @q: request_queue new bio is being queued at
1559  * @bio: new bio being queued
1560  * @request_count: out parameter for number of traversed plugged requests
1561  * @same_queue_rq: pointer to &struct request that gets filled in when
1562  * another request associated with @q is found on the plug list
1563  * (optional, may be %NULL)
1564  *
1565  * Determine whether @bio being queued on @q can be merged with a request
1566  * on %current's plugged list.  Returns %true if merge was successful,
1567  * otherwise %false.
1568  *
1569  * Plugging coalesces IOs from the same issuer for the same purpose without
1570  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1571  * than scheduling, and the request, while may have elvpriv data, is not
1572  * added on the elevator at this point.  In addition, we don't have
1573  * reliable access to the elevator outside queue lock.  Only check basic
1574  * merging parameters without querying the elevator.
1575  *
1576  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1577  */
1578 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1579 			    unsigned int *request_count,
1580 			    struct request **same_queue_rq)
1581 {
1582 	struct blk_plug *plug;
1583 	struct request *rq;
1584 	bool ret = false;
1585 	struct list_head *plug_list;
1586 
1587 	plug = current->plug;
1588 	if (!plug)
1589 		goto out;
1590 	*request_count = 0;
1591 
1592 	if (q->mq_ops)
1593 		plug_list = &plug->mq_list;
1594 	else
1595 		plug_list = &plug->list;
1596 
1597 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1598 		int el_ret;
1599 
1600 		if (rq->q == q) {
1601 			(*request_count)++;
1602 			/*
1603 			 * Only blk-mq multiple hardware queues case checks the
1604 			 * rq in the same queue, there should be only one such
1605 			 * rq in a queue
1606 			 **/
1607 			if (same_queue_rq)
1608 				*same_queue_rq = rq;
1609 		}
1610 
1611 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1612 			continue;
1613 
1614 		el_ret = blk_try_merge(rq, bio);
1615 		if (el_ret == ELEVATOR_BACK_MERGE) {
1616 			ret = bio_attempt_back_merge(q, rq, bio);
1617 			if (ret)
1618 				break;
1619 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1620 			ret = bio_attempt_front_merge(q, rq, bio);
1621 			if (ret)
1622 				break;
1623 		}
1624 	}
1625 out:
1626 	return ret;
1627 }
1628 
1629 unsigned int blk_plug_queued_count(struct request_queue *q)
1630 {
1631 	struct blk_plug *plug;
1632 	struct request *rq;
1633 	struct list_head *plug_list;
1634 	unsigned int ret = 0;
1635 
1636 	plug = current->plug;
1637 	if (!plug)
1638 		goto out;
1639 
1640 	if (q->mq_ops)
1641 		plug_list = &plug->mq_list;
1642 	else
1643 		plug_list = &plug->list;
1644 
1645 	list_for_each_entry(rq, plug_list, queuelist) {
1646 		if (rq->q == q)
1647 			ret++;
1648 	}
1649 out:
1650 	return ret;
1651 }
1652 
1653 void init_request_from_bio(struct request *req, struct bio *bio)
1654 {
1655 	req->cmd_type = REQ_TYPE_FS;
1656 	if (bio->bi_opf & REQ_RAHEAD)
1657 		req->cmd_flags |= REQ_FAILFAST_MASK;
1658 
1659 	req->errors = 0;
1660 	req->__sector = bio->bi_iter.bi_sector;
1661 	req->ioprio = bio_prio(bio);
1662 	blk_rq_bio_prep(req->q, req, bio);
1663 }
1664 
1665 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1666 {
1667 	struct blk_plug *plug;
1668 	int el_ret, where = ELEVATOR_INSERT_SORT;
1669 	struct request *req;
1670 	unsigned int request_count = 0;
1671 	unsigned int wb_acct;
1672 
1673 	/*
1674 	 * low level driver can indicate that it wants pages above a
1675 	 * certain limit bounced to low memory (ie for highmem, or even
1676 	 * ISA dma in theory)
1677 	 */
1678 	blk_queue_bounce(q, &bio);
1679 
1680 	blk_queue_split(q, &bio, q->bio_split);
1681 
1682 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1683 		bio->bi_error = -EIO;
1684 		bio_endio(bio);
1685 		return BLK_QC_T_NONE;
1686 	}
1687 
1688 	if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1689 		spin_lock_irq(q->queue_lock);
1690 		where = ELEVATOR_INSERT_FLUSH;
1691 		goto get_rq;
1692 	}
1693 
1694 	/*
1695 	 * Check if we can merge with the plugged list before grabbing
1696 	 * any locks.
1697 	 */
1698 	if (!blk_queue_nomerges(q)) {
1699 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1700 			return BLK_QC_T_NONE;
1701 	} else
1702 		request_count = blk_plug_queued_count(q);
1703 
1704 	spin_lock_irq(q->queue_lock);
1705 
1706 	el_ret = elv_merge(q, &req, bio);
1707 	if (el_ret == ELEVATOR_BACK_MERGE) {
1708 		if (bio_attempt_back_merge(q, req, bio)) {
1709 			elv_bio_merged(q, req, bio);
1710 			if (!attempt_back_merge(q, req))
1711 				elv_merged_request(q, req, el_ret);
1712 			goto out_unlock;
1713 		}
1714 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1715 		if (bio_attempt_front_merge(q, req, bio)) {
1716 			elv_bio_merged(q, req, bio);
1717 			if (!attempt_front_merge(q, req))
1718 				elv_merged_request(q, req, el_ret);
1719 			goto out_unlock;
1720 		}
1721 	}
1722 
1723 get_rq:
1724 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1725 
1726 	/*
1727 	 * Grab a free request. This is might sleep but can not fail.
1728 	 * Returns with the queue unlocked.
1729 	 */
1730 	req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1731 	if (IS_ERR(req)) {
1732 		__wbt_done(q->rq_wb, wb_acct);
1733 		bio->bi_error = PTR_ERR(req);
1734 		bio_endio(bio);
1735 		goto out_unlock;
1736 	}
1737 
1738 	wbt_track(&req->issue_stat, wb_acct);
1739 
1740 	/*
1741 	 * After dropping the lock and possibly sleeping here, our request
1742 	 * may now be mergeable after it had proven unmergeable (above).
1743 	 * We don't worry about that case for efficiency. It won't happen
1744 	 * often, and the elevators are able to handle it.
1745 	 */
1746 	init_request_from_bio(req, bio);
1747 
1748 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1749 		req->cpu = raw_smp_processor_id();
1750 
1751 	plug = current->plug;
1752 	if (plug) {
1753 		/*
1754 		 * If this is the first request added after a plug, fire
1755 		 * of a plug trace.
1756 		 *
1757 		 * @request_count may become stale because of schedule
1758 		 * out, so check plug list again.
1759 		 */
1760 		if (!request_count || list_empty(&plug->list))
1761 			trace_block_plug(q);
1762 		else {
1763 			struct request *last = list_entry_rq(plug->list.prev);
1764 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
1765 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1766 				blk_flush_plug_list(plug, false);
1767 				trace_block_plug(q);
1768 			}
1769 		}
1770 		list_add_tail(&req->queuelist, &plug->list);
1771 		blk_account_io_start(req, true);
1772 	} else {
1773 		spin_lock_irq(q->queue_lock);
1774 		add_acct_request(q, req, where);
1775 		__blk_run_queue(q);
1776 out_unlock:
1777 		spin_unlock_irq(q->queue_lock);
1778 	}
1779 
1780 	return BLK_QC_T_NONE;
1781 }
1782 
1783 /*
1784  * If bio->bi_dev is a partition, remap the location
1785  */
1786 static inline void blk_partition_remap(struct bio *bio)
1787 {
1788 	struct block_device *bdev = bio->bi_bdev;
1789 
1790 	/*
1791 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
1792 	 * Include a test for the reset op code and perform the remap if needed.
1793 	 */
1794 	if (bdev != bdev->bd_contains &&
1795 	    (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1796 		struct hd_struct *p = bdev->bd_part;
1797 
1798 		bio->bi_iter.bi_sector += p->start_sect;
1799 		bio->bi_bdev = bdev->bd_contains;
1800 
1801 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1802 				      bdev->bd_dev,
1803 				      bio->bi_iter.bi_sector - p->start_sect);
1804 	}
1805 }
1806 
1807 static void handle_bad_sector(struct bio *bio)
1808 {
1809 	char b[BDEVNAME_SIZE];
1810 
1811 	printk(KERN_INFO "attempt to access beyond end of device\n");
1812 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1813 			bdevname(bio->bi_bdev, b),
1814 			bio->bi_opf,
1815 			(unsigned long long)bio_end_sector(bio),
1816 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1817 }
1818 
1819 #ifdef CONFIG_FAIL_MAKE_REQUEST
1820 
1821 static DECLARE_FAULT_ATTR(fail_make_request);
1822 
1823 static int __init setup_fail_make_request(char *str)
1824 {
1825 	return setup_fault_attr(&fail_make_request, str);
1826 }
1827 __setup("fail_make_request=", setup_fail_make_request);
1828 
1829 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1830 {
1831 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1832 }
1833 
1834 static int __init fail_make_request_debugfs(void)
1835 {
1836 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1837 						NULL, &fail_make_request);
1838 
1839 	return PTR_ERR_OR_ZERO(dir);
1840 }
1841 
1842 late_initcall(fail_make_request_debugfs);
1843 
1844 #else /* CONFIG_FAIL_MAKE_REQUEST */
1845 
1846 static inline bool should_fail_request(struct hd_struct *part,
1847 					unsigned int bytes)
1848 {
1849 	return false;
1850 }
1851 
1852 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1853 
1854 /*
1855  * Check whether this bio extends beyond the end of the device.
1856  */
1857 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1858 {
1859 	sector_t maxsector;
1860 
1861 	if (!nr_sectors)
1862 		return 0;
1863 
1864 	/* Test device or partition size, when known. */
1865 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1866 	if (maxsector) {
1867 		sector_t sector = bio->bi_iter.bi_sector;
1868 
1869 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1870 			/*
1871 			 * This may well happen - the kernel calls bread()
1872 			 * without checking the size of the device, e.g., when
1873 			 * mounting a device.
1874 			 */
1875 			handle_bad_sector(bio);
1876 			return 1;
1877 		}
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 static noinline_for_stack bool
1884 generic_make_request_checks(struct bio *bio)
1885 {
1886 	struct request_queue *q;
1887 	int nr_sectors = bio_sectors(bio);
1888 	int err = -EIO;
1889 	char b[BDEVNAME_SIZE];
1890 	struct hd_struct *part;
1891 
1892 	might_sleep();
1893 
1894 	if (bio_check_eod(bio, nr_sectors))
1895 		goto end_io;
1896 
1897 	q = bdev_get_queue(bio->bi_bdev);
1898 	if (unlikely(!q)) {
1899 		printk(KERN_ERR
1900 		       "generic_make_request: Trying to access "
1901 			"nonexistent block-device %s (%Lu)\n",
1902 			bdevname(bio->bi_bdev, b),
1903 			(long long) bio->bi_iter.bi_sector);
1904 		goto end_io;
1905 	}
1906 
1907 	part = bio->bi_bdev->bd_part;
1908 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1909 	    should_fail_request(&part_to_disk(part)->part0,
1910 				bio->bi_iter.bi_size))
1911 		goto end_io;
1912 
1913 	/*
1914 	 * If this device has partitions, remap block n
1915 	 * of partition p to block n+start(p) of the disk.
1916 	 */
1917 	blk_partition_remap(bio);
1918 
1919 	if (bio_check_eod(bio, nr_sectors))
1920 		goto end_io;
1921 
1922 	/*
1923 	 * Filter flush bio's early so that make_request based
1924 	 * drivers without flush support don't have to worry
1925 	 * about them.
1926 	 */
1927 	if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1928 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1929 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1930 		if (!nr_sectors) {
1931 			err = 0;
1932 			goto end_io;
1933 		}
1934 	}
1935 
1936 	switch (bio_op(bio)) {
1937 	case REQ_OP_DISCARD:
1938 		if (!blk_queue_discard(q))
1939 			goto not_supported;
1940 		break;
1941 	case REQ_OP_SECURE_ERASE:
1942 		if (!blk_queue_secure_erase(q))
1943 			goto not_supported;
1944 		break;
1945 	case REQ_OP_WRITE_SAME:
1946 		if (!bdev_write_same(bio->bi_bdev))
1947 			goto not_supported;
1948 	case REQ_OP_ZONE_REPORT:
1949 	case REQ_OP_ZONE_RESET:
1950 		if (!bdev_is_zoned(bio->bi_bdev))
1951 			goto not_supported;
1952 		break;
1953 	case REQ_OP_WRITE_ZEROES:
1954 		if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1955 			goto not_supported;
1956 		break;
1957 	default:
1958 		break;
1959 	}
1960 
1961 	/*
1962 	 * Various block parts want %current->io_context and lazy ioc
1963 	 * allocation ends up trading a lot of pain for a small amount of
1964 	 * memory.  Just allocate it upfront.  This may fail and block
1965 	 * layer knows how to live with it.
1966 	 */
1967 	create_io_context(GFP_ATOMIC, q->node);
1968 
1969 	if (!blkcg_bio_issue_check(q, bio))
1970 		return false;
1971 
1972 	trace_block_bio_queue(q, bio);
1973 	return true;
1974 
1975 not_supported:
1976 	err = -EOPNOTSUPP;
1977 end_io:
1978 	bio->bi_error = err;
1979 	bio_endio(bio);
1980 	return false;
1981 }
1982 
1983 /**
1984  * generic_make_request - hand a buffer to its device driver for I/O
1985  * @bio:  The bio describing the location in memory and on the device.
1986  *
1987  * generic_make_request() is used to make I/O requests of block
1988  * devices. It is passed a &struct bio, which describes the I/O that needs
1989  * to be done.
1990  *
1991  * generic_make_request() does not return any status.  The
1992  * success/failure status of the request, along with notification of
1993  * completion, is delivered asynchronously through the bio->bi_end_io
1994  * function described (one day) else where.
1995  *
1996  * The caller of generic_make_request must make sure that bi_io_vec
1997  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1998  * set to describe the device address, and the
1999  * bi_end_io and optionally bi_private are set to describe how
2000  * completion notification should be signaled.
2001  *
2002  * generic_make_request and the drivers it calls may use bi_next if this
2003  * bio happens to be merged with someone else, and may resubmit the bio to
2004  * a lower device by calling into generic_make_request recursively, which
2005  * means the bio should NOT be touched after the call to ->make_request_fn.
2006  */
2007 blk_qc_t generic_make_request(struct bio *bio)
2008 {
2009 	struct bio_list bio_list_on_stack;
2010 	blk_qc_t ret = BLK_QC_T_NONE;
2011 
2012 	if (!generic_make_request_checks(bio))
2013 		goto out;
2014 
2015 	/*
2016 	 * We only want one ->make_request_fn to be active at a time, else
2017 	 * stack usage with stacked devices could be a problem.  So use
2018 	 * current->bio_list to keep a list of requests submited by a
2019 	 * make_request_fn function.  current->bio_list is also used as a
2020 	 * flag to say if generic_make_request is currently active in this
2021 	 * task or not.  If it is NULL, then no make_request is active.  If
2022 	 * it is non-NULL, then a make_request is active, and new requests
2023 	 * should be added at the tail
2024 	 */
2025 	if (current->bio_list) {
2026 		bio_list_add(current->bio_list, bio);
2027 		goto out;
2028 	}
2029 
2030 	/* following loop may be a bit non-obvious, and so deserves some
2031 	 * explanation.
2032 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2033 	 * ensure that) so we have a list with a single bio.
2034 	 * We pretend that we have just taken it off a longer list, so
2035 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2036 	 * thus initialising the bio_list of new bios to be
2037 	 * added.  ->make_request() may indeed add some more bios
2038 	 * through a recursive call to generic_make_request.  If it
2039 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2040 	 * from the top.  In this case we really did just take the bio
2041 	 * of the top of the list (no pretending) and so remove it from
2042 	 * bio_list, and call into ->make_request() again.
2043 	 */
2044 	BUG_ON(bio->bi_next);
2045 	bio_list_init(&bio_list_on_stack);
2046 	current->bio_list = &bio_list_on_stack;
2047 	do {
2048 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2049 
2050 		if (likely(blk_queue_enter(q, false) == 0)) {
2051 			ret = q->make_request_fn(q, bio);
2052 
2053 			blk_queue_exit(q);
2054 
2055 			bio = bio_list_pop(current->bio_list);
2056 		} else {
2057 			struct bio *bio_next = bio_list_pop(current->bio_list);
2058 
2059 			bio_io_error(bio);
2060 			bio = bio_next;
2061 		}
2062 	} while (bio);
2063 	current->bio_list = NULL; /* deactivate */
2064 
2065 out:
2066 	return ret;
2067 }
2068 EXPORT_SYMBOL(generic_make_request);
2069 
2070 /**
2071  * submit_bio - submit a bio to the block device layer for I/O
2072  * @bio: The &struct bio which describes the I/O
2073  *
2074  * submit_bio() is very similar in purpose to generic_make_request(), and
2075  * uses that function to do most of the work. Both are fairly rough
2076  * interfaces; @bio must be presetup and ready for I/O.
2077  *
2078  */
2079 blk_qc_t submit_bio(struct bio *bio)
2080 {
2081 	/*
2082 	 * If it's a regular read/write or a barrier with data attached,
2083 	 * go through the normal accounting stuff before submission.
2084 	 */
2085 	if (bio_has_data(bio)) {
2086 		unsigned int count;
2087 
2088 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2089 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2090 		else
2091 			count = bio_sectors(bio);
2092 
2093 		if (op_is_write(bio_op(bio))) {
2094 			count_vm_events(PGPGOUT, count);
2095 		} else {
2096 			task_io_account_read(bio->bi_iter.bi_size);
2097 			count_vm_events(PGPGIN, count);
2098 		}
2099 
2100 		if (unlikely(block_dump)) {
2101 			char b[BDEVNAME_SIZE];
2102 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2103 			current->comm, task_pid_nr(current),
2104 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2105 				(unsigned long long)bio->bi_iter.bi_sector,
2106 				bdevname(bio->bi_bdev, b),
2107 				count);
2108 		}
2109 	}
2110 
2111 	return generic_make_request(bio);
2112 }
2113 EXPORT_SYMBOL(submit_bio);
2114 
2115 /**
2116  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2117  *                              for new the queue limits
2118  * @q:  the queue
2119  * @rq: the request being checked
2120  *
2121  * Description:
2122  *    @rq may have been made based on weaker limitations of upper-level queues
2123  *    in request stacking drivers, and it may violate the limitation of @q.
2124  *    Since the block layer and the underlying device driver trust @rq
2125  *    after it is inserted to @q, it should be checked against @q before
2126  *    the insertion using this generic function.
2127  *
2128  *    Request stacking drivers like request-based dm may change the queue
2129  *    limits when retrying requests on other queues. Those requests need
2130  *    to be checked against the new queue limits again during dispatch.
2131  */
2132 static int blk_cloned_rq_check_limits(struct request_queue *q,
2133 				      struct request *rq)
2134 {
2135 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2136 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2137 		return -EIO;
2138 	}
2139 
2140 	/*
2141 	 * queue's settings related to segment counting like q->bounce_pfn
2142 	 * may differ from that of other stacking queues.
2143 	 * Recalculate it to check the request correctly on this queue's
2144 	 * limitation.
2145 	 */
2146 	blk_recalc_rq_segments(rq);
2147 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2148 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2149 		return -EIO;
2150 	}
2151 
2152 	return 0;
2153 }
2154 
2155 /**
2156  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2157  * @q:  the queue to submit the request
2158  * @rq: the request being queued
2159  */
2160 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2161 {
2162 	unsigned long flags;
2163 	int where = ELEVATOR_INSERT_BACK;
2164 
2165 	if (blk_cloned_rq_check_limits(q, rq))
2166 		return -EIO;
2167 
2168 	if (rq->rq_disk &&
2169 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2170 		return -EIO;
2171 
2172 	if (q->mq_ops) {
2173 		if (blk_queue_io_stat(q))
2174 			blk_account_io_start(rq, true);
2175 		blk_mq_insert_request(rq, false, true, false);
2176 		return 0;
2177 	}
2178 
2179 	spin_lock_irqsave(q->queue_lock, flags);
2180 	if (unlikely(blk_queue_dying(q))) {
2181 		spin_unlock_irqrestore(q->queue_lock, flags);
2182 		return -ENODEV;
2183 	}
2184 
2185 	/*
2186 	 * Submitting request must be dequeued before calling this function
2187 	 * because it will be linked to another request_queue
2188 	 */
2189 	BUG_ON(blk_queued_rq(rq));
2190 
2191 	if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2192 		where = ELEVATOR_INSERT_FLUSH;
2193 
2194 	add_acct_request(q, rq, where);
2195 	if (where == ELEVATOR_INSERT_FLUSH)
2196 		__blk_run_queue(q);
2197 	spin_unlock_irqrestore(q->queue_lock, flags);
2198 
2199 	return 0;
2200 }
2201 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2202 
2203 /**
2204  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2205  * @rq: request to examine
2206  *
2207  * Description:
2208  *     A request could be merge of IOs which require different failure
2209  *     handling.  This function determines the number of bytes which
2210  *     can be failed from the beginning of the request without
2211  *     crossing into area which need to be retried further.
2212  *
2213  * Return:
2214  *     The number of bytes to fail.
2215  *
2216  * Context:
2217  *     queue_lock must be held.
2218  */
2219 unsigned int blk_rq_err_bytes(const struct request *rq)
2220 {
2221 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2222 	unsigned int bytes = 0;
2223 	struct bio *bio;
2224 
2225 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2226 		return blk_rq_bytes(rq);
2227 
2228 	/*
2229 	 * Currently the only 'mixing' which can happen is between
2230 	 * different fastfail types.  We can safely fail portions
2231 	 * which have all the failfast bits that the first one has -
2232 	 * the ones which are at least as eager to fail as the first
2233 	 * one.
2234 	 */
2235 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2236 		if ((bio->bi_opf & ff) != ff)
2237 			break;
2238 		bytes += bio->bi_iter.bi_size;
2239 	}
2240 
2241 	/* this could lead to infinite loop */
2242 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2243 	return bytes;
2244 }
2245 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2246 
2247 void blk_account_io_completion(struct request *req, unsigned int bytes)
2248 {
2249 	if (blk_do_io_stat(req)) {
2250 		const int rw = rq_data_dir(req);
2251 		struct hd_struct *part;
2252 		int cpu;
2253 
2254 		cpu = part_stat_lock();
2255 		part = req->part;
2256 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2257 		part_stat_unlock();
2258 	}
2259 }
2260 
2261 void blk_account_io_done(struct request *req)
2262 {
2263 	/*
2264 	 * Account IO completion.  flush_rq isn't accounted as a
2265 	 * normal IO on queueing nor completion.  Accounting the
2266 	 * containing request is enough.
2267 	 */
2268 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2269 		unsigned long duration = jiffies - req->start_time;
2270 		const int rw = rq_data_dir(req);
2271 		struct hd_struct *part;
2272 		int cpu;
2273 
2274 		cpu = part_stat_lock();
2275 		part = req->part;
2276 
2277 		part_stat_inc(cpu, part, ios[rw]);
2278 		part_stat_add(cpu, part, ticks[rw], duration);
2279 		part_round_stats(cpu, part);
2280 		part_dec_in_flight(part, rw);
2281 
2282 		hd_struct_put(part);
2283 		part_stat_unlock();
2284 	}
2285 }
2286 
2287 #ifdef CONFIG_PM
2288 /*
2289  * Don't process normal requests when queue is suspended
2290  * or in the process of suspending/resuming
2291  */
2292 static struct request *blk_pm_peek_request(struct request_queue *q,
2293 					   struct request *rq)
2294 {
2295 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2296 	    (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2297 		return NULL;
2298 	else
2299 		return rq;
2300 }
2301 #else
2302 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2303 						  struct request *rq)
2304 {
2305 	return rq;
2306 }
2307 #endif
2308 
2309 void blk_account_io_start(struct request *rq, bool new_io)
2310 {
2311 	struct hd_struct *part;
2312 	int rw = rq_data_dir(rq);
2313 	int cpu;
2314 
2315 	if (!blk_do_io_stat(rq))
2316 		return;
2317 
2318 	cpu = part_stat_lock();
2319 
2320 	if (!new_io) {
2321 		part = rq->part;
2322 		part_stat_inc(cpu, part, merges[rw]);
2323 	} else {
2324 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2325 		if (!hd_struct_try_get(part)) {
2326 			/*
2327 			 * The partition is already being removed,
2328 			 * the request will be accounted on the disk only
2329 			 *
2330 			 * We take a reference on disk->part0 although that
2331 			 * partition will never be deleted, so we can treat
2332 			 * it as any other partition.
2333 			 */
2334 			part = &rq->rq_disk->part0;
2335 			hd_struct_get(part);
2336 		}
2337 		part_round_stats(cpu, part);
2338 		part_inc_in_flight(part, rw);
2339 		rq->part = part;
2340 	}
2341 
2342 	part_stat_unlock();
2343 }
2344 
2345 /**
2346  * blk_peek_request - peek at the top of a request queue
2347  * @q: request queue to peek at
2348  *
2349  * Description:
2350  *     Return the request at the top of @q.  The returned request
2351  *     should be started using blk_start_request() before LLD starts
2352  *     processing it.
2353  *
2354  * Return:
2355  *     Pointer to the request at the top of @q if available.  Null
2356  *     otherwise.
2357  *
2358  * Context:
2359  *     queue_lock must be held.
2360  */
2361 struct request *blk_peek_request(struct request_queue *q)
2362 {
2363 	struct request *rq;
2364 	int ret;
2365 
2366 	while ((rq = __elv_next_request(q)) != NULL) {
2367 
2368 		rq = blk_pm_peek_request(q, rq);
2369 		if (!rq)
2370 			break;
2371 
2372 		if (!(rq->rq_flags & RQF_STARTED)) {
2373 			/*
2374 			 * This is the first time the device driver
2375 			 * sees this request (possibly after
2376 			 * requeueing).  Notify IO scheduler.
2377 			 */
2378 			if (rq->rq_flags & RQF_SORTED)
2379 				elv_activate_rq(q, rq);
2380 
2381 			/*
2382 			 * just mark as started even if we don't start
2383 			 * it, a request that has been delayed should
2384 			 * not be passed by new incoming requests
2385 			 */
2386 			rq->rq_flags |= RQF_STARTED;
2387 			trace_block_rq_issue(q, rq);
2388 		}
2389 
2390 		if (!q->boundary_rq || q->boundary_rq == rq) {
2391 			q->end_sector = rq_end_sector(rq);
2392 			q->boundary_rq = NULL;
2393 		}
2394 
2395 		if (rq->rq_flags & RQF_DONTPREP)
2396 			break;
2397 
2398 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2399 			/*
2400 			 * make sure space for the drain appears we
2401 			 * know we can do this because max_hw_segments
2402 			 * has been adjusted to be one fewer than the
2403 			 * device can handle
2404 			 */
2405 			rq->nr_phys_segments++;
2406 		}
2407 
2408 		if (!q->prep_rq_fn)
2409 			break;
2410 
2411 		ret = q->prep_rq_fn(q, rq);
2412 		if (ret == BLKPREP_OK) {
2413 			break;
2414 		} else if (ret == BLKPREP_DEFER) {
2415 			/*
2416 			 * the request may have been (partially) prepped.
2417 			 * we need to keep this request in the front to
2418 			 * avoid resource deadlock.  RQF_STARTED will
2419 			 * prevent other fs requests from passing this one.
2420 			 */
2421 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2422 			    !(rq->rq_flags & RQF_DONTPREP)) {
2423 				/*
2424 				 * remove the space for the drain we added
2425 				 * so that we don't add it again
2426 				 */
2427 				--rq->nr_phys_segments;
2428 			}
2429 
2430 			rq = NULL;
2431 			break;
2432 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2433 			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2434 
2435 			rq->rq_flags |= RQF_QUIET;
2436 			/*
2437 			 * Mark this request as started so we don't trigger
2438 			 * any debug logic in the end I/O path.
2439 			 */
2440 			blk_start_request(rq);
2441 			__blk_end_request_all(rq, err);
2442 		} else {
2443 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2444 			break;
2445 		}
2446 	}
2447 
2448 	return rq;
2449 }
2450 EXPORT_SYMBOL(blk_peek_request);
2451 
2452 void blk_dequeue_request(struct request *rq)
2453 {
2454 	struct request_queue *q = rq->q;
2455 
2456 	BUG_ON(list_empty(&rq->queuelist));
2457 	BUG_ON(ELV_ON_HASH(rq));
2458 
2459 	list_del_init(&rq->queuelist);
2460 
2461 	/*
2462 	 * the time frame between a request being removed from the lists
2463 	 * and to it is freed is accounted as io that is in progress at
2464 	 * the driver side.
2465 	 */
2466 	if (blk_account_rq(rq)) {
2467 		q->in_flight[rq_is_sync(rq)]++;
2468 		set_io_start_time_ns(rq);
2469 	}
2470 }
2471 
2472 /**
2473  * blk_start_request - start request processing on the driver
2474  * @req: request to dequeue
2475  *
2476  * Description:
2477  *     Dequeue @req and start timeout timer on it.  This hands off the
2478  *     request to the driver.
2479  *
2480  *     Block internal functions which don't want to start timer should
2481  *     call blk_dequeue_request().
2482  *
2483  * Context:
2484  *     queue_lock must be held.
2485  */
2486 void blk_start_request(struct request *req)
2487 {
2488 	blk_dequeue_request(req);
2489 
2490 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2491 		blk_stat_set_issue_time(&req->issue_stat);
2492 		req->rq_flags |= RQF_STATS;
2493 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2494 	}
2495 
2496 	/*
2497 	 * We are now handing the request to the hardware, initialize
2498 	 * resid_len to full count and add the timeout handler.
2499 	 */
2500 	req->resid_len = blk_rq_bytes(req);
2501 	if (unlikely(blk_bidi_rq(req)))
2502 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2503 
2504 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2505 	blk_add_timer(req);
2506 }
2507 EXPORT_SYMBOL(blk_start_request);
2508 
2509 /**
2510  * blk_fetch_request - fetch a request from a request queue
2511  * @q: request queue to fetch a request from
2512  *
2513  * Description:
2514  *     Return the request at the top of @q.  The request is started on
2515  *     return and LLD can start processing it immediately.
2516  *
2517  * Return:
2518  *     Pointer to the request at the top of @q if available.  Null
2519  *     otherwise.
2520  *
2521  * Context:
2522  *     queue_lock must be held.
2523  */
2524 struct request *blk_fetch_request(struct request_queue *q)
2525 {
2526 	struct request *rq;
2527 
2528 	rq = blk_peek_request(q);
2529 	if (rq)
2530 		blk_start_request(rq);
2531 	return rq;
2532 }
2533 EXPORT_SYMBOL(blk_fetch_request);
2534 
2535 /**
2536  * blk_update_request - Special helper function for request stacking drivers
2537  * @req:      the request being processed
2538  * @error:    %0 for success, < %0 for error
2539  * @nr_bytes: number of bytes to complete @req
2540  *
2541  * Description:
2542  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2543  *     the request structure even if @req doesn't have leftover.
2544  *     If @req has leftover, sets it up for the next range of segments.
2545  *
2546  *     This special helper function is only for request stacking drivers
2547  *     (e.g. request-based dm) so that they can handle partial completion.
2548  *     Actual device drivers should use blk_end_request instead.
2549  *
2550  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2551  *     %false return from this function.
2552  *
2553  * Return:
2554  *     %false - this request doesn't have any more data
2555  *     %true  - this request has more data
2556  **/
2557 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2558 {
2559 	int total_bytes;
2560 
2561 	trace_block_rq_complete(req->q, req, nr_bytes);
2562 
2563 	if (!req->bio)
2564 		return false;
2565 
2566 	/*
2567 	 * For fs requests, rq is just carrier of independent bio's
2568 	 * and each partial completion should be handled separately.
2569 	 * Reset per-request error on each partial completion.
2570 	 *
2571 	 * TODO: tj: This is too subtle.  It would be better to let
2572 	 * low level drivers do what they see fit.
2573 	 */
2574 	if (req->cmd_type == REQ_TYPE_FS)
2575 		req->errors = 0;
2576 
2577 	if (error && req->cmd_type == REQ_TYPE_FS &&
2578 	    !(req->rq_flags & RQF_QUIET)) {
2579 		char *error_type;
2580 
2581 		switch (error) {
2582 		case -ENOLINK:
2583 			error_type = "recoverable transport";
2584 			break;
2585 		case -EREMOTEIO:
2586 			error_type = "critical target";
2587 			break;
2588 		case -EBADE:
2589 			error_type = "critical nexus";
2590 			break;
2591 		case -ETIMEDOUT:
2592 			error_type = "timeout";
2593 			break;
2594 		case -ENOSPC:
2595 			error_type = "critical space allocation";
2596 			break;
2597 		case -ENODATA:
2598 			error_type = "critical medium";
2599 			break;
2600 		case -EIO:
2601 		default:
2602 			error_type = "I/O";
2603 			break;
2604 		}
2605 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2606 				   __func__, error_type, req->rq_disk ?
2607 				   req->rq_disk->disk_name : "?",
2608 				   (unsigned long long)blk_rq_pos(req));
2609 
2610 	}
2611 
2612 	blk_account_io_completion(req, nr_bytes);
2613 
2614 	total_bytes = 0;
2615 	while (req->bio) {
2616 		struct bio *bio = req->bio;
2617 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2618 
2619 		if (bio_bytes == bio->bi_iter.bi_size)
2620 			req->bio = bio->bi_next;
2621 
2622 		req_bio_endio(req, bio, bio_bytes, error);
2623 
2624 		total_bytes += bio_bytes;
2625 		nr_bytes -= bio_bytes;
2626 
2627 		if (!nr_bytes)
2628 			break;
2629 	}
2630 
2631 	/*
2632 	 * completely done
2633 	 */
2634 	if (!req->bio) {
2635 		/*
2636 		 * Reset counters so that the request stacking driver
2637 		 * can find how many bytes remain in the request
2638 		 * later.
2639 		 */
2640 		req->__data_len = 0;
2641 		return false;
2642 	}
2643 
2644 	req->__data_len -= total_bytes;
2645 
2646 	/* update sector only for requests with clear definition of sector */
2647 	if (req->cmd_type == REQ_TYPE_FS)
2648 		req->__sector += total_bytes >> 9;
2649 
2650 	/* mixed attributes always follow the first bio */
2651 	if (req->rq_flags & RQF_MIXED_MERGE) {
2652 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2653 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2654 	}
2655 
2656 	/*
2657 	 * If total number of sectors is less than the first segment
2658 	 * size, something has gone terribly wrong.
2659 	 */
2660 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2661 		blk_dump_rq_flags(req, "request botched");
2662 		req->__data_len = blk_rq_cur_bytes(req);
2663 	}
2664 
2665 	/* recalculate the number of segments */
2666 	blk_recalc_rq_segments(req);
2667 
2668 	return true;
2669 }
2670 EXPORT_SYMBOL_GPL(blk_update_request);
2671 
2672 static bool blk_update_bidi_request(struct request *rq, int error,
2673 				    unsigned int nr_bytes,
2674 				    unsigned int bidi_bytes)
2675 {
2676 	if (blk_update_request(rq, error, nr_bytes))
2677 		return true;
2678 
2679 	/* Bidi request must be completed as a whole */
2680 	if (unlikely(blk_bidi_rq(rq)) &&
2681 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2682 		return true;
2683 
2684 	if (blk_queue_add_random(rq->q))
2685 		add_disk_randomness(rq->rq_disk);
2686 
2687 	return false;
2688 }
2689 
2690 /**
2691  * blk_unprep_request - unprepare a request
2692  * @req:	the request
2693  *
2694  * This function makes a request ready for complete resubmission (or
2695  * completion).  It happens only after all error handling is complete,
2696  * so represents the appropriate moment to deallocate any resources
2697  * that were allocated to the request in the prep_rq_fn.  The queue
2698  * lock is held when calling this.
2699  */
2700 void blk_unprep_request(struct request *req)
2701 {
2702 	struct request_queue *q = req->q;
2703 
2704 	req->rq_flags &= ~RQF_DONTPREP;
2705 	if (q->unprep_rq_fn)
2706 		q->unprep_rq_fn(q, req);
2707 }
2708 EXPORT_SYMBOL_GPL(blk_unprep_request);
2709 
2710 /*
2711  * queue lock must be held
2712  */
2713 void blk_finish_request(struct request *req, int error)
2714 {
2715 	struct request_queue *q = req->q;
2716 
2717 	if (req->rq_flags & RQF_STATS)
2718 		blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2719 
2720 	if (req->rq_flags & RQF_QUEUED)
2721 		blk_queue_end_tag(q, req);
2722 
2723 	BUG_ON(blk_queued_rq(req));
2724 
2725 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2726 		laptop_io_completion(&req->q->backing_dev_info);
2727 
2728 	blk_delete_timer(req);
2729 
2730 	if (req->rq_flags & RQF_DONTPREP)
2731 		blk_unprep_request(req);
2732 
2733 	blk_account_io_done(req);
2734 
2735 	if (req->end_io) {
2736 		wbt_done(req->q->rq_wb, &req->issue_stat);
2737 		req->end_io(req, error);
2738 	} else {
2739 		if (blk_bidi_rq(req))
2740 			__blk_put_request(req->next_rq->q, req->next_rq);
2741 
2742 		__blk_put_request(q, req);
2743 	}
2744 }
2745 EXPORT_SYMBOL(blk_finish_request);
2746 
2747 /**
2748  * blk_end_bidi_request - Complete a bidi request
2749  * @rq:         the request to complete
2750  * @error:      %0 for success, < %0 for error
2751  * @nr_bytes:   number of bytes to complete @rq
2752  * @bidi_bytes: number of bytes to complete @rq->next_rq
2753  *
2754  * Description:
2755  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2756  *     Drivers that supports bidi can safely call this member for any
2757  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2758  *     just ignored.
2759  *
2760  * Return:
2761  *     %false - we are done with this request
2762  *     %true  - still buffers pending for this request
2763  **/
2764 static bool blk_end_bidi_request(struct request *rq, int error,
2765 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2766 {
2767 	struct request_queue *q = rq->q;
2768 	unsigned long flags;
2769 
2770 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2771 		return true;
2772 
2773 	spin_lock_irqsave(q->queue_lock, flags);
2774 	blk_finish_request(rq, error);
2775 	spin_unlock_irqrestore(q->queue_lock, flags);
2776 
2777 	return false;
2778 }
2779 
2780 /**
2781  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2782  * @rq:         the request to complete
2783  * @error:      %0 for success, < %0 for error
2784  * @nr_bytes:   number of bytes to complete @rq
2785  * @bidi_bytes: number of bytes to complete @rq->next_rq
2786  *
2787  * Description:
2788  *     Identical to blk_end_bidi_request() except that queue lock is
2789  *     assumed to be locked on entry and remains so on return.
2790  *
2791  * Return:
2792  *     %false - we are done with this request
2793  *     %true  - still buffers pending for this request
2794  **/
2795 bool __blk_end_bidi_request(struct request *rq, int error,
2796 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2797 {
2798 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2799 		return true;
2800 
2801 	blk_finish_request(rq, error);
2802 
2803 	return false;
2804 }
2805 
2806 /**
2807  * blk_end_request - Helper function for drivers to complete the request.
2808  * @rq:       the request being processed
2809  * @error:    %0 for success, < %0 for error
2810  * @nr_bytes: number of bytes to complete
2811  *
2812  * Description:
2813  *     Ends I/O on a number of bytes attached to @rq.
2814  *     If @rq has leftover, sets it up for the next range of segments.
2815  *
2816  * Return:
2817  *     %false - we are done with this request
2818  *     %true  - still buffers pending for this request
2819  **/
2820 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2821 {
2822 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2823 }
2824 EXPORT_SYMBOL(blk_end_request);
2825 
2826 /**
2827  * blk_end_request_all - Helper function for drives to finish the request.
2828  * @rq: the request to finish
2829  * @error: %0 for success, < %0 for error
2830  *
2831  * Description:
2832  *     Completely finish @rq.
2833  */
2834 void blk_end_request_all(struct request *rq, int error)
2835 {
2836 	bool pending;
2837 	unsigned int bidi_bytes = 0;
2838 
2839 	if (unlikely(blk_bidi_rq(rq)))
2840 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2841 
2842 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2843 	BUG_ON(pending);
2844 }
2845 EXPORT_SYMBOL(blk_end_request_all);
2846 
2847 /**
2848  * blk_end_request_cur - Helper function to finish the current request chunk.
2849  * @rq: the request to finish the current chunk for
2850  * @error: %0 for success, < %0 for error
2851  *
2852  * Description:
2853  *     Complete the current consecutively mapped chunk from @rq.
2854  *
2855  * Return:
2856  *     %false - we are done with this request
2857  *     %true  - still buffers pending for this request
2858  */
2859 bool blk_end_request_cur(struct request *rq, int error)
2860 {
2861 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2862 }
2863 EXPORT_SYMBOL(blk_end_request_cur);
2864 
2865 /**
2866  * blk_end_request_err - Finish a request till the next failure boundary.
2867  * @rq: the request to finish till the next failure boundary for
2868  * @error: must be negative errno
2869  *
2870  * Description:
2871  *     Complete @rq till the next failure boundary.
2872  *
2873  * Return:
2874  *     %false - we are done with this request
2875  *     %true  - still buffers pending for this request
2876  */
2877 bool blk_end_request_err(struct request *rq, int error)
2878 {
2879 	WARN_ON(error >= 0);
2880 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2881 }
2882 EXPORT_SYMBOL_GPL(blk_end_request_err);
2883 
2884 /**
2885  * __blk_end_request - Helper function for drivers to complete the request.
2886  * @rq:       the request being processed
2887  * @error:    %0 for success, < %0 for error
2888  * @nr_bytes: number of bytes to complete
2889  *
2890  * Description:
2891  *     Must be called with queue lock held unlike blk_end_request().
2892  *
2893  * Return:
2894  *     %false - we are done with this request
2895  *     %true  - still buffers pending for this request
2896  **/
2897 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2898 {
2899 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2900 }
2901 EXPORT_SYMBOL(__blk_end_request);
2902 
2903 /**
2904  * __blk_end_request_all - Helper function for drives to finish the request.
2905  * @rq: the request to finish
2906  * @error: %0 for success, < %0 for error
2907  *
2908  * Description:
2909  *     Completely finish @rq.  Must be called with queue lock held.
2910  */
2911 void __blk_end_request_all(struct request *rq, int error)
2912 {
2913 	bool pending;
2914 	unsigned int bidi_bytes = 0;
2915 
2916 	if (unlikely(blk_bidi_rq(rq)))
2917 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2918 
2919 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2920 	BUG_ON(pending);
2921 }
2922 EXPORT_SYMBOL(__blk_end_request_all);
2923 
2924 /**
2925  * __blk_end_request_cur - Helper function to finish the current request chunk.
2926  * @rq: the request to finish the current chunk for
2927  * @error: %0 for success, < %0 for error
2928  *
2929  * Description:
2930  *     Complete the current consecutively mapped chunk from @rq.  Must
2931  *     be called with queue lock held.
2932  *
2933  * Return:
2934  *     %false - we are done with this request
2935  *     %true  - still buffers pending for this request
2936  */
2937 bool __blk_end_request_cur(struct request *rq, int error)
2938 {
2939 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2940 }
2941 EXPORT_SYMBOL(__blk_end_request_cur);
2942 
2943 /**
2944  * __blk_end_request_err - Finish a request till the next failure boundary.
2945  * @rq: the request to finish till the next failure boundary for
2946  * @error: must be negative errno
2947  *
2948  * Description:
2949  *     Complete @rq till the next failure boundary.  Must be called
2950  *     with queue lock held.
2951  *
2952  * Return:
2953  *     %false - we are done with this request
2954  *     %true  - still buffers pending for this request
2955  */
2956 bool __blk_end_request_err(struct request *rq, int error)
2957 {
2958 	WARN_ON(error >= 0);
2959 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2960 }
2961 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2962 
2963 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2964 		     struct bio *bio)
2965 {
2966 	if (bio_has_data(bio))
2967 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2968 
2969 	rq->__data_len = bio->bi_iter.bi_size;
2970 	rq->bio = rq->biotail = bio;
2971 
2972 	if (bio->bi_bdev)
2973 		rq->rq_disk = bio->bi_bdev->bd_disk;
2974 }
2975 
2976 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2977 /**
2978  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2979  * @rq: the request to be flushed
2980  *
2981  * Description:
2982  *     Flush all pages in @rq.
2983  */
2984 void rq_flush_dcache_pages(struct request *rq)
2985 {
2986 	struct req_iterator iter;
2987 	struct bio_vec bvec;
2988 
2989 	rq_for_each_segment(bvec, rq, iter)
2990 		flush_dcache_page(bvec.bv_page);
2991 }
2992 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2993 #endif
2994 
2995 /**
2996  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2997  * @q : the queue of the device being checked
2998  *
2999  * Description:
3000  *    Check if underlying low-level drivers of a device are busy.
3001  *    If the drivers want to export their busy state, they must set own
3002  *    exporting function using blk_queue_lld_busy() first.
3003  *
3004  *    Basically, this function is used only by request stacking drivers
3005  *    to stop dispatching requests to underlying devices when underlying
3006  *    devices are busy.  This behavior helps more I/O merging on the queue
3007  *    of the request stacking driver and prevents I/O throughput regression
3008  *    on burst I/O load.
3009  *
3010  * Return:
3011  *    0 - Not busy (The request stacking driver should dispatch request)
3012  *    1 - Busy (The request stacking driver should stop dispatching request)
3013  */
3014 int blk_lld_busy(struct request_queue *q)
3015 {
3016 	if (q->lld_busy_fn)
3017 		return q->lld_busy_fn(q);
3018 
3019 	return 0;
3020 }
3021 EXPORT_SYMBOL_GPL(blk_lld_busy);
3022 
3023 /**
3024  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3025  * @rq: the clone request to be cleaned up
3026  *
3027  * Description:
3028  *     Free all bios in @rq for a cloned request.
3029  */
3030 void blk_rq_unprep_clone(struct request *rq)
3031 {
3032 	struct bio *bio;
3033 
3034 	while ((bio = rq->bio) != NULL) {
3035 		rq->bio = bio->bi_next;
3036 
3037 		bio_put(bio);
3038 	}
3039 }
3040 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3041 
3042 /*
3043  * Copy attributes of the original request to the clone request.
3044  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3045  */
3046 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3047 {
3048 	dst->cpu = src->cpu;
3049 	dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
3050 	dst->cmd_type = src->cmd_type;
3051 	dst->__sector = blk_rq_pos(src);
3052 	dst->__data_len = blk_rq_bytes(src);
3053 	dst->nr_phys_segments = src->nr_phys_segments;
3054 	dst->ioprio = src->ioprio;
3055 	dst->extra_len = src->extra_len;
3056 }
3057 
3058 /**
3059  * blk_rq_prep_clone - Helper function to setup clone request
3060  * @rq: the request to be setup
3061  * @rq_src: original request to be cloned
3062  * @bs: bio_set that bios for clone are allocated from
3063  * @gfp_mask: memory allocation mask for bio
3064  * @bio_ctr: setup function to be called for each clone bio.
3065  *           Returns %0 for success, non %0 for failure.
3066  * @data: private data to be passed to @bio_ctr
3067  *
3068  * Description:
3069  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3070  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3071  *     are not copied, and copying such parts is the caller's responsibility.
3072  *     Also, pages which the original bios are pointing to are not copied
3073  *     and the cloned bios just point same pages.
3074  *     So cloned bios must be completed before original bios, which means
3075  *     the caller must complete @rq before @rq_src.
3076  */
3077 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3078 		      struct bio_set *bs, gfp_t gfp_mask,
3079 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3080 		      void *data)
3081 {
3082 	struct bio *bio, *bio_src;
3083 
3084 	if (!bs)
3085 		bs = fs_bio_set;
3086 
3087 	__rq_for_each_bio(bio_src, rq_src) {
3088 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3089 		if (!bio)
3090 			goto free_and_out;
3091 
3092 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3093 			goto free_and_out;
3094 
3095 		if (rq->bio) {
3096 			rq->biotail->bi_next = bio;
3097 			rq->biotail = bio;
3098 		} else
3099 			rq->bio = rq->biotail = bio;
3100 	}
3101 
3102 	__blk_rq_prep_clone(rq, rq_src);
3103 
3104 	return 0;
3105 
3106 free_and_out:
3107 	if (bio)
3108 		bio_put(bio);
3109 	blk_rq_unprep_clone(rq);
3110 
3111 	return -ENOMEM;
3112 }
3113 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3114 
3115 int kblockd_schedule_work(struct work_struct *work)
3116 {
3117 	return queue_work(kblockd_workqueue, work);
3118 }
3119 EXPORT_SYMBOL(kblockd_schedule_work);
3120 
3121 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3122 {
3123 	return queue_work_on(cpu, kblockd_workqueue, work);
3124 }
3125 EXPORT_SYMBOL(kblockd_schedule_work_on);
3126 
3127 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3128 				  unsigned long delay)
3129 {
3130 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3131 }
3132 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3133 
3134 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3135 				     unsigned long delay)
3136 {
3137 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3138 }
3139 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3140 
3141 /**
3142  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3143  * @plug:	The &struct blk_plug that needs to be initialized
3144  *
3145  * Description:
3146  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3147  *   pending I/O should the task end up blocking between blk_start_plug() and
3148  *   blk_finish_plug(). This is important from a performance perspective, but
3149  *   also ensures that we don't deadlock. For instance, if the task is blocking
3150  *   for a memory allocation, memory reclaim could end up wanting to free a
3151  *   page belonging to that request that is currently residing in our private
3152  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3153  *   this kind of deadlock.
3154  */
3155 void blk_start_plug(struct blk_plug *plug)
3156 {
3157 	struct task_struct *tsk = current;
3158 
3159 	/*
3160 	 * If this is a nested plug, don't actually assign it.
3161 	 */
3162 	if (tsk->plug)
3163 		return;
3164 
3165 	INIT_LIST_HEAD(&plug->list);
3166 	INIT_LIST_HEAD(&plug->mq_list);
3167 	INIT_LIST_HEAD(&plug->cb_list);
3168 	/*
3169 	 * Store ordering should not be needed here, since a potential
3170 	 * preempt will imply a full memory barrier
3171 	 */
3172 	tsk->plug = plug;
3173 }
3174 EXPORT_SYMBOL(blk_start_plug);
3175 
3176 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3177 {
3178 	struct request *rqa = container_of(a, struct request, queuelist);
3179 	struct request *rqb = container_of(b, struct request, queuelist);
3180 
3181 	return !(rqa->q < rqb->q ||
3182 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3183 }
3184 
3185 /*
3186  * If 'from_schedule' is true, then postpone the dispatch of requests
3187  * until a safe kblockd context. We due this to avoid accidental big
3188  * additional stack usage in driver dispatch, in places where the originally
3189  * plugger did not intend it.
3190  */
3191 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3192 			    bool from_schedule)
3193 	__releases(q->queue_lock)
3194 {
3195 	trace_block_unplug(q, depth, !from_schedule);
3196 
3197 	if (from_schedule)
3198 		blk_run_queue_async(q);
3199 	else
3200 		__blk_run_queue(q);
3201 	spin_unlock(q->queue_lock);
3202 }
3203 
3204 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3205 {
3206 	LIST_HEAD(callbacks);
3207 
3208 	while (!list_empty(&plug->cb_list)) {
3209 		list_splice_init(&plug->cb_list, &callbacks);
3210 
3211 		while (!list_empty(&callbacks)) {
3212 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3213 							  struct blk_plug_cb,
3214 							  list);
3215 			list_del(&cb->list);
3216 			cb->callback(cb, from_schedule);
3217 		}
3218 	}
3219 }
3220 
3221 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3222 				      int size)
3223 {
3224 	struct blk_plug *plug = current->plug;
3225 	struct blk_plug_cb *cb;
3226 
3227 	if (!plug)
3228 		return NULL;
3229 
3230 	list_for_each_entry(cb, &plug->cb_list, list)
3231 		if (cb->callback == unplug && cb->data == data)
3232 			return cb;
3233 
3234 	/* Not currently on the callback list */
3235 	BUG_ON(size < sizeof(*cb));
3236 	cb = kzalloc(size, GFP_ATOMIC);
3237 	if (cb) {
3238 		cb->data = data;
3239 		cb->callback = unplug;
3240 		list_add(&cb->list, &plug->cb_list);
3241 	}
3242 	return cb;
3243 }
3244 EXPORT_SYMBOL(blk_check_plugged);
3245 
3246 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3247 {
3248 	struct request_queue *q;
3249 	unsigned long flags;
3250 	struct request *rq;
3251 	LIST_HEAD(list);
3252 	unsigned int depth;
3253 
3254 	flush_plug_callbacks(plug, from_schedule);
3255 
3256 	if (!list_empty(&plug->mq_list))
3257 		blk_mq_flush_plug_list(plug, from_schedule);
3258 
3259 	if (list_empty(&plug->list))
3260 		return;
3261 
3262 	list_splice_init(&plug->list, &list);
3263 
3264 	list_sort(NULL, &list, plug_rq_cmp);
3265 
3266 	q = NULL;
3267 	depth = 0;
3268 
3269 	/*
3270 	 * Save and disable interrupts here, to avoid doing it for every
3271 	 * queue lock we have to take.
3272 	 */
3273 	local_irq_save(flags);
3274 	while (!list_empty(&list)) {
3275 		rq = list_entry_rq(list.next);
3276 		list_del_init(&rq->queuelist);
3277 		BUG_ON(!rq->q);
3278 		if (rq->q != q) {
3279 			/*
3280 			 * This drops the queue lock
3281 			 */
3282 			if (q)
3283 				queue_unplugged(q, depth, from_schedule);
3284 			q = rq->q;
3285 			depth = 0;
3286 			spin_lock(q->queue_lock);
3287 		}
3288 
3289 		/*
3290 		 * Short-circuit if @q is dead
3291 		 */
3292 		if (unlikely(blk_queue_dying(q))) {
3293 			__blk_end_request_all(rq, -ENODEV);
3294 			continue;
3295 		}
3296 
3297 		/*
3298 		 * rq is already accounted, so use raw insert
3299 		 */
3300 		if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3301 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3302 		else
3303 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3304 
3305 		depth++;
3306 	}
3307 
3308 	/*
3309 	 * This drops the queue lock
3310 	 */
3311 	if (q)
3312 		queue_unplugged(q, depth, from_schedule);
3313 
3314 	local_irq_restore(flags);
3315 }
3316 
3317 void blk_finish_plug(struct blk_plug *plug)
3318 {
3319 	if (plug != current->plug)
3320 		return;
3321 	blk_flush_plug_list(plug, false);
3322 
3323 	current->plug = NULL;
3324 }
3325 EXPORT_SYMBOL(blk_finish_plug);
3326 
3327 #ifdef CONFIG_PM
3328 /**
3329  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3330  * @q: the queue of the device
3331  * @dev: the device the queue belongs to
3332  *
3333  * Description:
3334  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3335  *    @dev. Drivers that want to take advantage of request-based runtime PM
3336  *    should call this function after @dev has been initialized, and its
3337  *    request queue @q has been allocated, and runtime PM for it can not happen
3338  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3339  *    cases, driver should call this function before any I/O has taken place.
3340  *
3341  *    This function takes care of setting up using auto suspend for the device,
3342  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3343  *    until an updated value is either set by user or by driver. Drivers do
3344  *    not need to touch other autosuspend settings.
3345  *
3346  *    The block layer runtime PM is request based, so only works for drivers
3347  *    that use request as their IO unit instead of those directly use bio's.
3348  */
3349 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3350 {
3351 	q->dev = dev;
3352 	q->rpm_status = RPM_ACTIVE;
3353 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3354 	pm_runtime_use_autosuspend(q->dev);
3355 }
3356 EXPORT_SYMBOL(blk_pm_runtime_init);
3357 
3358 /**
3359  * blk_pre_runtime_suspend - Pre runtime suspend check
3360  * @q: the queue of the device
3361  *
3362  * Description:
3363  *    This function will check if runtime suspend is allowed for the device
3364  *    by examining if there are any requests pending in the queue. If there
3365  *    are requests pending, the device can not be runtime suspended; otherwise,
3366  *    the queue's status will be updated to SUSPENDING and the driver can
3367  *    proceed to suspend the device.
3368  *
3369  *    For the not allowed case, we mark last busy for the device so that
3370  *    runtime PM core will try to autosuspend it some time later.
3371  *
3372  *    This function should be called near the start of the device's
3373  *    runtime_suspend callback.
3374  *
3375  * Return:
3376  *    0		- OK to runtime suspend the device
3377  *    -EBUSY	- Device should not be runtime suspended
3378  */
3379 int blk_pre_runtime_suspend(struct request_queue *q)
3380 {
3381 	int ret = 0;
3382 
3383 	if (!q->dev)
3384 		return ret;
3385 
3386 	spin_lock_irq(q->queue_lock);
3387 	if (q->nr_pending) {
3388 		ret = -EBUSY;
3389 		pm_runtime_mark_last_busy(q->dev);
3390 	} else {
3391 		q->rpm_status = RPM_SUSPENDING;
3392 	}
3393 	spin_unlock_irq(q->queue_lock);
3394 	return ret;
3395 }
3396 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3397 
3398 /**
3399  * blk_post_runtime_suspend - Post runtime suspend processing
3400  * @q: the queue of the device
3401  * @err: return value of the device's runtime_suspend function
3402  *
3403  * Description:
3404  *    Update the queue's runtime status according to the return value of the
3405  *    device's runtime suspend function and mark last busy for the device so
3406  *    that PM core will try to auto suspend the device at a later time.
3407  *
3408  *    This function should be called near the end of the device's
3409  *    runtime_suspend callback.
3410  */
3411 void blk_post_runtime_suspend(struct request_queue *q, int err)
3412 {
3413 	if (!q->dev)
3414 		return;
3415 
3416 	spin_lock_irq(q->queue_lock);
3417 	if (!err) {
3418 		q->rpm_status = RPM_SUSPENDED;
3419 	} else {
3420 		q->rpm_status = RPM_ACTIVE;
3421 		pm_runtime_mark_last_busy(q->dev);
3422 	}
3423 	spin_unlock_irq(q->queue_lock);
3424 }
3425 EXPORT_SYMBOL(blk_post_runtime_suspend);
3426 
3427 /**
3428  * blk_pre_runtime_resume - Pre runtime resume processing
3429  * @q: the queue of the device
3430  *
3431  * Description:
3432  *    Update the queue's runtime status to RESUMING in preparation for the
3433  *    runtime resume of the device.
3434  *
3435  *    This function should be called near the start of the device's
3436  *    runtime_resume callback.
3437  */
3438 void blk_pre_runtime_resume(struct request_queue *q)
3439 {
3440 	if (!q->dev)
3441 		return;
3442 
3443 	spin_lock_irq(q->queue_lock);
3444 	q->rpm_status = RPM_RESUMING;
3445 	spin_unlock_irq(q->queue_lock);
3446 }
3447 EXPORT_SYMBOL(blk_pre_runtime_resume);
3448 
3449 /**
3450  * blk_post_runtime_resume - Post runtime resume processing
3451  * @q: the queue of the device
3452  * @err: return value of the device's runtime_resume function
3453  *
3454  * Description:
3455  *    Update the queue's runtime status according to the return value of the
3456  *    device's runtime_resume function. If it is successfully resumed, process
3457  *    the requests that are queued into the device's queue when it is resuming
3458  *    and then mark last busy and initiate autosuspend for it.
3459  *
3460  *    This function should be called near the end of the device's
3461  *    runtime_resume callback.
3462  */
3463 void blk_post_runtime_resume(struct request_queue *q, int err)
3464 {
3465 	if (!q->dev)
3466 		return;
3467 
3468 	spin_lock_irq(q->queue_lock);
3469 	if (!err) {
3470 		q->rpm_status = RPM_ACTIVE;
3471 		__blk_run_queue(q);
3472 		pm_runtime_mark_last_busy(q->dev);
3473 		pm_request_autosuspend(q->dev);
3474 	} else {
3475 		q->rpm_status = RPM_SUSPENDED;
3476 	}
3477 	spin_unlock_irq(q->queue_lock);
3478 }
3479 EXPORT_SYMBOL(blk_post_runtime_resume);
3480 
3481 /**
3482  * blk_set_runtime_active - Force runtime status of the queue to be active
3483  * @q: the queue of the device
3484  *
3485  * If the device is left runtime suspended during system suspend the resume
3486  * hook typically resumes the device and corrects runtime status
3487  * accordingly. However, that does not affect the queue runtime PM status
3488  * which is still "suspended". This prevents processing requests from the
3489  * queue.
3490  *
3491  * This function can be used in driver's resume hook to correct queue
3492  * runtime PM status and re-enable peeking requests from the queue. It
3493  * should be called before first request is added to the queue.
3494  */
3495 void blk_set_runtime_active(struct request_queue *q)
3496 {
3497 	spin_lock_irq(q->queue_lock);
3498 	q->rpm_status = RPM_ACTIVE;
3499 	pm_runtime_mark_last_busy(q->dev);
3500 	pm_request_autosuspend(q->dev);
3501 	spin_unlock_irq(q->queue_lock);
3502 }
3503 EXPORT_SYMBOL(blk_set_runtime_active);
3504 #endif
3505 
3506 int __init blk_dev_init(void)
3507 {
3508 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3509 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3510 			FIELD_SIZEOF(struct request, cmd_flags));
3511 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3512 			FIELD_SIZEOF(struct bio, bi_opf));
3513 
3514 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3515 	kblockd_workqueue = alloc_workqueue("kblockd",
3516 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3517 	if (!kblockd_workqueue)
3518 		panic("Failed to create kblockd\n");
3519 
3520 	request_cachep = kmem_cache_create("blkdev_requests",
3521 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3522 
3523 	blk_requestq_cachep = kmem_cache_create("request_queue",
3524 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3525 
3526 	return 0;
3527 }
3528