1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 #include "blk-mq.h" 43 #include "blk-mq-sched.h" 44 #include "blk-wbt.h" 45 46 #ifdef CONFIG_DEBUG_FS 47 struct dentry *blk_debugfs_root; 48 #endif 49 50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 55 56 DEFINE_IDA(blk_queue_ida); 57 58 /* 59 * For the allocated request tables 60 */ 61 struct kmem_cache *request_cachep; 62 63 /* 64 * For queue allocation 65 */ 66 struct kmem_cache *blk_requestq_cachep; 67 68 /* 69 * Controlling structure to kblockd 70 */ 71 static struct workqueue_struct *kblockd_workqueue; 72 73 static void blk_clear_congested(struct request_list *rl, int sync) 74 { 75 #ifdef CONFIG_CGROUP_WRITEBACK 76 clear_wb_congested(rl->blkg->wb_congested, sync); 77 #else 78 /* 79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 80 * flip its congestion state for events on other blkcgs. 81 */ 82 if (rl == &rl->q->root_rl) 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 84 #endif 85 } 86 87 static void blk_set_congested(struct request_list *rl, int sync) 88 { 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 set_wb_congested(rl->blkg->wb_congested, sync); 91 #else 92 /* see blk_clear_congested() */ 93 if (rl == &rl->q->root_rl) 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 95 #endif 96 } 97 98 void blk_queue_congestion_threshold(struct request_queue *q) 99 { 100 int nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) + 1; 103 if (nr > q->nr_requests) 104 nr = q->nr_requests; 105 q->nr_congestion_on = nr; 106 107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 108 if (nr < 1) 109 nr = 1; 110 q->nr_congestion_off = nr; 111 } 112 113 void blk_rq_init(struct request_queue *q, struct request *rq) 114 { 115 memset(rq, 0, sizeof(*rq)); 116 117 INIT_LIST_HEAD(&rq->queuelist); 118 INIT_LIST_HEAD(&rq->timeout_list); 119 rq->cpu = -1; 120 rq->q = q; 121 rq->__sector = (sector_t) -1; 122 INIT_HLIST_NODE(&rq->hash); 123 RB_CLEAR_NODE(&rq->rb_node); 124 rq->tag = -1; 125 rq->internal_tag = -1; 126 rq->start_time = jiffies; 127 set_start_time_ns(rq); 128 rq->part = NULL; 129 seqcount_init(&rq->gstate_seq); 130 u64_stats_init(&rq->aborted_gstate_sync); 131 } 132 EXPORT_SYMBOL(blk_rq_init); 133 134 static const struct { 135 int errno; 136 const char *name; 137 } blk_errors[] = { 138 [BLK_STS_OK] = { 0, "" }, 139 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 140 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 141 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 142 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 143 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 144 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 145 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 146 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 147 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 148 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 149 150 /* device mapper special case, should not leak out: */ 151 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 152 153 /* everything else not covered above: */ 154 [BLK_STS_IOERR] = { -EIO, "I/O" }, 155 }; 156 157 blk_status_t errno_to_blk_status(int errno) 158 { 159 int i; 160 161 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 162 if (blk_errors[i].errno == errno) 163 return (__force blk_status_t)i; 164 } 165 166 return BLK_STS_IOERR; 167 } 168 EXPORT_SYMBOL_GPL(errno_to_blk_status); 169 170 int blk_status_to_errno(blk_status_t status) 171 { 172 int idx = (__force int)status; 173 174 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 175 return -EIO; 176 return blk_errors[idx].errno; 177 } 178 EXPORT_SYMBOL_GPL(blk_status_to_errno); 179 180 static void print_req_error(struct request *req, blk_status_t status) 181 { 182 int idx = (__force int)status; 183 184 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 185 return; 186 187 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 188 __func__, blk_errors[idx].name, req->rq_disk ? 189 req->rq_disk->disk_name : "?", 190 (unsigned long long)blk_rq_pos(req)); 191 } 192 193 static void req_bio_endio(struct request *rq, struct bio *bio, 194 unsigned int nbytes, blk_status_t error) 195 { 196 if (error) 197 bio->bi_status = error; 198 199 if (unlikely(rq->rq_flags & RQF_QUIET)) 200 bio_set_flag(bio, BIO_QUIET); 201 202 bio_advance(bio, nbytes); 203 204 /* don't actually finish bio if it's part of flush sequence */ 205 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 206 bio_endio(bio); 207 } 208 209 void blk_dump_rq_flags(struct request *rq, char *msg) 210 { 211 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 212 rq->rq_disk ? rq->rq_disk->disk_name : "?", 213 (unsigned long long) rq->cmd_flags); 214 215 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 216 (unsigned long long)blk_rq_pos(rq), 217 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 218 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 219 rq->bio, rq->biotail, blk_rq_bytes(rq)); 220 } 221 EXPORT_SYMBOL(blk_dump_rq_flags); 222 223 static void blk_delay_work(struct work_struct *work) 224 { 225 struct request_queue *q; 226 227 q = container_of(work, struct request_queue, delay_work.work); 228 spin_lock_irq(q->queue_lock); 229 __blk_run_queue(q); 230 spin_unlock_irq(q->queue_lock); 231 } 232 233 /** 234 * blk_delay_queue - restart queueing after defined interval 235 * @q: The &struct request_queue in question 236 * @msecs: Delay in msecs 237 * 238 * Description: 239 * Sometimes queueing needs to be postponed for a little while, to allow 240 * resources to come back. This function will make sure that queueing is 241 * restarted around the specified time. 242 */ 243 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 244 { 245 lockdep_assert_held(q->queue_lock); 246 WARN_ON_ONCE(q->mq_ops); 247 248 if (likely(!blk_queue_dead(q))) 249 queue_delayed_work(kblockd_workqueue, &q->delay_work, 250 msecs_to_jiffies(msecs)); 251 } 252 EXPORT_SYMBOL(blk_delay_queue); 253 254 /** 255 * blk_start_queue_async - asynchronously restart a previously stopped queue 256 * @q: The &struct request_queue in question 257 * 258 * Description: 259 * blk_start_queue_async() will clear the stop flag on the queue, and 260 * ensure that the request_fn for the queue is run from an async 261 * context. 262 **/ 263 void blk_start_queue_async(struct request_queue *q) 264 { 265 lockdep_assert_held(q->queue_lock); 266 WARN_ON_ONCE(q->mq_ops); 267 268 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 269 blk_run_queue_async(q); 270 } 271 EXPORT_SYMBOL(blk_start_queue_async); 272 273 /** 274 * blk_start_queue - restart a previously stopped queue 275 * @q: The &struct request_queue in question 276 * 277 * Description: 278 * blk_start_queue() will clear the stop flag on the queue, and call 279 * the request_fn for the queue if it was in a stopped state when 280 * entered. Also see blk_stop_queue(). 281 **/ 282 void blk_start_queue(struct request_queue *q) 283 { 284 lockdep_assert_held(q->queue_lock); 285 WARN_ON(!in_interrupt() && !irqs_disabled()); 286 WARN_ON_ONCE(q->mq_ops); 287 288 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 289 __blk_run_queue(q); 290 } 291 EXPORT_SYMBOL(blk_start_queue); 292 293 /** 294 * blk_stop_queue - stop a queue 295 * @q: The &struct request_queue in question 296 * 297 * Description: 298 * The Linux block layer assumes that a block driver will consume all 299 * entries on the request queue when the request_fn strategy is called. 300 * Often this will not happen, because of hardware limitations (queue 301 * depth settings). If a device driver gets a 'queue full' response, 302 * or if it simply chooses not to queue more I/O at one point, it can 303 * call this function to prevent the request_fn from being called until 304 * the driver has signalled it's ready to go again. This happens by calling 305 * blk_start_queue() to restart queue operations. 306 **/ 307 void blk_stop_queue(struct request_queue *q) 308 { 309 lockdep_assert_held(q->queue_lock); 310 WARN_ON_ONCE(q->mq_ops); 311 312 cancel_delayed_work(&q->delay_work); 313 queue_flag_set(QUEUE_FLAG_STOPPED, q); 314 } 315 EXPORT_SYMBOL(blk_stop_queue); 316 317 /** 318 * blk_sync_queue - cancel any pending callbacks on a queue 319 * @q: the queue 320 * 321 * Description: 322 * The block layer may perform asynchronous callback activity 323 * on a queue, such as calling the unplug function after a timeout. 324 * A block device may call blk_sync_queue to ensure that any 325 * such activity is cancelled, thus allowing it to release resources 326 * that the callbacks might use. The caller must already have made sure 327 * that its ->make_request_fn will not re-add plugging prior to calling 328 * this function. 329 * 330 * This function does not cancel any asynchronous activity arising 331 * out of elevator or throttling code. That would require elevator_exit() 332 * and blkcg_exit_queue() to be called with queue lock initialized. 333 * 334 */ 335 void blk_sync_queue(struct request_queue *q) 336 { 337 del_timer_sync(&q->timeout); 338 cancel_work_sync(&q->timeout_work); 339 340 if (q->mq_ops) { 341 struct blk_mq_hw_ctx *hctx; 342 int i; 343 344 cancel_delayed_work_sync(&q->requeue_work); 345 queue_for_each_hw_ctx(q, hctx, i) 346 cancel_delayed_work_sync(&hctx->run_work); 347 } else { 348 cancel_delayed_work_sync(&q->delay_work); 349 } 350 } 351 EXPORT_SYMBOL(blk_sync_queue); 352 353 /** 354 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY 355 * @q: request queue pointer 356 * 357 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not 358 * set and 1 if the flag was already set. 359 */ 360 int blk_set_preempt_only(struct request_queue *q) 361 { 362 unsigned long flags; 363 int res; 364 365 spin_lock_irqsave(q->queue_lock, flags); 366 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q); 367 spin_unlock_irqrestore(q->queue_lock, flags); 368 369 return res; 370 } 371 EXPORT_SYMBOL_GPL(blk_set_preempt_only); 372 373 void blk_clear_preempt_only(struct request_queue *q) 374 { 375 unsigned long flags; 376 377 spin_lock_irqsave(q->queue_lock, flags); 378 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q); 379 wake_up_all(&q->mq_freeze_wq); 380 spin_unlock_irqrestore(q->queue_lock, flags); 381 } 382 EXPORT_SYMBOL_GPL(blk_clear_preempt_only); 383 384 /** 385 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 386 * @q: The queue to run 387 * 388 * Description: 389 * Invoke request handling on a queue if there are any pending requests. 390 * May be used to restart request handling after a request has completed. 391 * This variant runs the queue whether or not the queue has been 392 * stopped. Must be called with the queue lock held and interrupts 393 * disabled. See also @blk_run_queue. 394 */ 395 inline void __blk_run_queue_uncond(struct request_queue *q) 396 { 397 lockdep_assert_held(q->queue_lock); 398 WARN_ON_ONCE(q->mq_ops); 399 400 if (unlikely(blk_queue_dead(q))) 401 return; 402 403 /* 404 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 405 * the queue lock internally. As a result multiple threads may be 406 * running such a request function concurrently. Keep track of the 407 * number of active request_fn invocations such that blk_drain_queue() 408 * can wait until all these request_fn calls have finished. 409 */ 410 q->request_fn_active++; 411 q->request_fn(q); 412 q->request_fn_active--; 413 } 414 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 415 416 /** 417 * __blk_run_queue - run a single device queue 418 * @q: The queue to run 419 * 420 * Description: 421 * See @blk_run_queue. 422 */ 423 void __blk_run_queue(struct request_queue *q) 424 { 425 lockdep_assert_held(q->queue_lock); 426 WARN_ON_ONCE(q->mq_ops); 427 428 if (unlikely(blk_queue_stopped(q))) 429 return; 430 431 __blk_run_queue_uncond(q); 432 } 433 EXPORT_SYMBOL(__blk_run_queue); 434 435 /** 436 * blk_run_queue_async - run a single device queue in workqueue context 437 * @q: The queue to run 438 * 439 * Description: 440 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 441 * of us. 442 * 443 * Note: 444 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 445 * has canceled q->delay_work, callers must hold the queue lock to avoid 446 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 447 */ 448 void blk_run_queue_async(struct request_queue *q) 449 { 450 lockdep_assert_held(q->queue_lock); 451 WARN_ON_ONCE(q->mq_ops); 452 453 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 454 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 455 } 456 EXPORT_SYMBOL(blk_run_queue_async); 457 458 /** 459 * blk_run_queue - run a single device queue 460 * @q: The queue to run 461 * 462 * Description: 463 * Invoke request handling on this queue, if it has pending work to do. 464 * May be used to restart queueing when a request has completed. 465 */ 466 void blk_run_queue(struct request_queue *q) 467 { 468 unsigned long flags; 469 470 WARN_ON_ONCE(q->mq_ops); 471 472 spin_lock_irqsave(q->queue_lock, flags); 473 __blk_run_queue(q); 474 spin_unlock_irqrestore(q->queue_lock, flags); 475 } 476 EXPORT_SYMBOL(blk_run_queue); 477 478 void blk_put_queue(struct request_queue *q) 479 { 480 kobject_put(&q->kobj); 481 } 482 EXPORT_SYMBOL(blk_put_queue); 483 484 /** 485 * __blk_drain_queue - drain requests from request_queue 486 * @q: queue to drain 487 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 488 * 489 * Drain requests from @q. If @drain_all is set, all requests are drained. 490 * If not, only ELVPRIV requests are drained. The caller is responsible 491 * for ensuring that no new requests which need to be drained are queued. 492 */ 493 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 494 __releases(q->queue_lock) 495 __acquires(q->queue_lock) 496 { 497 int i; 498 499 lockdep_assert_held(q->queue_lock); 500 WARN_ON_ONCE(q->mq_ops); 501 502 while (true) { 503 bool drain = false; 504 505 /* 506 * The caller might be trying to drain @q before its 507 * elevator is initialized. 508 */ 509 if (q->elevator) 510 elv_drain_elevator(q); 511 512 blkcg_drain_queue(q); 513 514 /* 515 * This function might be called on a queue which failed 516 * driver init after queue creation or is not yet fully 517 * active yet. Some drivers (e.g. fd and loop) get unhappy 518 * in such cases. Kick queue iff dispatch queue has 519 * something on it and @q has request_fn set. 520 */ 521 if (!list_empty(&q->queue_head) && q->request_fn) 522 __blk_run_queue(q); 523 524 drain |= q->nr_rqs_elvpriv; 525 drain |= q->request_fn_active; 526 527 /* 528 * Unfortunately, requests are queued at and tracked from 529 * multiple places and there's no single counter which can 530 * be drained. Check all the queues and counters. 531 */ 532 if (drain_all) { 533 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 534 drain |= !list_empty(&q->queue_head); 535 for (i = 0; i < 2; i++) { 536 drain |= q->nr_rqs[i]; 537 drain |= q->in_flight[i]; 538 if (fq) 539 drain |= !list_empty(&fq->flush_queue[i]); 540 } 541 } 542 543 if (!drain) 544 break; 545 546 spin_unlock_irq(q->queue_lock); 547 548 msleep(10); 549 550 spin_lock_irq(q->queue_lock); 551 } 552 553 /* 554 * With queue marked dead, any woken up waiter will fail the 555 * allocation path, so the wakeup chaining is lost and we're 556 * left with hung waiters. We need to wake up those waiters. 557 */ 558 if (q->request_fn) { 559 struct request_list *rl; 560 561 blk_queue_for_each_rl(rl, q) 562 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 563 wake_up_all(&rl->wait[i]); 564 } 565 } 566 567 void blk_drain_queue(struct request_queue *q) 568 { 569 spin_lock_irq(q->queue_lock); 570 __blk_drain_queue(q, true); 571 spin_unlock_irq(q->queue_lock); 572 } 573 574 /** 575 * blk_queue_bypass_start - enter queue bypass mode 576 * @q: queue of interest 577 * 578 * In bypass mode, only the dispatch FIFO queue of @q is used. This 579 * function makes @q enter bypass mode and drains all requests which were 580 * throttled or issued before. On return, it's guaranteed that no request 581 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 582 * inside queue or RCU read lock. 583 */ 584 void blk_queue_bypass_start(struct request_queue *q) 585 { 586 WARN_ON_ONCE(q->mq_ops); 587 588 spin_lock_irq(q->queue_lock); 589 q->bypass_depth++; 590 queue_flag_set(QUEUE_FLAG_BYPASS, q); 591 spin_unlock_irq(q->queue_lock); 592 593 /* 594 * Queues start drained. Skip actual draining till init is 595 * complete. This avoids lenghty delays during queue init which 596 * can happen many times during boot. 597 */ 598 if (blk_queue_init_done(q)) { 599 spin_lock_irq(q->queue_lock); 600 __blk_drain_queue(q, false); 601 spin_unlock_irq(q->queue_lock); 602 603 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 604 synchronize_rcu(); 605 } 606 } 607 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 608 609 /** 610 * blk_queue_bypass_end - leave queue bypass mode 611 * @q: queue of interest 612 * 613 * Leave bypass mode and restore the normal queueing behavior. 614 * 615 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 616 * this function is called for both blk-sq and blk-mq queues. 617 */ 618 void blk_queue_bypass_end(struct request_queue *q) 619 { 620 spin_lock_irq(q->queue_lock); 621 if (!--q->bypass_depth) 622 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 623 WARN_ON_ONCE(q->bypass_depth < 0); 624 spin_unlock_irq(q->queue_lock); 625 } 626 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 627 628 void blk_set_queue_dying(struct request_queue *q) 629 { 630 spin_lock_irq(q->queue_lock); 631 queue_flag_set(QUEUE_FLAG_DYING, q); 632 spin_unlock_irq(q->queue_lock); 633 634 /* 635 * When queue DYING flag is set, we need to block new req 636 * entering queue, so we call blk_freeze_queue_start() to 637 * prevent I/O from crossing blk_queue_enter(). 638 */ 639 blk_freeze_queue_start(q); 640 641 if (q->mq_ops) 642 blk_mq_wake_waiters(q); 643 else { 644 struct request_list *rl; 645 646 spin_lock_irq(q->queue_lock); 647 blk_queue_for_each_rl(rl, q) { 648 if (rl->rq_pool) { 649 wake_up_all(&rl->wait[BLK_RW_SYNC]); 650 wake_up_all(&rl->wait[BLK_RW_ASYNC]); 651 } 652 } 653 spin_unlock_irq(q->queue_lock); 654 } 655 656 /* Make blk_queue_enter() reexamine the DYING flag. */ 657 wake_up_all(&q->mq_freeze_wq); 658 } 659 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 660 661 /** 662 * blk_cleanup_queue - shutdown a request queue 663 * @q: request queue to shutdown 664 * 665 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 666 * put it. All future requests will be failed immediately with -ENODEV. 667 */ 668 void blk_cleanup_queue(struct request_queue *q) 669 { 670 spinlock_t *lock = q->queue_lock; 671 672 /* mark @q DYING, no new request or merges will be allowed afterwards */ 673 mutex_lock(&q->sysfs_lock); 674 blk_set_queue_dying(q); 675 spin_lock_irq(lock); 676 677 /* 678 * A dying queue is permanently in bypass mode till released. Note 679 * that, unlike blk_queue_bypass_start(), we aren't performing 680 * synchronize_rcu() after entering bypass mode to avoid the delay 681 * as some drivers create and destroy a lot of queues while 682 * probing. This is still safe because blk_release_queue() will be 683 * called only after the queue refcnt drops to zero and nothing, 684 * RCU or not, would be traversing the queue by then. 685 */ 686 q->bypass_depth++; 687 queue_flag_set(QUEUE_FLAG_BYPASS, q); 688 689 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 690 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 691 queue_flag_set(QUEUE_FLAG_DYING, q); 692 spin_unlock_irq(lock); 693 mutex_unlock(&q->sysfs_lock); 694 695 /* 696 * Drain all requests queued before DYING marking. Set DEAD flag to 697 * prevent that q->request_fn() gets invoked after draining finished. 698 */ 699 blk_freeze_queue(q); 700 spin_lock_irq(lock); 701 queue_flag_set(QUEUE_FLAG_DEAD, q); 702 spin_unlock_irq(lock); 703 704 /* 705 * make sure all in-progress dispatch are completed because 706 * blk_freeze_queue() can only complete all requests, and 707 * dispatch may still be in-progress since we dispatch requests 708 * from more than one contexts 709 */ 710 if (q->mq_ops) 711 blk_mq_quiesce_queue(q); 712 713 /* for synchronous bio-based driver finish in-flight integrity i/o */ 714 blk_flush_integrity(); 715 716 /* @q won't process any more request, flush async actions */ 717 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 718 blk_sync_queue(q); 719 720 if (q->mq_ops) 721 blk_mq_free_queue(q); 722 percpu_ref_exit(&q->q_usage_counter); 723 724 spin_lock_irq(lock); 725 if (q->queue_lock != &q->__queue_lock) 726 q->queue_lock = &q->__queue_lock; 727 spin_unlock_irq(lock); 728 729 /* @q is and will stay empty, shutdown and put */ 730 blk_put_queue(q); 731 } 732 EXPORT_SYMBOL(blk_cleanup_queue); 733 734 /* Allocate memory local to the request queue */ 735 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 736 { 737 struct request_queue *q = data; 738 739 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 740 } 741 742 static void free_request_simple(void *element, void *data) 743 { 744 kmem_cache_free(request_cachep, element); 745 } 746 747 static void *alloc_request_size(gfp_t gfp_mask, void *data) 748 { 749 struct request_queue *q = data; 750 struct request *rq; 751 752 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 753 q->node); 754 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 755 kfree(rq); 756 rq = NULL; 757 } 758 return rq; 759 } 760 761 static void free_request_size(void *element, void *data) 762 { 763 struct request_queue *q = data; 764 765 if (q->exit_rq_fn) 766 q->exit_rq_fn(q, element); 767 kfree(element); 768 } 769 770 int blk_init_rl(struct request_list *rl, struct request_queue *q, 771 gfp_t gfp_mask) 772 { 773 if (unlikely(rl->rq_pool) || q->mq_ops) 774 return 0; 775 776 rl->q = q; 777 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 778 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 779 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 780 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 781 782 if (q->cmd_size) { 783 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 784 alloc_request_size, free_request_size, 785 q, gfp_mask, q->node); 786 } else { 787 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 788 alloc_request_simple, free_request_simple, 789 q, gfp_mask, q->node); 790 } 791 if (!rl->rq_pool) 792 return -ENOMEM; 793 794 if (rl != &q->root_rl) 795 WARN_ON_ONCE(!blk_get_queue(q)); 796 797 return 0; 798 } 799 800 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 801 { 802 if (rl->rq_pool) { 803 mempool_destroy(rl->rq_pool); 804 if (rl != &q->root_rl) 805 blk_put_queue(q); 806 } 807 } 808 809 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 810 { 811 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 812 } 813 EXPORT_SYMBOL(blk_alloc_queue); 814 815 /** 816 * blk_queue_enter() - try to increase q->q_usage_counter 817 * @q: request queue pointer 818 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 819 */ 820 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 821 { 822 const bool preempt = flags & BLK_MQ_REQ_PREEMPT; 823 824 while (true) { 825 bool success = false; 826 int ret; 827 828 rcu_read_lock_sched(); 829 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 830 /* 831 * The code that sets the PREEMPT_ONLY flag is 832 * responsible for ensuring that that flag is globally 833 * visible before the queue is unfrozen. 834 */ 835 if (preempt || !blk_queue_preempt_only(q)) { 836 success = true; 837 } else { 838 percpu_ref_put(&q->q_usage_counter); 839 } 840 } 841 rcu_read_unlock_sched(); 842 843 if (success) 844 return 0; 845 846 if (flags & BLK_MQ_REQ_NOWAIT) 847 return -EBUSY; 848 849 /* 850 * read pair of barrier in blk_freeze_queue_start(), 851 * we need to order reading __PERCPU_REF_DEAD flag of 852 * .q_usage_counter and reading .mq_freeze_depth or 853 * queue dying flag, otherwise the following wait may 854 * never return if the two reads are reordered. 855 */ 856 smp_rmb(); 857 858 ret = wait_event_interruptible(q->mq_freeze_wq, 859 (atomic_read(&q->mq_freeze_depth) == 0 && 860 (preempt || !blk_queue_preempt_only(q))) || 861 blk_queue_dying(q)); 862 if (blk_queue_dying(q)) 863 return -ENODEV; 864 if (ret) 865 return ret; 866 } 867 } 868 869 void blk_queue_exit(struct request_queue *q) 870 { 871 percpu_ref_put(&q->q_usage_counter); 872 } 873 874 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 875 { 876 struct request_queue *q = 877 container_of(ref, struct request_queue, q_usage_counter); 878 879 wake_up_all(&q->mq_freeze_wq); 880 } 881 882 static void blk_rq_timed_out_timer(struct timer_list *t) 883 { 884 struct request_queue *q = from_timer(q, t, timeout); 885 886 kblockd_schedule_work(&q->timeout_work); 887 } 888 889 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 890 { 891 struct request_queue *q; 892 893 q = kmem_cache_alloc_node(blk_requestq_cachep, 894 gfp_mask | __GFP_ZERO, node_id); 895 if (!q) 896 return NULL; 897 898 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 899 if (q->id < 0) 900 goto fail_q; 901 902 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 903 if (!q->bio_split) 904 goto fail_id; 905 906 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 907 if (!q->backing_dev_info) 908 goto fail_split; 909 910 q->stats = blk_alloc_queue_stats(); 911 if (!q->stats) 912 goto fail_stats; 913 914 q->backing_dev_info->ra_pages = 915 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 916 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 917 q->backing_dev_info->name = "block"; 918 q->node = node_id; 919 920 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 921 laptop_mode_timer_fn, 0); 922 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 923 INIT_WORK(&q->timeout_work, NULL); 924 INIT_LIST_HEAD(&q->queue_head); 925 INIT_LIST_HEAD(&q->timeout_list); 926 INIT_LIST_HEAD(&q->icq_list); 927 #ifdef CONFIG_BLK_CGROUP 928 INIT_LIST_HEAD(&q->blkg_list); 929 #endif 930 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 931 932 kobject_init(&q->kobj, &blk_queue_ktype); 933 934 #ifdef CONFIG_BLK_DEV_IO_TRACE 935 mutex_init(&q->blk_trace_mutex); 936 #endif 937 mutex_init(&q->sysfs_lock); 938 spin_lock_init(&q->__queue_lock); 939 940 /* 941 * By default initialize queue_lock to internal lock and driver can 942 * override it later if need be. 943 */ 944 q->queue_lock = &q->__queue_lock; 945 946 /* 947 * A queue starts its life with bypass turned on to avoid 948 * unnecessary bypass on/off overhead and nasty surprises during 949 * init. The initial bypass will be finished when the queue is 950 * registered by blk_register_queue(). 951 */ 952 q->bypass_depth = 1; 953 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 954 955 init_waitqueue_head(&q->mq_freeze_wq); 956 957 /* 958 * Init percpu_ref in atomic mode so that it's faster to shutdown. 959 * See blk_register_queue() for details. 960 */ 961 if (percpu_ref_init(&q->q_usage_counter, 962 blk_queue_usage_counter_release, 963 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 964 goto fail_bdi; 965 966 if (blkcg_init_queue(q)) 967 goto fail_ref; 968 969 return q; 970 971 fail_ref: 972 percpu_ref_exit(&q->q_usage_counter); 973 fail_bdi: 974 blk_free_queue_stats(q->stats); 975 fail_stats: 976 bdi_put(q->backing_dev_info); 977 fail_split: 978 bioset_free(q->bio_split); 979 fail_id: 980 ida_simple_remove(&blk_queue_ida, q->id); 981 fail_q: 982 kmem_cache_free(blk_requestq_cachep, q); 983 return NULL; 984 } 985 EXPORT_SYMBOL(blk_alloc_queue_node); 986 987 /** 988 * blk_init_queue - prepare a request queue for use with a block device 989 * @rfn: The function to be called to process requests that have been 990 * placed on the queue. 991 * @lock: Request queue spin lock 992 * 993 * Description: 994 * If a block device wishes to use the standard request handling procedures, 995 * which sorts requests and coalesces adjacent requests, then it must 996 * call blk_init_queue(). The function @rfn will be called when there 997 * are requests on the queue that need to be processed. If the device 998 * supports plugging, then @rfn may not be called immediately when requests 999 * are available on the queue, but may be called at some time later instead. 1000 * Plugged queues are generally unplugged when a buffer belonging to one 1001 * of the requests on the queue is needed, or due to memory pressure. 1002 * 1003 * @rfn is not required, or even expected, to remove all requests off the 1004 * queue, but only as many as it can handle at a time. If it does leave 1005 * requests on the queue, it is responsible for arranging that the requests 1006 * get dealt with eventually. 1007 * 1008 * The queue spin lock must be held while manipulating the requests on the 1009 * request queue; this lock will be taken also from interrupt context, so irq 1010 * disabling is needed for it. 1011 * 1012 * Function returns a pointer to the initialized request queue, or %NULL if 1013 * it didn't succeed. 1014 * 1015 * Note: 1016 * blk_init_queue() must be paired with a blk_cleanup_queue() call 1017 * when the block device is deactivated (such as at module unload). 1018 **/ 1019 1020 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 1021 { 1022 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 1023 } 1024 EXPORT_SYMBOL(blk_init_queue); 1025 1026 struct request_queue * 1027 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 1028 { 1029 struct request_queue *q; 1030 1031 q = blk_alloc_queue_node(GFP_KERNEL, node_id); 1032 if (!q) 1033 return NULL; 1034 1035 q->request_fn = rfn; 1036 if (lock) 1037 q->queue_lock = lock; 1038 if (blk_init_allocated_queue(q) < 0) { 1039 blk_cleanup_queue(q); 1040 return NULL; 1041 } 1042 1043 return q; 1044 } 1045 EXPORT_SYMBOL(blk_init_queue_node); 1046 1047 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 1048 1049 1050 int blk_init_allocated_queue(struct request_queue *q) 1051 { 1052 WARN_ON_ONCE(q->mq_ops); 1053 1054 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 1055 if (!q->fq) 1056 return -ENOMEM; 1057 1058 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 1059 goto out_free_flush_queue; 1060 1061 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 1062 goto out_exit_flush_rq; 1063 1064 INIT_WORK(&q->timeout_work, blk_timeout_work); 1065 q->queue_flags |= QUEUE_FLAG_DEFAULT; 1066 1067 /* 1068 * This also sets hw/phys segments, boundary and size 1069 */ 1070 blk_queue_make_request(q, blk_queue_bio); 1071 1072 q->sg_reserved_size = INT_MAX; 1073 1074 /* Protect q->elevator from elevator_change */ 1075 mutex_lock(&q->sysfs_lock); 1076 1077 /* init elevator */ 1078 if (elevator_init(q, NULL)) { 1079 mutex_unlock(&q->sysfs_lock); 1080 goto out_exit_flush_rq; 1081 } 1082 1083 mutex_unlock(&q->sysfs_lock); 1084 return 0; 1085 1086 out_exit_flush_rq: 1087 if (q->exit_rq_fn) 1088 q->exit_rq_fn(q, q->fq->flush_rq); 1089 out_free_flush_queue: 1090 blk_free_flush_queue(q->fq); 1091 return -ENOMEM; 1092 } 1093 EXPORT_SYMBOL(blk_init_allocated_queue); 1094 1095 bool blk_get_queue(struct request_queue *q) 1096 { 1097 if (likely(!blk_queue_dying(q))) { 1098 __blk_get_queue(q); 1099 return true; 1100 } 1101 1102 return false; 1103 } 1104 EXPORT_SYMBOL(blk_get_queue); 1105 1106 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1107 { 1108 if (rq->rq_flags & RQF_ELVPRIV) { 1109 elv_put_request(rl->q, rq); 1110 if (rq->elv.icq) 1111 put_io_context(rq->elv.icq->ioc); 1112 } 1113 1114 mempool_free(rq, rl->rq_pool); 1115 } 1116 1117 /* 1118 * ioc_batching returns true if the ioc is a valid batching request and 1119 * should be given priority access to a request. 1120 */ 1121 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1122 { 1123 if (!ioc) 1124 return 0; 1125 1126 /* 1127 * Make sure the process is able to allocate at least 1 request 1128 * even if the batch times out, otherwise we could theoretically 1129 * lose wakeups. 1130 */ 1131 return ioc->nr_batch_requests == q->nr_batching || 1132 (ioc->nr_batch_requests > 0 1133 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1134 } 1135 1136 /* 1137 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1138 * will cause the process to be a "batcher" on all queues in the system. This 1139 * is the behaviour we want though - once it gets a wakeup it should be given 1140 * a nice run. 1141 */ 1142 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1143 { 1144 if (!ioc || ioc_batching(q, ioc)) 1145 return; 1146 1147 ioc->nr_batch_requests = q->nr_batching; 1148 ioc->last_waited = jiffies; 1149 } 1150 1151 static void __freed_request(struct request_list *rl, int sync) 1152 { 1153 struct request_queue *q = rl->q; 1154 1155 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1156 blk_clear_congested(rl, sync); 1157 1158 if (rl->count[sync] + 1 <= q->nr_requests) { 1159 if (waitqueue_active(&rl->wait[sync])) 1160 wake_up(&rl->wait[sync]); 1161 1162 blk_clear_rl_full(rl, sync); 1163 } 1164 } 1165 1166 /* 1167 * A request has just been released. Account for it, update the full and 1168 * congestion status, wake up any waiters. Called under q->queue_lock. 1169 */ 1170 static void freed_request(struct request_list *rl, bool sync, 1171 req_flags_t rq_flags) 1172 { 1173 struct request_queue *q = rl->q; 1174 1175 q->nr_rqs[sync]--; 1176 rl->count[sync]--; 1177 if (rq_flags & RQF_ELVPRIV) 1178 q->nr_rqs_elvpriv--; 1179 1180 __freed_request(rl, sync); 1181 1182 if (unlikely(rl->starved[sync ^ 1])) 1183 __freed_request(rl, sync ^ 1); 1184 } 1185 1186 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1187 { 1188 struct request_list *rl; 1189 int on_thresh, off_thresh; 1190 1191 WARN_ON_ONCE(q->mq_ops); 1192 1193 spin_lock_irq(q->queue_lock); 1194 q->nr_requests = nr; 1195 blk_queue_congestion_threshold(q); 1196 on_thresh = queue_congestion_on_threshold(q); 1197 off_thresh = queue_congestion_off_threshold(q); 1198 1199 blk_queue_for_each_rl(rl, q) { 1200 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1201 blk_set_congested(rl, BLK_RW_SYNC); 1202 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1203 blk_clear_congested(rl, BLK_RW_SYNC); 1204 1205 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1206 blk_set_congested(rl, BLK_RW_ASYNC); 1207 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1208 blk_clear_congested(rl, BLK_RW_ASYNC); 1209 1210 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1211 blk_set_rl_full(rl, BLK_RW_SYNC); 1212 } else { 1213 blk_clear_rl_full(rl, BLK_RW_SYNC); 1214 wake_up(&rl->wait[BLK_RW_SYNC]); 1215 } 1216 1217 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1218 blk_set_rl_full(rl, BLK_RW_ASYNC); 1219 } else { 1220 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1221 wake_up(&rl->wait[BLK_RW_ASYNC]); 1222 } 1223 } 1224 1225 spin_unlock_irq(q->queue_lock); 1226 return 0; 1227 } 1228 1229 /** 1230 * __get_request - get a free request 1231 * @rl: request list to allocate from 1232 * @op: operation and flags 1233 * @bio: bio to allocate request for (can be %NULL) 1234 * @flags: BLQ_MQ_REQ_* flags 1235 * 1236 * Get a free request from @q. This function may fail under memory 1237 * pressure or if @q is dead. 1238 * 1239 * Must be called with @q->queue_lock held and, 1240 * Returns ERR_PTR on failure, with @q->queue_lock held. 1241 * Returns request pointer on success, with @q->queue_lock *not held*. 1242 */ 1243 static struct request *__get_request(struct request_list *rl, unsigned int op, 1244 struct bio *bio, blk_mq_req_flags_t flags) 1245 { 1246 struct request_queue *q = rl->q; 1247 struct request *rq; 1248 struct elevator_type *et = q->elevator->type; 1249 struct io_context *ioc = rq_ioc(bio); 1250 struct io_cq *icq = NULL; 1251 const bool is_sync = op_is_sync(op); 1252 int may_queue; 1253 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : 1254 __GFP_DIRECT_RECLAIM; 1255 req_flags_t rq_flags = RQF_ALLOCED; 1256 1257 lockdep_assert_held(q->queue_lock); 1258 1259 if (unlikely(blk_queue_dying(q))) 1260 return ERR_PTR(-ENODEV); 1261 1262 may_queue = elv_may_queue(q, op); 1263 if (may_queue == ELV_MQUEUE_NO) 1264 goto rq_starved; 1265 1266 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1267 if (rl->count[is_sync]+1 >= q->nr_requests) { 1268 /* 1269 * The queue will fill after this allocation, so set 1270 * it as full, and mark this process as "batching". 1271 * This process will be allowed to complete a batch of 1272 * requests, others will be blocked. 1273 */ 1274 if (!blk_rl_full(rl, is_sync)) { 1275 ioc_set_batching(q, ioc); 1276 blk_set_rl_full(rl, is_sync); 1277 } else { 1278 if (may_queue != ELV_MQUEUE_MUST 1279 && !ioc_batching(q, ioc)) { 1280 /* 1281 * The queue is full and the allocating 1282 * process is not a "batcher", and not 1283 * exempted by the IO scheduler 1284 */ 1285 return ERR_PTR(-ENOMEM); 1286 } 1287 } 1288 } 1289 blk_set_congested(rl, is_sync); 1290 } 1291 1292 /* 1293 * Only allow batching queuers to allocate up to 50% over the defined 1294 * limit of requests, otherwise we could have thousands of requests 1295 * allocated with any setting of ->nr_requests 1296 */ 1297 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1298 return ERR_PTR(-ENOMEM); 1299 1300 q->nr_rqs[is_sync]++; 1301 rl->count[is_sync]++; 1302 rl->starved[is_sync] = 0; 1303 1304 /* 1305 * Decide whether the new request will be managed by elevator. If 1306 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1307 * prevent the current elevator from being destroyed until the new 1308 * request is freed. This guarantees icq's won't be destroyed and 1309 * makes creating new ones safe. 1310 * 1311 * Flush requests do not use the elevator so skip initialization. 1312 * This allows a request to share the flush and elevator data. 1313 * 1314 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1315 * it will be created after releasing queue_lock. 1316 */ 1317 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1318 rq_flags |= RQF_ELVPRIV; 1319 q->nr_rqs_elvpriv++; 1320 if (et->icq_cache && ioc) 1321 icq = ioc_lookup_icq(ioc, q); 1322 } 1323 1324 if (blk_queue_io_stat(q)) 1325 rq_flags |= RQF_IO_STAT; 1326 spin_unlock_irq(q->queue_lock); 1327 1328 /* allocate and init request */ 1329 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1330 if (!rq) 1331 goto fail_alloc; 1332 1333 blk_rq_init(q, rq); 1334 blk_rq_set_rl(rq, rl); 1335 rq->cmd_flags = op; 1336 rq->rq_flags = rq_flags; 1337 if (flags & BLK_MQ_REQ_PREEMPT) 1338 rq->rq_flags |= RQF_PREEMPT; 1339 1340 /* init elvpriv */ 1341 if (rq_flags & RQF_ELVPRIV) { 1342 if (unlikely(et->icq_cache && !icq)) { 1343 if (ioc) 1344 icq = ioc_create_icq(ioc, q, gfp_mask); 1345 if (!icq) 1346 goto fail_elvpriv; 1347 } 1348 1349 rq->elv.icq = icq; 1350 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1351 goto fail_elvpriv; 1352 1353 /* @rq->elv.icq holds io_context until @rq is freed */ 1354 if (icq) 1355 get_io_context(icq->ioc); 1356 } 1357 out: 1358 /* 1359 * ioc may be NULL here, and ioc_batching will be false. That's 1360 * OK, if the queue is under the request limit then requests need 1361 * not count toward the nr_batch_requests limit. There will always 1362 * be some limit enforced by BLK_BATCH_TIME. 1363 */ 1364 if (ioc_batching(q, ioc)) 1365 ioc->nr_batch_requests--; 1366 1367 trace_block_getrq(q, bio, op); 1368 return rq; 1369 1370 fail_elvpriv: 1371 /* 1372 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1373 * and may fail indefinitely under memory pressure and thus 1374 * shouldn't stall IO. Treat this request as !elvpriv. This will 1375 * disturb iosched and blkcg but weird is bettern than dead. 1376 */ 1377 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1378 __func__, dev_name(q->backing_dev_info->dev)); 1379 1380 rq->rq_flags &= ~RQF_ELVPRIV; 1381 rq->elv.icq = NULL; 1382 1383 spin_lock_irq(q->queue_lock); 1384 q->nr_rqs_elvpriv--; 1385 spin_unlock_irq(q->queue_lock); 1386 goto out; 1387 1388 fail_alloc: 1389 /* 1390 * Allocation failed presumably due to memory. Undo anything we 1391 * might have messed up. 1392 * 1393 * Allocating task should really be put onto the front of the wait 1394 * queue, but this is pretty rare. 1395 */ 1396 spin_lock_irq(q->queue_lock); 1397 freed_request(rl, is_sync, rq_flags); 1398 1399 /* 1400 * in the very unlikely event that allocation failed and no 1401 * requests for this direction was pending, mark us starved so that 1402 * freeing of a request in the other direction will notice 1403 * us. another possible fix would be to split the rq mempool into 1404 * READ and WRITE 1405 */ 1406 rq_starved: 1407 if (unlikely(rl->count[is_sync] == 0)) 1408 rl->starved[is_sync] = 1; 1409 return ERR_PTR(-ENOMEM); 1410 } 1411 1412 /** 1413 * get_request - get a free request 1414 * @q: request_queue to allocate request from 1415 * @op: operation and flags 1416 * @bio: bio to allocate request for (can be %NULL) 1417 * @flags: BLK_MQ_REQ_* flags. 1418 * 1419 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1420 * this function keeps retrying under memory pressure and fails iff @q is dead. 1421 * 1422 * Must be called with @q->queue_lock held and, 1423 * Returns ERR_PTR on failure, with @q->queue_lock held. 1424 * Returns request pointer on success, with @q->queue_lock *not held*. 1425 */ 1426 static struct request *get_request(struct request_queue *q, unsigned int op, 1427 struct bio *bio, blk_mq_req_flags_t flags) 1428 { 1429 const bool is_sync = op_is_sync(op); 1430 DEFINE_WAIT(wait); 1431 struct request_list *rl; 1432 struct request *rq; 1433 1434 lockdep_assert_held(q->queue_lock); 1435 WARN_ON_ONCE(q->mq_ops); 1436 1437 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1438 retry: 1439 rq = __get_request(rl, op, bio, flags); 1440 if (!IS_ERR(rq)) 1441 return rq; 1442 1443 if (op & REQ_NOWAIT) { 1444 blk_put_rl(rl); 1445 return ERR_PTR(-EAGAIN); 1446 } 1447 1448 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) { 1449 blk_put_rl(rl); 1450 return rq; 1451 } 1452 1453 /* wait on @rl and retry */ 1454 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1455 TASK_UNINTERRUPTIBLE); 1456 1457 trace_block_sleeprq(q, bio, op); 1458 1459 spin_unlock_irq(q->queue_lock); 1460 io_schedule(); 1461 1462 /* 1463 * After sleeping, we become a "batching" process and will be able 1464 * to allocate at least one request, and up to a big batch of them 1465 * for a small period time. See ioc_batching, ioc_set_batching 1466 */ 1467 ioc_set_batching(q, current->io_context); 1468 1469 spin_lock_irq(q->queue_lock); 1470 finish_wait(&rl->wait[is_sync], &wait); 1471 1472 goto retry; 1473 } 1474 1475 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */ 1476 static struct request *blk_old_get_request(struct request_queue *q, 1477 unsigned int op, blk_mq_req_flags_t flags) 1478 { 1479 struct request *rq; 1480 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : 1481 __GFP_DIRECT_RECLAIM; 1482 int ret = 0; 1483 1484 WARN_ON_ONCE(q->mq_ops); 1485 1486 /* create ioc upfront */ 1487 create_io_context(gfp_mask, q->node); 1488 1489 ret = blk_queue_enter(q, flags); 1490 if (ret) 1491 return ERR_PTR(ret); 1492 spin_lock_irq(q->queue_lock); 1493 rq = get_request(q, op, NULL, flags); 1494 if (IS_ERR(rq)) { 1495 spin_unlock_irq(q->queue_lock); 1496 blk_queue_exit(q); 1497 return rq; 1498 } 1499 1500 /* q->queue_lock is unlocked at this point */ 1501 rq->__data_len = 0; 1502 rq->__sector = (sector_t) -1; 1503 rq->bio = rq->biotail = NULL; 1504 return rq; 1505 } 1506 1507 /** 1508 * blk_get_request_flags - allocate a request 1509 * @q: request queue to allocate a request for 1510 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 1511 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 1512 */ 1513 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op, 1514 blk_mq_req_flags_t flags) 1515 { 1516 struct request *req; 1517 1518 WARN_ON_ONCE(op & REQ_NOWAIT); 1519 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 1520 1521 if (q->mq_ops) { 1522 req = blk_mq_alloc_request(q, op, flags); 1523 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1524 q->mq_ops->initialize_rq_fn(req); 1525 } else { 1526 req = blk_old_get_request(q, op, flags); 1527 if (!IS_ERR(req) && q->initialize_rq_fn) 1528 q->initialize_rq_fn(req); 1529 } 1530 1531 return req; 1532 } 1533 EXPORT_SYMBOL(blk_get_request_flags); 1534 1535 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1536 gfp_t gfp_mask) 1537 { 1538 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ? 1539 0 : BLK_MQ_REQ_NOWAIT); 1540 } 1541 EXPORT_SYMBOL(blk_get_request); 1542 1543 /** 1544 * blk_requeue_request - put a request back on queue 1545 * @q: request queue where request should be inserted 1546 * @rq: request to be inserted 1547 * 1548 * Description: 1549 * Drivers often keep queueing requests until the hardware cannot accept 1550 * more, when that condition happens we need to put the request back 1551 * on the queue. Must be called with queue lock held. 1552 */ 1553 void blk_requeue_request(struct request_queue *q, struct request *rq) 1554 { 1555 lockdep_assert_held(q->queue_lock); 1556 WARN_ON_ONCE(q->mq_ops); 1557 1558 blk_delete_timer(rq); 1559 blk_clear_rq_complete(rq); 1560 trace_block_rq_requeue(q, rq); 1561 wbt_requeue(q->rq_wb, &rq->issue_stat); 1562 1563 if (rq->rq_flags & RQF_QUEUED) 1564 blk_queue_end_tag(q, rq); 1565 1566 BUG_ON(blk_queued_rq(rq)); 1567 1568 elv_requeue_request(q, rq); 1569 } 1570 EXPORT_SYMBOL(blk_requeue_request); 1571 1572 static void add_acct_request(struct request_queue *q, struct request *rq, 1573 int where) 1574 { 1575 blk_account_io_start(rq, true); 1576 __elv_add_request(q, rq, where); 1577 } 1578 1579 static void part_round_stats_single(struct request_queue *q, int cpu, 1580 struct hd_struct *part, unsigned long now, 1581 unsigned int inflight) 1582 { 1583 if (inflight) { 1584 __part_stat_add(cpu, part, time_in_queue, 1585 inflight * (now - part->stamp)); 1586 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1587 } 1588 part->stamp = now; 1589 } 1590 1591 /** 1592 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1593 * @q: target block queue 1594 * @cpu: cpu number for stats access 1595 * @part: target partition 1596 * 1597 * The average IO queue length and utilisation statistics are maintained 1598 * by observing the current state of the queue length and the amount of 1599 * time it has been in this state for. 1600 * 1601 * Normally, that accounting is done on IO completion, but that can result 1602 * in more than a second's worth of IO being accounted for within any one 1603 * second, leading to >100% utilisation. To deal with that, we call this 1604 * function to do a round-off before returning the results when reading 1605 * /proc/diskstats. This accounts immediately for all queue usage up to 1606 * the current jiffies and restarts the counters again. 1607 */ 1608 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) 1609 { 1610 struct hd_struct *part2 = NULL; 1611 unsigned long now = jiffies; 1612 unsigned int inflight[2]; 1613 int stats = 0; 1614 1615 if (part->stamp != now) 1616 stats |= 1; 1617 1618 if (part->partno) { 1619 part2 = &part_to_disk(part)->part0; 1620 if (part2->stamp != now) 1621 stats |= 2; 1622 } 1623 1624 if (!stats) 1625 return; 1626 1627 part_in_flight(q, part, inflight); 1628 1629 if (stats & 2) 1630 part_round_stats_single(q, cpu, part2, now, inflight[1]); 1631 if (stats & 1) 1632 part_round_stats_single(q, cpu, part, now, inflight[0]); 1633 } 1634 EXPORT_SYMBOL_GPL(part_round_stats); 1635 1636 #ifdef CONFIG_PM 1637 static void blk_pm_put_request(struct request *rq) 1638 { 1639 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1640 pm_runtime_mark_last_busy(rq->q->dev); 1641 } 1642 #else 1643 static inline void blk_pm_put_request(struct request *rq) {} 1644 #endif 1645 1646 void __blk_put_request(struct request_queue *q, struct request *req) 1647 { 1648 req_flags_t rq_flags = req->rq_flags; 1649 1650 if (unlikely(!q)) 1651 return; 1652 1653 if (q->mq_ops) { 1654 blk_mq_free_request(req); 1655 return; 1656 } 1657 1658 lockdep_assert_held(q->queue_lock); 1659 1660 blk_req_zone_write_unlock(req); 1661 blk_pm_put_request(req); 1662 1663 elv_completed_request(q, req); 1664 1665 /* this is a bio leak */ 1666 WARN_ON(req->bio != NULL); 1667 1668 wbt_done(q->rq_wb, &req->issue_stat); 1669 1670 /* 1671 * Request may not have originated from ll_rw_blk. if not, 1672 * it didn't come out of our reserved rq pools 1673 */ 1674 if (rq_flags & RQF_ALLOCED) { 1675 struct request_list *rl = blk_rq_rl(req); 1676 bool sync = op_is_sync(req->cmd_flags); 1677 1678 BUG_ON(!list_empty(&req->queuelist)); 1679 BUG_ON(ELV_ON_HASH(req)); 1680 1681 blk_free_request(rl, req); 1682 freed_request(rl, sync, rq_flags); 1683 blk_put_rl(rl); 1684 blk_queue_exit(q); 1685 } 1686 } 1687 EXPORT_SYMBOL_GPL(__blk_put_request); 1688 1689 void blk_put_request(struct request *req) 1690 { 1691 struct request_queue *q = req->q; 1692 1693 if (q->mq_ops) 1694 blk_mq_free_request(req); 1695 else { 1696 unsigned long flags; 1697 1698 spin_lock_irqsave(q->queue_lock, flags); 1699 __blk_put_request(q, req); 1700 spin_unlock_irqrestore(q->queue_lock, flags); 1701 } 1702 } 1703 EXPORT_SYMBOL(blk_put_request); 1704 1705 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1706 struct bio *bio) 1707 { 1708 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1709 1710 if (!ll_back_merge_fn(q, req, bio)) 1711 return false; 1712 1713 trace_block_bio_backmerge(q, req, bio); 1714 1715 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1716 blk_rq_set_mixed_merge(req); 1717 1718 req->biotail->bi_next = bio; 1719 req->biotail = bio; 1720 req->__data_len += bio->bi_iter.bi_size; 1721 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1722 1723 blk_account_io_start(req, false); 1724 return true; 1725 } 1726 1727 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1728 struct bio *bio) 1729 { 1730 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1731 1732 if (!ll_front_merge_fn(q, req, bio)) 1733 return false; 1734 1735 trace_block_bio_frontmerge(q, req, bio); 1736 1737 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1738 blk_rq_set_mixed_merge(req); 1739 1740 bio->bi_next = req->bio; 1741 req->bio = bio; 1742 1743 req->__sector = bio->bi_iter.bi_sector; 1744 req->__data_len += bio->bi_iter.bi_size; 1745 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1746 1747 blk_account_io_start(req, false); 1748 return true; 1749 } 1750 1751 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1752 struct bio *bio) 1753 { 1754 unsigned short segments = blk_rq_nr_discard_segments(req); 1755 1756 if (segments >= queue_max_discard_segments(q)) 1757 goto no_merge; 1758 if (blk_rq_sectors(req) + bio_sectors(bio) > 1759 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1760 goto no_merge; 1761 1762 req->biotail->bi_next = bio; 1763 req->biotail = bio; 1764 req->__data_len += bio->bi_iter.bi_size; 1765 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1766 req->nr_phys_segments = segments + 1; 1767 1768 blk_account_io_start(req, false); 1769 return true; 1770 no_merge: 1771 req_set_nomerge(q, req); 1772 return false; 1773 } 1774 1775 /** 1776 * blk_attempt_plug_merge - try to merge with %current's plugged list 1777 * @q: request_queue new bio is being queued at 1778 * @bio: new bio being queued 1779 * @request_count: out parameter for number of traversed plugged requests 1780 * @same_queue_rq: pointer to &struct request that gets filled in when 1781 * another request associated with @q is found on the plug list 1782 * (optional, may be %NULL) 1783 * 1784 * Determine whether @bio being queued on @q can be merged with a request 1785 * on %current's plugged list. Returns %true if merge was successful, 1786 * otherwise %false. 1787 * 1788 * Plugging coalesces IOs from the same issuer for the same purpose without 1789 * going through @q->queue_lock. As such it's more of an issuing mechanism 1790 * than scheduling, and the request, while may have elvpriv data, is not 1791 * added on the elevator at this point. In addition, we don't have 1792 * reliable access to the elevator outside queue lock. Only check basic 1793 * merging parameters without querying the elevator. 1794 * 1795 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1796 */ 1797 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1798 unsigned int *request_count, 1799 struct request **same_queue_rq) 1800 { 1801 struct blk_plug *plug; 1802 struct request *rq; 1803 struct list_head *plug_list; 1804 1805 plug = current->plug; 1806 if (!plug) 1807 return false; 1808 *request_count = 0; 1809 1810 if (q->mq_ops) 1811 plug_list = &plug->mq_list; 1812 else 1813 plug_list = &plug->list; 1814 1815 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1816 bool merged = false; 1817 1818 if (rq->q == q) { 1819 (*request_count)++; 1820 /* 1821 * Only blk-mq multiple hardware queues case checks the 1822 * rq in the same queue, there should be only one such 1823 * rq in a queue 1824 **/ 1825 if (same_queue_rq) 1826 *same_queue_rq = rq; 1827 } 1828 1829 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1830 continue; 1831 1832 switch (blk_try_merge(rq, bio)) { 1833 case ELEVATOR_BACK_MERGE: 1834 merged = bio_attempt_back_merge(q, rq, bio); 1835 break; 1836 case ELEVATOR_FRONT_MERGE: 1837 merged = bio_attempt_front_merge(q, rq, bio); 1838 break; 1839 case ELEVATOR_DISCARD_MERGE: 1840 merged = bio_attempt_discard_merge(q, rq, bio); 1841 break; 1842 default: 1843 break; 1844 } 1845 1846 if (merged) 1847 return true; 1848 } 1849 1850 return false; 1851 } 1852 1853 unsigned int blk_plug_queued_count(struct request_queue *q) 1854 { 1855 struct blk_plug *plug; 1856 struct request *rq; 1857 struct list_head *plug_list; 1858 unsigned int ret = 0; 1859 1860 plug = current->plug; 1861 if (!plug) 1862 goto out; 1863 1864 if (q->mq_ops) 1865 plug_list = &plug->mq_list; 1866 else 1867 plug_list = &plug->list; 1868 1869 list_for_each_entry(rq, plug_list, queuelist) { 1870 if (rq->q == q) 1871 ret++; 1872 } 1873 out: 1874 return ret; 1875 } 1876 1877 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1878 { 1879 struct io_context *ioc = rq_ioc(bio); 1880 1881 if (bio->bi_opf & REQ_RAHEAD) 1882 req->cmd_flags |= REQ_FAILFAST_MASK; 1883 1884 req->__sector = bio->bi_iter.bi_sector; 1885 if (ioprio_valid(bio_prio(bio))) 1886 req->ioprio = bio_prio(bio); 1887 else if (ioc) 1888 req->ioprio = ioc->ioprio; 1889 else 1890 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1891 req->write_hint = bio->bi_write_hint; 1892 blk_rq_bio_prep(req->q, req, bio); 1893 } 1894 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1895 1896 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1897 { 1898 struct blk_plug *plug; 1899 int where = ELEVATOR_INSERT_SORT; 1900 struct request *req, *free; 1901 unsigned int request_count = 0; 1902 unsigned int wb_acct; 1903 1904 /* 1905 * low level driver can indicate that it wants pages above a 1906 * certain limit bounced to low memory (ie for highmem, or even 1907 * ISA dma in theory) 1908 */ 1909 blk_queue_bounce(q, &bio); 1910 1911 blk_queue_split(q, &bio); 1912 1913 if (!bio_integrity_prep(bio)) 1914 return BLK_QC_T_NONE; 1915 1916 if (op_is_flush(bio->bi_opf)) { 1917 spin_lock_irq(q->queue_lock); 1918 where = ELEVATOR_INSERT_FLUSH; 1919 goto get_rq; 1920 } 1921 1922 /* 1923 * Check if we can merge with the plugged list before grabbing 1924 * any locks. 1925 */ 1926 if (!blk_queue_nomerges(q)) { 1927 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1928 return BLK_QC_T_NONE; 1929 } else 1930 request_count = blk_plug_queued_count(q); 1931 1932 spin_lock_irq(q->queue_lock); 1933 1934 switch (elv_merge(q, &req, bio)) { 1935 case ELEVATOR_BACK_MERGE: 1936 if (!bio_attempt_back_merge(q, req, bio)) 1937 break; 1938 elv_bio_merged(q, req, bio); 1939 free = attempt_back_merge(q, req); 1940 if (free) 1941 __blk_put_request(q, free); 1942 else 1943 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 1944 goto out_unlock; 1945 case ELEVATOR_FRONT_MERGE: 1946 if (!bio_attempt_front_merge(q, req, bio)) 1947 break; 1948 elv_bio_merged(q, req, bio); 1949 free = attempt_front_merge(q, req); 1950 if (free) 1951 __blk_put_request(q, free); 1952 else 1953 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 1954 goto out_unlock; 1955 default: 1956 break; 1957 } 1958 1959 get_rq: 1960 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1961 1962 /* 1963 * Grab a free request. This is might sleep but can not fail. 1964 * Returns with the queue unlocked. 1965 */ 1966 blk_queue_enter_live(q); 1967 req = get_request(q, bio->bi_opf, bio, 0); 1968 if (IS_ERR(req)) { 1969 blk_queue_exit(q); 1970 __wbt_done(q->rq_wb, wb_acct); 1971 if (PTR_ERR(req) == -ENOMEM) 1972 bio->bi_status = BLK_STS_RESOURCE; 1973 else 1974 bio->bi_status = BLK_STS_IOERR; 1975 bio_endio(bio); 1976 goto out_unlock; 1977 } 1978 1979 wbt_track(&req->issue_stat, wb_acct); 1980 1981 /* 1982 * After dropping the lock and possibly sleeping here, our request 1983 * may now be mergeable after it had proven unmergeable (above). 1984 * We don't worry about that case for efficiency. It won't happen 1985 * often, and the elevators are able to handle it. 1986 */ 1987 blk_init_request_from_bio(req, bio); 1988 1989 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1990 req->cpu = raw_smp_processor_id(); 1991 1992 plug = current->plug; 1993 if (plug) { 1994 /* 1995 * If this is the first request added after a plug, fire 1996 * of a plug trace. 1997 * 1998 * @request_count may become stale because of schedule 1999 * out, so check plug list again. 2000 */ 2001 if (!request_count || list_empty(&plug->list)) 2002 trace_block_plug(q); 2003 else { 2004 struct request *last = list_entry_rq(plug->list.prev); 2005 if (request_count >= BLK_MAX_REQUEST_COUNT || 2006 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 2007 blk_flush_plug_list(plug, false); 2008 trace_block_plug(q); 2009 } 2010 } 2011 list_add_tail(&req->queuelist, &plug->list); 2012 blk_account_io_start(req, true); 2013 } else { 2014 spin_lock_irq(q->queue_lock); 2015 add_acct_request(q, req, where); 2016 __blk_run_queue(q); 2017 out_unlock: 2018 spin_unlock_irq(q->queue_lock); 2019 } 2020 2021 return BLK_QC_T_NONE; 2022 } 2023 2024 static void handle_bad_sector(struct bio *bio) 2025 { 2026 char b[BDEVNAME_SIZE]; 2027 2028 printk(KERN_INFO "attempt to access beyond end of device\n"); 2029 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 2030 bio_devname(bio, b), bio->bi_opf, 2031 (unsigned long long)bio_end_sector(bio), 2032 (long long)get_capacity(bio->bi_disk)); 2033 } 2034 2035 #ifdef CONFIG_FAIL_MAKE_REQUEST 2036 2037 static DECLARE_FAULT_ATTR(fail_make_request); 2038 2039 static int __init setup_fail_make_request(char *str) 2040 { 2041 return setup_fault_attr(&fail_make_request, str); 2042 } 2043 __setup("fail_make_request=", setup_fail_make_request); 2044 2045 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 2046 { 2047 return part->make_it_fail && should_fail(&fail_make_request, bytes); 2048 } 2049 2050 static int __init fail_make_request_debugfs(void) 2051 { 2052 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 2053 NULL, &fail_make_request); 2054 2055 return PTR_ERR_OR_ZERO(dir); 2056 } 2057 2058 late_initcall(fail_make_request_debugfs); 2059 2060 #else /* CONFIG_FAIL_MAKE_REQUEST */ 2061 2062 static inline bool should_fail_request(struct hd_struct *part, 2063 unsigned int bytes) 2064 { 2065 return false; 2066 } 2067 2068 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 2069 2070 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 2071 { 2072 if (part->policy && op_is_write(bio_op(bio))) { 2073 char b[BDEVNAME_SIZE]; 2074 2075 printk(KERN_ERR 2076 "generic_make_request: Trying to write " 2077 "to read-only block-device %s (partno %d)\n", 2078 bio_devname(bio, b), part->partno); 2079 return true; 2080 } 2081 2082 return false; 2083 } 2084 2085 /* 2086 * Remap block n of partition p to block n+start(p) of the disk. 2087 */ 2088 static inline int blk_partition_remap(struct bio *bio) 2089 { 2090 struct hd_struct *p; 2091 int ret = 0; 2092 2093 rcu_read_lock(); 2094 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 2095 if (unlikely(!p || should_fail_request(p, bio->bi_iter.bi_size) || 2096 bio_check_ro(bio, p))) { 2097 ret = -EIO; 2098 goto out; 2099 } 2100 2101 /* 2102 * Zone reset does not include bi_size so bio_sectors() is always 0. 2103 * Include a test for the reset op code and perform the remap if needed. 2104 */ 2105 if (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET) 2106 goto out; 2107 2108 bio->bi_iter.bi_sector += p->start_sect; 2109 bio->bi_partno = 0; 2110 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 2111 bio->bi_iter.bi_sector - p->start_sect); 2112 2113 out: 2114 rcu_read_unlock(); 2115 return ret; 2116 } 2117 2118 /* 2119 * Check whether this bio extends beyond the end of the device. 2120 */ 2121 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 2122 { 2123 sector_t maxsector; 2124 2125 if (!nr_sectors) 2126 return 0; 2127 2128 /* Test device or partition size, when known. */ 2129 maxsector = get_capacity(bio->bi_disk); 2130 if (maxsector) { 2131 sector_t sector = bio->bi_iter.bi_sector; 2132 2133 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 2134 /* 2135 * This may well happen - the kernel calls bread() 2136 * without checking the size of the device, e.g., when 2137 * mounting a device. 2138 */ 2139 handle_bad_sector(bio); 2140 return 1; 2141 } 2142 } 2143 2144 return 0; 2145 } 2146 2147 static noinline_for_stack bool 2148 generic_make_request_checks(struct bio *bio) 2149 { 2150 struct request_queue *q; 2151 int nr_sectors = bio_sectors(bio); 2152 blk_status_t status = BLK_STS_IOERR; 2153 char b[BDEVNAME_SIZE]; 2154 2155 might_sleep(); 2156 2157 if (bio_check_eod(bio, nr_sectors)) 2158 goto end_io; 2159 2160 q = bio->bi_disk->queue; 2161 if (unlikely(!q)) { 2162 printk(KERN_ERR 2163 "generic_make_request: Trying to access " 2164 "nonexistent block-device %s (%Lu)\n", 2165 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 2166 goto end_io; 2167 } 2168 2169 /* 2170 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2171 * if queue is not a request based queue. 2172 */ 2173 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2174 goto not_supported; 2175 2176 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 2177 goto end_io; 2178 2179 if (!bio->bi_partno) { 2180 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 2181 goto end_io; 2182 } else { 2183 if (blk_partition_remap(bio)) 2184 goto end_io; 2185 } 2186 2187 if (bio_check_eod(bio, nr_sectors)) 2188 goto end_io; 2189 2190 /* 2191 * Filter flush bio's early so that make_request based 2192 * drivers without flush support don't have to worry 2193 * about them. 2194 */ 2195 if (op_is_flush(bio->bi_opf) && 2196 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2197 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2198 if (!nr_sectors) { 2199 status = BLK_STS_OK; 2200 goto end_io; 2201 } 2202 } 2203 2204 switch (bio_op(bio)) { 2205 case REQ_OP_DISCARD: 2206 if (!blk_queue_discard(q)) 2207 goto not_supported; 2208 break; 2209 case REQ_OP_SECURE_ERASE: 2210 if (!blk_queue_secure_erase(q)) 2211 goto not_supported; 2212 break; 2213 case REQ_OP_WRITE_SAME: 2214 if (!q->limits.max_write_same_sectors) 2215 goto not_supported; 2216 break; 2217 case REQ_OP_ZONE_REPORT: 2218 case REQ_OP_ZONE_RESET: 2219 if (!blk_queue_is_zoned(q)) 2220 goto not_supported; 2221 break; 2222 case REQ_OP_WRITE_ZEROES: 2223 if (!q->limits.max_write_zeroes_sectors) 2224 goto not_supported; 2225 break; 2226 default: 2227 break; 2228 } 2229 2230 /* 2231 * Various block parts want %current->io_context and lazy ioc 2232 * allocation ends up trading a lot of pain for a small amount of 2233 * memory. Just allocate it upfront. This may fail and block 2234 * layer knows how to live with it. 2235 */ 2236 create_io_context(GFP_ATOMIC, q->node); 2237 2238 if (!blkcg_bio_issue_check(q, bio)) 2239 return false; 2240 2241 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2242 trace_block_bio_queue(q, bio); 2243 /* Now that enqueuing has been traced, we need to trace 2244 * completion as well. 2245 */ 2246 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2247 } 2248 return true; 2249 2250 not_supported: 2251 status = BLK_STS_NOTSUPP; 2252 end_io: 2253 bio->bi_status = status; 2254 bio_endio(bio); 2255 return false; 2256 } 2257 2258 /** 2259 * generic_make_request - hand a buffer to its device driver for I/O 2260 * @bio: The bio describing the location in memory and on the device. 2261 * 2262 * generic_make_request() is used to make I/O requests of block 2263 * devices. It is passed a &struct bio, which describes the I/O that needs 2264 * to be done. 2265 * 2266 * generic_make_request() does not return any status. The 2267 * success/failure status of the request, along with notification of 2268 * completion, is delivered asynchronously through the bio->bi_end_io 2269 * function described (one day) else where. 2270 * 2271 * The caller of generic_make_request must make sure that bi_io_vec 2272 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2273 * set to describe the device address, and the 2274 * bi_end_io and optionally bi_private are set to describe how 2275 * completion notification should be signaled. 2276 * 2277 * generic_make_request and the drivers it calls may use bi_next if this 2278 * bio happens to be merged with someone else, and may resubmit the bio to 2279 * a lower device by calling into generic_make_request recursively, which 2280 * means the bio should NOT be touched after the call to ->make_request_fn. 2281 */ 2282 blk_qc_t generic_make_request(struct bio *bio) 2283 { 2284 /* 2285 * bio_list_on_stack[0] contains bios submitted by the current 2286 * make_request_fn. 2287 * bio_list_on_stack[1] contains bios that were submitted before 2288 * the current make_request_fn, but that haven't been processed 2289 * yet. 2290 */ 2291 struct bio_list bio_list_on_stack[2]; 2292 blk_qc_t ret = BLK_QC_T_NONE; 2293 2294 if (!generic_make_request_checks(bio)) 2295 goto out; 2296 2297 /* 2298 * We only want one ->make_request_fn to be active at a time, else 2299 * stack usage with stacked devices could be a problem. So use 2300 * current->bio_list to keep a list of requests submited by a 2301 * make_request_fn function. current->bio_list is also used as a 2302 * flag to say if generic_make_request is currently active in this 2303 * task or not. If it is NULL, then no make_request is active. If 2304 * it is non-NULL, then a make_request is active, and new requests 2305 * should be added at the tail 2306 */ 2307 if (current->bio_list) { 2308 bio_list_add(¤t->bio_list[0], bio); 2309 goto out; 2310 } 2311 2312 /* following loop may be a bit non-obvious, and so deserves some 2313 * explanation. 2314 * Before entering the loop, bio->bi_next is NULL (as all callers 2315 * ensure that) so we have a list with a single bio. 2316 * We pretend that we have just taken it off a longer list, so 2317 * we assign bio_list to a pointer to the bio_list_on_stack, 2318 * thus initialising the bio_list of new bios to be 2319 * added. ->make_request() may indeed add some more bios 2320 * through a recursive call to generic_make_request. If it 2321 * did, we find a non-NULL value in bio_list and re-enter the loop 2322 * from the top. In this case we really did just take the bio 2323 * of the top of the list (no pretending) and so remove it from 2324 * bio_list, and call into ->make_request() again. 2325 */ 2326 BUG_ON(bio->bi_next); 2327 bio_list_init(&bio_list_on_stack[0]); 2328 current->bio_list = bio_list_on_stack; 2329 do { 2330 struct request_queue *q = bio->bi_disk->queue; 2331 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ? 2332 BLK_MQ_REQ_NOWAIT : 0; 2333 2334 if (likely(blk_queue_enter(q, flags) == 0)) { 2335 struct bio_list lower, same; 2336 2337 /* Create a fresh bio_list for all subordinate requests */ 2338 bio_list_on_stack[1] = bio_list_on_stack[0]; 2339 bio_list_init(&bio_list_on_stack[0]); 2340 ret = q->make_request_fn(q, bio); 2341 2342 blk_queue_exit(q); 2343 2344 /* sort new bios into those for a lower level 2345 * and those for the same level 2346 */ 2347 bio_list_init(&lower); 2348 bio_list_init(&same); 2349 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2350 if (q == bio->bi_disk->queue) 2351 bio_list_add(&same, bio); 2352 else 2353 bio_list_add(&lower, bio); 2354 /* now assemble so we handle the lowest level first */ 2355 bio_list_merge(&bio_list_on_stack[0], &lower); 2356 bio_list_merge(&bio_list_on_stack[0], &same); 2357 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2358 } else { 2359 if (unlikely(!blk_queue_dying(q) && 2360 (bio->bi_opf & REQ_NOWAIT))) 2361 bio_wouldblock_error(bio); 2362 else 2363 bio_io_error(bio); 2364 } 2365 bio = bio_list_pop(&bio_list_on_stack[0]); 2366 } while (bio); 2367 current->bio_list = NULL; /* deactivate */ 2368 2369 out: 2370 return ret; 2371 } 2372 EXPORT_SYMBOL(generic_make_request); 2373 2374 /** 2375 * direct_make_request - hand a buffer directly to its device driver for I/O 2376 * @bio: The bio describing the location in memory and on the device. 2377 * 2378 * This function behaves like generic_make_request(), but does not protect 2379 * against recursion. Must only be used if the called driver is known 2380 * to not call generic_make_request (or direct_make_request) again from 2381 * its make_request function. (Calling direct_make_request again from 2382 * a workqueue is perfectly fine as that doesn't recurse). 2383 */ 2384 blk_qc_t direct_make_request(struct bio *bio) 2385 { 2386 struct request_queue *q = bio->bi_disk->queue; 2387 bool nowait = bio->bi_opf & REQ_NOWAIT; 2388 blk_qc_t ret; 2389 2390 if (!generic_make_request_checks(bio)) 2391 return BLK_QC_T_NONE; 2392 2393 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 2394 if (nowait && !blk_queue_dying(q)) 2395 bio->bi_status = BLK_STS_AGAIN; 2396 else 2397 bio->bi_status = BLK_STS_IOERR; 2398 bio_endio(bio); 2399 return BLK_QC_T_NONE; 2400 } 2401 2402 ret = q->make_request_fn(q, bio); 2403 blk_queue_exit(q); 2404 return ret; 2405 } 2406 EXPORT_SYMBOL_GPL(direct_make_request); 2407 2408 /** 2409 * submit_bio - submit a bio to the block device layer for I/O 2410 * @bio: The &struct bio which describes the I/O 2411 * 2412 * submit_bio() is very similar in purpose to generic_make_request(), and 2413 * uses that function to do most of the work. Both are fairly rough 2414 * interfaces; @bio must be presetup and ready for I/O. 2415 * 2416 */ 2417 blk_qc_t submit_bio(struct bio *bio) 2418 { 2419 /* 2420 * If it's a regular read/write or a barrier with data attached, 2421 * go through the normal accounting stuff before submission. 2422 */ 2423 if (bio_has_data(bio)) { 2424 unsigned int count; 2425 2426 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2427 count = queue_logical_block_size(bio->bi_disk->queue); 2428 else 2429 count = bio_sectors(bio); 2430 2431 if (op_is_write(bio_op(bio))) { 2432 count_vm_events(PGPGOUT, count); 2433 } else { 2434 task_io_account_read(bio->bi_iter.bi_size); 2435 count_vm_events(PGPGIN, count); 2436 } 2437 2438 if (unlikely(block_dump)) { 2439 char b[BDEVNAME_SIZE]; 2440 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2441 current->comm, task_pid_nr(current), 2442 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2443 (unsigned long long)bio->bi_iter.bi_sector, 2444 bio_devname(bio, b), count); 2445 } 2446 } 2447 2448 return generic_make_request(bio); 2449 } 2450 EXPORT_SYMBOL(submit_bio); 2451 2452 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 2453 { 2454 if (!q->poll_fn || !blk_qc_t_valid(cookie)) 2455 return false; 2456 2457 if (current->plug) 2458 blk_flush_plug_list(current->plug, false); 2459 return q->poll_fn(q, cookie); 2460 } 2461 EXPORT_SYMBOL_GPL(blk_poll); 2462 2463 /** 2464 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2465 * for new the queue limits 2466 * @q: the queue 2467 * @rq: the request being checked 2468 * 2469 * Description: 2470 * @rq may have been made based on weaker limitations of upper-level queues 2471 * in request stacking drivers, and it may violate the limitation of @q. 2472 * Since the block layer and the underlying device driver trust @rq 2473 * after it is inserted to @q, it should be checked against @q before 2474 * the insertion using this generic function. 2475 * 2476 * Request stacking drivers like request-based dm may change the queue 2477 * limits when retrying requests on other queues. Those requests need 2478 * to be checked against the new queue limits again during dispatch. 2479 */ 2480 static int blk_cloned_rq_check_limits(struct request_queue *q, 2481 struct request *rq) 2482 { 2483 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2484 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2485 return -EIO; 2486 } 2487 2488 /* 2489 * queue's settings related to segment counting like q->bounce_pfn 2490 * may differ from that of other stacking queues. 2491 * Recalculate it to check the request correctly on this queue's 2492 * limitation. 2493 */ 2494 blk_recalc_rq_segments(rq); 2495 if (rq->nr_phys_segments > queue_max_segments(q)) { 2496 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2497 return -EIO; 2498 } 2499 2500 return 0; 2501 } 2502 2503 /** 2504 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2505 * @q: the queue to submit the request 2506 * @rq: the request being queued 2507 */ 2508 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2509 { 2510 unsigned long flags; 2511 int where = ELEVATOR_INSERT_BACK; 2512 2513 if (blk_cloned_rq_check_limits(q, rq)) 2514 return BLK_STS_IOERR; 2515 2516 if (rq->rq_disk && 2517 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2518 return BLK_STS_IOERR; 2519 2520 if (q->mq_ops) { 2521 if (blk_queue_io_stat(q)) 2522 blk_account_io_start(rq, true); 2523 /* 2524 * Since we have a scheduler attached on the top device, 2525 * bypass a potential scheduler on the bottom device for 2526 * insert. 2527 */ 2528 return blk_mq_request_issue_directly(rq); 2529 } 2530 2531 spin_lock_irqsave(q->queue_lock, flags); 2532 if (unlikely(blk_queue_dying(q))) { 2533 spin_unlock_irqrestore(q->queue_lock, flags); 2534 return BLK_STS_IOERR; 2535 } 2536 2537 /* 2538 * Submitting request must be dequeued before calling this function 2539 * because it will be linked to another request_queue 2540 */ 2541 BUG_ON(blk_queued_rq(rq)); 2542 2543 if (op_is_flush(rq->cmd_flags)) 2544 where = ELEVATOR_INSERT_FLUSH; 2545 2546 add_acct_request(q, rq, where); 2547 if (where == ELEVATOR_INSERT_FLUSH) 2548 __blk_run_queue(q); 2549 spin_unlock_irqrestore(q->queue_lock, flags); 2550 2551 return BLK_STS_OK; 2552 } 2553 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2554 2555 /** 2556 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2557 * @rq: request to examine 2558 * 2559 * Description: 2560 * A request could be merge of IOs which require different failure 2561 * handling. This function determines the number of bytes which 2562 * can be failed from the beginning of the request without 2563 * crossing into area which need to be retried further. 2564 * 2565 * Return: 2566 * The number of bytes to fail. 2567 */ 2568 unsigned int blk_rq_err_bytes(const struct request *rq) 2569 { 2570 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2571 unsigned int bytes = 0; 2572 struct bio *bio; 2573 2574 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2575 return blk_rq_bytes(rq); 2576 2577 /* 2578 * Currently the only 'mixing' which can happen is between 2579 * different fastfail types. We can safely fail portions 2580 * which have all the failfast bits that the first one has - 2581 * the ones which are at least as eager to fail as the first 2582 * one. 2583 */ 2584 for (bio = rq->bio; bio; bio = bio->bi_next) { 2585 if ((bio->bi_opf & ff) != ff) 2586 break; 2587 bytes += bio->bi_iter.bi_size; 2588 } 2589 2590 /* this could lead to infinite loop */ 2591 BUG_ON(blk_rq_bytes(rq) && !bytes); 2592 return bytes; 2593 } 2594 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2595 2596 void blk_account_io_completion(struct request *req, unsigned int bytes) 2597 { 2598 if (blk_do_io_stat(req)) { 2599 const int rw = rq_data_dir(req); 2600 struct hd_struct *part; 2601 int cpu; 2602 2603 cpu = part_stat_lock(); 2604 part = req->part; 2605 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2606 part_stat_unlock(); 2607 } 2608 } 2609 2610 void blk_account_io_done(struct request *req) 2611 { 2612 /* 2613 * Account IO completion. flush_rq isn't accounted as a 2614 * normal IO on queueing nor completion. Accounting the 2615 * containing request is enough. 2616 */ 2617 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2618 unsigned long duration = jiffies - req->start_time; 2619 const int rw = rq_data_dir(req); 2620 struct hd_struct *part; 2621 int cpu; 2622 2623 cpu = part_stat_lock(); 2624 part = req->part; 2625 2626 part_stat_inc(cpu, part, ios[rw]); 2627 part_stat_add(cpu, part, ticks[rw], duration); 2628 part_round_stats(req->q, cpu, part); 2629 part_dec_in_flight(req->q, part, rw); 2630 2631 hd_struct_put(part); 2632 part_stat_unlock(); 2633 } 2634 } 2635 2636 #ifdef CONFIG_PM 2637 /* 2638 * Don't process normal requests when queue is suspended 2639 * or in the process of suspending/resuming 2640 */ 2641 static bool blk_pm_allow_request(struct request *rq) 2642 { 2643 switch (rq->q->rpm_status) { 2644 case RPM_RESUMING: 2645 case RPM_SUSPENDING: 2646 return rq->rq_flags & RQF_PM; 2647 case RPM_SUSPENDED: 2648 return false; 2649 } 2650 2651 return true; 2652 } 2653 #else 2654 static bool blk_pm_allow_request(struct request *rq) 2655 { 2656 return true; 2657 } 2658 #endif 2659 2660 void blk_account_io_start(struct request *rq, bool new_io) 2661 { 2662 struct hd_struct *part; 2663 int rw = rq_data_dir(rq); 2664 int cpu; 2665 2666 if (!blk_do_io_stat(rq)) 2667 return; 2668 2669 cpu = part_stat_lock(); 2670 2671 if (!new_io) { 2672 part = rq->part; 2673 part_stat_inc(cpu, part, merges[rw]); 2674 } else { 2675 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2676 if (!hd_struct_try_get(part)) { 2677 /* 2678 * The partition is already being removed, 2679 * the request will be accounted on the disk only 2680 * 2681 * We take a reference on disk->part0 although that 2682 * partition will never be deleted, so we can treat 2683 * it as any other partition. 2684 */ 2685 part = &rq->rq_disk->part0; 2686 hd_struct_get(part); 2687 } 2688 part_round_stats(rq->q, cpu, part); 2689 part_inc_in_flight(rq->q, part, rw); 2690 rq->part = part; 2691 } 2692 2693 part_stat_unlock(); 2694 } 2695 2696 static struct request *elv_next_request(struct request_queue *q) 2697 { 2698 struct request *rq; 2699 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 2700 2701 WARN_ON_ONCE(q->mq_ops); 2702 2703 while (1) { 2704 list_for_each_entry(rq, &q->queue_head, queuelist) { 2705 if (blk_pm_allow_request(rq)) 2706 return rq; 2707 2708 if (rq->rq_flags & RQF_SOFTBARRIER) 2709 break; 2710 } 2711 2712 /* 2713 * Flush request is running and flush request isn't queueable 2714 * in the drive, we can hold the queue till flush request is 2715 * finished. Even we don't do this, driver can't dispatch next 2716 * requests and will requeue them. And this can improve 2717 * throughput too. For example, we have request flush1, write1, 2718 * flush 2. flush1 is dispatched, then queue is hold, write1 2719 * isn't inserted to queue. After flush1 is finished, flush2 2720 * will be dispatched. Since disk cache is already clean, 2721 * flush2 will be finished very soon, so looks like flush2 is 2722 * folded to flush1. 2723 * Since the queue is hold, a flag is set to indicate the queue 2724 * should be restarted later. Please see flush_end_io() for 2725 * details. 2726 */ 2727 if (fq->flush_pending_idx != fq->flush_running_idx && 2728 !queue_flush_queueable(q)) { 2729 fq->flush_queue_delayed = 1; 2730 return NULL; 2731 } 2732 if (unlikely(blk_queue_bypass(q)) || 2733 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0)) 2734 return NULL; 2735 } 2736 } 2737 2738 /** 2739 * blk_peek_request - peek at the top of a request queue 2740 * @q: request queue to peek at 2741 * 2742 * Description: 2743 * Return the request at the top of @q. The returned request 2744 * should be started using blk_start_request() before LLD starts 2745 * processing it. 2746 * 2747 * Return: 2748 * Pointer to the request at the top of @q if available. Null 2749 * otherwise. 2750 */ 2751 struct request *blk_peek_request(struct request_queue *q) 2752 { 2753 struct request *rq; 2754 int ret; 2755 2756 lockdep_assert_held(q->queue_lock); 2757 WARN_ON_ONCE(q->mq_ops); 2758 2759 while ((rq = elv_next_request(q)) != NULL) { 2760 if (!(rq->rq_flags & RQF_STARTED)) { 2761 /* 2762 * This is the first time the device driver 2763 * sees this request (possibly after 2764 * requeueing). Notify IO scheduler. 2765 */ 2766 if (rq->rq_flags & RQF_SORTED) 2767 elv_activate_rq(q, rq); 2768 2769 /* 2770 * just mark as started even if we don't start 2771 * it, a request that has been delayed should 2772 * not be passed by new incoming requests 2773 */ 2774 rq->rq_flags |= RQF_STARTED; 2775 trace_block_rq_issue(q, rq); 2776 } 2777 2778 if (!q->boundary_rq || q->boundary_rq == rq) { 2779 q->end_sector = rq_end_sector(rq); 2780 q->boundary_rq = NULL; 2781 } 2782 2783 if (rq->rq_flags & RQF_DONTPREP) 2784 break; 2785 2786 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2787 /* 2788 * make sure space for the drain appears we 2789 * know we can do this because max_hw_segments 2790 * has been adjusted to be one fewer than the 2791 * device can handle 2792 */ 2793 rq->nr_phys_segments++; 2794 } 2795 2796 if (!q->prep_rq_fn) 2797 break; 2798 2799 ret = q->prep_rq_fn(q, rq); 2800 if (ret == BLKPREP_OK) { 2801 break; 2802 } else if (ret == BLKPREP_DEFER) { 2803 /* 2804 * the request may have been (partially) prepped. 2805 * we need to keep this request in the front to 2806 * avoid resource deadlock. RQF_STARTED will 2807 * prevent other fs requests from passing this one. 2808 */ 2809 if (q->dma_drain_size && blk_rq_bytes(rq) && 2810 !(rq->rq_flags & RQF_DONTPREP)) { 2811 /* 2812 * remove the space for the drain we added 2813 * so that we don't add it again 2814 */ 2815 --rq->nr_phys_segments; 2816 } 2817 2818 rq = NULL; 2819 break; 2820 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2821 rq->rq_flags |= RQF_QUIET; 2822 /* 2823 * Mark this request as started so we don't trigger 2824 * any debug logic in the end I/O path. 2825 */ 2826 blk_start_request(rq); 2827 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2828 BLK_STS_TARGET : BLK_STS_IOERR); 2829 } else { 2830 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2831 break; 2832 } 2833 } 2834 2835 return rq; 2836 } 2837 EXPORT_SYMBOL(blk_peek_request); 2838 2839 static void blk_dequeue_request(struct request *rq) 2840 { 2841 struct request_queue *q = rq->q; 2842 2843 BUG_ON(list_empty(&rq->queuelist)); 2844 BUG_ON(ELV_ON_HASH(rq)); 2845 2846 list_del_init(&rq->queuelist); 2847 2848 /* 2849 * the time frame between a request being removed from the lists 2850 * and to it is freed is accounted as io that is in progress at 2851 * the driver side. 2852 */ 2853 if (blk_account_rq(rq)) { 2854 q->in_flight[rq_is_sync(rq)]++; 2855 set_io_start_time_ns(rq); 2856 } 2857 } 2858 2859 /** 2860 * blk_start_request - start request processing on the driver 2861 * @req: request to dequeue 2862 * 2863 * Description: 2864 * Dequeue @req and start timeout timer on it. This hands off the 2865 * request to the driver. 2866 */ 2867 void blk_start_request(struct request *req) 2868 { 2869 lockdep_assert_held(req->q->queue_lock); 2870 WARN_ON_ONCE(req->q->mq_ops); 2871 2872 blk_dequeue_request(req); 2873 2874 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2875 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req)); 2876 req->rq_flags |= RQF_STATS; 2877 wbt_issue(req->q->rq_wb, &req->issue_stat); 2878 } 2879 2880 BUG_ON(blk_rq_is_complete(req)); 2881 blk_add_timer(req); 2882 } 2883 EXPORT_SYMBOL(blk_start_request); 2884 2885 /** 2886 * blk_fetch_request - fetch a request from a request queue 2887 * @q: request queue to fetch a request from 2888 * 2889 * Description: 2890 * Return the request at the top of @q. The request is started on 2891 * return and LLD can start processing it immediately. 2892 * 2893 * Return: 2894 * Pointer to the request at the top of @q if available. Null 2895 * otherwise. 2896 */ 2897 struct request *blk_fetch_request(struct request_queue *q) 2898 { 2899 struct request *rq; 2900 2901 lockdep_assert_held(q->queue_lock); 2902 WARN_ON_ONCE(q->mq_ops); 2903 2904 rq = blk_peek_request(q); 2905 if (rq) 2906 blk_start_request(rq); 2907 return rq; 2908 } 2909 EXPORT_SYMBOL(blk_fetch_request); 2910 2911 /* 2912 * Steal bios from a request and add them to a bio list. 2913 * The request must not have been partially completed before. 2914 */ 2915 void blk_steal_bios(struct bio_list *list, struct request *rq) 2916 { 2917 if (rq->bio) { 2918 if (list->tail) 2919 list->tail->bi_next = rq->bio; 2920 else 2921 list->head = rq->bio; 2922 list->tail = rq->biotail; 2923 2924 rq->bio = NULL; 2925 rq->biotail = NULL; 2926 } 2927 2928 rq->__data_len = 0; 2929 } 2930 EXPORT_SYMBOL_GPL(blk_steal_bios); 2931 2932 /** 2933 * blk_update_request - Special helper function for request stacking drivers 2934 * @req: the request being processed 2935 * @error: block status code 2936 * @nr_bytes: number of bytes to complete @req 2937 * 2938 * Description: 2939 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2940 * the request structure even if @req doesn't have leftover. 2941 * If @req has leftover, sets it up for the next range of segments. 2942 * 2943 * This special helper function is only for request stacking drivers 2944 * (e.g. request-based dm) so that they can handle partial completion. 2945 * Actual device drivers should use blk_end_request instead. 2946 * 2947 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2948 * %false return from this function. 2949 * 2950 * Return: 2951 * %false - this request doesn't have any more data 2952 * %true - this request has more data 2953 **/ 2954 bool blk_update_request(struct request *req, blk_status_t error, 2955 unsigned int nr_bytes) 2956 { 2957 int total_bytes; 2958 2959 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 2960 2961 if (!req->bio) 2962 return false; 2963 2964 if (unlikely(error && !blk_rq_is_passthrough(req) && 2965 !(req->rq_flags & RQF_QUIET))) 2966 print_req_error(req, error); 2967 2968 blk_account_io_completion(req, nr_bytes); 2969 2970 total_bytes = 0; 2971 while (req->bio) { 2972 struct bio *bio = req->bio; 2973 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2974 2975 if (bio_bytes == bio->bi_iter.bi_size) 2976 req->bio = bio->bi_next; 2977 2978 /* Completion has already been traced */ 2979 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 2980 req_bio_endio(req, bio, bio_bytes, error); 2981 2982 total_bytes += bio_bytes; 2983 nr_bytes -= bio_bytes; 2984 2985 if (!nr_bytes) 2986 break; 2987 } 2988 2989 /* 2990 * completely done 2991 */ 2992 if (!req->bio) { 2993 /* 2994 * Reset counters so that the request stacking driver 2995 * can find how many bytes remain in the request 2996 * later. 2997 */ 2998 req->__data_len = 0; 2999 return false; 3000 } 3001 3002 req->__data_len -= total_bytes; 3003 3004 /* update sector only for requests with clear definition of sector */ 3005 if (!blk_rq_is_passthrough(req)) 3006 req->__sector += total_bytes >> 9; 3007 3008 /* mixed attributes always follow the first bio */ 3009 if (req->rq_flags & RQF_MIXED_MERGE) { 3010 req->cmd_flags &= ~REQ_FAILFAST_MASK; 3011 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 3012 } 3013 3014 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 3015 /* 3016 * If total number of sectors is less than the first segment 3017 * size, something has gone terribly wrong. 3018 */ 3019 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 3020 blk_dump_rq_flags(req, "request botched"); 3021 req->__data_len = blk_rq_cur_bytes(req); 3022 } 3023 3024 /* recalculate the number of segments */ 3025 blk_recalc_rq_segments(req); 3026 } 3027 3028 return true; 3029 } 3030 EXPORT_SYMBOL_GPL(blk_update_request); 3031 3032 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 3033 unsigned int nr_bytes, 3034 unsigned int bidi_bytes) 3035 { 3036 if (blk_update_request(rq, error, nr_bytes)) 3037 return true; 3038 3039 /* Bidi request must be completed as a whole */ 3040 if (unlikely(blk_bidi_rq(rq)) && 3041 blk_update_request(rq->next_rq, error, bidi_bytes)) 3042 return true; 3043 3044 if (blk_queue_add_random(rq->q)) 3045 add_disk_randomness(rq->rq_disk); 3046 3047 return false; 3048 } 3049 3050 /** 3051 * blk_unprep_request - unprepare a request 3052 * @req: the request 3053 * 3054 * This function makes a request ready for complete resubmission (or 3055 * completion). It happens only after all error handling is complete, 3056 * so represents the appropriate moment to deallocate any resources 3057 * that were allocated to the request in the prep_rq_fn. The queue 3058 * lock is held when calling this. 3059 */ 3060 void blk_unprep_request(struct request *req) 3061 { 3062 struct request_queue *q = req->q; 3063 3064 req->rq_flags &= ~RQF_DONTPREP; 3065 if (q->unprep_rq_fn) 3066 q->unprep_rq_fn(q, req); 3067 } 3068 EXPORT_SYMBOL_GPL(blk_unprep_request); 3069 3070 void blk_finish_request(struct request *req, blk_status_t error) 3071 { 3072 struct request_queue *q = req->q; 3073 3074 lockdep_assert_held(req->q->queue_lock); 3075 WARN_ON_ONCE(q->mq_ops); 3076 3077 if (req->rq_flags & RQF_STATS) 3078 blk_stat_add(req); 3079 3080 if (req->rq_flags & RQF_QUEUED) 3081 blk_queue_end_tag(q, req); 3082 3083 BUG_ON(blk_queued_rq(req)); 3084 3085 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 3086 laptop_io_completion(req->q->backing_dev_info); 3087 3088 blk_delete_timer(req); 3089 3090 if (req->rq_flags & RQF_DONTPREP) 3091 blk_unprep_request(req); 3092 3093 blk_account_io_done(req); 3094 3095 if (req->end_io) { 3096 wbt_done(req->q->rq_wb, &req->issue_stat); 3097 req->end_io(req, error); 3098 } else { 3099 if (blk_bidi_rq(req)) 3100 __blk_put_request(req->next_rq->q, req->next_rq); 3101 3102 __blk_put_request(q, req); 3103 } 3104 } 3105 EXPORT_SYMBOL(blk_finish_request); 3106 3107 /** 3108 * blk_end_bidi_request - Complete a bidi request 3109 * @rq: the request to complete 3110 * @error: block status code 3111 * @nr_bytes: number of bytes to complete @rq 3112 * @bidi_bytes: number of bytes to complete @rq->next_rq 3113 * 3114 * Description: 3115 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 3116 * Drivers that supports bidi can safely call this member for any 3117 * type of request, bidi or uni. In the later case @bidi_bytes is 3118 * just ignored. 3119 * 3120 * Return: 3121 * %false - we are done with this request 3122 * %true - still buffers pending for this request 3123 **/ 3124 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 3125 unsigned int nr_bytes, unsigned int bidi_bytes) 3126 { 3127 struct request_queue *q = rq->q; 3128 unsigned long flags; 3129 3130 WARN_ON_ONCE(q->mq_ops); 3131 3132 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3133 return true; 3134 3135 spin_lock_irqsave(q->queue_lock, flags); 3136 blk_finish_request(rq, error); 3137 spin_unlock_irqrestore(q->queue_lock, flags); 3138 3139 return false; 3140 } 3141 3142 /** 3143 * __blk_end_bidi_request - Complete a bidi request with queue lock held 3144 * @rq: the request to complete 3145 * @error: block status code 3146 * @nr_bytes: number of bytes to complete @rq 3147 * @bidi_bytes: number of bytes to complete @rq->next_rq 3148 * 3149 * Description: 3150 * Identical to blk_end_bidi_request() except that queue lock is 3151 * assumed to be locked on entry and remains so on return. 3152 * 3153 * Return: 3154 * %false - we are done with this request 3155 * %true - still buffers pending for this request 3156 **/ 3157 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 3158 unsigned int nr_bytes, unsigned int bidi_bytes) 3159 { 3160 lockdep_assert_held(rq->q->queue_lock); 3161 WARN_ON_ONCE(rq->q->mq_ops); 3162 3163 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3164 return true; 3165 3166 blk_finish_request(rq, error); 3167 3168 return false; 3169 } 3170 3171 /** 3172 * blk_end_request - Helper function for drivers to complete the request. 3173 * @rq: the request being processed 3174 * @error: block status code 3175 * @nr_bytes: number of bytes to complete 3176 * 3177 * Description: 3178 * Ends I/O on a number of bytes attached to @rq. 3179 * If @rq has leftover, sets it up for the next range of segments. 3180 * 3181 * Return: 3182 * %false - we are done with this request 3183 * %true - still buffers pending for this request 3184 **/ 3185 bool blk_end_request(struct request *rq, blk_status_t error, 3186 unsigned int nr_bytes) 3187 { 3188 WARN_ON_ONCE(rq->q->mq_ops); 3189 return blk_end_bidi_request(rq, error, nr_bytes, 0); 3190 } 3191 EXPORT_SYMBOL(blk_end_request); 3192 3193 /** 3194 * blk_end_request_all - Helper function for drives to finish the request. 3195 * @rq: the request to finish 3196 * @error: block status code 3197 * 3198 * Description: 3199 * Completely finish @rq. 3200 */ 3201 void blk_end_request_all(struct request *rq, blk_status_t error) 3202 { 3203 bool pending; 3204 unsigned int bidi_bytes = 0; 3205 3206 if (unlikely(blk_bidi_rq(rq))) 3207 bidi_bytes = blk_rq_bytes(rq->next_rq); 3208 3209 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3210 BUG_ON(pending); 3211 } 3212 EXPORT_SYMBOL(blk_end_request_all); 3213 3214 /** 3215 * __blk_end_request - Helper function for drivers to complete the request. 3216 * @rq: the request being processed 3217 * @error: block status code 3218 * @nr_bytes: number of bytes to complete 3219 * 3220 * Description: 3221 * Must be called with queue lock held unlike blk_end_request(). 3222 * 3223 * Return: 3224 * %false - we are done with this request 3225 * %true - still buffers pending for this request 3226 **/ 3227 bool __blk_end_request(struct request *rq, blk_status_t error, 3228 unsigned int nr_bytes) 3229 { 3230 lockdep_assert_held(rq->q->queue_lock); 3231 WARN_ON_ONCE(rq->q->mq_ops); 3232 3233 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 3234 } 3235 EXPORT_SYMBOL(__blk_end_request); 3236 3237 /** 3238 * __blk_end_request_all - Helper function for drives to finish the request. 3239 * @rq: the request to finish 3240 * @error: block status code 3241 * 3242 * Description: 3243 * Completely finish @rq. Must be called with queue lock held. 3244 */ 3245 void __blk_end_request_all(struct request *rq, blk_status_t error) 3246 { 3247 bool pending; 3248 unsigned int bidi_bytes = 0; 3249 3250 lockdep_assert_held(rq->q->queue_lock); 3251 WARN_ON_ONCE(rq->q->mq_ops); 3252 3253 if (unlikely(blk_bidi_rq(rq))) 3254 bidi_bytes = blk_rq_bytes(rq->next_rq); 3255 3256 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3257 BUG_ON(pending); 3258 } 3259 EXPORT_SYMBOL(__blk_end_request_all); 3260 3261 /** 3262 * __blk_end_request_cur - Helper function to finish the current request chunk. 3263 * @rq: the request to finish the current chunk for 3264 * @error: block status code 3265 * 3266 * Description: 3267 * Complete the current consecutively mapped chunk from @rq. Must 3268 * be called with queue lock held. 3269 * 3270 * Return: 3271 * %false - we are done with this request 3272 * %true - still buffers pending for this request 3273 */ 3274 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3275 { 3276 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3277 } 3278 EXPORT_SYMBOL(__blk_end_request_cur); 3279 3280 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3281 struct bio *bio) 3282 { 3283 if (bio_has_data(bio)) 3284 rq->nr_phys_segments = bio_phys_segments(q, bio); 3285 3286 rq->__data_len = bio->bi_iter.bi_size; 3287 rq->bio = rq->biotail = bio; 3288 3289 if (bio->bi_disk) 3290 rq->rq_disk = bio->bi_disk; 3291 } 3292 3293 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3294 /** 3295 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3296 * @rq: the request to be flushed 3297 * 3298 * Description: 3299 * Flush all pages in @rq. 3300 */ 3301 void rq_flush_dcache_pages(struct request *rq) 3302 { 3303 struct req_iterator iter; 3304 struct bio_vec bvec; 3305 3306 rq_for_each_segment(bvec, rq, iter) 3307 flush_dcache_page(bvec.bv_page); 3308 } 3309 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3310 #endif 3311 3312 /** 3313 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3314 * @q : the queue of the device being checked 3315 * 3316 * Description: 3317 * Check if underlying low-level drivers of a device are busy. 3318 * If the drivers want to export their busy state, they must set own 3319 * exporting function using blk_queue_lld_busy() first. 3320 * 3321 * Basically, this function is used only by request stacking drivers 3322 * to stop dispatching requests to underlying devices when underlying 3323 * devices are busy. This behavior helps more I/O merging on the queue 3324 * of the request stacking driver and prevents I/O throughput regression 3325 * on burst I/O load. 3326 * 3327 * Return: 3328 * 0 - Not busy (The request stacking driver should dispatch request) 3329 * 1 - Busy (The request stacking driver should stop dispatching request) 3330 */ 3331 int blk_lld_busy(struct request_queue *q) 3332 { 3333 if (q->lld_busy_fn) 3334 return q->lld_busy_fn(q); 3335 3336 return 0; 3337 } 3338 EXPORT_SYMBOL_GPL(blk_lld_busy); 3339 3340 /** 3341 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3342 * @rq: the clone request to be cleaned up 3343 * 3344 * Description: 3345 * Free all bios in @rq for a cloned request. 3346 */ 3347 void blk_rq_unprep_clone(struct request *rq) 3348 { 3349 struct bio *bio; 3350 3351 while ((bio = rq->bio) != NULL) { 3352 rq->bio = bio->bi_next; 3353 3354 bio_put(bio); 3355 } 3356 } 3357 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3358 3359 /* 3360 * Copy attributes of the original request to the clone request. 3361 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3362 */ 3363 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3364 { 3365 dst->cpu = src->cpu; 3366 dst->__sector = blk_rq_pos(src); 3367 dst->__data_len = blk_rq_bytes(src); 3368 dst->nr_phys_segments = src->nr_phys_segments; 3369 dst->ioprio = src->ioprio; 3370 dst->extra_len = src->extra_len; 3371 } 3372 3373 /** 3374 * blk_rq_prep_clone - Helper function to setup clone request 3375 * @rq: the request to be setup 3376 * @rq_src: original request to be cloned 3377 * @bs: bio_set that bios for clone are allocated from 3378 * @gfp_mask: memory allocation mask for bio 3379 * @bio_ctr: setup function to be called for each clone bio. 3380 * Returns %0 for success, non %0 for failure. 3381 * @data: private data to be passed to @bio_ctr 3382 * 3383 * Description: 3384 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3385 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3386 * are not copied, and copying such parts is the caller's responsibility. 3387 * Also, pages which the original bios are pointing to are not copied 3388 * and the cloned bios just point same pages. 3389 * So cloned bios must be completed before original bios, which means 3390 * the caller must complete @rq before @rq_src. 3391 */ 3392 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3393 struct bio_set *bs, gfp_t gfp_mask, 3394 int (*bio_ctr)(struct bio *, struct bio *, void *), 3395 void *data) 3396 { 3397 struct bio *bio, *bio_src; 3398 3399 if (!bs) 3400 bs = fs_bio_set; 3401 3402 __rq_for_each_bio(bio_src, rq_src) { 3403 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3404 if (!bio) 3405 goto free_and_out; 3406 3407 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3408 goto free_and_out; 3409 3410 if (rq->bio) { 3411 rq->biotail->bi_next = bio; 3412 rq->biotail = bio; 3413 } else 3414 rq->bio = rq->biotail = bio; 3415 } 3416 3417 __blk_rq_prep_clone(rq, rq_src); 3418 3419 return 0; 3420 3421 free_and_out: 3422 if (bio) 3423 bio_put(bio); 3424 blk_rq_unprep_clone(rq); 3425 3426 return -ENOMEM; 3427 } 3428 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3429 3430 int kblockd_schedule_work(struct work_struct *work) 3431 { 3432 return queue_work(kblockd_workqueue, work); 3433 } 3434 EXPORT_SYMBOL(kblockd_schedule_work); 3435 3436 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3437 { 3438 return queue_work_on(cpu, kblockd_workqueue, work); 3439 } 3440 EXPORT_SYMBOL(kblockd_schedule_work_on); 3441 3442 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3443 unsigned long delay) 3444 { 3445 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3446 } 3447 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3448 3449 /** 3450 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3451 * @plug: The &struct blk_plug that needs to be initialized 3452 * 3453 * Description: 3454 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3455 * pending I/O should the task end up blocking between blk_start_plug() and 3456 * blk_finish_plug(). This is important from a performance perspective, but 3457 * also ensures that we don't deadlock. For instance, if the task is blocking 3458 * for a memory allocation, memory reclaim could end up wanting to free a 3459 * page belonging to that request that is currently residing in our private 3460 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3461 * this kind of deadlock. 3462 */ 3463 void blk_start_plug(struct blk_plug *plug) 3464 { 3465 struct task_struct *tsk = current; 3466 3467 /* 3468 * If this is a nested plug, don't actually assign it. 3469 */ 3470 if (tsk->plug) 3471 return; 3472 3473 INIT_LIST_HEAD(&plug->list); 3474 INIT_LIST_HEAD(&plug->mq_list); 3475 INIT_LIST_HEAD(&plug->cb_list); 3476 /* 3477 * Store ordering should not be needed here, since a potential 3478 * preempt will imply a full memory barrier 3479 */ 3480 tsk->plug = plug; 3481 } 3482 EXPORT_SYMBOL(blk_start_plug); 3483 3484 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3485 { 3486 struct request *rqa = container_of(a, struct request, queuelist); 3487 struct request *rqb = container_of(b, struct request, queuelist); 3488 3489 return !(rqa->q < rqb->q || 3490 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3491 } 3492 3493 /* 3494 * If 'from_schedule' is true, then postpone the dispatch of requests 3495 * until a safe kblockd context. We due this to avoid accidental big 3496 * additional stack usage in driver dispatch, in places where the originally 3497 * plugger did not intend it. 3498 */ 3499 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3500 bool from_schedule) 3501 __releases(q->queue_lock) 3502 { 3503 lockdep_assert_held(q->queue_lock); 3504 3505 trace_block_unplug(q, depth, !from_schedule); 3506 3507 if (from_schedule) 3508 blk_run_queue_async(q); 3509 else 3510 __blk_run_queue(q); 3511 spin_unlock(q->queue_lock); 3512 } 3513 3514 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3515 { 3516 LIST_HEAD(callbacks); 3517 3518 while (!list_empty(&plug->cb_list)) { 3519 list_splice_init(&plug->cb_list, &callbacks); 3520 3521 while (!list_empty(&callbacks)) { 3522 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3523 struct blk_plug_cb, 3524 list); 3525 list_del(&cb->list); 3526 cb->callback(cb, from_schedule); 3527 } 3528 } 3529 } 3530 3531 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3532 int size) 3533 { 3534 struct blk_plug *plug = current->plug; 3535 struct blk_plug_cb *cb; 3536 3537 if (!plug) 3538 return NULL; 3539 3540 list_for_each_entry(cb, &plug->cb_list, list) 3541 if (cb->callback == unplug && cb->data == data) 3542 return cb; 3543 3544 /* Not currently on the callback list */ 3545 BUG_ON(size < sizeof(*cb)); 3546 cb = kzalloc(size, GFP_ATOMIC); 3547 if (cb) { 3548 cb->data = data; 3549 cb->callback = unplug; 3550 list_add(&cb->list, &plug->cb_list); 3551 } 3552 return cb; 3553 } 3554 EXPORT_SYMBOL(blk_check_plugged); 3555 3556 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3557 { 3558 struct request_queue *q; 3559 unsigned long flags; 3560 struct request *rq; 3561 LIST_HEAD(list); 3562 unsigned int depth; 3563 3564 flush_plug_callbacks(plug, from_schedule); 3565 3566 if (!list_empty(&plug->mq_list)) 3567 blk_mq_flush_plug_list(plug, from_schedule); 3568 3569 if (list_empty(&plug->list)) 3570 return; 3571 3572 list_splice_init(&plug->list, &list); 3573 3574 list_sort(NULL, &list, plug_rq_cmp); 3575 3576 q = NULL; 3577 depth = 0; 3578 3579 /* 3580 * Save and disable interrupts here, to avoid doing it for every 3581 * queue lock we have to take. 3582 */ 3583 local_irq_save(flags); 3584 while (!list_empty(&list)) { 3585 rq = list_entry_rq(list.next); 3586 list_del_init(&rq->queuelist); 3587 BUG_ON(!rq->q); 3588 if (rq->q != q) { 3589 /* 3590 * This drops the queue lock 3591 */ 3592 if (q) 3593 queue_unplugged(q, depth, from_schedule); 3594 q = rq->q; 3595 depth = 0; 3596 spin_lock(q->queue_lock); 3597 } 3598 3599 /* 3600 * Short-circuit if @q is dead 3601 */ 3602 if (unlikely(blk_queue_dying(q))) { 3603 __blk_end_request_all(rq, BLK_STS_IOERR); 3604 continue; 3605 } 3606 3607 /* 3608 * rq is already accounted, so use raw insert 3609 */ 3610 if (op_is_flush(rq->cmd_flags)) 3611 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3612 else 3613 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3614 3615 depth++; 3616 } 3617 3618 /* 3619 * This drops the queue lock 3620 */ 3621 if (q) 3622 queue_unplugged(q, depth, from_schedule); 3623 3624 local_irq_restore(flags); 3625 } 3626 3627 void blk_finish_plug(struct blk_plug *plug) 3628 { 3629 if (plug != current->plug) 3630 return; 3631 blk_flush_plug_list(plug, false); 3632 3633 current->plug = NULL; 3634 } 3635 EXPORT_SYMBOL(blk_finish_plug); 3636 3637 #ifdef CONFIG_PM 3638 /** 3639 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3640 * @q: the queue of the device 3641 * @dev: the device the queue belongs to 3642 * 3643 * Description: 3644 * Initialize runtime-PM-related fields for @q and start auto suspend for 3645 * @dev. Drivers that want to take advantage of request-based runtime PM 3646 * should call this function after @dev has been initialized, and its 3647 * request queue @q has been allocated, and runtime PM for it can not happen 3648 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3649 * cases, driver should call this function before any I/O has taken place. 3650 * 3651 * This function takes care of setting up using auto suspend for the device, 3652 * the autosuspend delay is set to -1 to make runtime suspend impossible 3653 * until an updated value is either set by user or by driver. Drivers do 3654 * not need to touch other autosuspend settings. 3655 * 3656 * The block layer runtime PM is request based, so only works for drivers 3657 * that use request as their IO unit instead of those directly use bio's. 3658 */ 3659 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3660 { 3661 /* not support for RQF_PM and ->rpm_status in blk-mq yet */ 3662 if (q->mq_ops) 3663 return; 3664 3665 q->dev = dev; 3666 q->rpm_status = RPM_ACTIVE; 3667 pm_runtime_set_autosuspend_delay(q->dev, -1); 3668 pm_runtime_use_autosuspend(q->dev); 3669 } 3670 EXPORT_SYMBOL(blk_pm_runtime_init); 3671 3672 /** 3673 * blk_pre_runtime_suspend - Pre runtime suspend check 3674 * @q: the queue of the device 3675 * 3676 * Description: 3677 * This function will check if runtime suspend is allowed for the device 3678 * by examining if there are any requests pending in the queue. If there 3679 * are requests pending, the device can not be runtime suspended; otherwise, 3680 * the queue's status will be updated to SUSPENDING and the driver can 3681 * proceed to suspend the device. 3682 * 3683 * For the not allowed case, we mark last busy for the device so that 3684 * runtime PM core will try to autosuspend it some time later. 3685 * 3686 * This function should be called near the start of the device's 3687 * runtime_suspend callback. 3688 * 3689 * Return: 3690 * 0 - OK to runtime suspend the device 3691 * -EBUSY - Device should not be runtime suspended 3692 */ 3693 int blk_pre_runtime_suspend(struct request_queue *q) 3694 { 3695 int ret = 0; 3696 3697 if (!q->dev) 3698 return ret; 3699 3700 spin_lock_irq(q->queue_lock); 3701 if (q->nr_pending) { 3702 ret = -EBUSY; 3703 pm_runtime_mark_last_busy(q->dev); 3704 } else { 3705 q->rpm_status = RPM_SUSPENDING; 3706 } 3707 spin_unlock_irq(q->queue_lock); 3708 return ret; 3709 } 3710 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3711 3712 /** 3713 * blk_post_runtime_suspend - Post runtime suspend processing 3714 * @q: the queue of the device 3715 * @err: return value of the device's runtime_suspend function 3716 * 3717 * Description: 3718 * Update the queue's runtime status according to the return value of the 3719 * device's runtime suspend function and mark last busy for the device so 3720 * that PM core will try to auto suspend the device at a later time. 3721 * 3722 * This function should be called near the end of the device's 3723 * runtime_suspend callback. 3724 */ 3725 void blk_post_runtime_suspend(struct request_queue *q, int err) 3726 { 3727 if (!q->dev) 3728 return; 3729 3730 spin_lock_irq(q->queue_lock); 3731 if (!err) { 3732 q->rpm_status = RPM_SUSPENDED; 3733 } else { 3734 q->rpm_status = RPM_ACTIVE; 3735 pm_runtime_mark_last_busy(q->dev); 3736 } 3737 spin_unlock_irq(q->queue_lock); 3738 } 3739 EXPORT_SYMBOL(blk_post_runtime_suspend); 3740 3741 /** 3742 * blk_pre_runtime_resume - Pre runtime resume processing 3743 * @q: the queue of the device 3744 * 3745 * Description: 3746 * Update the queue's runtime status to RESUMING in preparation for the 3747 * runtime resume of the device. 3748 * 3749 * This function should be called near the start of the device's 3750 * runtime_resume callback. 3751 */ 3752 void blk_pre_runtime_resume(struct request_queue *q) 3753 { 3754 if (!q->dev) 3755 return; 3756 3757 spin_lock_irq(q->queue_lock); 3758 q->rpm_status = RPM_RESUMING; 3759 spin_unlock_irq(q->queue_lock); 3760 } 3761 EXPORT_SYMBOL(blk_pre_runtime_resume); 3762 3763 /** 3764 * blk_post_runtime_resume - Post runtime resume processing 3765 * @q: the queue of the device 3766 * @err: return value of the device's runtime_resume function 3767 * 3768 * Description: 3769 * Update the queue's runtime status according to the return value of the 3770 * device's runtime_resume function. If it is successfully resumed, process 3771 * the requests that are queued into the device's queue when it is resuming 3772 * and then mark last busy and initiate autosuspend for it. 3773 * 3774 * This function should be called near the end of the device's 3775 * runtime_resume callback. 3776 */ 3777 void blk_post_runtime_resume(struct request_queue *q, int err) 3778 { 3779 if (!q->dev) 3780 return; 3781 3782 spin_lock_irq(q->queue_lock); 3783 if (!err) { 3784 q->rpm_status = RPM_ACTIVE; 3785 __blk_run_queue(q); 3786 pm_runtime_mark_last_busy(q->dev); 3787 pm_request_autosuspend(q->dev); 3788 } else { 3789 q->rpm_status = RPM_SUSPENDED; 3790 } 3791 spin_unlock_irq(q->queue_lock); 3792 } 3793 EXPORT_SYMBOL(blk_post_runtime_resume); 3794 3795 /** 3796 * blk_set_runtime_active - Force runtime status of the queue to be active 3797 * @q: the queue of the device 3798 * 3799 * If the device is left runtime suspended during system suspend the resume 3800 * hook typically resumes the device and corrects runtime status 3801 * accordingly. However, that does not affect the queue runtime PM status 3802 * which is still "suspended". This prevents processing requests from the 3803 * queue. 3804 * 3805 * This function can be used in driver's resume hook to correct queue 3806 * runtime PM status and re-enable peeking requests from the queue. It 3807 * should be called before first request is added to the queue. 3808 */ 3809 void blk_set_runtime_active(struct request_queue *q) 3810 { 3811 spin_lock_irq(q->queue_lock); 3812 q->rpm_status = RPM_ACTIVE; 3813 pm_runtime_mark_last_busy(q->dev); 3814 pm_request_autosuspend(q->dev); 3815 spin_unlock_irq(q->queue_lock); 3816 } 3817 EXPORT_SYMBOL(blk_set_runtime_active); 3818 #endif 3819 3820 int __init blk_dev_init(void) 3821 { 3822 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3823 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3824 FIELD_SIZEOF(struct request, cmd_flags)); 3825 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3826 FIELD_SIZEOF(struct bio, bi_opf)); 3827 3828 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3829 kblockd_workqueue = alloc_workqueue("kblockd", 3830 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3831 if (!kblockd_workqueue) 3832 panic("Failed to create kblockd\n"); 3833 3834 request_cachep = kmem_cache_create("blkdev_requests", 3835 sizeof(struct request), 0, SLAB_PANIC, NULL); 3836 3837 blk_requestq_cachep = kmem_cache_create("request_queue", 3838 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3839 3840 #ifdef CONFIG_DEBUG_FS 3841 blk_debugfs_root = debugfs_create_dir("block", NULL); 3842 #endif 3843 3844 return 0; 3845 } 3846