xref: /linux/block/blk-core.c (revision 667ca1ec7c9eb7ac3b80590b6597151b4c2a750b)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45 
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49 
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55 
56 DEFINE_IDA(blk_queue_ida);
57 
58 /*
59  * For the allocated request tables
60  */
61 struct kmem_cache *request_cachep;
62 
63 /*
64  * For queue allocation
65  */
66 struct kmem_cache *blk_requestq_cachep;
67 
68 /*
69  * Controlling structure to kblockd
70  */
71 static struct workqueue_struct *kblockd_workqueue;
72 
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 	clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 	/*
79 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 	 * flip its congestion state for events on other blkcgs.
81 	 */
82 	if (rl == &rl->q->root_rl)
83 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86 
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 	set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 	/* see blk_clear_congested() */
93 	if (rl == &rl->q->root_rl)
94 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97 
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 	int nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 	if (nr > q->nr_requests)
104 		nr = q->nr_requests;
105 	q->nr_congestion_on = nr;
106 
107 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 	if (nr < 1)
109 		nr = 1;
110 	q->nr_congestion_off = nr;
111 }
112 
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 	memset(rq, 0, sizeof(*rq));
116 
117 	INIT_LIST_HEAD(&rq->queuelist);
118 	INIT_LIST_HEAD(&rq->timeout_list);
119 	rq->cpu = -1;
120 	rq->q = q;
121 	rq->__sector = (sector_t) -1;
122 	INIT_HLIST_NODE(&rq->hash);
123 	RB_CLEAR_NODE(&rq->rb_node);
124 	rq->tag = -1;
125 	rq->internal_tag = -1;
126 	rq->start_time = jiffies;
127 	set_start_time_ns(rq);
128 	rq->part = NULL;
129 	seqcount_init(&rq->gstate_seq);
130 	u64_stats_init(&rq->aborted_gstate_sync);
131 }
132 EXPORT_SYMBOL(blk_rq_init);
133 
134 static const struct {
135 	int		errno;
136 	const char	*name;
137 } blk_errors[] = {
138 	[BLK_STS_OK]		= { 0,		"" },
139 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
140 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
141 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
142 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
143 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
144 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
145 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
146 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
147 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
148 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
149 
150 	/* device mapper special case, should not leak out: */
151 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
152 
153 	/* everything else not covered above: */
154 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
155 };
156 
157 blk_status_t errno_to_blk_status(int errno)
158 {
159 	int i;
160 
161 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
162 		if (blk_errors[i].errno == errno)
163 			return (__force blk_status_t)i;
164 	}
165 
166 	return BLK_STS_IOERR;
167 }
168 EXPORT_SYMBOL_GPL(errno_to_blk_status);
169 
170 int blk_status_to_errno(blk_status_t status)
171 {
172 	int idx = (__force int)status;
173 
174 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
175 		return -EIO;
176 	return blk_errors[idx].errno;
177 }
178 EXPORT_SYMBOL_GPL(blk_status_to_errno);
179 
180 static void print_req_error(struct request *req, blk_status_t status)
181 {
182 	int idx = (__force int)status;
183 
184 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
185 		return;
186 
187 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
188 			   __func__, blk_errors[idx].name, req->rq_disk ?
189 			   req->rq_disk->disk_name : "?",
190 			   (unsigned long long)blk_rq_pos(req));
191 }
192 
193 static void req_bio_endio(struct request *rq, struct bio *bio,
194 			  unsigned int nbytes, blk_status_t error)
195 {
196 	if (error)
197 		bio->bi_status = error;
198 
199 	if (unlikely(rq->rq_flags & RQF_QUIET))
200 		bio_set_flag(bio, BIO_QUIET);
201 
202 	bio_advance(bio, nbytes);
203 
204 	/* don't actually finish bio if it's part of flush sequence */
205 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
206 		bio_endio(bio);
207 }
208 
209 void blk_dump_rq_flags(struct request *rq, char *msg)
210 {
211 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
212 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
213 		(unsigned long long) rq->cmd_flags);
214 
215 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
216 	       (unsigned long long)blk_rq_pos(rq),
217 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
218 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
219 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
220 }
221 EXPORT_SYMBOL(blk_dump_rq_flags);
222 
223 static void blk_delay_work(struct work_struct *work)
224 {
225 	struct request_queue *q;
226 
227 	q = container_of(work, struct request_queue, delay_work.work);
228 	spin_lock_irq(q->queue_lock);
229 	__blk_run_queue(q);
230 	spin_unlock_irq(q->queue_lock);
231 }
232 
233 /**
234  * blk_delay_queue - restart queueing after defined interval
235  * @q:		The &struct request_queue in question
236  * @msecs:	Delay in msecs
237  *
238  * Description:
239  *   Sometimes queueing needs to be postponed for a little while, to allow
240  *   resources to come back. This function will make sure that queueing is
241  *   restarted around the specified time.
242  */
243 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
244 {
245 	lockdep_assert_held(q->queue_lock);
246 	WARN_ON_ONCE(q->mq_ops);
247 
248 	if (likely(!blk_queue_dead(q)))
249 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
250 				   msecs_to_jiffies(msecs));
251 }
252 EXPORT_SYMBOL(blk_delay_queue);
253 
254 /**
255  * blk_start_queue_async - asynchronously restart a previously stopped queue
256  * @q:    The &struct request_queue in question
257  *
258  * Description:
259  *   blk_start_queue_async() will clear the stop flag on the queue, and
260  *   ensure that the request_fn for the queue is run from an async
261  *   context.
262  **/
263 void blk_start_queue_async(struct request_queue *q)
264 {
265 	lockdep_assert_held(q->queue_lock);
266 	WARN_ON_ONCE(q->mq_ops);
267 
268 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
269 	blk_run_queue_async(q);
270 }
271 EXPORT_SYMBOL(blk_start_queue_async);
272 
273 /**
274  * blk_start_queue - restart a previously stopped queue
275  * @q:    The &struct request_queue in question
276  *
277  * Description:
278  *   blk_start_queue() will clear the stop flag on the queue, and call
279  *   the request_fn for the queue if it was in a stopped state when
280  *   entered. Also see blk_stop_queue().
281  **/
282 void blk_start_queue(struct request_queue *q)
283 {
284 	lockdep_assert_held(q->queue_lock);
285 	WARN_ON(!in_interrupt() && !irqs_disabled());
286 	WARN_ON_ONCE(q->mq_ops);
287 
288 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
289 	__blk_run_queue(q);
290 }
291 EXPORT_SYMBOL(blk_start_queue);
292 
293 /**
294  * blk_stop_queue - stop a queue
295  * @q:    The &struct request_queue in question
296  *
297  * Description:
298  *   The Linux block layer assumes that a block driver will consume all
299  *   entries on the request queue when the request_fn strategy is called.
300  *   Often this will not happen, because of hardware limitations (queue
301  *   depth settings). If a device driver gets a 'queue full' response,
302  *   or if it simply chooses not to queue more I/O at one point, it can
303  *   call this function to prevent the request_fn from being called until
304  *   the driver has signalled it's ready to go again. This happens by calling
305  *   blk_start_queue() to restart queue operations.
306  **/
307 void blk_stop_queue(struct request_queue *q)
308 {
309 	lockdep_assert_held(q->queue_lock);
310 	WARN_ON_ONCE(q->mq_ops);
311 
312 	cancel_delayed_work(&q->delay_work);
313 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
314 }
315 EXPORT_SYMBOL(blk_stop_queue);
316 
317 /**
318  * blk_sync_queue - cancel any pending callbacks on a queue
319  * @q: the queue
320  *
321  * Description:
322  *     The block layer may perform asynchronous callback activity
323  *     on a queue, such as calling the unplug function after a timeout.
324  *     A block device may call blk_sync_queue to ensure that any
325  *     such activity is cancelled, thus allowing it to release resources
326  *     that the callbacks might use. The caller must already have made sure
327  *     that its ->make_request_fn will not re-add plugging prior to calling
328  *     this function.
329  *
330  *     This function does not cancel any asynchronous activity arising
331  *     out of elevator or throttling code. That would require elevator_exit()
332  *     and blkcg_exit_queue() to be called with queue lock initialized.
333  *
334  */
335 void blk_sync_queue(struct request_queue *q)
336 {
337 	del_timer_sync(&q->timeout);
338 	cancel_work_sync(&q->timeout_work);
339 
340 	if (q->mq_ops) {
341 		struct blk_mq_hw_ctx *hctx;
342 		int i;
343 
344 		cancel_delayed_work_sync(&q->requeue_work);
345 		queue_for_each_hw_ctx(q, hctx, i)
346 			cancel_delayed_work_sync(&hctx->run_work);
347 	} else {
348 		cancel_delayed_work_sync(&q->delay_work);
349 	}
350 }
351 EXPORT_SYMBOL(blk_sync_queue);
352 
353 /**
354  * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
355  * @q: request queue pointer
356  *
357  * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
358  * set and 1 if the flag was already set.
359  */
360 int blk_set_preempt_only(struct request_queue *q)
361 {
362 	unsigned long flags;
363 	int res;
364 
365 	spin_lock_irqsave(q->queue_lock, flags);
366 	res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
367 	spin_unlock_irqrestore(q->queue_lock, flags);
368 
369 	return res;
370 }
371 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
372 
373 void blk_clear_preempt_only(struct request_queue *q)
374 {
375 	unsigned long flags;
376 
377 	spin_lock_irqsave(q->queue_lock, flags);
378 	queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
379 	wake_up_all(&q->mq_freeze_wq);
380 	spin_unlock_irqrestore(q->queue_lock, flags);
381 }
382 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
383 
384 /**
385  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
386  * @q:	The queue to run
387  *
388  * Description:
389  *    Invoke request handling on a queue if there are any pending requests.
390  *    May be used to restart request handling after a request has completed.
391  *    This variant runs the queue whether or not the queue has been
392  *    stopped. Must be called with the queue lock held and interrupts
393  *    disabled. See also @blk_run_queue.
394  */
395 inline void __blk_run_queue_uncond(struct request_queue *q)
396 {
397 	lockdep_assert_held(q->queue_lock);
398 	WARN_ON_ONCE(q->mq_ops);
399 
400 	if (unlikely(blk_queue_dead(q)))
401 		return;
402 
403 	/*
404 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
405 	 * the queue lock internally. As a result multiple threads may be
406 	 * running such a request function concurrently. Keep track of the
407 	 * number of active request_fn invocations such that blk_drain_queue()
408 	 * can wait until all these request_fn calls have finished.
409 	 */
410 	q->request_fn_active++;
411 	q->request_fn(q);
412 	q->request_fn_active--;
413 }
414 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
415 
416 /**
417  * __blk_run_queue - run a single device queue
418  * @q:	The queue to run
419  *
420  * Description:
421  *    See @blk_run_queue.
422  */
423 void __blk_run_queue(struct request_queue *q)
424 {
425 	lockdep_assert_held(q->queue_lock);
426 	WARN_ON_ONCE(q->mq_ops);
427 
428 	if (unlikely(blk_queue_stopped(q)))
429 		return;
430 
431 	__blk_run_queue_uncond(q);
432 }
433 EXPORT_SYMBOL(__blk_run_queue);
434 
435 /**
436  * blk_run_queue_async - run a single device queue in workqueue context
437  * @q:	The queue to run
438  *
439  * Description:
440  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
441  *    of us.
442  *
443  * Note:
444  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
445  *    has canceled q->delay_work, callers must hold the queue lock to avoid
446  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
447  */
448 void blk_run_queue_async(struct request_queue *q)
449 {
450 	lockdep_assert_held(q->queue_lock);
451 	WARN_ON_ONCE(q->mq_ops);
452 
453 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
454 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
455 }
456 EXPORT_SYMBOL(blk_run_queue_async);
457 
458 /**
459  * blk_run_queue - run a single device queue
460  * @q: The queue to run
461  *
462  * Description:
463  *    Invoke request handling on this queue, if it has pending work to do.
464  *    May be used to restart queueing when a request has completed.
465  */
466 void blk_run_queue(struct request_queue *q)
467 {
468 	unsigned long flags;
469 
470 	WARN_ON_ONCE(q->mq_ops);
471 
472 	spin_lock_irqsave(q->queue_lock, flags);
473 	__blk_run_queue(q);
474 	spin_unlock_irqrestore(q->queue_lock, flags);
475 }
476 EXPORT_SYMBOL(blk_run_queue);
477 
478 void blk_put_queue(struct request_queue *q)
479 {
480 	kobject_put(&q->kobj);
481 }
482 EXPORT_SYMBOL(blk_put_queue);
483 
484 /**
485  * __blk_drain_queue - drain requests from request_queue
486  * @q: queue to drain
487  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
488  *
489  * Drain requests from @q.  If @drain_all is set, all requests are drained.
490  * If not, only ELVPRIV requests are drained.  The caller is responsible
491  * for ensuring that no new requests which need to be drained are queued.
492  */
493 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
494 	__releases(q->queue_lock)
495 	__acquires(q->queue_lock)
496 {
497 	int i;
498 
499 	lockdep_assert_held(q->queue_lock);
500 	WARN_ON_ONCE(q->mq_ops);
501 
502 	while (true) {
503 		bool drain = false;
504 
505 		/*
506 		 * The caller might be trying to drain @q before its
507 		 * elevator is initialized.
508 		 */
509 		if (q->elevator)
510 			elv_drain_elevator(q);
511 
512 		blkcg_drain_queue(q);
513 
514 		/*
515 		 * This function might be called on a queue which failed
516 		 * driver init after queue creation or is not yet fully
517 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
518 		 * in such cases.  Kick queue iff dispatch queue has
519 		 * something on it and @q has request_fn set.
520 		 */
521 		if (!list_empty(&q->queue_head) && q->request_fn)
522 			__blk_run_queue(q);
523 
524 		drain |= q->nr_rqs_elvpriv;
525 		drain |= q->request_fn_active;
526 
527 		/*
528 		 * Unfortunately, requests are queued at and tracked from
529 		 * multiple places and there's no single counter which can
530 		 * be drained.  Check all the queues and counters.
531 		 */
532 		if (drain_all) {
533 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
534 			drain |= !list_empty(&q->queue_head);
535 			for (i = 0; i < 2; i++) {
536 				drain |= q->nr_rqs[i];
537 				drain |= q->in_flight[i];
538 				if (fq)
539 				    drain |= !list_empty(&fq->flush_queue[i]);
540 			}
541 		}
542 
543 		if (!drain)
544 			break;
545 
546 		spin_unlock_irq(q->queue_lock);
547 
548 		msleep(10);
549 
550 		spin_lock_irq(q->queue_lock);
551 	}
552 
553 	/*
554 	 * With queue marked dead, any woken up waiter will fail the
555 	 * allocation path, so the wakeup chaining is lost and we're
556 	 * left with hung waiters. We need to wake up those waiters.
557 	 */
558 	if (q->request_fn) {
559 		struct request_list *rl;
560 
561 		blk_queue_for_each_rl(rl, q)
562 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
563 				wake_up_all(&rl->wait[i]);
564 	}
565 }
566 
567 void blk_drain_queue(struct request_queue *q)
568 {
569 	spin_lock_irq(q->queue_lock);
570 	__blk_drain_queue(q, true);
571 	spin_unlock_irq(q->queue_lock);
572 }
573 
574 /**
575  * blk_queue_bypass_start - enter queue bypass mode
576  * @q: queue of interest
577  *
578  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
579  * function makes @q enter bypass mode and drains all requests which were
580  * throttled or issued before.  On return, it's guaranteed that no request
581  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
582  * inside queue or RCU read lock.
583  */
584 void blk_queue_bypass_start(struct request_queue *q)
585 {
586 	WARN_ON_ONCE(q->mq_ops);
587 
588 	spin_lock_irq(q->queue_lock);
589 	q->bypass_depth++;
590 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
591 	spin_unlock_irq(q->queue_lock);
592 
593 	/*
594 	 * Queues start drained.  Skip actual draining till init is
595 	 * complete.  This avoids lenghty delays during queue init which
596 	 * can happen many times during boot.
597 	 */
598 	if (blk_queue_init_done(q)) {
599 		spin_lock_irq(q->queue_lock);
600 		__blk_drain_queue(q, false);
601 		spin_unlock_irq(q->queue_lock);
602 
603 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
604 		synchronize_rcu();
605 	}
606 }
607 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
608 
609 /**
610  * blk_queue_bypass_end - leave queue bypass mode
611  * @q: queue of interest
612  *
613  * Leave bypass mode and restore the normal queueing behavior.
614  *
615  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
616  * this function is called for both blk-sq and blk-mq queues.
617  */
618 void blk_queue_bypass_end(struct request_queue *q)
619 {
620 	spin_lock_irq(q->queue_lock);
621 	if (!--q->bypass_depth)
622 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
623 	WARN_ON_ONCE(q->bypass_depth < 0);
624 	spin_unlock_irq(q->queue_lock);
625 }
626 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
627 
628 void blk_set_queue_dying(struct request_queue *q)
629 {
630 	spin_lock_irq(q->queue_lock);
631 	queue_flag_set(QUEUE_FLAG_DYING, q);
632 	spin_unlock_irq(q->queue_lock);
633 
634 	/*
635 	 * When queue DYING flag is set, we need to block new req
636 	 * entering queue, so we call blk_freeze_queue_start() to
637 	 * prevent I/O from crossing blk_queue_enter().
638 	 */
639 	blk_freeze_queue_start(q);
640 
641 	if (q->mq_ops)
642 		blk_mq_wake_waiters(q);
643 	else {
644 		struct request_list *rl;
645 
646 		spin_lock_irq(q->queue_lock);
647 		blk_queue_for_each_rl(rl, q) {
648 			if (rl->rq_pool) {
649 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
650 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
651 			}
652 		}
653 		spin_unlock_irq(q->queue_lock);
654 	}
655 
656 	/* Make blk_queue_enter() reexamine the DYING flag. */
657 	wake_up_all(&q->mq_freeze_wq);
658 }
659 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
660 
661 /**
662  * blk_cleanup_queue - shutdown a request queue
663  * @q: request queue to shutdown
664  *
665  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
666  * put it.  All future requests will be failed immediately with -ENODEV.
667  */
668 void blk_cleanup_queue(struct request_queue *q)
669 {
670 	spinlock_t *lock = q->queue_lock;
671 
672 	/* mark @q DYING, no new request or merges will be allowed afterwards */
673 	mutex_lock(&q->sysfs_lock);
674 	blk_set_queue_dying(q);
675 	spin_lock_irq(lock);
676 
677 	/*
678 	 * A dying queue is permanently in bypass mode till released.  Note
679 	 * that, unlike blk_queue_bypass_start(), we aren't performing
680 	 * synchronize_rcu() after entering bypass mode to avoid the delay
681 	 * as some drivers create and destroy a lot of queues while
682 	 * probing.  This is still safe because blk_release_queue() will be
683 	 * called only after the queue refcnt drops to zero and nothing,
684 	 * RCU or not, would be traversing the queue by then.
685 	 */
686 	q->bypass_depth++;
687 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
688 
689 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
690 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
691 	queue_flag_set(QUEUE_FLAG_DYING, q);
692 	spin_unlock_irq(lock);
693 	mutex_unlock(&q->sysfs_lock);
694 
695 	/*
696 	 * Drain all requests queued before DYING marking. Set DEAD flag to
697 	 * prevent that q->request_fn() gets invoked after draining finished.
698 	 */
699 	blk_freeze_queue(q);
700 	spin_lock_irq(lock);
701 	queue_flag_set(QUEUE_FLAG_DEAD, q);
702 	spin_unlock_irq(lock);
703 
704 	/*
705 	 * make sure all in-progress dispatch are completed because
706 	 * blk_freeze_queue() can only complete all requests, and
707 	 * dispatch may still be in-progress since we dispatch requests
708 	 * from more than one contexts
709 	 */
710 	if (q->mq_ops)
711 		blk_mq_quiesce_queue(q);
712 
713 	/* for synchronous bio-based driver finish in-flight integrity i/o */
714 	blk_flush_integrity();
715 
716 	/* @q won't process any more request, flush async actions */
717 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
718 	blk_sync_queue(q);
719 
720 	if (q->mq_ops)
721 		blk_mq_free_queue(q);
722 	percpu_ref_exit(&q->q_usage_counter);
723 
724 	spin_lock_irq(lock);
725 	if (q->queue_lock != &q->__queue_lock)
726 		q->queue_lock = &q->__queue_lock;
727 	spin_unlock_irq(lock);
728 
729 	/* @q is and will stay empty, shutdown and put */
730 	blk_put_queue(q);
731 }
732 EXPORT_SYMBOL(blk_cleanup_queue);
733 
734 /* Allocate memory local to the request queue */
735 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
736 {
737 	struct request_queue *q = data;
738 
739 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
740 }
741 
742 static void free_request_simple(void *element, void *data)
743 {
744 	kmem_cache_free(request_cachep, element);
745 }
746 
747 static void *alloc_request_size(gfp_t gfp_mask, void *data)
748 {
749 	struct request_queue *q = data;
750 	struct request *rq;
751 
752 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
753 			q->node);
754 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
755 		kfree(rq);
756 		rq = NULL;
757 	}
758 	return rq;
759 }
760 
761 static void free_request_size(void *element, void *data)
762 {
763 	struct request_queue *q = data;
764 
765 	if (q->exit_rq_fn)
766 		q->exit_rq_fn(q, element);
767 	kfree(element);
768 }
769 
770 int blk_init_rl(struct request_list *rl, struct request_queue *q,
771 		gfp_t gfp_mask)
772 {
773 	if (unlikely(rl->rq_pool) || q->mq_ops)
774 		return 0;
775 
776 	rl->q = q;
777 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
778 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
779 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
780 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
781 
782 	if (q->cmd_size) {
783 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
784 				alloc_request_size, free_request_size,
785 				q, gfp_mask, q->node);
786 	} else {
787 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
788 				alloc_request_simple, free_request_simple,
789 				q, gfp_mask, q->node);
790 	}
791 	if (!rl->rq_pool)
792 		return -ENOMEM;
793 
794 	if (rl != &q->root_rl)
795 		WARN_ON_ONCE(!blk_get_queue(q));
796 
797 	return 0;
798 }
799 
800 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
801 {
802 	if (rl->rq_pool) {
803 		mempool_destroy(rl->rq_pool);
804 		if (rl != &q->root_rl)
805 			blk_put_queue(q);
806 	}
807 }
808 
809 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
810 {
811 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
812 }
813 EXPORT_SYMBOL(blk_alloc_queue);
814 
815 /**
816  * blk_queue_enter() - try to increase q->q_usage_counter
817  * @q: request queue pointer
818  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
819  */
820 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
821 {
822 	const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
823 
824 	while (true) {
825 		bool success = false;
826 		int ret;
827 
828 		rcu_read_lock_sched();
829 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
830 			/*
831 			 * The code that sets the PREEMPT_ONLY flag is
832 			 * responsible for ensuring that that flag is globally
833 			 * visible before the queue is unfrozen.
834 			 */
835 			if (preempt || !blk_queue_preempt_only(q)) {
836 				success = true;
837 			} else {
838 				percpu_ref_put(&q->q_usage_counter);
839 			}
840 		}
841 		rcu_read_unlock_sched();
842 
843 		if (success)
844 			return 0;
845 
846 		if (flags & BLK_MQ_REQ_NOWAIT)
847 			return -EBUSY;
848 
849 		/*
850 		 * read pair of barrier in blk_freeze_queue_start(),
851 		 * we need to order reading __PERCPU_REF_DEAD flag of
852 		 * .q_usage_counter and reading .mq_freeze_depth or
853 		 * queue dying flag, otherwise the following wait may
854 		 * never return if the two reads are reordered.
855 		 */
856 		smp_rmb();
857 
858 		ret = wait_event_interruptible(q->mq_freeze_wq,
859 				(atomic_read(&q->mq_freeze_depth) == 0 &&
860 				 (preempt || !blk_queue_preempt_only(q))) ||
861 				blk_queue_dying(q));
862 		if (blk_queue_dying(q))
863 			return -ENODEV;
864 		if (ret)
865 			return ret;
866 	}
867 }
868 
869 void blk_queue_exit(struct request_queue *q)
870 {
871 	percpu_ref_put(&q->q_usage_counter);
872 }
873 
874 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
875 {
876 	struct request_queue *q =
877 		container_of(ref, struct request_queue, q_usage_counter);
878 
879 	wake_up_all(&q->mq_freeze_wq);
880 }
881 
882 static void blk_rq_timed_out_timer(struct timer_list *t)
883 {
884 	struct request_queue *q = from_timer(q, t, timeout);
885 
886 	kblockd_schedule_work(&q->timeout_work);
887 }
888 
889 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
890 {
891 	struct request_queue *q;
892 
893 	q = kmem_cache_alloc_node(blk_requestq_cachep,
894 				gfp_mask | __GFP_ZERO, node_id);
895 	if (!q)
896 		return NULL;
897 
898 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
899 	if (q->id < 0)
900 		goto fail_q;
901 
902 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
903 	if (!q->bio_split)
904 		goto fail_id;
905 
906 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
907 	if (!q->backing_dev_info)
908 		goto fail_split;
909 
910 	q->stats = blk_alloc_queue_stats();
911 	if (!q->stats)
912 		goto fail_stats;
913 
914 	q->backing_dev_info->ra_pages =
915 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
916 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
917 	q->backing_dev_info->name = "block";
918 	q->node = node_id;
919 
920 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
921 		    laptop_mode_timer_fn, 0);
922 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
923 	INIT_WORK(&q->timeout_work, NULL);
924 	INIT_LIST_HEAD(&q->queue_head);
925 	INIT_LIST_HEAD(&q->timeout_list);
926 	INIT_LIST_HEAD(&q->icq_list);
927 #ifdef CONFIG_BLK_CGROUP
928 	INIT_LIST_HEAD(&q->blkg_list);
929 #endif
930 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
931 
932 	kobject_init(&q->kobj, &blk_queue_ktype);
933 
934 #ifdef CONFIG_BLK_DEV_IO_TRACE
935 	mutex_init(&q->blk_trace_mutex);
936 #endif
937 	mutex_init(&q->sysfs_lock);
938 	spin_lock_init(&q->__queue_lock);
939 
940 	/*
941 	 * By default initialize queue_lock to internal lock and driver can
942 	 * override it later if need be.
943 	 */
944 	q->queue_lock = &q->__queue_lock;
945 
946 	/*
947 	 * A queue starts its life with bypass turned on to avoid
948 	 * unnecessary bypass on/off overhead and nasty surprises during
949 	 * init.  The initial bypass will be finished when the queue is
950 	 * registered by blk_register_queue().
951 	 */
952 	q->bypass_depth = 1;
953 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
954 
955 	init_waitqueue_head(&q->mq_freeze_wq);
956 
957 	/*
958 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
959 	 * See blk_register_queue() for details.
960 	 */
961 	if (percpu_ref_init(&q->q_usage_counter,
962 				blk_queue_usage_counter_release,
963 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
964 		goto fail_bdi;
965 
966 	if (blkcg_init_queue(q))
967 		goto fail_ref;
968 
969 	return q;
970 
971 fail_ref:
972 	percpu_ref_exit(&q->q_usage_counter);
973 fail_bdi:
974 	blk_free_queue_stats(q->stats);
975 fail_stats:
976 	bdi_put(q->backing_dev_info);
977 fail_split:
978 	bioset_free(q->bio_split);
979 fail_id:
980 	ida_simple_remove(&blk_queue_ida, q->id);
981 fail_q:
982 	kmem_cache_free(blk_requestq_cachep, q);
983 	return NULL;
984 }
985 EXPORT_SYMBOL(blk_alloc_queue_node);
986 
987 /**
988  * blk_init_queue  - prepare a request queue for use with a block device
989  * @rfn:  The function to be called to process requests that have been
990  *        placed on the queue.
991  * @lock: Request queue spin lock
992  *
993  * Description:
994  *    If a block device wishes to use the standard request handling procedures,
995  *    which sorts requests and coalesces adjacent requests, then it must
996  *    call blk_init_queue().  The function @rfn will be called when there
997  *    are requests on the queue that need to be processed.  If the device
998  *    supports plugging, then @rfn may not be called immediately when requests
999  *    are available on the queue, but may be called at some time later instead.
1000  *    Plugged queues are generally unplugged when a buffer belonging to one
1001  *    of the requests on the queue is needed, or due to memory pressure.
1002  *
1003  *    @rfn is not required, or even expected, to remove all requests off the
1004  *    queue, but only as many as it can handle at a time.  If it does leave
1005  *    requests on the queue, it is responsible for arranging that the requests
1006  *    get dealt with eventually.
1007  *
1008  *    The queue spin lock must be held while manipulating the requests on the
1009  *    request queue; this lock will be taken also from interrupt context, so irq
1010  *    disabling is needed for it.
1011  *
1012  *    Function returns a pointer to the initialized request queue, or %NULL if
1013  *    it didn't succeed.
1014  *
1015  * Note:
1016  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1017  *    when the block device is deactivated (such as at module unload).
1018  **/
1019 
1020 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1021 {
1022 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1023 }
1024 EXPORT_SYMBOL(blk_init_queue);
1025 
1026 struct request_queue *
1027 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1028 {
1029 	struct request_queue *q;
1030 
1031 	q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1032 	if (!q)
1033 		return NULL;
1034 
1035 	q->request_fn = rfn;
1036 	if (lock)
1037 		q->queue_lock = lock;
1038 	if (blk_init_allocated_queue(q) < 0) {
1039 		blk_cleanup_queue(q);
1040 		return NULL;
1041 	}
1042 
1043 	return q;
1044 }
1045 EXPORT_SYMBOL(blk_init_queue_node);
1046 
1047 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1048 
1049 
1050 int blk_init_allocated_queue(struct request_queue *q)
1051 {
1052 	WARN_ON_ONCE(q->mq_ops);
1053 
1054 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1055 	if (!q->fq)
1056 		return -ENOMEM;
1057 
1058 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1059 		goto out_free_flush_queue;
1060 
1061 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1062 		goto out_exit_flush_rq;
1063 
1064 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1065 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1066 
1067 	/*
1068 	 * This also sets hw/phys segments, boundary and size
1069 	 */
1070 	blk_queue_make_request(q, blk_queue_bio);
1071 
1072 	q->sg_reserved_size = INT_MAX;
1073 
1074 	/* Protect q->elevator from elevator_change */
1075 	mutex_lock(&q->sysfs_lock);
1076 
1077 	/* init elevator */
1078 	if (elevator_init(q, NULL)) {
1079 		mutex_unlock(&q->sysfs_lock);
1080 		goto out_exit_flush_rq;
1081 	}
1082 
1083 	mutex_unlock(&q->sysfs_lock);
1084 	return 0;
1085 
1086 out_exit_flush_rq:
1087 	if (q->exit_rq_fn)
1088 		q->exit_rq_fn(q, q->fq->flush_rq);
1089 out_free_flush_queue:
1090 	blk_free_flush_queue(q->fq);
1091 	return -ENOMEM;
1092 }
1093 EXPORT_SYMBOL(blk_init_allocated_queue);
1094 
1095 bool blk_get_queue(struct request_queue *q)
1096 {
1097 	if (likely(!blk_queue_dying(q))) {
1098 		__blk_get_queue(q);
1099 		return true;
1100 	}
1101 
1102 	return false;
1103 }
1104 EXPORT_SYMBOL(blk_get_queue);
1105 
1106 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1107 {
1108 	if (rq->rq_flags & RQF_ELVPRIV) {
1109 		elv_put_request(rl->q, rq);
1110 		if (rq->elv.icq)
1111 			put_io_context(rq->elv.icq->ioc);
1112 	}
1113 
1114 	mempool_free(rq, rl->rq_pool);
1115 }
1116 
1117 /*
1118  * ioc_batching returns true if the ioc is a valid batching request and
1119  * should be given priority access to a request.
1120  */
1121 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1122 {
1123 	if (!ioc)
1124 		return 0;
1125 
1126 	/*
1127 	 * Make sure the process is able to allocate at least 1 request
1128 	 * even if the batch times out, otherwise we could theoretically
1129 	 * lose wakeups.
1130 	 */
1131 	return ioc->nr_batch_requests == q->nr_batching ||
1132 		(ioc->nr_batch_requests > 0
1133 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1134 }
1135 
1136 /*
1137  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1138  * will cause the process to be a "batcher" on all queues in the system. This
1139  * is the behaviour we want though - once it gets a wakeup it should be given
1140  * a nice run.
1141  */
1142 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1143 {
1144 	if (!ioc || ioc_batching(q, ioc))
1145 		return;
1146 
1147 	ioc->nr_batch_requests = q->nr_batching;
1148 	ioc->last_waited = jiffies;
1149 }
1150 
1151 static void __freed_request(struct request_list *rl, int sync)
1152 {
1153 	struct request_queue *q = rl->q;
1154 
1155 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1156 		blk_clear_congested(rl, sync);
1157 
1158 	if (rl->count[sync] + 1 <= q->nr_requests) {
1159 		if (waitqueue_active(&rl->wait[sync]))
1160 			wake_up(&rl->wait[sync]);
1161 
1162 		blk_clear_rl_full(rl, sync);
1163 	}
1164 }
1165 
1166 /*
1167  * A request has just been released.  Account for it, update the full and
1168  * congestion status, wake up any waiters.   Called under q->queue_lock.
1169  */
1170 static void freed_request(struct request_list *rl, bool sync,
1171 		req_flags_t rq_flags)
1172 {
1173 	struct request_queue *q = rl->q;
1174 
1175 	q->nr_rqs[sync]--;
1176 	rl->count[sync]--;
1177 	if (rq_flags & RQF_ELVPRIV)
1178 		q->nr_rqs_elvpriv--;
1179 
1180 	__freed_request(rl, sync);
1181 
1182 	if (unlikely(rl->starved[sync ^ 1]))
1183 		__freed_request(rl, sync ^ 1);
1184 }
1185 
1186 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1187 {
1188 	struct request_list *rl;
1189 	int on_thresh, off_thresh;
1190 
1191 	WARN_ON_ONCE(q->mq_ops);
1192 
1193 	spin_lock_irq(q->queue_lock);
1194 	q->nr_requests = nr;
1195 	blk_queue_congestion_threshold(q);
1196 	on_thresh = queue_congestion_on_threshold(q);
1197 	off_thresh = queue_congestion_off_threshold(q);
1198 
1199 	blk_queue_for_each_rl(rl, q) {
1200 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1201 			blk_set_congested(rl, BLK_RW_SYNC);
1202 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1203 			blk_clear_congested(rl, BLK_RW_SYNC);
1204 
1205 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1206 			blk_set_congested(rl, BLK_RW_ASYNC);
1207 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1208 			blk_clear_congested(rl, BLK_RW_ASYNC);
1209 
1210 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1211 			blk_set_rl_full(rl, BLK_RW_SYNC);
1212 		} else {
1213 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1214 			wake_up(&rl->wait[BLK_RW_SYNC]);
1215 		}
1216 
1217 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1218 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1219 		} else {
1220 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1221 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1222 		}
1223 	}
1224 
1225 	spin_unlock_irq(q->queue_lock);
1226 	return 0;
1227 }
1228 
1229 /**
1230  * __get_request - get a free request
1231  * @rl: request list to allocate from
1232  * @op: operation and flags
1233  * @bio: bio to allocate request for (can be %NULL)
1234  * @flags: BLQ_MQ_REQ_* flags
1235  *
1236  * Get a free request from @q.  This function may fail under memory
1237  * pressure or if @q is dead.
1238  *
1239  * Must be called with @q->queue_lock held and,
1240  * Returns ERR_PTR on failure, with @q->queue_lock held.
1241  * Returns request pointer on success, with @q->queue_lock *not held*.
1242  */
1243 static struct request *__get_request(struct request_list *rl, unsigned int op,
1244 				     struct bio *bio, blk_mq_req_flags_t flags)
1245 {
1246 	struct request_queue *q = rl->q;
1247 	struct request *rq;
1248 	struct elevator_type *et = q->elevator->type;
1249 	struct io_context *ioc = rq_ioc(bio);
1250 	struct io_cq *icq = NULL;
1251 	const bool is_sync = op_is_sync(op);
1252 	int may_queue;
1253 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1254 			 __GFP_DIRECT_RECLAIM;
1255 	req_flags_t rq_flags = RQF_ALLOCED;
1256 
1257 	lockdep_assert_held(q->queue_lock);
1258 
1259 	if (unlikely(blk_queue_dying(q)))
1260 		return ERR_PTR(-ENODEV);
1261 
1262 	may_queue = elv_may_queue(q, op);
1263 	if (may_queue == ELV_MQUEUE_NO)
1264 		goto rq_starved;
1265 
1266 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1267 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1268 			/*
1269 			 * The queue will fill after this allocation, so set
1270 			 * it as full, and mark this process as "batching".
1271 			 * This process will be allowed to complete a batch of
1272 			 * requests, others will be blocked.
1273 			 */
1274 			if (!blk_rl_full(rl, is_sync)) {
1275 				ioc_set_batching(q, ioc);
1276 				blk_set_rl_full(rl, is_sync);
1277 			} else {
1278 				if (may_queue != ELV_MQUEUE_MUST
1279 						&& !ioc_batching(q, ioc)) {
1280 					/*
1281 					 * The queue is full and the allocating
1282 					 * process is not a "batcher", and not
1283 					 * exempted by the IO scheduler
1284 					 */
1285 					return ERR_PTR(-ENOMEM);
1286 				}
1287 			}
1288 		}
1289 		blk_set_congested(rl, is_sync);
1290 	}
1291 
1292 	/*
1293 	 * Only allow batching queuers to allocate up to 50% over the defined
1294 	 * limit of requests, otherwise we could have thousands of requests
1295 	 * allocated with any setting of ->nr_requests
1296 	 */
1297 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1298 		return ERR_PTR(-ENOMEM);
1299 
1300 	q->nr_rqs[is_sync]++;
1301 	rl->count[is_sync]++;
1302 	rl->starved[is_sync] = 0;
1303 
1304 	/*
1305 	 * Decide whether the new request will be managed by elevator.  If
1306 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1307 	 * prevent the current elevator from being destroyed until the new
1308 	 * request is freed.  This guarantees icq's won't be destroyed and
1309 	 * makes creating new ones safe.
1310 	 *
1311 	 * Flush requests do not use the elevator so skip initialization.
1312 	 * This allows a request to share the flush and elevator data.
1313 	 *
1314 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1315 	 * it will be created after releasing queue_lock.
1316 	 */
1317 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1318 		rq_flags |= RQF_ELVPRIV;
1319 		q->nr_rqs_elvpriv++;
1320 		if (et->icq_cache && ioc)
1321 			icq = ioc_lookup_icq(ioc, q);
1322 	}
1323 
1324 	if (blk_queue_io_stat(q))
1325 		rq_flags |= RQF_IO_STAT;
1326 	spin_unlock_irq(q->queue_lock);
1327 
1328 	/* allocate and init request */
1329 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1330 	if (!rq)
1331 		goto fail_alloc;
1332 
1333 	blk_rq_init(q, rq);
1334 	blk_rq_set_rl(rq, rl);
1335 	rq->cmd_flags = op;
1336 	rq->rq_flags = rq_flags;
1337 	if (flags & BLK_MQ_REQ_PREEMPT)
1338 		rq->rq_flags |= RQF_PREEMPT;
1339 
1340 	/* init elvpriv */
1341 	if (rq_flags & RQF_ELVPRIV) {
1342 		if (unlikely(et->icq_cache && !icq)) {
1343 			if (ioc)
1344 				icq = ioc_create_icq(ioc, q, gfp_mask);
1345 			if (!icq)
1346 				goto fail_elvpriv;
1347 		}
1348 
1349 		rq->elv.icq = icq;
1350 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1351 			goto fail_elvpriv;
1352 
1353 		/* @rq->elv.icq holds io_context until @rq is freed */
1354 		if (icq)
1355 			get_io_context(icq->ioc);
1356 	}
1357 out:
1358 	/*
1359 	 * ioc may be NULL here, and ioc_batching will be false. That's
1360 	 * OK, if the queue is under the request limit then requests need
1361 	 * not count toward the nr_batch_requests limit. There will always
1362 	 * be some limit enforced by BLK_BATCH_TIME.
1363 	 */
1364 	if (ioc_batching(q, ioc))
1365 		ioc->nr_batch_requests--;
1366 
1367 	trace_block_getrq(q, bio, op);
1368 	return rq;
1369 
1370 fail_elvpriv:
1371 	/*
1372 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1373 	 * and may fail indefinitely under memory pressure and thus
1374 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1375 	 * disturb iosched and blkcg but weird is bettern than dead.
1376 	 */
1377 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1378 			   __func__, dev_name(q->backing_dev_info->dev));
1379 
1380 	rq->rq_flags &= ~RQF_ELVPRIV;
1381 	rq->elv.icq = NULL;
1382 
1383 	spin_lock_irq(q->queue_lock);
1384 	q->nr_rqs_elvpriv--;
1385 	spin_unlock_irq(q->queue_lock);
1386 	goto out;
1387 
1388 fail_alloc:
1389 	/*
1390 	 * Allocation failed presumably due to memory. Undo anything we
1391 	 * might have messed up.
1392 	 *
1393 	 * Allocating task should really be put onto the front of the wait
1394 	 * queue, but this is pretty rare.
1395 	 */
1396 	spin_lock_irq(q->queue_lock);
1397 	freed_request(rl, is_sync, rq_flags);
1398 
1399 	/*
1400 	 * in the very unlikely event that allocation failed and no
1401 	 * requests for this direction was pending, mark us starved so that
1402 	 * freeing of a request in the other direction will notice
1403 	 * us. another possible fix would be to split the rq mempool into
1404 	 * READ and WRITE
1405 	 */
1406 rq_starved:
1407 	if (unlikely(rl->count[is_sync] == 0))
1408 		rl->starved[is_sync] = 1;
1409 	return ERR_PTR(-ENOMEM);
1410 }
1411 
1412 /**
1413  * get_request - get a free request
1414  * @q: request_queue to allocate request from
1415  * @op: operation and flags
1416  * @bio: bio to allocate request for (can be %NULL)
1417  * @flags: BLK_MQ_REQ_* flags.
1418  *
1419  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1420  * this function keeps retrying under memory pressure and fails iff @q is dead.
1421  *
1422  * Must be called with @q->queue_lock held and,
1423  * Returns ERR_PTR on failure, with @q->queue_lock held.
1424  * Returns request pointer on success, with @q->queue_lock *not held*.
1425  */
1426 static struct request *get_request(struct request_queue *q, unsigned int op,
1427 				   struct bio *bio, blk_mq_req_flags_t flags)
1428 {
1429 	const bool is_sync = op_is_sync(op);
1430 	DEFINE_WAIT(wait);
1431 	struct request_list *rl;
1432 	struct request *rq;
1433 
1434 	lockdep_assert_held(q->queue_lock);
1435 	WARN_ON_ONCE(q->mq_ops);
1436 
1437 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1438 retry:
1439 	rq = __get_request(rl, op, bio, flags);
1440 	if (!IS_ERR(rq))
1441 		return rq;
1442 
1443 	if (op & REQ_NOWAIT) {
1444 		blk_put_rl(rl);
1445 		return ERR_PTR(-EAGAIN);
1446 	}
1447 
1448 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1449 		blk_put_rl(rl);
1450 		return rq;
1451 	}
1452 
1453 	/* wait on @rl and retry */
1454 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1455 				  TASK_UNINTERRUPTIBLE);
1456 
1457 	trace_block_sleeprq(q, bio, op);
1458 
1459 	spin_unlock_irq(q->queue_lock);
1460 	io_schedule();
1461 
1462 	/*
1463 	 * After sleeping, we become a "batching" process and will be able
1464 	 * to allocate at least one request, and up to a big batch of them
1465 	 * for a small period time.  See ioc_batching, ioc_set_batching
1466 	 */
1467 	ioc_set_batching(q, current->io_context);
1468 
1469 	spin_lock_irq(q->queue_lock);
1470 	finish_wait(&rl->wait[is_sync], &wait);
1471 
1472 	goto retry;
1473 }
1474 
1475 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1476 static struct request *blk_old_get_request(struct request_queue *q,
1477 				unsigned int op, blk_mq_req_flags_t flags)
1478 {
1479 	struct request *rq;
1480 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1481 			 __GFP_DIRECT_RECLAIM;
1482 	int ret = 0;
1483 
1484 	WARN_ON_ONCE(q->mq_ops);
1485 
1486 	/* create ioc upfront */
1487 	create_io_context(gfp_mask, q->node);
1488 
1489 	ret = blk_queue_enter(q, flags);
1490 	if (ret)
1491 		return ERR_PTR(ret);
1492 	spin_lock_irq(q->queue_lock);
1493 	rq = get_request(q, op, NULL, flags);
1494 	if (IS_ERR(rq)) {
1495 		spin_unlock_irq(q->queue_lock);
1496 		blk_queue_exit(q);
1497 		return rq;
1498 	}
1499 
1500 	/* q->queue_lock is unlocked at this point */
1501 	rq->__data_len = 0;
1502 	rq->__sector = (sector_t) -1;
1503 	rq->bio = rq->biotail = NULL;
1504 	return rq;
1505 }
1506 
1507 /**
1508  * blk_get_request_flags - allocate a request
1509  * @q: request queue to allocate a request for
1510  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1511  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1512  */
1513 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1514 				      blk_mq_req_flags_t flags)
1515 {
1516 	struct request *req;
1517 
1518 	WARN_ON_ONCE(op & REQ_NOWAIT);
1519 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1520 
1521 	if (q->mq_ops) {
1522 		req = blk_mq_alloc_request(q, op, flags);
1523 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1524 			q->mq_ops->initialize_rq_fn(req);
1525 	} else {
1526 		req = blk_old_get_request(q, op, flags);
1527 		if (!IS_ERR(req) && q->initialize_rq_fn)
1528 			q->initialize_rq_fn(req);
1529 	}
1530 
1531 	return req;
1532 }
1533 EXPORT_SYMBOL(blk_get_request_flags);
1534 
1535 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1536 				gfp_t gfp_mask)
1537 {
1538 	return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1539 				     0 : BLK_MQ_REQ_NOWAIT);
1540 }
1541 EXPORT_SYMBOL(blk_get_request);
1542 
1543 /**
1544  * blk_requeue_request - put a request back on queue
1545  * @q:		request queue where request should be inserted
1546  * @rq:		request to be inserted
1547  *
1548  * Description:
1549  *    Drivers often keep queueing requests until the hardware cannot accept
1550  *    more, when that condition happens we need to put the request back
1551  *    on the queue. Must be called with queue lock held.
1552  */
1553 void blk_requeue_request(struct request_queue *q, struct request *rq)
1554 {
1555 	lockdep_assert_held(q->queue_lock);
1556 	WARN_ON_ONCE(q->mq_ops);
1557 
1558 	blk_delete_timer(rq);
1559 	blk_clear_rq_complete(rq);
1560 	trace_block_rq_requeue(q, rq);
1561 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1562 
1563 	if (rq->rq_flags & RQF_QUEUED)
1564 		blk_queue_end_tag(q, rq);
1565 
1566 	BUG_ON(blk_queued_rq(rq));
1567 
1568 	elv_requeue_request(q, rq);
1569 }
1570 EXPORT_SYMBOL(blk_requeue_request);
1571 
1572 static void add_acct_request(struct request_queue *q, struct request *rq,
1573 			     int where)
1574 {
1575 	blk_account_io_start(rq, true);
1576 	__elv_add_request(q, rq, where);
1577 }
1578 
1579 static void part_round_stats_single(struct request_queue *q, int cpu,
1580 				    struct hd_struct *part, unsigned long now,
1581 				    unsigned int inflight)
1582 {
1583 	if (inflight) {
1584 		__part_stat_add(cpu, part, time_in_queue,
1585 				inflight * (now - part->stamp));
1586 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1587 	}
1588 	part->stamp = now;
1589 }
1590 
1591 /**
1592  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1593  * @q: target block queue
1594  * @cpu: cpu number for stats access
1595  * @part: target partition
1596  *
1597  * The average IO queue length and utilisation statistics are maintained
1598  * by observing the current state of the queue length and the amount of
1599  * time it has been in this state for.
1600  *
1601  * Normally, that accounting is done on IO completion, but that can result
1602  * in more than a second's worth of IO being accounted for within any one
1603  * second, leading to >100% utilisation.  To deal with that, we call this
1604  * function to do a round-off before returning the results when reading
1605  * /proc/diskstats.  This accounts immediately for all queue usage up to
1606  * the current jiffies and restarts the counters again.
1607  */
1608 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1609 {
1610 	struct hd_struct *part2 = NULL;
1611 	unsigned long now = jiffies;
1612 	unsigned int inflight[2];
1613 	int stats = 0;
1614 
1615 	if (part->stamp != now)
1616 		stats |= 1;
1617 
1618 	if (part->partno) {
1619 		part2 = &part_to_disk(part)->part0;
1620 		if (part2->stamp != now)
1621 			stats |= 2;
1622 	}
1623 
1624 	if (!stats)
1625 		return;
1626 
1627 	part_in_flight(q, part, inflight);
1628 
1629 	if (stats & 2)
1630 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1631 	if (stats & 1)
1632 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1633 }
1634 EXPORT_SYMBOL_GPL(part_round_stats);
1635 
1636 #ifdef CONFIG_PM
1637 static void blk_pm_put_request(struct request *rq)
1638 {
1639 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1640 		pm_runtime_mark_last_busy(rq->q->dev);
1641 }
1642 #else
1643 static inline void blk_pm_put_request(struct request *rq) {}
1644 #endif
1645 
1646 void __blk_put_request(struct request_queue *q, struct request *req)
1647 {
1648 	req_flags_t rq_flags = req->rq_flags;
1649 
1650 	if (unlikely(!q))
1651 		return;
1652 
1653 	if (q->mq_ops) {
1654 		blk_mq_free_request(req);
1655 		return;
1656 	}
1657 
1658 	lockdep_assert_held(q->queue_lock);
1659 
1660 	blk_req_zone_write_unlock(req);
1661 	blk_pm_put_request(req);
1662 
1663 	elv_completed_request(q, req);
1664 
1665 	/* this is a bio leak */
1666 	WARN_ON(req->bio != NULL);
1667 
1668 	wbt_done(q->rq_wb, &req->issue_stat);
1669 
1670 	/*
1671 	 * Request may not have originated from ll_rw_blk. if not,
1672 	 * it didn't come out of our reserved rq pools
1673 	 */
1674 	if (rq_flags & RQF_ALLOCED) {
1675 		struct request_list *rl = blk_rq_rl(req);
1676 		bool sync = op_is_sync(req->cmd_flags);
1677 
1678 		BUG_ON(!list_empty(&req->queuelist));
1679 		BUG_ON(ELV_ON_HASH(req));
1680 
1681 		blk_free_request(rl, req);
1682 		freed_request(rl, sync, rq_flags);
1683 		blk_put_rl(rl);
1684 		blk_queue_exit(q);
1685 	}
1686 }
1687 EXPORT_SYMBOL_GPL(__blk_put_request);
1688 
1689 void blk_put_request(struct request *req)
1690 {
1691 	struct request_queue *q = req->q;
1692 
1693 	if (q->mq_ops)
1694 		blk_mq_free_request(req);
1695 	else {
1696 		unsigned long flags;
1697 
1698 		spin_lock_irqsave(q->queue_lock, flags);
1699 		__blk_put_request(q, req);
1700 		spin_unlock_irqrestore(q->queue_lock, flags);
1701 	}
1702 }
1703 EXPORT_SYMBOL(blk_put_request);
1704 
1705 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1706 			    struct bio *bio)
1707 {
1708 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1709 
1710 	if (!ll_back_merge_fn(q, req, bio))
1711 		return false;
1712 
1713 	trace_block_bio_backmerge(q, req, bio);
1714 
1715 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1716 		blk_rq_set_mixed_merge(req);
1717 
1718 	req->biotail->bi_next = bio;
1719 	req->biotail = bio;
1720 	req->__data_len += bio->bi_iter.bi_size;
1721 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1722 
1723 	blk_account_io_start(req, false);
1724 	return true;
1725 }
1726 
1727 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1728 			     struct bio *bio)
1729 {
1730 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1731 
1732 	if (!ll_front_merge_fn(q, req, bio))
1733 		return false;
1734 
1735 	trace_block_bio_frontmerge(q, req, bio);
1736 
1737 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1738 		blk_rq_set_mixed_merge(req);
1739 
1740 	bio->bi_next = req->bio;
1741 	req->bio = bio;
1742 
1743 	req->__sector = bio->bi_iter.bi_sector;
1744 	req->__data_len += bio->bi_iter.bi_size;
1745 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1746 
1747 	blk_account_io_start(req, false);
1748 	return true;
1749 }
1750 
1751 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1752 		struct bio *bio)
1753 {
1754 	unsigned short segments = blk_rq_nr_discard_segments(req);
1755 
1756 	if (segments >= queue_max_discard_segments(q))
1757 		goto no_merge;
1758 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1759 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1760 		goto no_merge;
1761 
1762 	req->biotail->bi_next = bio;
1763 	req->biotail = bio;
1764 	req->__data_len += bio->bi_iter.bi_size;
1765 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1766 	req->nr_phys_segments = segments + 1;
1767 
1768 	blk_account_io_start(req, false);
1769 	return true;
1770 no_merge:
1771 	req_set_nomerge(q, req);
1772 	return false;
1773 }
1774 
1775 /**
1776  * blk_attempt_plug_merge - try to merge with %current's plugged list
1777  * @q: request_queue new bio is being queued at
1778  * @bio: new bio being queued
1779  * @request_count: out parameter for number of traversed plugged requests
1780  * @same_queue_rq: pointer to &struct request that gets filled in when
1781  * another request associated with @q is found on the plug list
1782  * (optional, may be %NULL)
1783  *
1784  * Determine whether @bio being queued on @q can be merged with a request
1785  * on %current's plugged list.  Returns %true if merge was successful,
1786  * otherwise %false.
1787  *
1788  * Plugging coalesces IOs from the same issuer for the same purpose without
1789  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1790  * than scheduling, and the request, while may have elvpriv data, is not
1791  * added on the elevator at this point.  In addition, we don't have
1792  * reliable access to the elevator outside queue lock.  Only check basic
1793  * merging parameters without querying the elevator.
1794  *
1795  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1796  */
1797 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1798 			    unsigned int *request_count,
1799 			    struct request **same_queue_rq)
1800 {
1801 	struct blk_plug *plug;
1802 	struct request *rq;
1803 	struct list_head *plug_list;
1804 
1805 	plug = current->plug;
1806 	if (!plug)
1807 		return false;
1808 	*request_count = 0;
1809 
1810 	if (q->mq_ops)
1811 		plug_list = &plug->mq_list;
1812 	else
1813 		plug_list = &plug->list;
1814 
1815 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1816 		bool merged = false;
1817 
1818 		if (rq->q == q) {
1819 			(*request_count)++;
1820 			/*
1821 			 * Only blk-mq multiple hardware queues case checks the
1822 			 * rq in the same queue, there should be only one such
1823 			 * rq in a queue
1824 			 **/
1825 			if (same_queue_rq)
1826 				*same_queue_rq = rq;
1827 		}
1828 
1829 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1830 			continue;
1831 
1832 		switch (blk_try_merge(rq, bio)) {
1833 		case ELEVATOR_BACK_MERGE:
1834 			merged = bio_attempt_back_merge(q, rq, bio);
1835 			break;
1836 		case ELEVATOR_FRONT_MERGE:
1837 			merged = bio_attempt_front_merge(q, rq, bio);
1838 			break;
1839 		case ELEVATOR_DISCARD_MERGE:
1840 			merged = bio_attempt_discard_merge(q, rq, bio);
1841 			break;
1842 		default:
1843 			break;
1844 		}
1845 
1846 		if (merged)
1847 			return true;
1848 	}
1849 
1850 	return false;
1851 }
1852 
1853 unsigned int blk_plug_queued_count(struct request_queue *q)
1854 {
1855 	struct blk_plug *plug;
1856 	struct request *rq;
1857 	struct list_head *plug_list;
1858 	unsigned int ret = 0;
1859 
1860 	plug = current->plug;
1861 	if (!plug)
1862 		goto out;
1863 
1864 	if (q->mq_ops)
1865 		plug_list = &plug->mq_list;
1866 	else
1867 		plug_list = &plug->list;
1868 
1869 	list_for_each_entry(rq, plug_list, queuelist) {
1870 		if (rq->q == q)
1871 			ret++;
1872 	}
1873 out:
1874 	return ret;
1875 }
1876 
1877 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1878 {
1879 	struct io_context *ioc = rq_ioc(bio);
1880 
1881 	if (bio->bi_opf & REQ_RAHEAD)
1882 		req->cmd_flags |= REQ_FAILFAST_MASK;
1883 
1884 	req->__sector = bio->bi_iter.bi_sector;
1885 	if (ioprio_valid(bio_prio(bio)))
1886 		req->ioprio = bio_prio(bio);
1887 	else if (ioc)
1888 		req->ioprio = ioc->ioprio;
1889 	else
1890 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1891 	req->write_hint = bio->bi_write_hint;
1892 	blk_rq_bio_prep(req->q, req, bio);
1893 }
1894 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1895 
1896 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1897 {
1898 	struct blk_plug *plug;
1899 	int where = ELEVATOR_INSERT_SORT;
1900 	struct request *req, *free;
1901 	unsigned int request_count = 0;
1902 	unsigned int wb_acct;
1903 
1904 	/*
1905 	 * low level driver can indicate that it wants pages above a
1906 	 * certain limit bounced to low memory (ie for highmem, or even
1907 	 * ISA dma in theory)
1908 	 */
1909 	blk_queue_bounce(q, &bio);
1910 
1911 	blk_queue_split(q, &bio);
1912 
1913 	if (!bio_integrity_prep(bio))
1914 		return BLK_QC_T_NONE;
1915 
1916 	if (op_is_flush(bio->bi_opf)) {
1917 		spin_lock_irq(q->queue_lock);
1918 		where = ELEVATOR_INSERT_FLUSH;
1919 		goto get_rq;
1920 	}
1921 
1922 	/*
1923 	 * Check if we can merge with the plugged list before grabbing
1924 	 * any locks.
1925 	 */
1926 	if (!blk_queue_nomerges(q)) {
1927 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1928 			return BLK_QC_T_NONE;
1929 	} else
1930 		request_count = blk_plug_queued_count(q);
1931 
1932 	spin_lock_irq(q->queue_lock);
1933 
1934 	switch (elv_merge(q, &req, bio)) {
1935 	case ELEVATOR_BACK_MERGE:
1936 		if (!bio_attempt_back_merge(q, req, bio))
1937 			break;
1938 		elv_bio_merged(q, req, bio);
1939 		free = attempt_back_merge(q, req);
1940 		if (free)
1941 			__blk_put_request(q, free);
1942 		else
1943 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1944 		goto out_unlock;
1945 	case ELEVATOR_FRONT_MERGE:
1946 		if (!bio_attempt_front_merge(q, req, bio))
1947 			break;
1948 		elv_bio_merged(q, req, bio);
1949 		free = attempt_front_merge(q, req);
1950 		if (free)
1951 			__blk_put_request(q, free);
1952 		else
1953 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1954 		goto out_unlock;
1955 	default:
1956 		break;
1957 	}
1958 
1959 get_rq:
1960 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1961 
1962 	/*
1963 	 * Grab a free request. This is might sleep but can not fail.
1964 	 * Returns with the queue unlocked.
1965 	 */
1966 	blk_queue_enter_live(q);
1967 	req = get_request(q, bio->bi_opf, bio, 0);
1968 	if (IS_ERR(req)) {
1969 		blk_queue_exit(q);
1970 		__wbt_done(q->rq_wb, wb_acct);
1971 		if (PTR_ERR(req) == -ENOMEM)
1972 			bio->bi_status = BLK_STS_RESOURCE;
1973 		else
1974 			bio->bi_status = BLK_STS_IOERR;
1975 		bio_endio(bio);
1976 		goto out_unlock;
1977 	}
1978 
1979 	wbt_track(&req->issue_stat, wb_acct);
1980 
1981 	/*
1982 	 * After dropping the lock and possibly sleeping here, our request
1983 	 * may now be mergeable after it had proven unmergeable (above).
1984 	 * We don't worry about that case for efficiency. It won't happen
1985 	 * often, and the elevators are able to handle it.
1986 	 */
1987 	blk_init_request_from_bio(req, bio);
1988 
1989 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1990 		req->cpu = raw_smp_processor_id();
1991 
1992 	plug = current->plug;
1993 	if (plug) {
1994 		/*
1995 		 * If this is the first request added after a plug, fire
1996 		 * of a plug trace.
1997 		 *
1998 		 * @request_count may become stale because of schedule
1999 		 * out, so check plug list again.
2000 		 */
2001 		if (!request_count || list_empty(&plug->list))
2002 			trace_block_plug(q);
2003 		else {
2004 			struct request *last = list_entry_rq(plug->list.prev);
2005 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2006 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2007 				blk_flush_plug_list(plug, false);
2008 				trace_block_plug(q);
2009 			}
2010 		}
2011 		list_add_tail(&req->queuelist, &plug->list);
2012 		blk_account_io_start(req, true);
2013 	} else {
2014 		spin_lock_irq(q->queue_lock);
2015 		add_acct_request(q, req, where);
2016 		__blk_run_queue(q);
2017 out_unlock:
2018 		spin_unlock_irq(q->queue_lock);
2019 	}
2020 
2021 	return BLK_QC_T_NONE;
2022 }
2023 
2024 static void handle_bad_sector(struct bio *bio)
2025 {
2026 	char b[BDEVNAME_SIZE];
2027 
2028 	printk(KERN_INFO "attempt to access beyond end of device\n");
2029 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2030 			bio_devname(bio, b), bio->bi_opf,
2031 			(unsigned long long)bio_end_sector(bio),
2032 			(long long)get_capacity(bio->bi_disk));
2033 }
2034 
2035 #ifdef CONFIG_FAIL_MAKE_REQUEST
2036 
2037 static DECLARE_FAULT_ATTR(fail_make_request);
2038 
2039 static int __init setup_fail_make_request(char *str)
2040 {
2041 	return setup_fault_attr(&fail_make_request, str);
2042 }
2043 __setup("fail_make_request=", setup_fail_make_request);
2044 
2045 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2046 {
2047 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2048 }
2049 
2050 static int __init fail_make_request_debugfs(void)
2051 {
2052 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2053 						NULL, &fail_make_request);
2054 
2055 	return PTR_ERR_OR_ZERO(dir);
2056 }
2057 
2058 late_initcall(fail_make_request_debugfs);
2059 
2060 #else /* CONFIG_FAIL_MAKE_REQUEST */
2061 
2062 static inline bool should_fail_request(struct hd_struct *part,
2063 					unsigned int bytes)
2064 {
2065 	return false;
2066 }
2067 
2068 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2069 
2070 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2071 {
2072 	if (part->policy && op_is_write(bio_op(bio))) {
2073 		char b[BDEVNAME_SIZE];
2074 
2075 		printk(KERN_ERR
2076 		       "generic_make_request: Trying to write "
2077 			"to read-only block-device %s (partno %d)\n",
2078 			bio_devname(bio, b), part->partno);
2079 		return true;
2080 	}
2081 
2082 	return false;
2083 }
2084 
2085 /*
2086  * Remap block n of partition p to block n+start(p) of the disk.
2087  */
2088 static inline int blk_partition_remap(struct bio *bio)
2089 {
2090 	struct hd_struct *p;
2091 	int ret = 0;
2092 
2093 	rcu_read_lock();
2094 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2095 	if (unlikely(!p || should_fail_request(p, bio->bi_iter.bi_size) ||
2096 		     bio_check_ro(bio, p))) {
2097 		ret = -EIO;
2098 		goto out;
2099 	}
2100 
2101 	/*
2102 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2103 	 * Include a test for the reset op code and perform the remap if needed.
2104 	 */
2105 	if (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET)
2106 		goto out;
2107 
2108 	bio->bi_iter.bi_sector += p->start_sect;
2109 	bio->bi_partno = 0;
2110 	trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2111 			      bio->bi_iter.bi_sector - p->start_sect);
2112 
2113 out:
2114 	rcu_read_unlock();
2115 	return ret;
2116 }
2117 
2118 /*
2119  * Check whether this bio extends beyond the end of the device.
2120  */
2121 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2122 {
2123 	sector_t maxsector;
2124 
2125 	if (!nr_sectors)
2126 		return 0;
2127 
2128 	/* Test device or partition size, when known. */
2129 	maxsector = get_capacity(bio->bi_disk);
2130 	if (maxsector) {
2131 		sector_t sector = bio->bi_iter.bi_sector;
2132 
2133 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2134 			/*
2135 			 * This may well happen - the kernel calls bread()
2136 			 * without checking the size of the device, e.g., when
2137 			 * mounting a device.
2138 			 */
2139 			handle_bad_sector(bio);
2140 			return 1;
2141 		}
2142 	}
2143 
2144 	return 0;
2145 }
2146 
2147 static noinline_for_stack bool
2148 generic_make_request_checks(struct bio *bio)
2149 {
2150 	struct request_queue *q;
2151 	int nr_sectors = bio_sectors(bio);
2152 	blk_status_t status = BLK_STS_IOERR;
2153 	char b[BDEVNAME_SIZE];
2154 
2155 	might_sleep();
2156 
2157 	if (bio_check_eod(bio, nr_sectors))
2158 		goto end_io;
2159 
2160 	q = bio->bi_disk->queue;
2161 	if (unlikely(!q)) {
2162 		printk(KERN_ERR
2163 		       "generic_make_request: Trying to access "
2164 			"nonexistent block-device %s (%Lu)\n",
2165 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2166 		goto end_io;
2167 	}
2168 
2169 	/*
2170 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2171 	 * if queue is not a request based queue.
2172 	 */
2173 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2174 		goto not_supported;
2175 
2176 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2177 		goto end_io;
2178 
2179 	if (!bio->bi_partno) {
2180 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2181 			goto end_io;
2182 	} else {
2183 		if (blk_partition_remap(bio))
2184 			goto end_io;
2185 	}
2186 
2187 	if (bio_check_eod(bio, nr_sectors))
2188 		goto end_io;
2189 
2190 	/*
2191 	 * Filter flush bio's early so that make_request based
2192 	 * drivers without flush support don't have to worry
2193 	 * about them.
2194 	 */
2195 	if (op_is_flush(bio->bi_opf) &&
2196 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2197 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2198 		if (!nr_sectors) {
2199 			status = BLK_STS_OK;
2200 			goto end_io;
2201 		}
2202 	}
2203 
2204 	switch (bio_op(bio)) {
2205 	case REQ_OP_DISCARD:
2206 		if (!blk_queue_discard(q))
2207 			goto not_supported;
2208 		break;
2209 	case REQ_OP_SECURE_ERASE:
2210 		if (!blk_queue_secure_erase(q))
2211 			goto not_supported;
2212 		break;
2213 	case REQ_OP_WRITE_SAME:
2214 		if (!q->limits.max_write_same_sectors)
2215 			goto not_supported;
2216 		break;
2217 	case REQ_OP_ZONE_REPORT:
2218 	case REQ_OP_ZONE_RESET:
2219 		if (!blk_queue_is_zoned(q))
2220 			goto not_supported;
2221 		break;
2222 	case REQ_OP_WRITE_ZEROES:
2223 		if (!q->limits.max_write_zeroes_sectors)
2224 			goto not_supported;
2225 		break;
2226 	default:
2227 		break;
2228 	}
2229 
2230 	/*
2231 	 * Various block parts want %current->io_context and lazy ioc
2232 	 * allocation ends up trading a lot of pain for a small amount of
2233 	 * memory.  Just allocate it upfront.  This may fail and block
2234 	 * layer knows how to live with it.
2235 	 */
2236 	create_io_context(GFP_ATOMIC, q->node);
2237 
2238 	if (!blkcg_bio_issue_check(q, bio))
2239 		return false;
2240 
2241 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2242 		trace_block_bio_queue(q, bio);
2243 		/* Now that enqueuing has been traced, we need to trace
2244 		 * completion as well.
2245 		 */
2246 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2247 	}
2248 	return true;
2249 
2250 not_supported:
2251 	status = BLK_STS_NOTSUPP;
2252 end_io:
2253 	bio->bi_status = status;
2254 	bio_endio(bio);
2255 	return false;
2256 }
2257 
2258 /**
2259  * generic_make_request - hand a buffer to its device driver for I/O
2260  * @bio:  The bio describing the location in memory and on the device.
2261  *
2262  * generic_make_request() is used to make I/O requests of block
2263  * devices. It is passed a &struct bio, which describes the I/O that needs
2264  * to be done.
2265  *
2266  * generic_make_request() does not return any status.  The
2267  * success/failure status of the request, along with notification of
2268  * completion, is delivered asynchronously through the bio->bi_end_io
2269  * function described (one day) else where.
2270  *
2271  * The caller of generic_make_request must make sure that bi_io_vec
2272  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2273  * set to describe the device address, and the
2274  * bi_end_io and optionally bi_private are set to describe how
2275  * completion notification should be signaled.
2276  *
2277  * generic_make_request and the drivers it calls may use bi_next if this
2278  * bio happens to be merged with someone else, and may resubmit the bio to
2279  * a lower device by calling into generic_make_request recursively, which
2280  * means the bio should NOT be touched after the call to ->make_request_fn.
2281  */
2282 blk_qc_t generic_make_request(struct bio *bio)
2283 {
2284 	/*
2285 	 * bio_list_on_stack[0] contains bios submitted by the current
2286 	 * make_request_fn.
2287 	 * bio_list_on_stack[1] contains bios that were submitted before
2288 	 * the current make_request_fn, but that haven't been processed
2289 	 * yet.
2290 	 */
2291 	struct bio_list bio_list_on_stack[2];
2292 	blk_qc_t ret = BLK_QC_T_NONE;
2293 
2294 	if (!generic_make_request_checks(bio))
2295 		goto out;
2296 
2297 	/*
2298 	 * We only want one ->make_request_fn to be active at a time, else
2299 	 * stack usage with stacked devices could be a problem.  So use
2300 	 * current->bio_list to keep a list of requests submited by a
2301 	 * make_request_fn function.  current->bio_list is also used as a
2302 	 * flag to say if generic_make_request is currently active in this
2303 	 * task or not.  If it is NULL, then no make_request is active.  If
2304 	 * it is non-NULL, then a make_request is active, and new requests
2305 	 * should be added at the tail
2306 	 */
2307 	if (current->bio_list) {
2308 		bio_list_add(&current->bio_list[0], bio);
2309 		goto out;
2310 	}
2311 
2312 	/* following loop may be a bit non-obvious, and so deserves some
2313 	 * explanation.
2314 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2315 	 * ensure that) so we have a list with a single bio.
2316 	 * We pretend that we have just taken it off a longer list, so
2317 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2318 	 * thus initialising the bio_list of new bios to be
2319 	 * added.  ->make_request() may indeed add some more bios
2320 	 * through a recursive call to generic_make_request.  If it
2321 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2322 	 * from the top.  In this case we really did just take the bio
2323 	 * of the top of the list (no pretending) and so remove it from
2324 	 * bio_list, and call into ->make_request() again.
2325 	 */
2326 	BUG_ON(bio->bi_next);
2327 	bio_list_init(&bio_list_on_stack[0]);
2328 	current->bio_list = bio_list_on_stack;
2329 	do {
2330 		struct request_queue *q = bio->bi_disk->queue;
2331 		blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2332 			BLK_MQ_REQ_NOWAIT : 0;
2333 
2334 		if (likely(blk_queue_enter(q, flags) == 0)) {
2335 			struct bio_list lower, same;
2336 
2337 			/* Create a fresh bio_list for all subordinate requests */
2338 			bio_list_on_stack[1] = bio_list_on_stack[0];
2339 			bio_list_init(&bio_list_on_stack[0]);
2340 			ret = q->make_request_fn(q, bio);
2341 
2342 			blk_queue_exit(q);
2343 
2344 			/* sort new bios into those for a lower level
2345 			 * and those for the same level
2346 			 */
2347 			bio_list_init(&lower);
2348 			bio_list_init(&same);
2349 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2350 				if (q == bio->bi_disk->queue)
2351 					bio_list_add(&same, bio);
2352 				else
2353 					bio_list_add(&lower, bio);
2354 			/* now assemble so we handle the lowest level first */
2355 			bio_list_merge(&bio_list_on_stack[0], &lower);
2356 			bio_list_merge(&bio_list_on_stack[0], &same);
2357 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2358 		} else {
2359 			if (unlikely(!blk_queue_dying(q) &&
2360 					(bio->bi_opf & REQ_NOWAIT)))
2361 				bio_wouldblock_error(bio);
2362 			else
2363 				bio_io_error(bio);
2364 		}
2365 		bio = bio_list_pop(&bio_list_on_stack[0]);
2366 	} while (bio);
2367 	current->bio_list = NULL; /* deactivate */
2368 
2369 out:
2370 	return ret;
2371 }
2372 EXPORT_SYMBOL(generic_make_request);
2373 
2374 /**
2375  * direct_make_request - hand a buffer directly to its device driver for I/O
2376  * @bio:  The bio describing the location in memory and on the device.
2377  *
2378  * This function behaves like generic_make_request(), but does not protect
2379  * against recursion.  Must only be used if the called driver is known
2380  * to not call generic_make_request (or direct_make_request) again from
2381  * its make_request function.  (Calling direct_make_request again from
2382  * a workqueue is perfectly fine as that doesn't recurse).
2383  */
2384 blk_qc_t direct_make_request(struct bio *bio)
2385 {
2386 	struct request_queue *q = bio->bi_disk->queue;
2387 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2388 	blk_qc_t ret;
2389 
2390 	if (!generic_make_request_checks(bio))
2391 		return BLK_QC_T_NONE;
2392 
2393 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2394 		if (nowait && !blk_queue_dying(q))
2395 			bio->bi_status = BLK_STS_AGAIN;
2396 		else
2397 			bio->bi_status = BLK_STS_IOERR;
2398 		bio_endio(bio);
2399 		return BLK_QC_T_NONE;
2400 	}
2401 
2402 	ret = q->make_request_fn(q, bio);
2403 	blk_queue_exit(q);
2404 	return ret;
2405 }
2406 EXPORT_SYMBOL_GPL(direct_make_request);
2407 
2408 /**
2409  * submit_bio - submit a bio to the block device layer for I/O
2410  * @bio: The &struct bio which describes the I/O
2411  *
2412  * submit_bio() is very similar in purpose to generic_make_request(), and
2413  * uses that function to do most of the work. Both are fairly rough
2414  * interfaces; @bio must be presetup and ready for I/O.
2415  *
2416  */
2417 blk_qc_t submit_bio(struct bio *bio)
2418 {
2419 	/*
2420 	 * If it's a regular read/write or a barrier with data attached,
2421 	 * go through the normal accounting stuff before submission.
2422 	 */
2423 	if (bio_has_data(bio)) {
2424 		unsigned int count;
2425 
2426 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2427 			count = queue_logical_block_size(bio->bi_disk->queue);
2428 		else
2429 			count = bio_sectors(bio);
2430 
2431 		if (op_is_write(bio_op(bio))) {
2432 			count_vm_events(PGPGOUT, count);
2433 		} else {
2434 			task_io_account_read(bio->bi_iter.bi_size);
2435 			count_vm_events(PGPGIN, count);
2436 		}
2437 
2438 		if (unlikely(block_dump)) {
2439 			char b[BDEVNAME_SIZE];
2440 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2441 			current->comm, task_pid_nr(current),
2442 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2443 				(unsigned long long)bio->bi_iter.bi_sector,
2444 				bio_devname(bio, b), count);
2445 		}
2446 	}
2447 
2448 	return generic_make_request(bio);
2449 }
2450 EXPORT_SYMBOL(submit_bio);
2451 
2452 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2453 {
2454 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2455 		return false;
2456 
2457 	if (current->plug)
2458 		blk_flush_plug_list(current->plug, false);
2459 	return q->poll_fn(q, cookie);
2460 }
2461 EXPORT_SYMBOL_GPL(blk_poll);
2462 
2463 /**
2464  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2465  *                              for new the queue limits
2466  * @q:  the queue
2467  * @rq: the request being checked
2468  *
2469  * Description:
2470  *    @rq may have been made based on weaker limitations of upper-level queues
2471  *    in request stacking drivers, and it may violate the limitation of @q.
2472  *    Since the block layer and the underlying device driver trust @rq
2473  *    after it is inserted to @q, it should be checked against @q before
2474  *    the insertion using this generic function.
2475  *
2476  *    Request stacking drivers like request-based dm may change the queue
2477  *    limits when retrying requests on other queues. Those requests need
2478  *    to be checked against the new queue limits again during dispatch.
2479  */
2480 static int blk_cloned_rq_check_limits(struct request_queue *q,
2481 				      struct request *rq)
2482 {
2483 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2484 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2485 		return -EIO;
2486 	}
2487 
2488 	/*
2489 	 * queue's settings related to segment counting like q->bounce_pfn
2490 	 * may differ from that of other stacking queues.
2491 	 * Recalculate it to check the request correctly on this queue's
2492 	 * limitation.
2493 	 */
2494 	blk_recalc_rq_segments(rq);
2495 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2496 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2497 		return -EIO;
2498 	}
2499 
2500 	return 0;
2501 }
2502 
2503 /**
2504  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2505  * @q:  the queue to submit the request
2506  * @rq: the request being queued
2507  */
2508 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2509 {
2510 	unsigned long flags;
2511 	int where = ELEVATOR_INSERT_BACK;
2512 
2513 	if (blk_cloned_rq_check_limits(q, rq))
2514 		return BLK_STS_IOERR;
2515 
2516 	if (rq->rq_disk &&
2517 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2518 		return BLK_STS_IOERR;
2519 
2520 	if (q->mq_ops) {
2521 		if (blk_queue_io_stat(q))
2522 			blk_account_io_start(rq, true);
2523 		/*
2524 		 * Since we have a scheduler attached on the top device,
2525 		 * bypass a potential scheduler on the bottom device for
2526 		 * insert.
2527 		 */
2528 		return blk_mq_request_issue_directly(rq);
2529 	}
2530 
2531 	spin_lock_irqsave(q->queue_lock, flags);
2532 	if (unlikely(blk_queue_dying(q))) {
2533 		spin_unlock_irqrestore(q->queue_lock, flags);
2534 		return BLK_STS_IOERR;
2535 	}
2536 
2537 	/*
2538 	 * Submitting request must be dequeued before calling this function
2539 	 * because it will be linked to another request_queue
2540 	 */
2541 	BUG_ON(blk_queued_rq(rq));
2542 
2543 	if (op_is_flush(rq->cmd_flags))
2544 		where = ELEVATOR_INSERT_FLUSH;
2545 
2546 	add_acct_request(q, rq, where);
2547 	if (where == ELEVATOR_INSERT_FLUSH)
2548 		__blk_run_queue(q);
2549 	spin_unlock_irqrestore(q->queue_lock, flags);
2550 
2551 	return BLK_STS_OK;
2552 }
2553 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2554 
2555 /**
2556  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2557  * @rq: request to examine
2558  *
2559  * Description:
2560  *     A request could be merge of IOs which require different failure
2561  *     handling.  This function determines the number of bytes which
2562  *     can be failed from the beginning of the request without
2563  *     crossing into area which need to be retried further.
2564  *
2565  * Return:
2566  *     The number of bytes to fail.
2567  */
2568 unsigned int blk_rq_err_bytes(const struct request *rq)
2569 {
2570 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2571 	unsigned int bytes = 0;
2572 	struct bio *bio;
2573 
2574 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2575 		return blk_rq_bytes(rq);
2576 
2577 	/*
2578 	 * Currently the only 'mixing' which can happen is between
2579 	 * different fastfail types.  We can safely fail portions
2580 	 * which have all the failfast bits that the first one has -
2581 	 * the ones which are at least as eager to fail as the first
2582 	 * one.
2583 	 */
2584 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2585 		if ((bio->bi_opf & ff) != ff)
2586 			break;
2587 		bytes += bio->bi_iter.bi_size;
2588 	}
2589 
2590 	/* this could lead to infinite loop */
2591 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2592 	return bytes;
2593 }
2594 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2595 
2596 void blk_account_io_completion(struct request *req, unsigned int bytes)
2597 {
2598 	if (blk_do_io_stat(req)) {
2599 		const int rw = rq_data_dir(req);
2600 		struct hd_struct *part;
2601 		int cpu;
2602 
2603 		cpu = part_stat_lock();
2604 		part = req->part;
2605 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2606 		part_stat_unlock();
2607 	}
2608 }
2609 
2610 void blk_account_io_done(struct request *req)
2611 {
2612 	/*
2613 	 * Account IO completion.  flush_rq isn't accounted as a
2614 	 * normal IO on queueing nor completion.  Accounting the
2615 	 * containing request is enough.
2616 	 */
2617 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2618 		unsigned long duration = jiffies - req->start_time;
2619 		const int rw = rq_data_dir(req);
2620 		struct hd_struct *part;
2621 		int cpu;
2622 
2623 		cpu = part_stat_lock();
2624 		part = req->part;
2625 
2626 		part_stat_inc(cpu, part, ios[rw]);
2627 		part_stat_add(cpu, part, ticks[rw], duration);
2628 		part_round_stats(req->q, cpu, part);
2629 		part_dec_in_flight(req->q, part, rw);
2630 
2631 		hd_struct_put(part);
2632 		part_stat_unlock();
2633 	}
2634 }
2635 
2636 #ifdef CONFIG_PM
2637 /*
2638  * Don't process normal requests when queue is suspended
2639  * or in the process of suspending/resuming
2640  */
2641 static bool blk_pm_allow_request(struct request *rq)
2642 {
2643 	switch (rq->q->rpm_status) {
2644 	case RPM_RESUMING:
2645 	case RPM_SUSPENDING:
2646 		return rq->rq_flags & RQF_PM;
2647 	case RPM_SUSPENDED:
2648 		return false;
2649 	}
2650 
2651 	return true;
2652 }
2653 #else
2654 static bool blk_pm_allow_request(struct request *rq)
2655 {
2656 	return true;
2657 }
2658 #endif
2659 
2660 void blk_account_io_start(struct request *rq, bool new_io)
2661 {
2662 	struct hd_struct *part;
2663 	int rw = rq_data_dir(rq);
2664 	int cpu;
2665 
2666 	if (!blk_do_io_stat(rq))
2667 		return;
2668 
2669 	cpu = part_stat_lock();
2670 
2671 	if (!new_io) {
2672 		part = rq->part;
2673 		part_stat_inc(cpu, part, merges[rw]);
2674 	} else {
2675 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2676 		if (!hd_struct_try_get(part)) {
2677 			/*
2678 			 * The partition is already being removed,
2679 			 * the request will be accounted on the disk only
2680 			 *
2681 			 * We take a reference on disk->part0 although that
2682 			 * partition will never be deleted, so we can treat
2683 			 * it as any other partition.
2684 			 */
2685 			part = &rq->rq_disk->part0;
2686 			hd_struct_get(part);
2687 		}
2688 		part_round_stats(rq->q, cpu, part);
2689 		part_inc_in_flight(rq->q, part, rw);
2690 		rq->part = part;
2691 	}
2692 
2693 	part_stat_unlock();
2694 }
2695 
2696 static struct request *elv_next_request(struct request_queue *q)
2697 {
2698 	struct request *rq;
2699 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2700 
2701 	WARN_ON_ONCE(q->mq_ops);
2702 
2703 	while (1) {
2704 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2705 			if (blk_pm_allow_request(rq))
2706 				return rq;
2707 
2708 			if (rq->rq_flags & RQF_SOFTBARRIER)
2709 				break;
2710 		}
2711 
2712 		/*
2713 		 * Flush request is running and flush request isn't queueable
2714 		 * in the drive, we can hold the queue till flush request is
2715 		 * finished. Even we don't do this, driver can't dispatch next
2716 		 * requests and will requeue them. And this can improve
2717 		 * throughput too. For example, we have request flush1, write1,
2718 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2719 		 * isn't inserted to queue. After flush1 is finished, flush2
2720 		 * will be dispatched. Since disk cache is already clean,
2721 		 * flush2 will be finished very soon, so looks like flush2 is
2722 		 * folded to flush1.
2723 		 * Since the queue is hold, a flag is set to indicate the queue
2724 		 * should be restarted later. Please see flush_end_io() for
2725 		 * details.
2726 		 */
2727 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2728 				!queue_flush_queueable(q)) {
2729 			fq->flush_queue_delayed = 1;
2730 			return NULL;
2731 		}
2732 		if (unlikely(blk_queue_bypass(q)) ||
2733 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2734 			return NULL;
2735 	}
2736 }
2737 
2738 /**
2739  * blk_peek_request - peek at the top of a request queue
2740  * @q: request queue to peek at
2741  *
2742  * Description:
2743  *     Return the request at the top of @q.  The returned request
2744  *     should be started using blk_start_request() before LLD starts
2745  *     processing it.
2746  *
2747  * Return:
2748  *     Pointer to the request at the top of @q if available.  Null
2749  *     otherwise.
2750  */
2751 struct request *blk_peek_request(struct request_queue *q)
2752 {
2753 	struct request *rq;
2754 	int ret;
2755 
2756 	lockdep_assert_held(q->queue_lock);
2757 	WARN_ON_ONCE(q->mq_ops);
2758 
2759 	while ((rq = elv_next_request(q)) != NULL) {
2760 		if (!(rq->rq_flags & RQF_STARTED)) {
2761 			/*
2762 			 * This is the first time the device driver
2763 			 * sees this request (possibly after
2764 			 * requeueing).  Notify IO scheduler.
2765 			 */
2766 			if (rq->rq_flags & RQF_SORTED)
2767 				elv_activate_rq(q, rq);
2768 
2769 			/*
2770 			 * just mark as started even if we don't start
2771 			 * it, a request that has been delayed should
2772 			 * not be passed by new incoming requests
2773 			 */
2774 			rq->rq_flags |= RQF_STARTED;
2775 			trace_block_rq_issue(q, rq);
2776 		}
2777 
2778 		if (!q->boundary_rq || q->boundary_rq == rq) {
2779 			q->end_sector = rq_end_sector(rq);
2780 			q->boundary_rq = NULL;
2781 		}
2782 
2783 		if (rq->rq_flags & RQF_DONTPREP)
2784 			break;
2785 
2786 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2787 			/*
2788 			 * make sure space for the drain appears we
2789 			 * know we can do this because max_hw_segments
2790 			 * has been adjusted to be one fewer than the
2791 			 * device can handle
2792 			 */
2793 			rq->nr_phys_segments++;
2794 		}
2795 
2796 		if (!q->prep_rq_fn)
2797 			break;
2798 
2799 		ret = q->prep_rq_fn(q, rq);
2800 		if (ret == BLKPREP_OK) {
2801 			break;
2802 		} else if (ret == BLKPREP_DEFER) {
2803 			/*
2804 			 * the request may have been (partially) prepped.
2805 			 * we need to keep this request in the front to
2806 			 * avoid resource deadlock.  RQF_STARTED will
2807 			 * prevent other fs requests from passing this one.
2808 			 */
2809 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2810 			    !(rq->rq_flags & RQF_DONTPREP)) {
2811 				/*
2812 				 * remove the space for the drain we added
2813 				 * so that we don't add it again
2814 				 */
2815 				--rq->nr_phys_segments;
2816 			}
2817 
2818 			rq = NULL;
2819 			break;
2820 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2821 			rq->rq_flags |= RQF_QUIET;
2822 			/*
2823 			 * Mark this request as started so we don't trigger
2824 			 * any debug logic in the end I/O path.
2825 			 */
2826 			blk_start_request(rq);
2827 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2828 					BLK_STS_TARGET : BLK_STS_IOERR);
2829 		} else {
2830 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2831 			break;
2832 		}
2833 	}
2834 
2835 	return rq;
2836 }
2837 EXPORT_SYMBOL(blk_peek_request);
2838 
2839 static void blk_dequeue_request(struct request *rq)
2840 {
2841 	struct request_queue *q = rq->q;
2842 
2843 	BUG_ON(list_empty(&rq->queuelist));
2844 	BUG_ON(ELV_ON_HASH(rq));
2845 
2846 	list_del_init(&rq->queuelist);
2847 
2848 	/*
2849 	 * the time frame between a request being removed from the lists
2850 	 * and to it is freed is accounted as io that is in progress at
2851 	 * the driver side.
2852 	 */
2853 	if (blk_account_rq(rq)) {
2854 		q->in_flight[rq_is_sync(rq)]++;
2855 		set_io_start_time_ns(rq);
2856 	}
2857 }
2858 
2859 /**
2860  * blk_start_request - start request processing on the driver
2861  * @req: request to dequeue
2862  *
2863  * Description:
2864  *     Dequeue @req and start timeout timer on it.  This hands off the
2865  *     request to the driver.
2866  */
2867 void blk_start_request(struct request *req)
2868 {
2869 	lockdep_assert_held(req->q->queue_lock);
2870 	WARN_ON_ONCE(req->q->mq_ops);
2871 
2872 	blk_dequeue_request(req);
2873 
2874 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2875 		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2876 		req->rq_flags |= RQF_STATS;
2877 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2878 	}
2879 
2880 	BUG_ON(blk_rq_is_complete(req));
2881 	blk_add_timer(req);
2882 }
2883 EXPORT_SYMBOL(blk_start_request);
2884 
2885 /**
2886  * blk_fetch_request - fetch a request from a request queue
2887  * @q: request queue to fetch a request from
2888  *
2889  * Description:
2890  *     Return the request at the top of @q.  The request is started on
2891  *     return and LLD can start processing it immediately.
2892  *
2893  * Return:
2894  *     Pointer to the request at the top of @q if available.  Null
2895  *     otherwise.
2896  */
2897 struct request *blk_fetch_request(struct request_queue *q)
2898 {
2899 	struct request *rq;
2900 
2901 	lockdep_assert_held(q->queue_lock);
2902 	WARN_ON_ONCE(q->mq_ops);
2903 
2904 	rq = blk_peek_request(q);
2905 	if (rq)
2906 		blk_start_request(rq);
2907 	return rq;
2908 }
2909 EXPORT_SYMBOL(blk_fetch_request);
2910 
2911 /*
2912  * Steal bios from a request and add them to a bio list.
2913  * The request must not have been partially completed before.
2914  */
2915 void blk_steal_bios(struct bio_list *list, struct request *rq)
2916 {
2917 	if (rq->bio) {
2918 		if (list->tail)
2919 			list->tail->bi_next = rq->bio;
2920 		else
2921 			list->head = rq->bio;
2922 		list->tail = rq->biotail;
2923 
2924 		rq->bio = NULL;
2925 		rq->biotail = NULL;
2926 	}
2927 
2928 	rq->__data_len = 0;
2929 }
2930 EXPORT_SYMBOL_GPL(blk_steal_bios);
2931 
2932 /**
2933  * blk_update_request - Special helper function for request stacking drivers
2934  * @req:      the request being processed
2935  * @error:    block status code
2936  * @nr_bytes: number of bytes to complete @req
2937  *
2938  * Description:
2939  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2940  *     the request structure even if @req doesn't have leftover.
2941  *     If @req has leftover, sets it up for the next range of segments.
2942  *
2943  *     This special helper function is only for request stacking drivers
2944  *     (e.g. request-based dm) so that they can handle partial completion.
2945  *     Actual device drivers should use blk_end_request instead.
2946  *
2947  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2948  *     %false return from this function.
2949  *
2950  * Return:
2951  *     %false - this request doesn't have any more data
2952  *     %true  - this request has more data
2953  **/
2954 bool blk_update_request(struct request *req, blk_status_t error,
2955 		unsigned int nr_bytes)
2956 {
2957 	int total_bytes;
2958 
2959 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2960 
2961 	if (!req->bio)
2962 		return false;
2963 
2964 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
2965 		     !(req->rq_flags & RQF_QUIET)))
2966 		print_req_error(req, error);
2967 
2968 	blk_account_io_completion(req, nr_bytes);
2969 
2970 	total_bytes = 0;
2971 	while (req->bio) {
2972 		struct bio *bio = req->bio;
2973 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2974 
2975 		if (bio_bytes == bio->bi_iter.bi_size)
2976 			req->bio = bio->bi_next;
2977 
2978 		/* Completion has already been traced */
2979 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2980 		req_bio_endio(req, bio, bio_bytes, error);
2981 
2982 		total_bytes += bio_bytes;
2983 		nr_bytes -= bio_bytes;
2984 
2985 		if (!nr_bytes)
2986 			break;
2987 	}
2988 
2989 	/*
2990 	 * completely done
2991 	 */
2992 	if (!req->bio) {
2993 		/*
2994 		 * Reset counters so that the request stacking driver
2995 		 * can find how many bytes remain in the request
2996 		 * later.
2997 		 */
2998 		req->__data_len = 0;
2999 		return false;
3000 	}
3001 
3002 	req->__data_len -= total_bytes;
3003 
3004 	/* update sector only for requests with clear definition of sector */
3005 	if (!blk_rq_is_passthrough(req))
3006 		req->__sector += total_bytes >> 9;
3007 
3008 	/* mixed attributes always follow the first bio */
3009 	if (req->rq_flags & RQF_MIXED_MERGE) {
3010 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3011 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3012 	}
3013 
3014 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3015 		/*
3016 		 * If total number of sectors is less than the first segment
3017 		 * size, something has gone terribly wrong.
3018 		 */
3019 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3020 			blk_dump_rq_flags(req, "request botched");
3021 			req->__data_len = blk_rq_cur_bytes(req);
3022 		}
3023 
3024 		/* recalculate the number of segments */
3025 		blk_recalc_rq_segments(req);
3026 	}
3027 
3028 	return true;
3029 }
3030 EXPORT_SYMBOL_GPL(blk_update_request);
3031 
3032 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3033 				    unsigned int nr_bytes,
3034 				    unsigned int bidi_bytes)
3035 {
3036 	if (blk_update_request(rq, error, nr_bytes))
3037 		return true;
3038 
3039 	/* Bidi request must be completed as a whole */
3040 	if (unlikely(blk_bidi_rq(rq)) &&
3041 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3042 		return true;
3043 
3044 	if (blk_queue_add_random(rq->q))
3045 		add_disk_randomness(rq->rq_disk);
3046 
3047 	return false;
3048 }
3049 
3050 /**
3051  * blk_unprep_request - unprepare a request
3052  * @req:	the request
3053  *
3054  * This function makes a request ready for complete resubmission (or
3055  * completion).  It happens only after all error handling is complete,
3056  * so represents the appropriate moment to deallocate any resources
3057  * that were allocated to the request in the prep_rq_fn.  The queue
3058  * lock is held when calling this.
3059  */
3060 void blk_unprep_request(struct request *req)
3061 {
3062 	struct request_queue *q = req->q;
3063 
3064 	req->rq_flags &= ~RQF_DONTPREP;
3065 	if (q->unprep_rq_fn)
3066 		q->unprep_rq_fn(q, req);
3067 }
3068 EXPORT_SYMBOL_GPL(blk_unprep_request);
3069 
3070 void blk_finish_request(struct request *req, blk_status_t error)
3071 {
3072 	struct request_queue *q = req->q;
3073 
3074 	lockdep_assert_held(req->q->queue_lock);
3075 	WARN_ON_ONCE(q->mq_ops);
3076 
3077 	if (req->rq_flags & RQF_STATS)
3078 		blk_stat_add(req);
3079 
3080 	if (req->rq_flags & RQF_QUEUED)
3081 		blk_queue_end_tag(q, req);
3082 
3083 	BUG_ON(blk_queued_rq(req));
3084 
3085 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3086 		laptop_io_completion(req->q->backing_dev_info);
3087 
3088 	blk_delete_timer(req);
3089 
3090 	if (req->rq_flags & RQF_DONTPREP)
3091 		blk_unprep_request(req);
3092 
3093 	blk_account_io_done(req);
3094 
3095 	if (req->end_io) {
3096 		wbt_done(req->q->rq_wb, &req->issue_stat);
3097 		req->end_io(req, error);
3098 	} else {
3099 		if (blk_bidi_rq(req))
3100 			__blk_put_request(req->next_rq->q, req->next_rq);
3101 
3102 		__blk_put_request(q, req);
3103 	}
3104 }
3105 EXPORT_SYMBOL(blk_finish_request);
3106 
3107 /**
3108  * blk_end_bidi_request - Complete a bidi request
3109  * @rq:         the request to complete
3110  * @error:      block status code
3111  * @nr_bytes:   number of bytes to complete @rq
3112  * @bidi_bytes: number of bytes to complete @rq->next_rq
3113  *
3114  * Description:
3115  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3116  *     Drivers that supports bidi can safely call this member for any
3117  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3118  *     just ignored.
3119  *
3120  * Return:
3121  *     %false - we are done with this request
3122  *     %true  - still buffers pending for this request
3123  **/
3124 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3125 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3126 {
3127 	struct request_queue *q = rq->q;
3128 	unsigned long flags;
3129 
3130 	WARN_ON_ONCE(q->mq_ops);
3131 
3132 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3133 		return true;
3134 
3135 	spin_lock_irqsave(q->queue_lock, flags);
3136 	blk_finish_request(rq, error);
3137 	spin_unlock_irqrestore(q->queue_lock, flags);
3138 
3139 	return false;
3140 }
3141 
3142 /**
3143  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3144  * @rq:         the request to complete
3145  * @error:      block status code
3146  * @nr_bytes:   number of bytes to complete @rq
3147  * @bidi_bytes: number of bytes to complete @rq->next_rq
3148  *
3149  * Description:
3150  *     Identical to blk_end_bidi_request() except that queue lock is
3151  *     assumed to be locked on entry and remains so on return.
3152  *
3153  * Return:
3154  *     %false - we are done with this request
3155  *     %true  - still buffers pending for this request
3156  **/
3157 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3158 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3159 {
3160 	lockdep_assert_held(rq->q->queue_lock);
3161 	WARN_ON_ONCE(rq->q->mq_ops);
3162 
3163 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3164 		return true;
3165 
3166 	blk_finish_request(rq, error);
3167 
3168 	return false;
3169 }
3170 
3171 /**
3172  * blk_end_request - Helper function for drivers to complete the request.
3173  * @rq:       the request being processed
3174  * @error:    block status code
3175  * @nr_bytes: number of bytes to complete
3176  *
3177  * Description:
3178  *     Ends I/O on a number of bytes attached to @rq.
3179  *     If @rq has leftover, sets it up for the next range of segments.
3180  *
3181  * Return:
3182  *     %false - we are done with this request
3183  *     %true  - still buffers pending for this request
3184  **/
3185 bool blk_end_request(struct request *rq, blk_status_t error,
3186 		unsigned int nr_bytes)
3187 {
3188 	WARN_ON_ONCE(rq->q->mq_ops);
3189 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3190 }
3191 EXPORT_SYMBOL(blk_end_request);
3192 
3193 /**
3194  * blk_end_request_all - Helper function for drives to finish the request.
3195  * @rq: the request to finish
3196  * @error: block status code
3197  *
3198  * Description:
3199  *     Completely finish @rq.
3200  */
3201 void blk_end_request_all(struct request *rq, blk_status_t error)
3202 {
3203 	bool pending;
3204 	unsigned int bidi_bytes = 0;
3205 
3206 	if (unlikely(blk_bidi_rq(rq)))
3207 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3208 
3209 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3210 	BUG_ON(pending);
3211 }
3212 EXPORT_SYMBOL(blk_end_request_all);
3213 
3214 /**
3215  * __blk_end_request - Helper function for drivers to complete the request.
3216  * @rq:       the request being processed
3217  * @error:    block status code
3218  * @nr_bytes: number of bytes to complete
3219  *
3220  * Description:
3221  *     Must be called with queue lock held unlike blk_end_request().
3222  *
3223  * Return:
3224  *     %false - we are done with this request
3225  *     %true  - still buffers pending for this request
3226  **/
3227 bool __blk_end_request(struct request *rq, blk_status_t error,
3228 		unsigned int nr_bytes)
3229 {
3230 	lockdep_assert_held(rq->q->queue_lock);
3231 	WARN_ON_ONCE(rq->q->mq_ops);
3232 
3233 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3234 }
3235 EXPORT_SYMBOL(__blk_end_request);
3236 
3237 /**
3238  * __blk_end_request_all - Helper function for drives to finish the request.
3239  * @rq: the request to finish
3240  * @error:    block status code
3241  *
3242  * Description:
3243  *     Completely finish @rq.  Must be called with queue lock held.
3244  */
3245 void __blk_end_request_all(struct request *rq, blk_status_t error)
3246 {
3247 	bool pending;
3248 	unsigned int bidi_bytes = 0;
3249 
3250 	lockdep_assert_held(rq->q->queue_lock);
3251 	WARN_ON_ONCE(rq->q->mq_ops);
3252 
3253 	if (unlikely(blk_bidi_rq(rq)))
3254 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3255 
3256 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3257 	BUG_ON(pending);
3258 }
3259 EXPORT_SYMBOL(__blk_end_request_all);
3260 
3261 /**
3262  * __blk_end_request_cur - Helper function to finish the current request chunk.
3263  * @rq: the request to finish the current chunk for
3264  * @error:    block status code
3265  *
3266  * Description:
3267  *     Complete the current consecutively mapped chunk from @rq.  Must
3268  *     be called with queue lock held.
3269  *
3270  * Return:
3271  *     %false - we are done with this request
3272  *     %true  - still buffers pending for this request
3273  */
3274 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3275 {
3276 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3277 }
3278 EXPORT_SYMBOL(__blk_end_request_cur);
3279 
3280 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3281 		     struct bio *bio)
3282 {
3283 	if (bio_has_data(bio))
3284 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3285 
3286 	rq->__data_len = bio->bi_iter.bi_size;
3287 	rq->bio = rq->biotail = bio;
3288 
3289 	if (bio->bi_disk)
3290 		rq->rq_disk = bio->bi_disk;
3291 }
3292 
3293 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3294 /**
3295  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3296  * @rq: the request to be flushed
3297  *
3298  * Description:
3299  *     Flush all pages in @rq.
3300  */
3301 void rq_flush_dcache_pages(struct request *rq)
3302 {
3303 	struct req_iterator iter;
3304 	struct bio_vec bvec;
3305 
3306 	rq_for_each_segment(bvec, rq, iter)
3307 		flush_dcache_page(bvec.bv_page);
3308 }
3309 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3310 #endif
3311 
3312 /**
3313  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3314  * @q : the queue of the device being checked
3315  *
3316  * Description:
3317  *    Check if underlying low-level drivers of a device are busy.
3318  *    If the drivers want to export their busy state, they must set own
3319  *    exporting function using blk_queue_lld_busy() first.
3320  *
3321  *    Basically, this function is used only by request stacking drivers
3322  *    to stop dispatching requests to underlying devices when underlying
3323  *    devices are busy.  This behavior helps more I/O merging on the queue
3324  *    of the request stacking driver and prevents I/O throughput regression
3325  *    on burst I/O load.
3326  *
3327  * Return:
3328  *    0 - Not busy (The request stacking driver should dispatch request)
3329  *    1 - Busy (The request stacking driver should stop dispatching request)
3330  */
3331 int blk_lld_busy(struct request_queue *q)
3332 {
3333 	if (q->lld_busy_fn)
3334 		return q->lld_busy_fn(q);
3335 
3336 	return 0;
3337 }
3338 EXPORT_SYMBOL_GPL(blk_lld_busy);
3339 
3340 /**
3341  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3342  * @rq: the clone request to be cleaned up
3343  *
3344  * Description:
3345  *     Free all bios in @rq for a cloned request.
3346  */
3347 void blk_rq_unprep_clone(struct request *rq)
3348 {
3349 	struct bio *bio;
3350 
3351 	while ((bio = rq->bio) != NULL) {
3352 		rq->bio = bio->bi_next;
3353 
3354 		bio_put(bio);
3355 	}
3356 }
3357 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3358 
3359 /*
3360  * Copy attributes of the original request to the clone request.
3361  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3362  */
3363 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3364 {
3365 	dst->cpu = src->cpu;
3366 	dst->__sector = blk_rq_pos(src);
3367 	dst->__data_len = blk_rq_bytes(src);
3368 	dst->nr_phys_segments = src->nr_phys_segments;
3369 	dst->ioprio = src->ioprio;
3370 	dst->extra_len = src->extra_len;
3371 }
3372 
3373 /**
3374  * blk_rq_prep_clone - Helper function to setup clone request
3375  * @rq: the request to be setup
3376  * @rq_src: original request to be cloned
3377  * @bs: bio_set that bios for clone are allocated from
3378  * @gfp_mask: memory allocation mask for bio
3379  * @bio_ctr: setup function to be called for each clone bio.
3380  *           Returns %0 for success, non %0 for failure.
3381  * @data: private data to be passed to @bio_ctr
3382  *
3383  * Description:
3384  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3385  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3386  *     are not copied, and copying such parts is the caller's responsibility.
3387  *     Also, pages which the original bios are pointing to are not copied
3388  *     and the cloned bios just point same pages.
3389  *     So cloned bios must be completed before original bios, which means
3390  *     the caller must complete @rq before @rq_src.
3391  */
3392 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3393 		      struct bio_set *bs, gfp_t gfp_mask,
3394 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3395 		      void *data)
3396 {
3397 	struct bio *bio, *bio_src;
3398 
3399 	if (!bs)
3400 		bs = fs_bio_set;
3401 
3402 	__rq_for_each_bio(bio_src, rq_src) {
3403 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3404 		if (!bio)
3405 			goto free_and_out;
3406 
3407 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3408 			goto free_and_out;
3409 
3410 		if (rq->bio) {
3411 			rq->biotail->bi_next = bio;
3412 			rq->biotail = bio;
3413 		} else
3414 			rq->bio = rq->biotail = bio;
3415 	}
3416 
3417 	__blk_rq_prep_clone(rq, rq_src);
3418 
3419 	return 0;
3420 
3421 free_and_out:
3422 	if (bio)
3423 		bio_put(bio);
3424 	blk_rq_unprep_clone(rq);
3425 
3426 	return -ENOMEM;
3427 }
3428 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3429 
3430 int kblockd_schedule_work(struct work_struct *work)
3431 {
3432 	return queue_work(kblockd_workqueue, work);
3433 }
3434 EXPORT_SYMBOL(kblockd_schedule_work);
3435 
3436 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3437 {
3438 	return queue_work_on(cpu, kblockd_workqueue, work);
3439 }
3440 EXPORT_SYMBOL(kblockd_schedule_work_on);
3441 
3442 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3443 				unsigned long delay)
3444 {
3445 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3446 }
3447 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3448 
3449 /**
3450  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3451  * @plug:	The &struct blk_plug that needs to be initialized
3452  *
3453  * Description:
3454  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3455  *   pending I/O should the task end up blocking between blk_start_plug() and
3456  *   blk_finish_plug(). This is important from a performance perspective, but
3457  *   also ensures that we don't deadlock. For instance, if the task is blocking
3458  *   for a memory allocation, memory reclaim could end up wanting to free a
3459  *   page belonging to that request that is currently residing in our private
3460  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3461  *   this kind of deadlock.
3462  */
3463 void blk_start_plug(struct blk_plug *plug)
3464 {
3465 	struct task_struct *tsk = current;
3466 
3467 	/*
3468 	 * If this is a nested plug, don't actually assign it.
3469 	 */
3470 	if (tsk->plug)
3471 		return;
3472 
3473 	INIT_LIST_HEAD(&plug->list);
3474 	INIT_LIST_HEAD(&plug->mq_list);
3475 	INIT_LIST_HEAD(&plug->cb_list);
3476 	/*
3477 	 * Store ordering should not be needed here, since a potential
3478 	 * preempt will imply a full memory barrier
3479 	 */
3480 	tsk->plug = plug;
3481 }
3482 EXPORT_SYMBOL(blk_start_plug);
3483 
3484 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3485 {
3486 	struct request *rqa = container_of(a, struct request, queuelist);
3487 	struct request *rqb = container_of(b, struct request, queuelist);
3488 
3489 	return !(rqa->q < rqb->q ||
3490 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3491 }
3492 
3493 /*
3494  * If 'from_schedule' is true, then postpone the dispatch of requests
3495  * until a safe kblockd context. We due this to avoid accidental big
3496  * additional stack usage in driver dispatch, in places where the originally
3497  * plugger did not intend it.
3498  */
3499 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3500 			    bool from_schedule)
3501 	__releases(q->queue_lock)
3502 {
3503 	lockdep_assert_held(q->queue_lock);
3504 
3505 	trace_block_unplug(q, depth, !from_schedule);
3506 
3507 	if (from_schedule)
3508 		blk_run_queue_async(q);
3509 	else
3510 		__blk_run_queue(q);
3511 	spin_unlock(q->queue_lock);
3512 }
3513 
3514 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3515 {
3516 	LIST_HEAD(callbacks);
3517 
3518 	while (!list_empty(&plug->cb_list)) {
3519 		list_splice_init(&plug->cb_list, &callbacks);
3520 
3521 		while (!list_empty(&callbacks)) {
3522 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3523 							  struct blk_plug_cb,
3524 							  list);
3525 			list_del(&cb->list);
3526 			cb->callback(cb, from_schedule);
3527 		}
3528 	}
3529 }
3530 
3531 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3532 				      int size)
3533 {
3534 	struct blk_plug *plug = current->plug;
3535 	struct blk_plug_cb *cb;
3536 
3537 	if (!plug)
3538 		return NULL;
3539 
3540 	list_for_each_entry(cb, &plug->cb_list, list)
3541 		if (cb->callback == unplug && cb->data == data)
3542 			return cb;
3543 
3544 	/* Not currently on the callback list */
3545 	BUG_ON(size < sizeof(*cb));
3546 	cb = kzalloc(size, GFP_ATOMIC);
3547 	if (cb) {
3548 		cb->data = data;
3549 		cb->callback = unplug;
3550 		list_add(&cb->list, &plug->cb_list);
3551 	}
3552 	return cb;
3553 }
3554 EXPORT_SYMBOL(blk_check_plugged);
3555 
3556 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3557 {
3558 	struct request_queue *q;
3559 	unsigned long flags;
3560 	struct request *rq;
3561 	LIST_HEAD(list);
3562 	unsigned int depth;
3563 
3564 	flush_plug_callbacks(plug, from_schedule);
3565 
3566 	if (!list_empty(&plug->mq_list))
3567 		blk_mq_flush_plug_list(plug, from_schedule);
3568 
3569 	if (list_empty(&plug->list))
3570 		return;
3571 
3572 	list_splice_init(&plug->list, &list);
3573 
3574 	list_sort(NULL, &list, plug_rq_cmp);
3575 
3576 	q = NULL;
3577 	depth = 0;
3578 
3579 	/*
3580 	 * Save and disable interrupts here, to avoid doing it for every
3581 	 * queue lock we have to take.
3582 	 */
3583 	local_irq_save(flags);
3584 	while (!list_empty(&list)) {
3585 		rq = list_entry_rq(list.next);
3586 		list_del_init(&rq->queuelist);
3587 		BUG_ON(!rq->q);
3588 		if (rq->q != q) {
3589 			/*
3590 			 * This drops the queue lock
3591 			 */
3592 			if (q)
3593 				queue_unplugged(q, depth, from_schedule);
3594 			q = rq->q;
3595 			depth = 0;
3596 			spin_lock(q->queue_lock);
3597 		}
3598 
3599 		/*
3600 		 * Short-circuit if @q is dead
3601 		 */
3602 		if (unlikely(blk_queue_dying(q))) {
3603 			__blk_end_request_all(rq, BLK_STS_IOERR);
3604 			continue;
3605 		}
3606 
3607 		/*
3608 		 * rq is already accounted, so use raw insert
3609 		 */
3610 		if (op_is_flush(rq->cmd_flags))
3611 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3612 		else
3613 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3614 
3615 		depth++;
3616 	}
3617 
3618 	/*
3619 	 * This drops the queue lock
3620 	 */
3621 	if (q)
3622 		queue_unplugged(q, depth, from_schedule);
3623 
3624 	local_irq_restore(flags);
3625 }
3626 
3627 void blk_finish_plug(struct blk_plug *plug)
3628 {
3629 	if (plug != current->plug)
3630 		return;
3631 	blk_flush_plug_list(plug, false);
3632 
3633 	current->plug = NULL;
3634 }
3635 EXPORT_SYMBOL(blk_finish_plug);
3636 
3637 #ifdef CONFIG_PM
3638 /**
3639  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3640  * @q: the queue of the device
3641  * @dev: the device the queue belongs to
3642  *
3643  * Description:
3644  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3645  *    @dev. Drivers that want to take advantage of request-based runtime PM
3646  *    should call this function after @dev has been initialized, and its
3647  *    request queue @q has been allocated, and runtime PM for it can not happen
3648  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3649  *    cases, driver should call this function before any I/O has taken place.
3650  *
3651  *    This function takes care of setting up using auto suspend for the device,
3652  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3653  *    until an updated value is either set by user or by driver. Drivers do
3654  *    not need to touch other autosuspend settings.
3655  *
3656  *    The block layer runtime PM is request based, so only works for drivers
3657  *    that use request as their IO unit instead of those directly use bio's.
3658  */
3659 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3660 {
3661 	/* not support for RQF_PM and ->rpm_status in blk-mq yet */
3662 	if (q->mq_ops)
3663 		return;
3664 
3665 	q->dev = dev;
3666 	q->rpm_status = RPM_ACTIVE;
3667 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3668 	pm_runtime_use_autosuspend(q->dev);
3669 }
3670 EXPORT_SYMBOL(blk_pm_runtime_init);
3671 
3672 /**
3673  * blk_pre_runtime_suspend - Pre runtime suspend check
3674  * @q: the queue of the device
3675  *
3676  * Description:
3677  *    This function will check if runtime suspend is allowed for the device
3678  *    by examining if there are any requests pending in the queue. If there
3679  *    are requests pending, the device can not be runtime suspended; otherwise,
3680  *    the queue's status will be updated to SUSPENDING and the driver can
3681  *    proceed to suspend the device.
3682  *
3683  *    For the not allowed case, we mark last busy for the device so that
3684  *    runtime PM core will try to autosuspend it some time later.
3685  *
3686  *    This function should be called near the start of the device's
3687  *    runtime_suspend callback.
3688  *
3689  * Return:
3690  *    0		- OK to runtime suspend the device
3691  *    -EBUSY	- Device should not be runtime suspended
3692  */
3693 int blk_pre_runtime_suspend(struct request_queue *q)
3694 {
3695 	int ret = 0;
3696 
3697 	if (!q->dev)
3698 		return ret;
3699 
3700 	spin_lock_irq(q->queue_lock);
3701 	if (q->nr_pending) {
3702 		ret = -EBUSY;
3703 		pm_runtime_mark_last_busy(q->dev);
3704 	} else {
3705 		q->rpm_status = RPM_SUSPENDING;
3706 	}
3707 	spin_unlock_irq(q->queue_lock);
3708 	return ret;
3709 }
3710 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3711 
3712 /**
3713  * blk_post_runtime_suspend - Post runtime suspend processing
3714  * @q: the queue of the device
3715  * @err: return value of the device's runtime_suspend function
3716  *
3717  * Description:
3718  *    Update the queue's runtime status according to the return value of the
3719  *    device's runtime suspend function and mark last busy for the device so
3720  *    that PM core will try to auto suspend the device at a later time.
3721  *
3722  *    This function should be called near the end of the device's
3723  *    runtime_suspend callback.
3724  */
3725 void blk_post_runtime_suspend(struct request_queue *q, int err)
3726 {
3727 	if (!q->dev)
3728 		return;
3729 
3730 	spin_lock_irq(q->queue_lock);
3731 	if (!err) {
3732 		q->rpm_status = RPM_SUSPENDED;
3733 	} else {
3734 		q->rpm_status = RPM_ACTIVE;
3735 		pm_runtime_mark_last_busy(q->dev);
3736 	}
3737 	spin_unlock_irq(q->queue_lock);
3738 }
3739 EXPORT_SYMBOL(blk_post_runtime_suspend);
3740 
3741 /**
3742  * blk_pre_runtime_resume - Pre runtime resume processing
3743  * @q: the queue of the device
3744  *
3745  * Description:
3746  *    Update the queue's runtime status to RESUMING in preparation for the
3747  *    runtime resume of the device.
3748  *
3749  *    This function should be called near the start of the device's
3750  *    runtime_resume callback.
3751  */
3752 void blk_pre_runtime_resume(struct request_queue *q)
3753 {
3754 	if (!q->dev)
3755 		return;
3756 
3757 	spin_lock_irq(q->queue_lock);
3758 	q->rpm_status = RPM_RESUMING;
3759 	spin_unlock_irq(q->queue_lock);
3760 }
3761 EXPORT_SYMBOL(blk_pre_runtime_resume);
3762 
3763 /**
3764  * blk_post_runtime_resume - Post runtime resume processing
3765  * @q: the queue of the device
3766  * @err: return value of the device's runtime_resume function
3767  *
3768  * Description:
3769  *    Update the queue's runtime status according to the return value of the
3770  *    device's runtime_resume function. If it is successfully resumed, process
3771  *    the requests that are queued into the device's queue when it is resuming
3772  *    and then mark last busy and initiate autosuspend for it.
3773  *
3774  *    This function should be called near the end of the device's
3775  *    runtime_resume callback.
3776  */
3777 void blk_post_runtime_resume(struct request_queue *q, int err)
3778 {
3779 	if (!q->dev)
3780 		return;
3781 
3782 	spin_lock_irq(q->queue_lock);
3783 	if (!err) {
3784 		q->rpm_status = RPM_ACTIVE;
3785 		__blk_run_queue(q);
3786 		pm_runtime_mark_last_busy(q->dev);
3787 		pm_request_autosuspend(q->dev);
3788 	} else {
3789 		q->rpm_status = RPM_SUSPENDED;
3790 	}
3791 	spin_unlock_irq(q->queue_lock);
3792 }
3793 EXPORT_SYMBOL(blk_post_runtime_resume);
3794 
3795 /**
3796  * blk_set_runtime_active - Force runtime status of the queue to be active
3797  * @q: the queue of the device
3798  *
3799  * If the device is left runtime suspended during system suspend the resume
3800  * hook typically resumes the device and corrects runtime status
3801  * accordingly. However, that does not affect the queue runtime PM status
3802  * which is still "suspended". This prevents processing requests from the
3803  * queue.
3804  *
3805  * This function can be used in driver's resume hook to correct queue
3806  * runtime PM status and re-enable peeking requests from the queue. It
3807  * should be called before first request is added to the queue.
3808  */
3809 void blk_set_runtime_active(struct request_queue *q)
3810 {
3811 	spin_lock_irq(q->queue_lock);
3812 	q->rpm_status = RPM_ACTIVE;
3813 	pm_runtime_mark_last_busy(q->dev);
3814 	pm_request_autosuspend(q->dev);
3815 	spin_unlock_irq(q->queue_lock);
3816 }
3817 EXPORT_SYMBOL(blk_set_runtime_active);
3818 #endif
3819 
3820 int __init blk_dev_init(void)
3821 {
3822 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3823 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3824 			FIELD_SIZEOF(struct request, cmd_flags));
3825 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3826 			FIELD_SIZEOF(struct bio, bi_opf));
3827 
3828 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3829 	kblockd_workqueue = alloc_workqueue("kblockd",
3830 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3831 	if (!kblockd_workqueue)
3832 		panic("Failed to create kblockd\n");
3833 
3834 	request_cachep = kmem_cache_create("blkdev_requests",
3835 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3836 
3837 	blk_requestq_cachep = kmem_cache_create("request_queue",
3838 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3839 
3840 #ifdef CONFIG_DEBUG_FS
3841 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3842 #endif
3843 
3844 	return 0;
3845 }
3846